
Any2Graph: Deep End-To-End Supervised Graph
Prediction With An Optimal Transport Loss

Paul Krzakala
LTCI & CMAP , Télécom paris, IP Paris

Junjie Yang
LTCI, Télécom paris, IP Paris

Rémi Flamary
CMAP, Ecole polytechnique, IP Paris

Florence d’Alché-Buc
LTCI, Télécom paris, IP Paris

Charlotte Laclau
LTCI, Télécom paris, IP Paris

Matthieu Labeau
LTCI, Télécom paris, IP Paris

Abstract

We propose Any2Graph, a generic framework for end-to-end Supervised Graph
Prediction (SGP) i.e. a deep learning model that predicts an entire graph for any
kind of input. The framework is built on a novel Optimal Transport loss, the
Partially-Masked Fused Gromov-Wasserstein, that exhibits all necessary proper-
ties (permutation invariance, differentiability) and is designed to handle any-sized
graphs. Numerical experiments showcase the versatility of the approach that out-
performs existing competitors on a novel challenging synthetic dataset and a variety
of real-world tasks such as map construction from satellite image (Sat2Graph) or
molecule prediction from fingerprint (Fingerprint2Graph). 1

1 Introduction

This work focuses on the problem of Supervised Graph Prediction (SGP), at the crossroads of
Graph-based Learning and Structured Prediction. In contrast to node and graph classification or
link prediction widely covered in recent literature by graph neural networks, the target variable
in SGP is a graph and no particular assumption is made about the input variable. Emblematic
applications of SGP include knowledge graph extraction [28] or dependency parsing [17] in natural
language processing, conditional graph scene generation in computer vision [53], [12], or molecule
identification in chemistry [10, 55, 49], to name but a few. Moreover, close to SGP is the unsupervised
task of graph generation notably motivated by de novo drug design [8, 15, 41].

SGP raises some specific issues related to the complexity of the output space and the absence of
widely accepted loss functions. First, the non-Euclidean nature of the output to be predicted makes
both inference and learning challenging while the size of the output space is extremely large. Second,
the arbitrary size of the output variable to predict requires a model with a flexible expressive power in
the output space. Third, graphs are characterized by the absence of natural or ground-truth ordering
of their nodes, making comparison and prediction difficult. This particular issue calls for a node
permutation invariant distance to predict graphs. Scrutinizing the literature through the lens of these
issues, we note that existing methodologies circumvent the difficulty of handling output graphs in
various ways. A first body of work avoids end-to-end learning by relying on some relaxations. For
instance, energy-based models (see for instance [38]) convert the problem into the learning of an

1All code is available at https://github.com/KrzakalaPaul/Any2Graph.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/KrzakalaPaul/Any2Graph

energy function of input and output while surrogate regression methods [10] implicitly embed output
graphs into a given Hilbert space where the learning task boils down to vector-valued regression.
Note that these two families of approaches generally involve a rather expensive decoding step at
inference time. In what follows, we focus on methods that directly output graphs or close relaxations,
enabling end-to-end learning.

One strategy to overcome the need for a permutation invariant loss is to exploit the nature of the
input data to determine a node ordering, with the consequence that application to new types of data
requires similar engineering. For instance, in de novo drug generation SMILES representations [8]
are generally used to determine atom ordering. In semantic parsing, the target graph is a tree that can
be serialized [3] while in text-to-knowledge-graph, the task is re-framed into a sequence-to-sequence
problem, often addressed with large autoregressive models. Finally, for road map extraction from
satellite images, one can leverage the spatial positions of the nodes to define a unique ordering [5].

Another line of research proposes to address this problem more directly by seeking to solve a
graph-matching problem, i.e., finding the one-to-one correspondence between nodes of the graphs.
Among approaches in this category, we note methods dedicated to molecule generation [25] where
the invariant loss is based on a characterization of graphs, ad-hoc to the molecule application. While
being fully differentiable their loss does not generalize to other applications. In the similar topic
of graph generation, Simonovsky and Komodakis [37] propose a more generic definition of the
similarity between graphs by considering both feature and structural matching. However, they solve
the problem using a two-step approach by using first a smooth matching approximation followed
by a rounding step using the Hungarian algorithm to obtain a proper one-to-one matching, which
comes with a high computational cost and introduces a non-differentiable step. For graph scene
generation, Relationformer [36] is based on a bipartite object matching approach solved using a
Hungarian matcher [11]. The main shortcoming of this approach is that it fails to consider structural
information in the matching process. The same problem is encountered by Melnyk et al. [28]. We
discuss Relationformer in more detail later in the article.

Finally, another way to approach end-to-end learning is to leverage the notion of graph barycenter
to define the predicted graph. Relying on the Implicit Loss Embedding (ILE) property of surrogate
regression, Brogat-Motte et al. [9] have exemplified this idea by exploiting an Optimal Transport
loss, the Fused Gromov-Wasserstein (FGW) distance [45] for which barycenters can be computed
efficiently [32, 44]. They proposed two variants, a non-parametric kernel-based one and a neural
network-based one, referred to as FGW-Bary and FGW-BaryNN, respectively. However, to calculate
the barycenter, the size must be known upstream, leaving the challenge of arbitrary size unresolved.
In addition, prediction accuracy is highly dependent on the expressiveness of the barycenter, i.e. the
nature and number of graph templates, resulting in high training and inference costs.

In contrast to existing works, our goal is to address the problem of supervised graph prediction in an
end-to-end fashion, for different types of input modalities and for output graphs whose size and node
ordering can be arbitrary.

Main contributions This paper presents Any2Graph, a versatile framework for end-to-end SGP.
Any2Graph leverages a novel, fully differentiable, OT-based loss that satisfies all the previously
mentioned properties, i.e., size agnostic and invariant to node permutation. In addition, the encoder
part of Any2Graph allows us to leverage inputs of various types, such as images or sets of tokens.
We complete our framework with a novel challenging synthetic dataset which we demonstrate to be
suited for benchmarking SGP models.

The rest of the paper is organized as follows. After a reminder and a discussion about the relation
between graph matching and optimal transport (Section 2), we introduce in Section 3, a size-agnostic
graph representation and an associated differentiable and node permutation invariant loss. This loss,
denoted as Partially Masked Fused Gromov Wasserstein (PMFGW) is a novel and necessary
adaptation of the FGW distance [45]. This loss is then integrated into Any2Graph, an end-to-end
learning framework depicted in Figure 1 and presented in Section 4. We express the whole framework
objective as an ERM problem and highlight the adaptations necessary for extending existing deep
learning architectures [36] to more general input modalities.

Section 5, presents a thorough empirical study of Any2Graph on various datasets. We evaluate our
approach on four real-world problems with different input modalities as well as Coloring, a novel
synthetic dataset. As none of the existing approaches could cover the range of input modalities, nor

2

scale to very large-sized datasets, we adapted them for the purpose of fair comparison. The numerical
results showcase the state-of-the-art performances of the proposed method in terms of prediction
accuracy and ability to retrieve the right size of target graphs as well as computational efficiency.

2 Background on graph matching and optimal transport

Graph representation and notations An attributed graph g with m nodes can be represented by a
tuple (F,A) where F = [f1, . . . , fm]⊤ ∈ Rm×d encodes node features with fi ∈ Rd labeling each
node indexed by i, A ∈ Rm×m is a symmetric pairwise distance matrix that describes the graph
relationships between the nodes such as the adjacency matrix or the shortest path matrix. Further, we
denote Gm the set of attributed graphs of m nodes and G =

⋃M
m=1 Gm, the set of attributed graphs

of size up to M , where the size refers to the number of nodes in a graph and the largest size M
is an important hyperparameter. In the following, 1m ∈ Rm is the all one vector and we denote
σm = {P ∈ {0, 1}m×m | P1m = 1m,PT1m = 1m} the set of permutation matrices.

Graph Isomorphism Two graphs g1 = (F1,A1), g2 = (F2,A2) ∈ Gm are said to be isomorphic
whenever there exists P ∈ σm such that (F1,A1) = (PF2,PA2P

T), in which case we denote
g1 ∼ g2. In this work, we consider all graphs to be unordered, meaning that all operations should be
invariant by Graph Isomorphism (GI).

Comparing graphs of the same size Designing a discrepancy to compare graphs is challenging,
for instance, even for two graphs of the same size ĝ = (F̂, Â), g = (F,A), one cannot simply
compute a point-wise comparison as it would not satisfy GI invariance. A solution is to solve a Graph
Matching (GM) problem, i.e., to find the optimal matching between the graphs and compute the
pairwise errors between matched nodes and edges. This problem can be written as the following

GM(ĝ, g) = min
P∈σm

m∑
i,j=1

Pi,jℓF (f̂i, fj) +

m∑
i,j,k,l=1

Pi,jPk,lℓA(Âi,k, Aj,l). (1)

In particular, with the proper choice of ground metrics ℓf and ℓA, this is equivalent to the popular
Graph Edit Distance (GED) [33]. The minimization problem however is a Quadratic Assignment
Problem (QAP) which is known to be one of the most difficult problems in the NP-Hard class
[27]. To mitigate this computational complexity, Aflalo et al. [2] suggested to replace the space of
permutation matrices with a convex relaxation. The Birkhoff polytope (doubly stochastic matrices)
πm = {T ∈ [0, 1]m×m | T1m = 1m,TT

1m = 1m} is the tightest of those relaxations as it is
exactly the convex hull of σm which makes it a suitable choice [21]. Interestingly, the resulting
metric is known in OT [46] field as a special case of the (Fused) Gromov-Wasserstein (FGW) distance
proposed by [29].

FGW(ĝ, g) = min
T∈πm

m∑
i,j=1

Ti,jℓF (f̂i, fj) +

m∑
i,j,k,l=1

Ti,jTk,lℓA(Âi,k, Aj,l) (2)

However, these two points of view differ in their interpretation of the FGW metric. From the GM
perspective, FGW is cast as an approximation of the original problem, and the optimal transport plan
is typically projected back to the space of permutation via Hungarian Matching [47]. From the OT
perspective, FGW is used as a metric between distributions with interesting topological properties
[44]. This raises the question of the tightness of the relaxation between GM and FGW. In the linear
case, i.e., when ℓA = 0, the relaxation is tight and this phenomenon is known in the OT literature as
the equivalence between Monge and Kantorovitch formulation [31]. The quadratic case, however, is
much more complex, and sufficient conditions under which the tightness holds have been studied in
both fields [1, 35].

As seen above, both OT and GM perspectives offer ways to characterize the same objects. In the
remainder of this paper, we adopt the OT terminology, e.g., we use the term transport plan in place
of doubly stochastic matrix. We provide a quantitative analysis of the effect of the relaxation in F.2.

Numerical solver Computing the FGW distance requires solving the optimization problem pre-
sented in Equation (2) whose objective rewrites ⟨T,U⟩+ ⟨T,L⊗T⟩ where U is a fixed matrix, L a

3

fixed tensor and ⊗ the tensor matrix product. A standard way of solving this problem [47] is to use a
conditional gradient (CG) algorithm which iteratively solves a linearization of the problem. Each step
of the algorithm requires solving a linear OT/Matching problem of cost ⟨T,C(k)⟩ where the linear
cost C(k) = U + L ⊗ T(k) is updated at each iteration. The linear problem can be solved with a
Hungarian solver with cost O(M3) while the overall complexity of computing the tensor product
L ⊗T(k) is theoretically O(M4). Fortunately, this bottleneck can be avoided thanks to a O(M3)
factorization proposed originally by Peyré et al. [32].

Comparing graphs of arbitrary size The metrics defined above cannot directly be used to
compare graphs of different sizes. To overcome this problem, Vayer et al. [45] proposed a more
general formulation that fully leverages OT to model weights on graph nodes and can be used to
compare graphs of different sizes as long as they have the same total mass. However, this approach
raises specific issues. In scenarios where masses are uniform, nodes in larger graphs receive lower
mass which might not be suitable for practical applications. Conversely, employing non-uniform
masses complicates interpretation, as decoding a discrete object from a weighted one becomes
less straightforward. Those issues can be mitigated by leveraging Unbalanced Optimal Transport
(UOT) [40], which relaxes marginal constraints, allowing for different total masses in the graphs.
Unfortunately, UOT introduces several additional regularization parameters that are difficult to tune,
especially in scenarios like SGP, where model predictions exhibit wide variability during training.

Another close line of work is Partial Matching (PM) [13], which consists in matching a small graph
g to a subgraph of the larger graph ĝ. In practice, this can be done by adding dummy nodes to g
through some padding operator P after which one can directly compute PM(ĝ, g) = GM(ĝ,P(g))
[21]. However, PM is not suited to train a model as the learned model would only be able to predict a
graph that includes the target graph. Partial Matching and its relationship with our proposed loss is
discussed in more detail in Appendix B.3.

3 Optimal Transport loss for Supervised Graph Prediction

A size-agnostic representation for graphs Our first step toward building an end-to-end SGP
framework is to introduce a space Ŷ to represent any graph of size up to M .

Ŷ = {y = (h,F,A) | h ∈ [0, 1]M ,F ∈ RM×d,A ∈ [0, 1]M×M}. (3)

We refer to the elements of Ŷ as continuous graphs, in opposition with discrete graphs of G. Here hi

(resp. Ai,j) should be interpreted as the probability of the existence of node i (resp. edge [i, j]). Any
graph of G can be embedded into Ŷ with a padding operator P defined as

P(g) =

((
1m

0M−m

)
,

(
Fm

0M−m

)
,

(
Am 0m,M−m

0T
M−m,m 0M−m,M−m

))
, for g = (Fm,Am) ∈ Gm. (4)

We denote Y = P(G) ⊂ Ŷ the space of padded graphs. For any padded graph in Y , the padding
operator can be inverted to recover a discrete graph P−1 : Y 7→ G. Besides, any continuous graph
ŷ ∈ Ŷ can be projected back to padded graphs Y by a threshold operator T : Ŷ 7→ Y . Note that Ŷ
is convex and of fixed dimension which makes it ideal for parametrization with a neural network.
Hence, the core idea of our work is to use a neural network to make a prediction ŷ ∈ Ŷ and to
compare it to a target g ∈ G through some loss ℓ(ŷ,P(g)). This calls for the design of an asymmetric
loss ℓ : Ŷ × Y 7→ R+.

An Asymmetric loss for SGP The Partially Masked Fused Gromov Wasserstein (PMFGW) is a
loss between a padded target graph P(g) = (h,F,A) ∈ Y with real size m = ∥h∥1 ≤ M and a
continuous prediction ŷ = (ĥ, F̂, Â) ∈ Ŷ . We define PMFGW(ŷ,P(g)) as:

min
T∈πM

αh

M

∑
i,j

Ti,jℓh(ĥi, hj)+
αf

m

∑
i,j

Ti,jℓf (f̂i, fj)hj +
αA

m2

∑
i,j,k,l

Ti,jTk,lℓA(Âi,k, Aj,l)hjhl. (5)

Let us decompose this loss function to understand the extend to which it simultaneously takes into
account each property of the graph. The first term ensures that the padding of a node is well predicted.
In particular, this requires the model to predict correctly the number of nodes in the target graph. The

4

second term ensures that the features of all non-padding nodes (hi = 1) are well predicted. Similarly,
the last term ensures that the pairwise relationships between non-padded nodes (hi = hj = 1)
are well predicted. The normalizations in front of the sums ensure that each term is a weighted
average of its internal losses as

∑
Ti,j = M ,

∑
Ti,jhj = m and

∑
Ti,jTk,lhjhl = m2. Finally

α = [αh, αf, αA] ∈ ∆3 is a triplet of hyperparameters on the simplex balancing the relative scale
of the different terms. For ℓA and ℓh we use the cross-entropy between the predicted value after a
sigmoid and the actual binary value in the target. This is equivalent to a logistic regression loss after
the OT plan has matched the nodes. For ℓf we use the squared ℓ2 or the cross-entropy loss when the
node features are continuous or discrete, respectively.

A key feature of this loss is its flexibility. Not only other ground losses can be considered but it is
also straightforward to introduce richer spectral representations of the graph [4]. For instance, in
Section 5, we explore the benefits of leveraging a diffused version of the nodes features.

Finally, PMFGW translates all the good properties of FGW to the new size-agnostic representation.
Proposition 1 (Complexity). The objective of the inner optimization can be evaluated in O(M3).

Proposition 2 (GI Invariance). If ŷ ∼ ŷ′ and g ∼ g′ then PMFGW(ŷ,P(g)) = PMFGW(ŷ′,P(g′)).

Proposition 3 (Positivity). PMFGW(ŷ,P(g)) ≥ 0 with equality if and only if ŷ ∼ P(g).

See Appendix A for a toy example illustrating the behavior of the loss and Appendix B.1 and B.2 for
formal statements and proofs of Proposition 1, 2 and 3.

Relation to existing metrics PMFGW is an asymmetric extension of FGW [44] suited for compar-
ing a continuous predicted graph with a padded target. The extension is achieved by adding (1) a
novel term to quantify the prediction of node padding, and (2) the partial masking of the components
of the second and third terms to reflect padding. It should be noted that in contrast to what is usually
done in OT, the node masking vectors (h and ĥ) are not used as a marginal distribution but directly
integrated into the loss. In that sense, the additional node masking term is very similar to the one
of OTLp [39] that proposed to use uniform marginal weight and move the part that measures the
similarity between the distribution weights in an additional linear term. However, OTLp is restricted
to linear OT problems and does not use the marginal distributions as a masking for other terms as in
PMFGW.

PMFGW also relates to Partial GM/GW Chapel et al. [13] as both metrics compare graphs by padding
the smallest one with zero-cost dummy nodes. The critical difference lies in the new vector ĥ which
predicts which sub-graphs are activated, i.e., should be matched to the target. The exact relationship
between Partial Fused Gromov Wasserstein (PFGW) and PMFGW is summarized below
Proposition 4. If lh is set to a constant value, PMFGW is equal to PFGW (up to a constant).

Remark 1. In that case, the vector ĥ disappears from the loss and cannot be trained. In particular,
this would prevent the model from learning to predict the size of the target graph.

The formal definition of PFGW and the proof of Proposition 4 are provided in Appendix B.3.

4 Any2Graph: a framework for end-to-end SGP

4.1 Any2Graph problem formulation

The goal of Supervised Graph Prediction (SGP) is to learn a function f : X → G using the training
samples {(xi, gi)}ni=1 ∈ (X × G)n. In Any2Graph, we relax the output space and learn a function
f̂ : X → Ŷ that predicts a continuous graph ŷ := f(x) as defined in the previous section. Assuming
f̂ is a parametric model (in this work, a deep neural network) completely determined by a parameter
θ, the Any2Graph objective writes as the following empirical risk minimization problem:

min
θ

1

n

n∑
i=1

PMFGW(f̂θ(xi),P(gi)). (6)

At inference time, we recover a discrete prediction by a straightforward decoding f(x) = P−1◦T (ŷ),
where T is the thresholding operator with threshold 1/2 on the edges and nodes and P−1 is the inverse

5

Input Set Of Features Nodes Embeddings

ENCODER TRANSFORMER GRAPH DECODER

Input data
dependent

MLP

MLP

PM-FGW Loss

Prediction Padded Target

TRANSFORMER
ENCODER

TRANSFORMER
DECODER

Nodes queries

MLP

0
1
1
1

Figure 1: Illustration of the architecture for a target graph of size 3 and M = 4.

padding defined in the previous section. In other words, the full decoding pipeline P−1 ◦ T removes
the nodes i (resp. edges (i, j)) whose predicted probability is smaller than 1/2 i.e. ĥi <1/2 (resp.
Âi,j <1/2)). Unlike surrogate regression methods, this decoding step is very efficient.

4.2 Neural network architecture

The model f̂θ : X → Ŷ (left part of Figure 1) is composed of three modules , namely the encoder
that extracts features from the input, the transformer that convert these features into M nodes
embeddings, that are expected to capture both feature and structure information, and the graph
decoder that predicts the properties of our output graph, i.e., (ĥ, F̂, Â). As we will discuss later, the
proposed architecture draws heavily on that of Relationformer [36] since the latter has been shown to
yield to state-of-the-art results on the Image2Graph task.

Encoder The encoder extracts k feature vectors in Rde from the input. Note that k is not fixed
a priori and can depend on the input (for instance sequence length in case of text input). This is
critical for encoding structures as complex as graphs and the subsequent transformer is particularly
apt at treating this kind of representation. By properly designing the encoder, we can accommodate
different types of input data. In Appendix C, we describe how to handle images, text, graphs, and
vectors and provide general guidelines to address other input modalities.

Transformer This module takes as input a set of feature vectors and outputs a fixed number of
M node embeddings. This resembles the approach taken in machine translation, and we used an
architecture based on a stack of transformer encoder-decoders, akin to Shit et al. [36].

Graph decoder This module decodes a graph from the set of node embeddings Z = [z1, . . . , zM]T

using the following equation:

ĥi = σ(MLPm(zi)), F̂i = MLPf (zi), Âi,j = σ(MLP2
s(MLP1

s(zi) +MLP1
s(zj))) (7)

where σ is the sigmoid function and MLPm, MLPf , MLPk
s are multi-layer perceptrons heads

corresponding to each component of the graph (mask, features, structure). The adjacency matrix is
expected to be symmetric which motivate us to parameterize it as suggested by Zaheer et al. [56].

Positioning with Relationformer As discussed above, the architecture is similar to the one pro-
posed in Relationformer [36], with two modifications: (1) we use a symmetric operation with a sum
to compute the adjacency matrix while Relationformer uses a concatenation that is not symmetric;
(2) we investigate more general encoders to enable graph prediction from data other than images.
However, as stated in the previous section, the main originality of our framework lies in the design
of the PMFGW loss. Interestingly Relationformer uses a loss that presents similarities with FGW
but where the matching is done on the node features only, before computing a quadratic-linear loss
similar to PMFGW. In other words, they solve a bi-level optimization problem, where the plan is
computed on only part of the information, leading to potentially suboptimal results on heterophilic
graphs as demonstrated in the next section.

6

5 Numerical experiments

This section is organized as follows. First, we describe the experimental setting (5.1) including
baselines. Next, we showcase the state-of-the-art performances of Any2Graph for a wide range of
metrics and datasets (5.2). Finally, we provide an empirical analysis of the key hyperparameters of
Any2Graph (5.3). The code for Any2Graph and all the experiments will be released on GitHub.

5.1 Experimental setting

Datasets We consider 5 datasets thus covering a wide spectrum of different input modalities, graph
types, and sizes. The first one, Coloring, is a new synthetic dataset that we proposed, inspired by
the four-color theorem. The input is a noisy image partitioned into regions of colors and the goal is
to predict the graph representing the regions as nodes (4 color classes) and their connectivity in the
image. An example is provided in Figure 5 and more details are in Appendix D. Then, we consider
four real-world benchmarks. Toulouse [5] is Sat2Graph datasets where the goal is to extract the road
network from binarized satellite images of a city. USCities is also a Sat2Graph dataset but features
larger and more convoluted graphs. Note that we leave aside the more complex RGB version of
USCities as it was shown to require complex multi-level attention architecture [36], which is beyond
the scope of this paper. Finally, following Ucak et al. [42], we address the Fingerprint2Graph task
where the goal is to reconstruct a molecule from its fingerprint representation (list of tokens). We
consider two widely different datasets for this tasks: QM9 [50], a scarce dataset of tiny molecules (up
to 9 nodes) and GBD13Blum and Reymond [7], a large dataset 2 featuring molecules with up to 13
heavy atoms. Additional details concerning the datasets (e.g. dataset size, number of edges, number
of nodes) are provided in Appendix E.1.

Compared methods We compare Any2Graph, to our direct end-to-end competitor Relationformer
[36] that has shown to be the state-of-the-art method for Image2Graph. For a fair comparison, we use
the same architecture (presented in Figure 1) for both approaches so that the only difference is the
loss. We conjecture that Any2Graph and Relationformer might benefit from feature diffusion, that
is replacing the node feature vector F by the concatenation [F,AF] before training. We denote by
“+FD” the addition of feature diffusion before training. Moreover, we also compare with a surrogate
regression approach (FGW-Bary) based on FGW barycenters [9]. We test both the end-to-end
parametric variant, FGWBary-NN, where weight functions αk, as well as K = 10 templates, are
learned by a neural network and the non-parametric variant, FGWBary-ILE, where the templates
are training samples and αk are learned by sketched kernel ridge regression [54, 18] with gaussian
kernel. Both have been implemented using the codes provided by Brogat-Motte et al. [9], modified to
incorporate sketching. Hyperparameters regarding architectures and optimization are provided in
Appendix E.2.

Performance metrics The heterogeneity of our datasets, calls for task-agnostic metrics focusing
on different fine-grained levels of the graph. At the graph level, we report the PMFGW loss between
continuous prediction ŷ and padded target P(g) and the graph edit distance Gao et al. [19] between
predicted graph P−1T ŷ and target g. We also report the Graph Isomorphism Accuracy (GI ACC),
a metric that computes the proportion of perfectly predicted graphs. At the edge level, we treat
the adjacency matrix prediction as a binary prediction problem and report the Precision and Recall.
Finally, at the node level, we report NODE, the fraction of well-predicted node features, and SIZE a
metric reporting the accuracy of the predicted number of nodes. See Appendix E.3 for more details.

5.2 Comparison with existing SGP methods on diverse modalities

Prediction Performances Table 1 shows the performances of the different methods on the five
datasets. First, we observe that Any2Graph achieves state-of-the-art performances for all datasets and
graph level metrics. On the Sat2Graph tasks (Toulouse and USCities) we note that Relationformer
performs very close to Any2Graph. In fact, the features (2D positions) are enough to uniquely identify
the nodes, making Relationformer’s Hungarian matching sufficient. Moreover, both methods highly
benefit from feature diffusion on Fingerprint2Graph tasks which we discuss further in Appendix F.
Note that both barycenter methods struggle on Toulouse, possibly due to a lack of expressivity. On

2For computational purposes we use the ’ABCDEFGH’ subset (more than 1.3 millions molecules) .

7

Table 1: Graph level, edge level, and node level metrics reported on test for the different models
and datasets. ∗ denotes methods that use the actual size of the graph at inference time, hence the
performance reported is a non-realistic upper bound. We where not able to train FGWBary on all
dataset due to the prohibitive cost of barycenter computations. N.A. stands for not applicable.

DATASET MODEL
GRAPH LEVEL EDGE LEVEL NODE LEVEL ACC.

EDIT DIST. ↓ GI ACC. ↑ PMFGW ↓ PREC. ↑ REC. ↑ NODE ↑ SIZE ↑

COLORING

FGWBARY-NN∗ 6.73 1.00 0.91 75.19 84.99 77.58 N.A.
FGWBARY-ILE∗ 7.60 0.90 0.93 72.17 83.81 79.15 N.A.
RELATIONFORMER 5.47 18.14 0.32 80.39 86.34 92.68 99.32
ANY2GRAPH 0.20 85.20 0.03 99.15 99.37 99.95 99.50

TOULOUSE

FGWBARY-NN∗ 8.11 0.00 1.15 84.09 79.68 10.10 N.A.
FGWBARY-ILE∗ 9.00 0.00 1.21 72.52 56.30 1.62 N.A.
RELATIONFORMER 0.13 93.28 0.02 99.25 99.24 99.25 98.30
ANY2GRAPH 0.13 93.62 0.02 99.34 99.26 99.39 98.81

USCITIES
RELATIONFORMER 2.09 55.00 0.13 92.96 87.98 95.18 79.80
ANY2GRAPH 1.86 58.10 0.12 92.91 90.85 95.70 78.95

QM9

FGWBARY-NN∗ 5.55 1.00 0.96 87.81 70.78 78.62 N.A.
FGWBARY-ILE∗ 3.54 7.10 0.59 80.40 75.14 91.47 N.A.
FGWBARY-ILE∗ + FD 2.84 28.95 0.28 82.96 79.76 92.99 N.A.
RELATIONFORMER 9.15 0.05 0.48 21.42 4.77 99.28 91.80
RELATIONFORMER + FD 3.80 9.95 0.22 86.07 73.31 99.34 96.0
ANY2GRAPH 3.44 7.50 0.21 86.21 77.27 99.26 93.65
ANY2GRAPH + FD 2.13 29.85 0.14 90.19 88.08 99.77 95.45

GDB13

RELATIONFORMER 11.40 0.00 0.43 81.96 31.49 97.77 97.45
RELATIONFORMER + FD 8.83 0.01 0.29 84.14 55.89 97.57 98.65
ANY2GRAPH 7.45 0.05 0.22 87.20 60.41 99.41 96.15
ANY2GRAPH + FD 3.63 16.25 0.11 90.83 84.86 99.80 98.15

QM9 on the other hand, FGW-Bary-ILE performs close to Any2Graph but is still outperformed, even
more so if we add feature diffusion. It should be stressed that FGW-Bary-ILE is placed here under
the most favorable conditions possible, in particular with the use of a SOTA kernel and being given
the ground truth number of nodes. Finally, on GDB13, the most challenging dataset, Any2Graph
strongly outperforms all competitors. To summarize this part, we observe that Any2Graph and its
variant Any2Graph+FD are consistently better by a large margin on three out of five benchmarks and
tied for first place with RelationFormer on the remaining ones.

Table 2: Computational speed for the differ-
ent methods in terms of graphs per second on
QM9. Training performance is not provided for
FGWBary-ILE as the closed-form expression
is computed at once on CPU.

METHOD TRAIN. PRED.

FGWBARY-ILE (K=25) N.A. 1
FGWBARY-NN (K=10) 10 10
RELATIONFORMER 2K 10K
ANY2GRAPH 1K 10K

Computational Performances Table 2 shows the
cost of training and inference of all methods, ex-
pressed as the number of graphs processed per
second. All values are computed on NVIDIA
V100/Intel Xeon E5-2660. The heavy cost of
barycenters computation in FGWBary makes it sev-
eral orders of magnitude slower than Any2Graph.
We note that Relationformer is faster at learning
time because it avoids the need to solve a QAP.
Overall, our proposed approach offers the best of
both worlds, achieving SOTA prediction perfor-
mance at all levels of the graph, at a very low com-
putational inference cost.

Qualitative Performances We display a sample of the graph predictions performed by the models
in Figure 5 (left) along with a larger collection in appendix G. We observe that not only Any2Graph
can adapt to different input modalities, but also to the variety of target graphs at hand. For instance,
Coloring graphs tend to be denser, while Sat2Graph maps can contain multiple connected components
and Fingerprint2Graph molecules exhibit unique substructures such as loops.

5.3 Empirical study of Any2Graph properties

Sensitivity to dataset size In figure 5, we provide the test edit distance for different numbers of
training samples in the explored datasets. Interestingly, we observe that a performance plateau is
reached for all datasets. We also observe that Coloring/Toulouse are simpler than USCities/QM9 (in

8

104 105 106

Dataset size (log scale)

1
2
3
4
5
6
7

Te
st

 E
di

t D
ist

an
ce

Coloring
ColoringBig

Toulouse
USCities

QM9
GDB13

Figure 5: (Left): a sample of predictions made by Any2Graph and Relationformer for a given input
and ground truth target. Many more are provided in G. (Right): we truncate the train datasets to
provide an overview of Any2Graph training curves (test performances against train set size).

terms of best edit distance) and illustrate the flexibility of Coloring by bridging this complexity gap
with the more challenging variation described in D.

10 20 30 40 50 60
M

2

3

4

5

6

k(
M

)

With FD
Without FD

Figure 2: Average number of solver itera-
tions required for computing PMFGW loss.

Scalability to larger graphs As stated in property
1, each iteration of the PMFGW solver scales with
O(M3). Denoting k(M) the average number of it-
erations required for convergence, this means that
the actual cost of computing the loss scales with
O
(
k(M)M3

)
. We provide an empirical estimation

of k(M) in figure 2 which we obtain by comput-
ing PMFGW(P(g1),P(g2)) for pairs of graphs g1, g2
sampled from the Coloring dataset. We observe that
k(M) seems linear but can be made sub-linear using
feature diffusion (FD). Still, the cubic cost prevents
Any2Graph from scaling beyond a few tens of nodes.

10 12 14 16 18 20 25
10

11

12

13

14

A
ct

iv
e
 N

o
d
e
s

0.0

0.1

0.2

0.3

0.4

0.5

E
d
it

 D
is

ta
n
ce

Figure 3: Effect of M on test
edit distance and number of active
nodes for Coloring.

Choice of maximal graph size M The default value of M
is the size of the largest graph in the train set. We explore
whether or not overparametrizing the model with higher values
bring substantial benefits. To this end, we train our model on
Coloring for M between 10 (default value) and 25 and report
the (test) edit distance. To quantify the effective number of
nodes used by the model, we also record the number of active
nodes, i.e., that are masked less than 99% of the time (see
Figure 3). Interestingly, we observe that performances are
robust w.r.t. the choice of M which can be explained by the
number of useful nodes reaching a plateau. This suggests the
model automatically learns the number of nodes it needs to
achieve the required expressiveness.

h = 1

F = 1

A = 1

0 1 2 3 4

Figure 4: Effect of α on
the test edit distance.

Sensitivity to the weights α We investigate the sensitivity of the
proposed loss to the triplet of weight hyperparameters α. To this end,
we train our model on Coloring for different values α on the simplex
and report the (test) edit distance on Figure 4. We observe that the
performance is optimal for uniform α and robust to other choices as
long as there is not too much weight on the structure loss term (corner
αA = 1). Indeed, the quadratic term of the loss being the hardest,
putting too much emphasis on it might slow down the training. This
explains the efficiency of feature diffusion, as it moves parts of the
structure prediction to the linear term. Further evidence backing this
intuitive explanation is provided in F.1.

9

6 Conclusion and limitations

We present Any2Graph, a novel deep learning approach to Supervised Graph Prediction (SGP) lever-
aging an original asymmetric Partially-Masked Fused Gromov-Wasserstein loss. To the best of our
knowledge, Any2Graph stands as the first end-to-end and versatile framework to consistently achieve
state-of-the-art performances across a wide range of graph prediction tasks and input modalities.
Notably, we obtain excellent results in both accuracy and computational efficiency. Finally, we
illustrate the adaptability of the proposed loss (using diffused features), and the robustness of the
method to sensitive parameters such as maximum graph size and weights of the different terms in
PMFGW.

The main limitation of Any2Graph is its scalability to graphs of larger size. Considering the tasks at
hand, in this paper, we limit ourselves to relatively small graphs of up to 20 nodes.
For the future, we envision two working directions to address this issue. First, given the promising
results with feature diffusion, we plan to introduce more tools from spectral graph theory [14, 20, 4]
in Any2Graph, e.g., using diffusion on the adjacency matrix to capture higher-order interactions that
may occur in large graphs. More generally, this extension could be useful even for smaller graphs.
Secondly, we expect that the solver computing the optimal transport plan can be accelerated using
approximation. In particular, the entropic regularization [32] might unlock the possibility of fully
parallelizing the optimization on a GPU while low-rank OT solvers Scetbon et al. [34] could allow
Any2Graph to scale to large output graphs.

Acknowledgements

The authors thanks Alexis Thual and Quang Huy Tran for providing their insights and code about
the Fused Unbalanced Gromov Wasserstein metric. This work received funding from the European
Union’s Horizon Europe research and innovation programme under grant agreement 101120237
(ELIAS). Views and opinions expressed are however those of the authors only and do not necessarily
reflect those of the European Union or European Commission. Neither the European Union nor the
granting authority can be held responsible for them. This research was also supported in part by the
French National Research Agency (ANR) through the PEPR IA FOUNDRY project (ANR-23-PEIA-
0003) and the MATTER project (ANR-23-ERCC-0006-01). The first and second authors respectively
received PhD scholarships from Institut Polytechnique de Paris and Hi!Paris.

References
[1] Aflalo, Y., Bronstein, A., and Kimmel, R. (2014). Graph matching: relax or not? arXiv preprint

arXiv:1401.7623.

[2] Aflalo, Y., Bronstein, A., and Kimmel, R. (2015). On convex relaxation of graph isomorphism.
Proceedings of the National Academy of Sciences, 112(10):2942–2947.

[3] Babu, A., Shrivastava, A., Aghajanyan, A., Aly, A., Fan, A., and Ghazvininejad, M. (2021).
Non-autoregressive semantic parsing for compositional task-oriented dialog. arXiv preprint
arXiv:2104.04923.

[4] Barbe, A., Sebban, M., Gonçalves, P., Borgnat, P., and Gribonval, R. (2020). Graph diffusion
wasserstein distances. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 577–592. Springer.

[5] Belli, D. and Kipf, T. (2019). Image-conditioned graph generation for road network extraction.
arXiv preprint arXiv:1910.14388.

[6] Birkhoff, G. (1946). Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A,
5:147–151.

[7] Blum, L. C. and Reymond, J.-L. (2009). 970 million druglike small molecules for virtual
screening in the chemical universe database gdb-13. Journal of the American Chemical Society,
131(25):8732–8733.

10

[8] Bresson, X. and Laurent, T. (2019). A two-step graph convolutional decoder for molecule
generation. arXiv preprint arXiv:1906.03412.

[9] Brogat-Motte, L., Flamary, R., Brouard, C., Rousu, J., and d’Alché Buc, F. (2022). Learning
to predict graphs with fused gromov-wasserstein barycenters. In International Conference on
Machine Learning, pages 2321–2335. PMLR.

[10] Brouard, C., Shen, H., Dührkop, K., d’Alché-Buc, F., Böcker, S., and Rousu, J. (2016). Fast
metabolite identification with input output kernel regression. Bioinformatics, 32(12):i28–i36.

[11] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020).
End-to-end object detection with transformers. In European conference on computer vision, pages
213–229. Springer.

[12] Chang, X., Ren, P., Xu, P., Li, Z., Chen, X., and Hauptmann, A. (2021). A comprehensive
survey of scene graphs: Generation and application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(1):1–26.

[13] Chapel, L., Alaya, M. Z., and Gasso, G. (2020). Partial optimal tranport with applications on
positive-unlabeled learning. Advances in Neural Information Processing Systems, 33:2903–2913.

[14] Chung, F. R. (1997). Spectral graph theory, volume 92. American Mathematical Soc.

[15] De Cao, N. and Kipf, T. (2018). Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973.

[16] De Plaen, H., De Plaen, P.-F., Suykens, J. A., Proesmans, M., Tuytelaars, T., and Van Gool, L.
(2023). Unbalanced optimal transport: A unified framework for object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3198–3207.

[17] Dozat, T. and Manning, C. D. (2017). Deep biaffine attention for neural dependency parsing. In
International Conference on Learning Representations, ICLR. OpenReview.net.

[18] El Ahmad, T., Laforgue, P., and d’Alché-Buc, F. (2023). Fast Kernel Methods for Generic
Lipschitz Losses via \p\-Sparsified Sketches. Transactions on Machine Learning Research.

[19] Gao, X., Xiao, B., Tao, D., and Li, X. (2010). A survey of graph edit distance. Pattern Analysis
and applications, 13:113–129.

[20] Gasteiger, J., Weißenberger, S., and Günnemann, S. (2019). Diffusion improves graph learning.
Advances in neural information processing systems, 32.

[21] Gold, S. and Rangarajan, A. (1996). A graduated assignment algorithm for graph matching.
IEEE Transactions on pattern analysis and machine intelligence, 18(4):377–388.

[22] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

[23] Karp, R. M. (2010). Reducibility among combinatorial problems. Springer.

[24] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[25] Kwon, Y. et al. (2019). Efficient learning of non-autoregressive graph variational autoencoders
for molecular graph generation. J Cheminform 11.

[26] Landrum, G. et al. (2013). Rdkit: A software suite for cheminformatics, computational
chemistry, and predictive modeling. Greg Landrum, 8(31.10):5281.

[27] Loiola, E. M., De Abreu, N. M. M., Boaventura-Netto, P. O., Hahn, P., and Querido, T. (2007).
A survey for the quadratic assignment problem. European journal of operational research,
176(2):657–690.

[28] Melnyk, I., Dognin, P., and Das, P. (2022). Knowledge graph generation from text. In Goldberg,
Y., Kozareva, Z., and Zhang, Y., editors, Findings of the Association for Computational Linguistics:
EMNLP 2022, pages 1610–1622.

11

[29] Mémoli, F. (2011). Gromov-wasserstein distances and the metric approach to object matching.
Foundations of Computational Mathematics, 11(4):417–487.

[30] Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2009). Spatial tessellations: concepts and
applications of voronoi diagrams.

[31] Peyré, G., Cuturi, M., et al. (2019). Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607.

[32] Peyré, G., Cuturi, M., and Solomon, J. (2016). Gromov-wasserstein averaging of kernel and
distance matrices. In International conference on machine learning, pages 2664–2672. PMLR.

[33] Sanfeliu, A. and Fu, K.-S. (1983). A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, pages 353–362.

[34] Scetbon, M., Peyré, G., and Cuturi, M. (2022). Linear-time gromov wasserstein distances
using low rank couplings and costs. In International Conference on Machine Learning, pages
19347–19365. PMLR.

[35] Séjourné, T., Vialard, F.-X., and Peyré, G. (2021). The unbalanced gromov wasserstein distance:
Conic formulation and relaxation. Advances in Neural Information Processing Systems, 34:8766–
8779.

[36] Shit, S., Koner, R., Wittmann, B., Paetzold, J., Ezhov, I., Li, H., Pan, J., Sharifzadeh, S., Kaissis,
G., Tresp, V., et al. (2022). Relationformer: A unified framework for image-to-graph generation.
In European Conference on Computer Vision, pages 422–439. Springer.

[37] Simonovsky, M. and Komodakis, N. (2018). Graphvae: Towards generation of small graphs
using variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN,
pages 412–422. Springer.

[38] Suhail, M., Mittal, A., Siddiquie, B., Broaddus, C., Eledath, J., Medioni, G., and Sigal, L.
(2021). Energy-based learning for scene graph generation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 13936–13945.

[39] Thorpe, M., Park, S., Kolouri, S., Rohde, G. K., and Slepčev, D. (2017). A transportation lˆ p l
p distance for signal analysis. Journal of mathematical imaging and vision, 59:187–210.

[40] Thual, A., Tran, H., Zemskova, T., Courty, N., Flamary, R., Dehaene, S., and Thirion, B. (2022).
Aligning individual brains with fused unbalanced gromov-wasserstein. In Neural Information
Processing Systems (NeurIPS).

[41] Tong, X., Liu, X., Tan, X., Li, X., Jiang, J., Xiong, Z., Xu, T., Jiang, H., Qiao, N., and
Zheng, M. (2021). Generative models for de novo drug design. Journal of Medicinal Chemistry,
64(19):14011–14027.

[42] Ucak, U. V., Ashyrmamatov, I., and Lee, J. (2023). Reconstruction of lossless molecular
representations from fingerprints. Journal of Cheminformatics, 15(1):1–11.

[43] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

[44] Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2019). Optimal transport for
structured data with application on graphs. In International Conference on Machine Learning
(ICML).

[45] Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2020). Fused gromov-
wasserstein distance for structured objects. Algorithms, 13 (9):212.

[46] Villani, C. (2009). Optimal transport : old and new. Springer, Berlin.

[47] Vogelstein, J. T., Conroy, J. M., Lyzinski, V., Podrazik, L. J., Kratzer, S. G., Harley, E. T.,
Fishkind, D. E., Vogelstein, R. J., and Priebe, C. E. (2011). Fast approximate quadratic program-
ming for large (brain) graph matching. arXiv preprint arXiv:1112.5507.

12

[48] Wang, R., Guo, Z., Pan, W., Ma, J., Zhang, Y., Yang, N., Liu, Q., Wei, L., Zhang, H., Liu, C.,
Jiang, Z., Yang, X., and Yan, J. (2024). Pygmtools: A python graph matching toolkit. Journal of
Machine Learning Research, 25(33):1–7.

[49] Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3(15):1769–1782.

[50] Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K.,
and Pande, V. (2018). Moleculenet: a benchmark for molecular machine learning. Chemical
science, 9(2):513–530.

[51] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L., and
Liu, T. (2020). On layer normalization in the transformer architecture. In International Conference
on Machine Learning, pages 10524–10533. PMLR.

[52] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826.

[53] Yang, J., Ang, Y. Z., Guo, Z., Zhou, K., Zhang, W., and Liu, Z. (2022). Panoptic scene graph
generation. In European Conference on Computer Vision, pages 178–196. Springer.

[54] Yang, Y., Pilanci, M., and Wainwright, M. J. (2017). Randomized sketches for kernels: Fast
and optimal nonparametric regression. The Annals of Statistics, 45(3):991–1023.

[55] Young, A., Wang, B., and Röst, H. (2021). Massformer: Tandem mass spectrum prediction with
graph transformers. arXiv preprint arXiv:2111.04824.

[56] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J.
(2017). Deep sets. Advances in neural information processing systems, 30.

13

A Illustration of PMFGW On A Toy Example

On the one hand, we consider a target graph of size 2, g = (F2,A2) where

F2 =

(
f1
f2

)
;A2 =

(
0 1
1 0

)
for some node features f1 and f2. For M = 3 the padded target is P(g) = (h,F,A) where

h =

(
1
1
0

)
;F =

(
f1
f2
−

)
;A =

(
0 1 −
1 0 −
− − −

)
.

On the other hand, we consider a predicted graph ŷa,h = (ĥ, F̂, Â) that has the form

ĥ =

(
1
h

1− h

)
; F̂ =

(
f1
f2
f2

)
; Â =

(
0 a 1− a
a 0 0

1− a 0 0

)

for some a, h ∈ [0, 1]. The loss between the prediction and the (padded) target is

Ltrain(a, h) = PMFGW(ŷa,h,P3(g))

We are interested in the landscape of this loss. First of all, it appears that ŷ1,1 and ŷ0,0 and P(g) are
isomorphic, thus we get two global minima Ltrain(1, 1) = Ltrain(0, 0) = 0. Going into greater detail,
it can be shown that for ℓh(a, b) = ℓA(a, b) = (a− b)2 we have the following expression

Ltrain(a, h) = min

(
(1− a)2 +

2

3
(1− h)2; a2 +

2

3
h2

)
and the optimal transport plan is the permutation (1, 2, 3) when (1− a)2 + 2

3 (1− h)2 < a2 + 2
3h

2

and (1, 3, 2) otherwise. In this toy example, the optimal transport plan is always a permutation.

At inference time, we could similarly be interested in the edit distance between the (discrete)
prediction and the target

Leval(a, h) = ED(P−1
3 T (ŷa,h),g).

Once again, the expression can be computed explicitly

Leval(a, h) = 1[a < 0.5 and h > 0.5] + 1[a > 0.5 and h < 0.5]

We provide in Figure 6 an illustration of the edit distance and the proposed loss that is clearly a
continuous and smoothed version of the edit distance which allows for learning the NN parameters.

B Formal Statements And Proofs

In this section, we write

PMFGW(ŷ,P(g)) = min
T∈πM

∑
i,j

Ti,jℓh(ĥi, hj)+
∑
i,j

Ti,jℓf (f̂i, fj)hj+
∑
i,j,k,l

Ti,jTk,lℓA(Âi,k, Aj,l)hjhl,

meaning that we absorb the normalization factors in the ground losses to lighten the notation.

Alternatively, we also consider the matrix formulation:

PMFGW(ŷ,P(g)) = min
T∈πM

⟨T,C⟩+ ⟨T,L⊗T⟩,

14

0.0 0.5 1.0
0.0

0.5

1.0

h

0.0

0.2

0.4

0.6

0.0 0.5 1.0
0.0

0.5

1.0

h

0.0
0.2
0.4
0.6
0.8
1.0

Figure 6: Heatmap of Ltrain (left) and Leval (right). The red line represents the transition between the
regime where the optimal transport plan is the permutation (1, 2, 3) and that where it is (1, 3, 2). In
both cases, the optimal transport plan is a permutation.

where Ci,j = ℓh(ĥi, hj) + ℓf (f̂i, fj)hj , Li,j,k,l = ℓA(Âi,k, Aj,l)hjhl and ⊗ is the tensor/matrix
product.

B.1 PMFGW fast computation

The following results generalize the Proposition 1 of Peyré et al. [32] so that it can be applied to the
computation of PMFGW.

Proposition 5. Assuming that the ground loss than can decomposed as ℓ(a, b) = f1(a) + f2(b)−
h1(a)h2(b), for any transport plan T ∈ Rn×m and matrices A,W ∈ Rn×n and A′,W′ ∈ Rm×m,
then the tensor product of the form

(L⊗T)i,i′ =
∑
j,j′

Tj,j′ℓ(Ai,j , A
′
i′,j′)Wi,jW

′
i′,j′

can be computed as

L⊗T = U1TW′T +WTUT
2 −V1TVT

2 ,

where U1 = f1(A) ·W, U2 = f2(A
′) ·W′, V1 = h1(A) ·W, V2 = h2(A

′) ·W′ and [·] is the
point-wise multiplication.

Proof. Thanks to the decomposition assumption the tensor product can be decomposed into 3 terms:

(L⊗T)i,i′ =
∑
j,j′

Tj,j′f1(Ai,j)Wi,jW
′
i′,j′ +

∑
j,j′

Tj,j′f2(A
′
i′,j′)Wi,jW

′
i′,j′ −

∑
j,j′

Tj,j′h1(Ai,j)h2(A
′
i′,j′)Wi,jW

′
i′,j′ .

=
∑
j

f1(Ai,j)Wi,j

∑
j′

Tj,j′W
′
i′,j′ +

∑
j′

f2(A
′
i′,j′)W

′
i′,j′

∑
j

Tj,j′Wi,j −
∑
j

h1(Ai,j)Wi,j

∑
j′

Tj,j′h2(A
′
i′,j′)W

′
i′,j′ .

Introducing U1,U2,V1 and U2 as defined above, we write:

(L⊗T)i,i′ =
∑
j

(U1)i,j
∑
j′

Tj,j′W
′
i′,j′ +

∑
j′

(U2)i′,j′
∑
j

Tj,j′Wi,j −
∑
j

(V1)i,j
∑
j′

Tj,j′(V2)i′,j′ ,

=
∑
j

(U1)i,j(TW
′T)j,i′ +

∑
j′

(U2)i′,j′(WT)i,j′ −
∑
j

(V1)i,j(Tj,j′V
T
2)j,i′ ,

which concludes that L⊗T = U1TW′T +WTUT
2 −V1TVT

2 .

Remark 2 (Computational cost). U1,U2,V1,V2 can be pre-computed for a cost of O(n2 +m2),
after which L⊗T can be computed (for any T) at a cost of O(mn2 + nm2).

15

Remark 3 (Kullback-Leibler divergence decomposition). The Kullback-Leibler divergence
KL(p, q) = q log q

p + (1 − q) log (1−q)
(1−p) , which we use as ground loss in our experiments satis-

fies the required decomposition given f1(p) = − log(p), f2(q) = q log(q) + (1 − q) log(1 − q),
h1(p) = log(1−p

p) and, h2(q) = 1− q

Remark 4. The tensor product that appears in PMFGW is a special case of this theorem that
corresponds to n = m = M , Wi,j = 1 and W ′

i′,j′ = hi′hj′ . Thus, proposition 1 is a direct corollary.

B.2 PMFGW divergence properties

First, we provide below a more detailed version of Proposition 2

Proposition 6 (GI Invariance). For any m ≤ M , ŷ, ŷ′ ∈ Ŷ and g, g′ ∈ Gm, we have that

ŷ ∼ ŷ′, g ∼ g′ =⇒ PMFGW(ŷ,P(g)) = PMFGW(ŷ′,P(g′)).

Proof. We denote ŷ = (ĥ, F̂, Â) and P(g) = (h,F,A). Since ŷ and ŷ′ are isomorphic, there
exist a permutation P ∈ σM such that ŷ′ = (Pĥ,PF̂,PÂPT). Moreover, the fact that g and g′

are isomorphic implies that P(g) and P(g′) are isomorphic as well, thus there exist a permutation
Q ∈ σM such that P(g′) = (Qh,QF,QAQT). Plugging into the PMFGW objective we get

PMFGW(ŷ′,P(g′)) = min
T∈πM

∑
i,j

Ti,jℓh((Pĥ)i, (Qh)j) +
∑
i,j

Ti,jℓf ((PF̂)i, (QF)j)(Qh)j

+
∑
i,j,k,l

Ti,jTk,lℓA((PÂPT)i,k, (QAQT)j,l)(Qh)j(Qh)l

= min
T∈πM

∑
i,j

(PTTQ)i,jℓh(ĥi,hj) +
∑
i,j

(PTTQ)i,jℓf (f̂i, fj)hj

+
∑
i,j,k,l

(PTTQ)i,j(P
TTQ)k,lℓA(Âi,k, Aj,l)hjhl.

Denoting T̃ = PTTQ we have that

PMFGW(ŷ′,P(g′)) = min
T̃∈πM

∑
i,j

T̃i,jℓh(ĥi, hj) +
∑
i,j

T̃i,jℓf (f̂i, fj)hj

+
∑
i,j,k,l

T̃i,j T̃k,lℓA(Âi,k, Aj,l)hjhl

= PMFGW(ŷ,P(g)).

We now provide a more detailed version of Proposition 3

Definition 1. We say that ℓ : X̂ × X 7→ R is positive when for any x, y ∈ X̂ × X , ℓ(x, y) ≥ 0 with
equality if and only if x = y.
Proposition 7 (Positivity). Let us assume that ℓh : [0, 1] × {0, 1} 7→ R, ℓf : Rd × Rd 7→ R and
ℓA : [0, 1]× {0, 1} 7→ R are positive. Then we have that for any ŷ ∈ Ŷ, g ∈ G :

• i) PMFGW(ŷ,P(g)) ≥ 0

• ii) There is equality if and only if ŷ ∼ P(g)

• iii) In that case P−1T (ŷ) ∼ g

Proof. The direct implication of ii) is the only statement that is not trivial. First, let us show that if
PMFGW(ŷ,P(g)) = 0, the optimal transport T∗ is a permutation. Recall that any transport plan is

16

a convex combination of permutations [6] i.e. there exist λ1, ..., λK ∈]0, 1] and P1, ...,PK ∈ σM

such that
∑K

k=1 λk = 1 and T∗ =
∑K

k=1 λkPk. Thus

0 = ⟨T∗,C⟩+ ⟨T∗,L⊗T∗⟩ (8)

=

K∑
k=1

λk⟨Pk,C⟩+
K∑

k=1

λ2
k⟨Pk,L⊗Pk⟩+

K∑
k ̸=l

λkλl⟨Pk,L⊗Pl⟩. (9)

This is a sum of positive terms, thus all terms are null and in particular, for any k

0 = ⟨Pk,C⟩+ ⟨Pk,L⊗Pk⟩. (10)

Thus all the Pk are optimal transport plans. In the following, we chose one of them and denote it P.
Moving back to the developed formulation of PMFGW we get that

0 = PMFGW(ŷ,P(g)) =
∑
i,j

Pi,jℓh(ĥi, hj)+
∑
i,j

Pi,jℓf (f̂i, fj)hj+
∑
i,j,k,l

Pi,jPk,lℓA(Âi,k, Aj,l)hjhl.

Once again this is a sum of positive terms thus for all i, j, k, and l

0 = Pi,jℓh(ĥi, hj) = Pi,jℓf (f̂i, fj)hj = Pi,jPk,lℓA(Âi,k, Aj,l)hjhl

and thus

0 = ℓh((P
T ĥ)j , hj) = ℓf ((P

T F̂)j , Fj)hj = ℓA((P
T ÂP)j,l, Aj,l)hjhl.

And from the positivity of ℓh, ℓf and ℓA we get that: PT ĥ = h, PT F̂[: m] = F[: m] and
PT ÂP[: m, : m] = A[: m, : m]. Since the nodes i > m are not activated, by abuse of notation we
simply write PT F̂ = F and PT ÂP = A. This concludes that ŷ ∼ P(g).

B.3 PMFGW and Partial Fused Gromov Wasserstein

Following Chapel et al. [13], we define an OT relaxation of the Partial Matching problem.

For a large graph ĝ = (F̂, Â) ∈ GM and a smaller graph g = (F,A) ∈ Gm, the set of transport plan
transporting a subgraph of ĝ to g can be defined as

πM,m = {T ∈ [0, 1]M×m | T1m ≤ 1M ,TT
1M = 1m,1T

MT1m = m}

and the associated partial Fused Gromov Wasserstein distance is

partialFGW(ĝ, g) = min
T∈πM,m

M∑
i=1

m∑
j=1

Ti,jℓF (f̂i, fj) +

M∑
i,k=1

m∑
j,l=1

Ti,jTk,lℓA(Ai,k, Aj,l).

In the following, we show that partialFGW(ĝ, g) is equivalent to the padded Fused Gromov Wasser-
stein distance defined as

paddedFGW(ĝ, g) = min
T∈πM

M∑
i=1

m∑
j=1

Ti,jℓF (f̂i, fj) +

M∑
i,k=1

m∑
j,l=1

Ti,jTk,lℓA(Ai,k, Aj,l).

Lemma 5. Any transport plan T ∈ πM has the form T = (Tp T2) where Tp is a partial transport
plan i.e. Tp ∈ πM,m.

17

Proof. Let us check that Tp is in πM .

• 1M = T1M = Tp1m +T21M−m ≥ Tp1m

• 1M = TT
1M =

(
TT

p 1M

TT
2 1M

)
. And thus TT

p 1M = 1m

• From the previous we immediately get that 1T
MTp1m = m

Lemma 6. For any partial transport plan Tp ∈ πM,m there exist T2 ∈ RM×(M−m) such that
T = (Tp T2) ∈ πM .

Proof. Let us define p = 1M −Tp1m. This is the mass of the larger graph that is not matched by Tp.
Note that since Tp ∈ πM,m we have that p ≥ 0. Thus we can set T2 = 1

M−mp1T
M−m i.e. we spread

the remaining mass uniformly across the padding nodes. Let us check that T = (Tp T2) ∈ πM is
indeed a valid transport plan.

• T1M = Tp1m +T21M−m = Tp1m + p = 1m

• TT
1M =

(
TT

p 1M

TT
2 1M

)
=

(
1m

1
M−m (pT1M)1M−m

)
=(

1m
1

M−m (1T
M1M − 1

T
mTT

p 1M)1M−m

)
=

(
1m

1M−m

)
= 1M

Proposition 8. paddedFGW and partialFGW are equal and any optimal plan T∗ of paddedFGW
has the form T∗ = (T ∗

p , T2) where T ∗
p is optimal for partialFGW.

Proof. Follows directly from the two previous lemmas.

Remark 7. Since paddedFGW is equivalent to the proposed PMFGW loss if and only if ℓh is set to a
constant, proposition 4 is a direct corollary of Proposition 8.
Remark 8. The algorithm proposed to compute PMFGW can be applied to paddedFGW and thus
to partialFGW. Hence, we have indirectly introduced an alternative to the algorithm of Chapel et al.
[13]. Further comparisons are left for future work.

C Encoding Any Input To Graph

Philosophy of the Any2Graph encoder Any2Graph is compatible with different types of inputs,
given that one selects the appropriate encoder. The role of the encoder is to extract a set of feature
vectors from the inputs x i.e. each input is mapped to a list of k feature vectors of dimension de where
k is not necessarily fixed. This is critically different from extracting a unique feature vector (k = 1).
If k is set to 1, the rest of the architecture must reconstruct an entire graph from a single vector,
and the architecture is akin to that of an auto-encoder. In Any2Graph, we avoid this undesirable
bottleneck by opting for a richer (k > 1) and more flexible (k is not fixed) representation of the
input. The k feature vectors are then fed to a transformer which is well suited to process sets of
different sizes. Since the transformer module is permutation-invariant any meaningful ordering is lost
in the process. To alleviate this issue, we add positional encoding to the feature vectors whenever the
ordering carries information. Finally, note that the encoder might highly benefit from pre-training
whenever applicable; but this goes beyond the scope of this paper.

We now provide a general description of the encoders that can be used for each input modality.

18

Self-Attention

Input (Text) Set Of Features

A

Piece

Of

Text

Self-Attention

Set Of Features

Graph Neural
Network
(GNN)

Input (graph)

Graph Neural
Network
(GNN)

Input (graph) Set of Features

Set of Features

A

Piece

Of

Text

But

Longer

Input (Text)

Convolutionnal
Neural Network

(CNN)

Convolutionnal
Neural Network

(CNN)

Set Of Features

Set Of Features

Input (Image)

Input (Image)

Figure 7: Illustration of encoders extracting k features vectors for different input modalities. For
text/fingerprint, k is the number of input tokens. For graphs, k is the size of the input graph. For
images, k depends on the resolution of the image and the CNN kernel size.

Images For Image2Graph task we use Convolutional Neural Networks (CNN) as suggested in [36].
From an input image of shape h× w × c the CNN outputs a tensor of shape H ×W × C which is
seen as H ×W feature vectors of dimension C. The raw output of the CNN is reshaped and passed
through a linear layer to produce the final output of shape H ×W × de. Since the ordering of the
H ×W features carries spatial information we add positional encoding accordingly.

Fingerprint/text For tasks where the input is a list of tokens (e.g. Text2Graph or Fingerprint2Graph)
we use the classical NLP pipeline: each token is transformed into a vector by an embedding layer
and the list of vectors is then processed by a transformer encoder module. In text2graph the tokens
ordering carries semantic meaning and positionnal encoding should be added. On the contrary, in
Fingerprint2Graph, the fingerprint ordering carries no information and the permutation invariance of
the transformer module is a welcomed property.

Graph For a graph2graph task (not featured in this paper) we would suggest using a Graph Neural
Network (GNN) [52]. A GNN naturally extracts k feature vectors from an input graph, where k is
the number of nodes in the input graph. No positional encoding is required.

Vector We explore a Vect2Graph task in Appendix D. The naive encoder we use is composed of k
parallel MLPs devoted to the extraction of the k feature vectors. This approach is arguably simplistic
and more suited encoders should be considered depending on the type of data.

D COLORING: a new synthetic dataset for benchmarking Supervised Graph
Prediction

We introduce Coloring, a new synthetic dataset well suited for benchmarking SGP methods. The
main advantages of Coloring are:

• The output graph is uniquely defined from the input image.
• The complexity of the task can be finely controlled by picking the distribution of the graph

sizes, the number of node labels (colors) and the resolution of the input image.
• One can generate as many pairs (inputs, output) as needed to explore different regimes, from

abundant to scarce data.

To generate a new instance of Coloring, we apply the following steps:

• 0) Sample the number of nodes (graph size) m. In this paper, we sample uniformly on some
interval [Mmin,Mmax].

19

Figure 8: Illustration of the five steps to follow to generate a new instance of Coloring.

• 1) Sample m centroids on [0, 1]× [0, 1]. In this paper, we sample the centroids as uniform
i.i.d. variables.

• 2) Partition [0, 1]× [0, 1] (the image) in a Voronoi diagram fashion [30]. In this paper, we
use the L1 distance. and an image of resolution H ×H .

• 3) Create the associated graph i.e. each node is a region of the image and two nodes are
linked by an edge whenever the two associated regions are adjacent.

• 4) Color the graph with K > 4 colors. In this paper, we use K = 4. A coloring is said to be
valid whenever no adjacent nodes have the same color. Note that graph coloring is known to
be NP-complete [23].

• 5) Color the original image accordingly.

As highlighted above, Coloring is a flexible dataset. Beyond the default dataset simply referred as
Coloring we also explore 2 variations in our experiments. ColoringBig is a more challenging dataset
that features larger graphs. ColoringVect is a variation of Coloring where the input image is flattened
and treated as a vector allowing us to explore a synthetic Vect2Graph task. The properties of these
datasets, along with the performances of Any2Graph are reported in table 3. We hope that Coloring
will be used to benchmark future SGP methods.

Table 3: Summary of the properties of the 3 variations of Coloring considered in this paper. We
also report the test edit distance achieved by the different models. For FGWBary we report the best
performing variant that is ILE for ColoringVect and NN for Coloring. None scales to ColoringBig.

DATASET MMIN MMAX H NUMBER OF SAMPLES ANY2GRAPH RELATIONFORMER FGWBARY-NN

ColoringVect 4 6 16 100K 0.46 1.40 2.09
Coloring 6 10 32 100K 0.20 5.47 6.73
ColoringBig 10 15 64 200K 1.01 8.91 N.A.

20

E Additional Details On The Experimental setting

E.1 Datasets

In this paper, we consider five datasets for which we provide a variety of statistics in Table 4. Coloring
is a new synthetic dataset which we describe in detail in Appendix D. Toulouse (resp. USCities) is
a Sat2Graph dataset [5] where the inputs are images of size 64× 64 (resp. 128× 128). QM9 [50]
and GDB13 [7] are datasets of small molecules which we use to address the Fingerprint2Graph task.
Here, we compute a fingerprint representation of the molecule and attempt to reconstruct the original
molecule from this loss representation. Following Ucak et al. [42] we use the Morgan Radius-2
fingerprint [26] which represents a molecule by a bit vector of size 2048, where each bit represents
the presence/absence of a given substructure. Finally, we feed our model with the list of non-zeros
bits, i.e. the list of substructures (tokens) present in the molecule. The list of substructures has a
min/average/max length of 2/21/27 for QM9 and 7/29/36 for GDB13.

Table 4: Table summarizing the properties of the datasets considered.

DATASET
SIZE NODES EDGES INPUT MODALITY NODE FEATURES(TRAIN/TEST/VALID) (MIN/MEAN/MAX) (MIN/MEAN/MAX)

Coloring 100K/10K/10K 4/7.0/10 3/10.9/22 RGB IMAGES 4 CLASSES (COLORS)
Toulouse 80K/10K/10K 3/6.1/9 2/5.0/14 GREY IMAGES 2D POSITIONS
USCities 130K/10K/10K 2/7.5/17 1/5.8/20 GREY IMAGES 2D POSITIONS
QM9 120K/10K/10K 1/8.8/9 0/9.4/13 LIST OF TOKENS 4 CLASSES (ATOMS)
GDB13 1300K/70K/70K 5/12.7/13 5/15.15/18 LIST OF TOKENS 5 CLASSES (ATOMS)

E.2 Training And Architecture Hyperparameters

Encoder We follow the guidelines established in C for the choice of the encoder. In particular, all
encoders for Coloring, Toulouse and USCities are CNNs. The encoder for Coloring is a variation of
Resnet18 [22], where we remove the first max-pooling layer and the last two blocks to accommodate
for the low resolution of our input image. We proceed similarly for Toulouse except that we only
remove the last block. For USCities we keep the full Resnet18. For the Fingerprint2Graph datasets,
we use a transformer encoder. In practice, this transformer encoder and that of the encoder-decoder
module are merged to avoid redundancy. All encoders end with a linear layer projecting the feature
vectors to the hidden dimension de.

Transformer We use the Pre-LN variant Xiong et al. [51] of the transformer encoder-decoder
model as described in [43]. To reduce the number of hyperparameters, encoder and decoder modules
both consist of stacks of Nτ layers, with Nh heads and the hidden dimensions of all MLP is set to
4× de.

Decoder All MLPs in the decoder module have one hidden layer.

Optimizer We train all neural networks with the Adam optimizer Kingma and Ba [24], learning
rate η, 8000 warm-up steps and all other hyperparameters set to default values. We also use gradient
clipping with a max norm set to 0.1.

All hyperparameters are given in Table 5.

Table 5: Hyperparameters used to train our models. We also report the total training time on a
NVIDIA V100.

DATASET
PMFGW ARCHITECTURE OPTIMIZATION

αH αF αA de Nτ Nh M η BATCHSIZE STEPS TIME

Coloring 1 1 1 256 3 8 12 3E-4 128 75K 4H
Toulouse 1 5 1 256 4 8 12 1E-4 128 100K 8H
USCities 2 5 0.5 256 4 8 20 1E-4 128 150K 14H
QM9 1 1 1 128 3 4 12 3E-4 128 150K 6H
GDB13 1 1 1 512 5 8 15 3E-4 256 150K 24H

21

E.3 Metrics

In the following, we provide a detailed description of the metrics reported in table 1.

Graph Level First we report the PMFGW loss between continuous prediction ŷ and padded target
P(g). For this computation, we set α to the values displayed in table 5.

PMFGW(ŷ,P(g))

Then we report the graph edit distance Gao et al. [19] between predicted graph P−1T ŷ and target g
which we compute using Pygmtools Wang et al. [48]. All edit costs (nodes and edges) are set to 1.
Note that for Toulouse and USCities, node labels are 2D positions and we consider two nodes features
to be equal (edit cost of 0) whenever the L2 distance is smaller than 5% than the image width.

EDIT(P−1T ŷ, g)

Finally, we report the Graph Isomorphism Accuracy GI ACC that is

GI ACC(ŷ, g) = 1[EDIT(P−1T ŷ, g) = 0]

Node level Recall that for a prediction ŷ = (ĥ, F̂, Â) the size of the predicted graph is m̂ = ||ĥ >
0.5||1. Denoting m the size of the target graph we report the size accuracy:

SIZE ACC(ŷ, g) = 1[m̂ = m].

The remaining node and edge-level metrics need the graphs to have the same number of nodes. To
this end, we select the m nodes with the highest probability ĥi, resulting in a graph ĝ = (F̃, Ã) with
ground truth size. This is equivalent to assuming that the size of the graph is well predicted. Then we
use Pygmtools to compute a one-to-one matching σ between the nodes of ĝ and g that can be used to
align graphs (we use the matching that minimizes the edit distance). In the following, we assume that
g and ĝ have been aligned. We can now define the node accuracy NODE ACC as

NODE ACC(ĝ, g) =
1

m

m∑
i=1

1[F̃i = Fi],

which is the average number of node features that are well predicted.

Edge level Since the target adjacency matrices are typically sparse, the edge prediction accuracy is
a poorly informative metric. To mitigate this issue we report both Edge Precision and Edge Recall :

EDGE PREC.(ĝ, g) =

∑m
i,j=1 1[Ãi,j = 1, Ai,j = 1]∑m

i,j=1 1[Ãi,j = 1]

EDGE PREC.(ĝ, g) =

∑m
i,j=1 1[Ãi,j = 1, Ai,j = 1]∑m

i,j=1 1[Ai,j = 1]

All those metrics are then averaged other the test set.

E.4 Compute resources

We estimate the total computational cost of this work to be approximately 1000 hours of GPU (mostly
Nvidia V100). We estimate that up to 70% of this computation time was used in preliminary work
and experiments that did not make it to the paper.

22

F Additional Experiments and figures

F.1 Learning dynamic

The PMFGW loss is composed of three terms, two of them are linear and account for the prediction
of the nodes and their features, one is quadratic and accounts for the prediction of edges. The last
term is arguably the harder to minimize for the model, as a consequence, we observe that the training
performs best when the two first terms are minimized first which then guides the minimization of
the structure term. In other words, the model must first learn to predict the nodes before addressing
their relationship. Fortunately, this behavior naturally arises in Any2Graph as long as αA, the
hyperparameter controlling the importance of the quadratic term, is not too large. This is illustrated
in figure 9.

0 1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.5

1.0

Lo
ss

es
 (t

es
t s

et
)

loss features
loss mask
loss structure

0 1 2 3 4 5 6 7 8 9 10
Epochs

0.0

0.5

1.0

Lo
ss

es
 (t

es
t s

et
)

loss features
loss mask
loss structure

Figure 9: First epochs of training for Coloring. The test values of the 3 components of the loss are
reported. On the left (resp. right) α is set to [1, 1, 1] (resp. [1,1,10]). In the first scenario, the first two
terms of the loss are learned very fast and the structure is optimized next. In the second scenario,
setting αA = 10 prevents this desirable learning dynamic.

For the datasets where many nodes in the graphs share the same features (QM9 and GDB13) the
good prediction of the nodes and their features is not enough to guide the prediction of the edges and
this desirable dynamic does not occur. This motivates us to perform Feature Diffusion (FD) before
training. The diffused node features carry a portion of the structural information. This makes the
node feature term slightly harder to minimize but in turn, the subsequent prediction of the structure is
much easier and we recover the previous dynamic. This is illustrated in figure 10.

0 2 4 6 8 10 12
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

 (t
es

t s
et

)

loss features
loss mask
loss structure

0 2 4 6 8 10 12
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

 (t
es

t s
et

)

loss features
loss mask
loss structure

Figure 10: First epochs of training for GDB13. The test values of the 3 components of the loss are
reported. On the left, we perform FD before training, on the right, we leave node features unchanged.
We observe that the feature loss decreases slightly slower with FD (the features are more complex)
but the minimization of the structure term is largely accelerated.

F.2 Effect of the OT relaxation on the performances

As stated in 2, we adopted the OT point of view when designing Any2Graph. In practice, this means
that we do not project the OT plan back to the set of permutations with a Hungarian matcher before
plugging it in the loss as in Simonovsky and Komodakis [37]. Testing the effect of adding this extra

23

step we observed a 5% to 10% increase of the edit distance across datasets (table 6) along with a
more unstable training curve (figure 11). This confirms that a continuous transport plan provides a
slightly more stable gradient than a discrete permutation, which aligns with the findings of De Plaen
et al. [16] on the similar topic of object detection.

Dataset Coloring Toulouse USCities QM9 GDB13

ED without Hungarian 0.20 0.13 1.86 2.13 3.63
ED with Hungarian 0.23 0.15 2.03 2.08 3.86

Table 6: Effect of adding Hungarian Matching on the performances evaluated with the test edit
distance. We observe, that Hungarian Matching slightly decreases the performances on all datasets
but QM9.

5 10 15 20 25 30
Epochs

0.15

0.20

0.25

0.30

Lo
ss

 (t
es

t s
et

)

With Hungarian Matching
Without Hungarian Matching

Figure 11: First epochs of training for GDB13 with and without projection of the optimal transport
plan to the set of permutations with Hungarian matching. Hungarian matching slightly decreases the
performances and induces more oscillations of the loss, which could be explained by a less stable
gradient.

F.3 Repeatability

We checked the robustness of Any2Graph to the seed used for training. For each dataset, we ran 5
times the whole training pipeline with 5 random seeds. The results are displayed in table 7. Notably,
we observe that all state-of-the-art performances observed in table 1 hold even if we had reported the
worst seed (we reported the first seed).

Dataset Coloring Toulouse USCities QM9 GDB13

Edit. (Max) 0.23 0.16 2.08 2.19 3.63
Edit. (Mean) 0.21 0.14 1.89 2.10 3.49
Edit. (Min) 0.2 0.13 1.7 2.03 3.43
Edit. (Std) 0.01 0.08 0.14 0.05 0.07

Table 7: For each dataset, we report the maximum, average, minimum and the standard deviation of
the Any2Graph test edit distance over 5 random seeds.

24

G Additional Qualitative Results

G.1 Qualitative results on COLORING

Input Target Any2Graph Relationformer FGWBary-ILE FGWBary-NN

Figure 12: Graph prediction on the Coloring dataset.

25

G.2 Qualitative results on QM9

1 94
32 89 689

38 7 78
455 1084 2

14 285 3
21 1157 482
1567 5 1409

82 49 54
157

1 27
158 10 85

187 62 124
537 877 24

6 723 43
149 4 1545

725

1 529
1717 145 15

25 45 170
6 452 2

14 1092 3
738 8 31

1643 545 304
167 605 11

404

1 100
1024 490 15

1297 12 1803
107 30 29

252 4 1692
13 50 1013
5 143 280

203 1323 640
11 127

1 663
10 187 144
184 764 9
7 17 427
34 2 20

3 131 53
61 50 582

599 645 154
1221 389 11

1 436
312 7 12

669 102 30
2 29 39

3 4 8
131 464 18

1161 521 1658
1045 36

1 10
298 409 26

1677 9 7
25 95 34
6 357 2
747 3 4

8 1002 47
109 1409 260

33 649

Input Target Any2Graph Relationformer FGWBary-ILE FGWBary-NN

Figure 13: Graph prediction on the QM9 dataset.

26

G.3 Qualitative results on GDB13

2048 14
113 292 425
486 522 549
566 589 640
655 677 678
705 806 909

925 949 1018
1027 1059 1113
1223 1256 1324
1385 1467 1563
1634 1847 1872

1882 1958

2048 4
21 143 293

378 516 522
655 728 738
757 890 925

934 949 1018
1059 1128 1161
1223 1365 1440
1479 1507 1572
1607 1634 1684

2006 2039

2048 96
253 300 313
317 377 502
610 649 839
872 925 949

1018 1043 1113
1249 1324 1379
1430 1602 1637
1644 1652 1716
1763 1872 1949

2040

2048 70
161 174 200
316 377 454
469 559 655
694 821 925

984 1018 1026
1033 1113 1128
1229 1291 1379
1506 1513 1753
1818 1826 1872
1878 1892 1920

2003

2048 30
49 165 330

377 407 547
622 655 674
757 786 874

884 934 1040
1199 1232 1359
1379 1393 1451
1467 1566 1633
1690 1695 1749
1751 1872 1883

1943

2048 24
107 171 411
439 522 584
613 655 678
685 738 925

934 1018 1059
1070 1161 1186
1223 1238 1264
1291 1324 1543
1704 1725 1880

1909 1922

2048 146
226 309 522
527 584 610
655 678 856
911 925 926

973 1018 1024
1049 1054 1059
1161 1291 1358
1372 1466 1689
1728 1858 1881

1922 2039

Input Target Any2Graph Relationformer

Figure 14: Graph prediction on the GDB13 dataset.

27

G.4 Qualitative results on TOULOUSE

Input Target Any2Graph Relationformer FGWBary-NN FGWBary-ILE

Figure 15: Graph prediction on the Toulouse dataset.

28

G.5 Qualitative results on USCities

Input Target Any2Graph Relationformer

Figure 16: Graph prediction on the USCities dataset.

29

G.6 Out of distribution performances

We tested if, once trained on Toulouse dataset, the predictive model is able to cope with out-of-
distribution data. Figure 17 shows that this is the case on these toy images, that are not related to
satellite images or road maps. We leave for future work the investigation of this property.

Figure 17: Any2Graph trained on Toulouse performing on out-of-distribution inputs. Input images
are displayed on top row and prediction in the bottom row.

30

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims about the performances of Any2Graph are demonstrated numer-
ically in section 5. Those about the properties of PMFGW are stated in 3 and proofs are
provided in B.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The current limitations of the work are stated explicitly in the dedicated last
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

31

Answer: [Yes] .
Justification: To the best of our knowledge, all proofs provided are correct. Note that the
propositions stated in the core of the paper are informal. All formal propositions and proofs
are provided in B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We make a special effort to provide all hyperparameters and experimental
settings in section 5 and appendix E. We also provide the code of the paper and will release
a GitHub repository upon publication of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

32

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code of the paper in supplementary materials and plan to
release a GitHub repository upon publication of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All those details are provided in appendix E. Note that for the data splits we
used the existing splits when available (QM9, Toulouse and USCities) and created our own
random split for the other datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: It would be computationally too expensive to report the error bar for all
experiments. However, we make an extra computational effort to run 5 times (with random
seeds) what we consider to be the main experiments to check that our conclusions are
statistically significant (appendix F.3).

Guidelines:

• The answer NA means that the paper does not include experiments.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include a discussion regarding the computational cost of the different
models in the main paper. Besides, we report the exact computing resources used to train
Any2Graph and an estimate of the total computing cost of the research project in appendix
E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, this work is not harmful in any of the ways
detailed in the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

34

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: This paper is a fundamental research paper about supervised learning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No need for responsible release of code or data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets are properly referenced and cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

35

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All new assets (model, loss, synthetic dataset) are described in the core paper
and supplementary, and the associated code is provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use any crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not use any crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

36

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Background on graph matching and optimal transport
	Optimal Transport loss for Supervised Graph Prediction
	Any2Graph: a framework for end-to-end SGP
	Any2Graph problem formulation
	Neural network architecture

	Numerical experiments
	Experimental setting
	Comparison with existing SGP methods on diverse modalities
	Empirical study of Any2Graph properties

	Conclusion and limitations
	Illustration of PMFGW On A Toy Example
	Formal Statements And Proofs
	PMFGW fast computation
	PMFGW divergence properties
	PMFGW and Partial Fused Gromov Wasserstein

	Encoding Any Input To Graph
	COLORING: a new synthetic dataset for benchmarking Supervised Graph Prediction
	Additional Details On The Experimental setting
	Datasets
	Training And Architecture Hyperparameters
	Metrics
	Compute resources

	Additional Experiments and figures
	Learning dynamic
	Effect of the OT relaxation on the performances
	Repeatability

	Additional Qualitative Results
	Qualitative results on COLORING
	Qualitative results on QM9
	Qualitative results on GDB13
	Qualitative results on TOULOUSE
	Qualitative results on USCities
	Out of distribution performances

