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ABSTRACT

Recent studies in long video understanding have harnessed the advanced visual-
language reasoning capabilities of Large Multimodal Models (LMMs), driving the
evolution of video-LMMs specialized for processing extended video sequences.
However, the scalability of these models is severely limited by the overwhelming
volume of visual tokens generated from extended video sequences. To address
this challenge, this paper proposes FLoC, an efficient visual token compression
framework based on the facility location function, a principled approach that swiftly
selects a compact yet highly representative and diverse subset of visual tokens
within a predefined budget on the number of visual tokens. By integrating the
lazy greedy algorithm, our method achieves remarkable efficiency gains by swiftly
selecting a compact subset of tokens, drastically reducing the number of visual
tokens while guaranteeing near-optimal performance. Notably, our approach is
training-free, model-agnostic, and query-agnostic, providing a versatile solution
that seamlessly integrates with diverse video-LLMs and existing workflows. Ex-
tensive evaluations on large-scale benchmarks, such as Video-MME, MLVU, and
LongVideoBench, demonstrate that our framework consistently surpasses recent
compression techniques, highlighting not only its effectiveness and robustness in
addressing the critical challenges of long video understanding, but also its efficiency
in processing speed.

1 INTRODUCTION

With the recent emergence of Large Language
Models (LLMs) in natural language processing, 101 I S
there has been a surge of interest in extending Spectrl
their capabilities to the visual domain (Achiam:

et al.| 2023). By utilizing the visual embed-

dings as token inputs to the LLMs, referred to
as visual tokens, these Large Multimodal Mod-
els (LMMs) have already demonstrated their
performances surpassing human-level accuracy 0]
on vision tasks, such as visual question answer- o

ing (Liu et al.| 2024} [Fang et al.| 2024} [Team 88 %0 %2 % 9%

Average Relative Performance (%)
et al} 2023). More recently, the research focus  pjgyre 1: Performance (Average relative accuracy
has shifted towards enabling these models to

: . compared to full token usage) versus compression
understand video sequences (Lin et al., 2023), ;e (log-scale) for a number of compression algo-

giving rise to video-LMMs (Song et al., 20248 ithm. Details are described in Section [}
Xue et al., 2024; Wang et al.| 2024a; Balazevic

et al.,[2024). Such models not only excel in tasks like captioning (Krishna et al.,2017; Xu et al.| 2015}
Vinyals et al., 2015)), event detection (Xu et al.,|2019;|Shou et al., 2021)), and action recognition (Zhao
et al.|[2017; Simonyan & Zisserman, 2014), but also show significant potential in various real-world
applications, including surveillance through CCTV systems, immersive experiences in smart glasses,
and autonomous navigation for mobile robots.
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Figure 2: Overview of the proposed framework for selecting a visual token subset. Our method
compresses the visual tokens extracted by a visual encoder from input video sequences into a diverse
and representative subset within a given budget. The selected visual tokens are then concatenated
with text tokens and fed into the video-LMM. Since our method is training-free and model-agnostic,
it can be seamlessly integrated into any video-LMM in a plug-and-play manner.

Despite this progress, long video understanding remains particularly challenging due to the explosive
growth in the number of visual tokens as the video sequence length increases (Xue et al.| 2024
Fu et al. [2024). When dealing with high-resolution or long-duration videos (e.g., 4K content),
it becomes computationally infeasible to process every token end-to-end, especially given that
most LLM-based architectures support input contexts of only 4K to 32K tokens. This limitation
is exacerbated in real-world scenarios: for instance, continuous CCTV footage can span days or
weeks, smart glasses may capture extended, first-person video streams, and mobile robots frequently
operate in dynamic environments requiring real-time video analysis. Consequently, the gap between
human-level performance and current model capabilities still exists, highlighting the complexity and
significance of this research direction.

To tackle the issue of handling long video sequences, visual token compression is indispensable.
In practice, when examining consecutive frames of a video, many tokens share highly redundant
information unless there is a substantial scene change (Potapov et al.l 2014). Eliminating these
redundancies often does not harm the downstream performance, while excessively pruning tokens
could lead to the loss of critical information. It is therefore critical to strike a delicate balance in
token compression to minimize information loss.

Previous approaches to selecting representative visual tokens often relied on filtering out temporally
redundant tokens or frames (Shen et al.| 2024} |Tao et al., [2024) or clustering techniques to extract
representative information from each cluster (Wang et al., [2024c; Shang et al., 2024} [Zhang et al.,
20244a). While these methods may work at a reasonable level, they often fall short in capturing the
full diversity needed to interpret complex visual scenes. Consider a scenario where a user wearing
smart glasses searches for car keys in a cluttered room. Visual tokens representing the small object
of interest (the keys) occur infrequently and sparsely within the video sequence, whereas tokens
depicting general scenery, such as furniture or background, appear repeatedly and redundantly. In this
setting, clustering-based approaches are likely to fail in capturing rare but important tokens—such
as those corresponding to the keys—since they primarily focus on densely populated regions in
the feature space. Therefore, a visual token compression algorithm that simultaneously ensures
representativeness and diversity is essential to effectively retain these critical but sparse visual cues.

In order to overcome these limitations, we propose a novel visual token compression algorithm based
on the facility location function (Lin & Bilmes} 2011} |Lin et al.,|2009). Our approach interprets token
selection through the lens of submodular optimization, ensuring that the selected set of tokens covers
all original tokens under a given budget constraint. Specifically, each subset considers the similarity
between its subset and the entire tokens, enabling to include diverse information of the entire video
sequence. While finding the optimal subsets in this manner is known to be a NP-hard problem, we
sidestep the computational overhead by utilizing the lazy greedy algorithm (Minoux| |1978)), enabling
to select the visual tokens with minimal computational overheads. As a result, the chosen tokens are
both representative and diverse, effectively preserving essential information for video understanding
tasks. Our experiments on benchmarks such as Video-MME, and LongVideoBench (Zhou et al.|
2024 'Wu et al., [2025)) demonstrate the superiority of our method over existing approaches.
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The remainder of this paper is organized as follows. In Section 2] we provide a comprehensive
review of related work. Section [3|details our proposed facility location-based algorithm for visual
token compression. Experimental settings and results are presented in Sectiond] and we conclude in
Section [5|by summarizing our key findings and discussing potential future directions.

2 RELATED WORK

Sampling / Pooling A common and straightforward strategy to deal with the abundance of visual
tokens in long video sequences is to reduce the input size via pooling or sampling (Potapov et al.|
2014; [Cai et al., 2024} Qu et al., 2024} 'Wu, 2024). For instance, uniform sampling of frames or
pooling across spatial/temporal dimensions can substantially cut down the computational overhead
and memory usage. However, these methods often ignore the semantic importance of certain frames
or regions. Such a one-size-fits-all approach may discard critical cues or overly compress redundant
segments, leading to suboptimal performance when higher-level understanding of video content is
required.

Clustering Another widely studied line of research involves clustering techniques to group similar
frames or tokens and select representative exemplars (de Avila et al.l 2011; Khosla et al.,[2013} [Wang
et al.,[2024¢} [Shang et al., 2024} Zhang et al.,[2024a)). By partitioning the visual space into clusters,
these methods attempt to capture the overall distribution of the video content, retaining only the
most “central” examples in each cluster. While clustering can better preserve representativeness
than naive sampling, it can still struggle to guarantee coverage of rare but potentially important
events. Moreover, the offline clustering process may be computationally expensive, especially for
long videos, and is typically not optimized in an end-to-end manner, which can result in mismatches
between clustering objectives and downstream video understanding tasks.

Query-Aware Compression In query-aware or task-specific compression, the aim is to select those
frames or tokens that are most relevant to a given query, user interest, or downstream task (Zhang
et al., 2016; |Shen et al., 2024} Korbar et al., 2024; |Wang et al., 2024c). This category of methods can
effectively reduce the search space by focusing on what is deemed important. However, they require
prior knowledge of the query or task, making them less flexible for general-purpose or zero-shot
scenarios. When the query space expands or changes, such approaches often need retraining or
redesign, limiting their applicability in dynamic environments (e.g., surveillance systems, smart
glasses, or robots) where the set of possible queries is not fixed.

Retraining Learnable compression algorithms employ neural networks to decide which tokens or
frames to discard or keep (Zhang et al.l 2025 |Argaw et al.l [2024; Lee et al.,2025). By training end-to-
end, they can theoretically capture complex patterns and adapt to different tasks. Nonetheless, these
methods tend to require large labeled datasets and substantial training time. They are also dependent
on model architecture and specific training objectives, which makes them less model-agnostic.
Consequently, deploying such methods in rapidly evolving research fields or on resource-constrained
platforms (e.g., embedded systems in mobile robots) can be challenging.

In contrast to the above approaches, our method operates in a training-free, plug-and-play fashion,
allowing it to be easily integrated into existing pipelines with minimal overhead. Built on the principle
of facility location (Lin & Bilmes}, 2011} Lin et al.,|2009), it interprets token selection as a submodular
optimization problem, ensuring both representativeness and diversity under a given budget constraint.
Additionally, we adopt a lazy greedy algorithm that significantly reduces computation time while
maintaining near-optimal performance (Minoux, 1978). By decoupling the compression strategy
from the underlying vision model, our approach remains model-agnostic, thus enabling seamless
deployment in various real-world scenarios, from large-scale video analytics to on-device processing
for surveillance, smart eyewear, and mobile robots. Moreover, our proposed approach operates
in a query-agnostic manner, independent of user input. Unlike query-aware methods that require
recompression for each incoming query and must retain all uncompressed tokens in memory, our
method performs a one-time compression and stores only the compressed tokens. This leads to
significant gains in both computational and memory efficiency.

As demonstrated in Figure|l} our proposed method, FLoC, empirically outperforms both previously
proposed approaches and traditional clustering-based methods in terms of accuracy and processing
speed. This highlights its effectiveness in addressing the token compression challenge for long video
understanding.
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Figure 3: Illustration of the proposed algorithm for selecting a subset of visual tokens using the lazy
greedy approach. The process iteratively selects tokens with the highest marginal gain while ensuring
diversity and representativeness within a given budget K. This figure demonstrates the execution of
Algorithmm from line 7 to line 14 on a one-dimensional toy example.

3  PROPOSED METHOD: FLOC

This section introduces our proposed method, FLoC, which employs the facility location function to
select representative and diverse visual tokens. Section @ outlines the overall framework, where
visual tokens serve as inputs for video LMMs to generate responses. Section [3.2]then describes the
facility location function and its efficient implementation using the lazy greedy alogrithm.

3.1 FRAMEWORK FOR VISUAL TOKEN SUBSET SELECTION

Let V = {v1,va,...,v,} be the ground set of all visual tokens extracted from an input video. Each
token v; corresponds to a feature vector that represents a specific spatiotemporal segment (e.g., a
frame patch at a given time). Our goal is to select a subset S C V such that |S| < K, where K is a
budget on the number of tokens to keep. Formally, we want to find the subset .S that maximizes a
utility (or coverage) function f:

S* = argmaxscyv,|s|<K f(9),

where, f(S) quantifies how well the subset .S collectively represents or covers the entire set V.
Specifically, f should reward the chosen visual tokens (i.e., .S) that preserve the essential information
and diversity of all visual tokens (i.e.V'), while respecting the budget constraint K. Therefore, the
key is to design and optimize a suitable function f that captures the core video content with minimal
redundancy.

The input video is first parsed into a large set of tokens, from which our method selects a representative
and diverse subset. Although our method can be directly applied to the entire set of visual tokens, we
divide the input video into smaller temporal blocks for computational efficiency, as shown in Figure[2]
This design naturally allows future extension to streaming scenarios, where the algorithm could
process accumulated tokens in a buffer. After selecting visual tokens within each block, the chosen
subset is concatenated with a user-provided text prompt to form the final input for the video-LMM:s.
This integration seamlessly combines crucial visual cues with linguistic context, enabling the LMM to
perform downstream tasks such as captioning, question answering, or event detection with improved
efficiency and accuracy.

3.2 SUBMODULAR FACILITY LOCATION FUNCTION

We utilize the facility location function (Lin & Bilmes| 2011} |Lin et al., [2009), a widely adopted
submodular function, to select a representative and diverse subset of visual tokens. Formally, given a
ground set V' of visual tokens, the facility location objective is defined as follows:

f(8) = ) _ maxsim(v, u),
veV
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where sim (v, u) denotes the similarity between tokens v and u. In this work, we employ cosine
similarity between token embeddings as our similarity measure:

’UTU

SV ) = il

The motivation for adopting the facility lo- Algorithm 1 Lazy Greedy Algorithm for FLoC
cation function stems from its effectiveness

in balancing representativeness and diversity,
making it one of the traditional and widely- - S 0

used approaches for summarization tasks. 5. ..o priority queue Q «
By maximizing this function, the selected 3. for 4 c V do

subset is encouraged to cover all tokens in 4 Ay f({v})

the original set as comprehensively as possi- 5 Insert v into ) with priority A,
ble, while avoiding redundancy by penalizing  6: end for
7
8

Require: Ground set V, budget K
Ensure: Selected subset S with | S| < K

highly overlapping selections. Due to this  7: while |S| < K do

property, facility location has been success- v+ argmaxyeq Ay (pop from queue)
fully applied across various summarization 9: 5 «— f(Su{v™}) = f(S)

domains, including document summarization 19 if 0 2 maxueq Au then

and video summarization tasks. Uf S+ Su{v}

12: else
Finding an optimal subset that maximizes 13 Update priority of v™ in @ to § and re-insert
the facility location function is known to be 14 end if

15: end while

NP-hard. To address this complexity, a com-
return S

mon approximation method is the greedy al-
gorithm, which iteratively selects tokens with the highest marginal gain until the budget constraint is
satisfied. This greedy selection method guarantees a solution with a performance lower bound of
(1 —1/e) =~ 0.632 relative to the optimal solution (Nemhauser et al.,|1978). Specifically, the greedy
algorithm incrementally adds the token that provides the largest increase in coverage at each iteration.

To further enhance computational efficiency, we implement a lazy greedy algorithm (Minoux) |1978)),
which significantly reduces the computational overhead by avoiding unnecessary recomputation of
marginal gains. Specifically, the algorithm exploits the submodularity (diminishing returns) property
of the facility location function f. Formally, for any subsets A C B C V and atokenv € V' \ B, the
marginal gain satisfies:

fLAU{v}) = f(A) = f(BU{v}) - f(B)

This inequality implies that the marginal benefit of adding a visual token v can only decrease or
remain constant as the selected subset grows. Consequently, the marginal gain computed in a previous
iteration serves as a valid upper bound for the current marginal gain. We leverage this by maintaining
a priority queue of these upper bounds. In each step of the search process, we pop the candidate v*
with the highest upper bound and recompute its exact marginal gain ¢ with respect to the current
subset. If § remains greater than or equal to the upper bounds of all other candidates in the queue,
submodularity guarantees that v* is the optimal choice for the current iteration without needing to
re-evaluate the rest. Algorithm [T outlines the detailed procedure, and Figure [3] provides a visual
illustration of this process.

The lazy greedy algorithm significantly reduces computational complexity compared to the naive
greedy approach. While the naive greedy algorithm for maximizing submodular functions has
a time complexity of O(nkK), the lazy greedy approach leverages the submodularity property to
avoid unnecessary recomputation of marginal gains. By using a priority queue, it updates marginal
gains only when needed, achieving empirical speedups often approaching an order of magnitude.
Consequently, it becomes particularly efficient for handling numerous visual tokens and enabling
real-time processing of long videos.

Compared to traditional clustering-based methods, our lazy greedy-based facility location method
offers several advantages. First, it eliminates iterative refinement and costly operations such as
eigen-decompositions. Instead, our approach directly selects tokens in a single forward pass by
maximizing global coverage, ensuring a diverse and representative subset is chosen efficiently. Thus,
it provides a highly efficient and scalable alternative, especially suitable for real-time or on-device
processing requirements. Next, the facility location function explicitly optimizes global coverage by
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Table 1: Comparison of visual token compression methods. The ratio indicates the compression ratio
relative to the original number of visual tokens.

Model | Qwen2.5-VL-7B | InternVL3-8B
Comp. Video LV Next Ego Video LV Next Ego
Ratig Method MME MLVU  LVB Bench QA Sch%:ma V& | MME MLVU  LVB Bench QA Sch%:ma Avg. ‘
1| - | 6633 7031 6051 4622 7491 6140 | 6328 | 66.63 7268 5939 4454 8237 70.00 | 65.94 |

TS-LLaVA 61.15 6757 5520 4138 70.08 59.60 | 59.16 | 62.78 67.30 56.02 4132 80.59 68.20 | 62.70
LongVU 62.19  66.61 5542 4312 69.76 5940 | 59.42 | 6470 69.50 5535 4319 81.18 69.20 | 63.85
DivPrune 61.63 6757 56.17 4190 70.17 5840 | 59.31 | 64.07 70.06 56.92 4248 80.22 65.00 | 63.13
Random 60.30  66.24 5572 4099 6927 58.60 | 58.52 | 60.59 65.69 56.02 4145 8023 6520 | 61.53
93 DyCoke 62.11 6753 5512 4229 69.54 59.60 | 59.37 | 63.96 6845 5572 4235 81.06 69.00 | 63.42
PruneVid 58.19 6454 5415 3725 6627 5420 | 5577 | 5741 6205 5348 3564 79.48 62.80 | 58.48
STTM 59.52  63.57 54.60 4080 67.52 5580 | 5697 | 63.52 64.26 5490 41.77 80.48  66.20 | 61.86
Scissor 5859 65.04 5408 39.12 69.06 5640 | 57.05 | 61.15 67.76 5512 4093 8090 65.80 | 61.94

FastVID 60.89  67.31 57.14 4125 6991 58.60 | 59.18 - - - - - - -
FLoC (Ours) | 63.33 68.81 58.12 42.87 7140 60.00 | 60.76 | 64.93 71.57 56.69 43.19 8121 69.40 | 64.50
TS-LLaVA 5878 64.67 5251 38.80 67.69 57.20 | 56.61 | 59.63 64.95 53.85 4035 79.09 62.80 | 60.11
LongVU 58.07 6297 5273 39.44 6435 5540 | 5549 | 5648 60.12 5131 37.12 78.07 6040 | 57.25
DivPrune 58.85 64.67 54.00 40.74 6756 5580 | 56.94 | 61.93 68.08 54.82 41.19 7872 61.80 | 61.09
Random 5744 63.80 53.63 4041 67.14 5820 | 56.77 | 59.74 6477 5423 4035 79.16 66.60 | 60.81
94 DyCoke 57.00 63.02 53.78 40.54 64.57 54.00 5549 | 61.37 65.13 5310 41.12 79.75 67.40 61.31
PruneVid 54.11 6159 51.83 3589 60.78 52.00 | 55.84 | 53.81 5948 5228 3557 7744 5840 | 56.16
STTM 57.15 6173 51.68 3835 6330 50.80 | 53.84 | 60.15 6293 5228 4048 78.69 63.40 | 59.66
Scissor 5526 60.95 5355 40.74 6546 54.00 | 54.99 | 58.89 64.44 5377 40.74 79.57 63.40 | 60.14

FastVID 58.67 6552 5423 40.57 67.78 57.20 57.33 - - - - - - -
FLoC (Ours) | 60.89 66.19 5527 42.16 68.79 58.00 | 58.55 | 63.41 69.09 56.47 42.74 80.52 66.20 | 63.07
TS-LLaVA 55.07 6237 5049 38.67 6279 54.60 | 54.00 | 58.89 63.89 5333 39.77 7850 61.00 | 59.23
LongVU 5341 5842 5034 37.06 58.03 5320 | 51.74 | 5596 59.52 51.01 3577 7743 58.80 | 56.42
DivPrune 5578 6191 5228 3957 63.10 53.60 | 5437 | 60.85 6546 52.88 39.83 76.83 5940 | 59.21
Random 5556 6141 49.89 3854 6276 53.60 | 53.63 | 57.30 63.57 52.13 39.19 7823 6040 | 58.47
95 DyCoke 5437 5998 5138 37.77 62.05 54.60 | 5336 | 59.22 62.60 5198 40.03 77.52 63.00 | 59.06
PruneVid 51.11 5851 49.66 32.67 5833 49.00 | 53.09 | 5141 56.39 4996 33.63 7471 53.00 | 53.18
STTM 5526 59.25 50.11 37.19 58.63 4940 | 51.64 | 5752 6173 5243 3893 76.63 60.80 | 58.01
Scissor 51.89 5874 5146 36.86 59.27 50.00 | 51.37 | 56.33 61.68 51.31 38.61 7827 62.60 | 58.13

FastVID 57.19 6294 5295 3856 63.46 55.00 | 55.02 - - - - - - -
FLoC (Ours) | 58.63 64.08 53.10 40.61 6546 54.00 | 5598 | 60.81 66.93 5423 40.80 79.19 63.80 | 60.96

selecting tokens that best represent the entire set of visual tokens. Unlike k-means, which tends to
select tokens from dense regions and may overlook sparsely populated yet important regions (e.g.,
rare objects like keys, subtle actions, or fine-grained details such as small text or facial expressions),
our method ensures that selected tokens span diverse feature regions by defining utility in terms of
coverage, prioritizing selections that maximize representativeness. This prevents oversampling from
dense clusters while preserving rare but meaningful patterns.

In our empirical evaluation, we observed that the proposed lazy greedy-based facility location
algorithm significantly outperforms traditional clustering methods, such as k-means and spectral
clustering, in terms of computational efficiency. Specifically, our experiments demonstrate substantial
runtime improvements, achieving speedups of several times or more depending on the dataset size and
scenario. We provide detailed experimental results and analysis comparing the runtime performance
of our method against other clustering baselines in Section 4}

4 EXPERIMENTS

4.1 MODELS

Qwen2.5-VL (Bai et al.l [2025)) is an advanced vision-language model capable of handling high-
resolution images and long video sequences. It introduces dynamic resolution processing via a
Window Attention-based Vision Transformer and supports absolute temporal encoding.

InternVL3 (Zhu et al.;|2025) is a multimodal model designed with native vision-language pretraining
and Cascade Reinforcement Learning. For long video understanding, it incorporates a Visual
Resolution Router to dynamically allocate visual token capacity across frames.

Others. We also conducted experiments on Qwen2-VL (Wang et al.| [2024a) and LLaVA-Next-
Video (Zhang et al., 2024c) models to further validate the generalizability of our approach. Due to
space limitations, detailed results and analysis for these models are provided in the Appendix.[ﬂ

'Qwen2.5-VL, Qwen2-VL, and LLaVA-Video-7B-Qwen2 are all under the Apache-2.0 license. InternVL3
is under the MIT license.
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Table 2: Evaluation of token compression with extended temporal input (1 FPS, up to 7200 Frames)

Model | Qwen2.5-VL-7B | Qwen2.5-VL-32B |
Max Video Video
Frames Method MME MLVU LVB LVBench | Avg. MME MLVU LVB LVBench | Avg.
768 | - | 66.33 7031 60.51 46.22 ] 60.92 | 70.41 7157  62.60 48.10 | 63.17 |

TS-LLaVA 65.07 7240 62.08 45.06 61.15 | 7022  73.09  65.00 46.74 63.76
LongVU 65.04 71.02 6275 44.87 60.92 | 70.37 7222  64.62 44.80 63.00
DivPrune 6493  70.19 62.30 44.54 60.49 | 70.26 7337 64.32 45.97 63.48

7200 Random 64.56  70.52  61.63 44.93 60.41 | 69.70 7249 64.62 46.22 63.26

DyCoke 6578  71.30 6298 4558 61.41 | 71.00 7226  63.87 46.42 63.39
PruneVid 6296 68.63 6245 38.67 58.18 | 68.00 70.19  63.50 41.77 60.87
FLoC (Ours) | 65.85 72.63 62.60 48.10 62.30 | 71.56 73.83  66.49 50.23 65.53

4.2 BENCHMARKS

Video-MME (Fu et al., [2024) is a multi-modal evaluation benchmark designed to assess visual and
textual understanding in videos, covering diverse real-life footage across domains such as sports,
news, and user-generated content. It focuses on tasks like video captioning, event detection, and
question answering.

LongVideoBench (Wu et al.,2025) is curated for long-form video understanding, featuring extended
videos such as lectures, live events, and surveillance footage, emphasizing topic segmentation and
global summarization.

MLVU (Multi-Level Video Understanding) (Zhou et al., 2024) evaluates hierarchical comprehension
from frame-level recognition to storyline interpretation, using clips from movies, documentaries, and
instructional videos [

LVBench (Wang et al.,2024b) targets long video reasoning with videos exceeding one hour, focusing
on temporal reasoning and cross-segment context understanding.

NextQA (Xiao et al., [2021) is a widely used benchmark for video question answering, featuring short
clips that require causal and temporal reasoning.

EgoSchema (Mangalam et al., [2023)) evaluates egocentric video understanding through short, first-
person perspective clips, emphasizing schema-level reasoning and activity prediction.

Among these, Video-MME, LongVideoBench, MLVU, and LVBench include videos longer than
one hour, making them suitable for long-form video understanding. In contrast, NextQA and
EgoSchema consist of relatively short, minute-level clips but remain widely adopted benchmarks for
video understanding research.

4.2.1 IMPLEMENTATION

We effectively evaluated the performance of various visual token compression algorithms using the
Imms-eval toolkit (Li et al.l 2024; Zhang et al.| 2024b)) as our codebase, which supports multiple
video LMM models and diverse benchmarks. All experiments were conducted leveraging NVIDIA
H100 GPUs and multiprocessing for efficient computation.

4.3 BASELINES

Recent Algorithms We compared the performance of recently proposed algorithms, LongVU (Shen
et al.} 2024), DyCoke (Tao et al., [2024), TS-LLaVA (Qu et al., 2024)), PruneVID (Huang et al., 2024)),
DivPrune (Alvar et al.| [2025), STTM (Hyun et al.l [2025), LLaVA Scissor (Sun et al., [2025), and
FastVID (Shen et al.|[2025). Implementation details are described in SectionE]of Appendix.

Clustering Algorithms We used K-means, K-medoids, and Spectral clustering algorithms as our
baselines.

2Video-MME, LongVideoBench, and MLVU are all under the CC BY-SA 4.0 International License.
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4.4 RESULTS

To simulate realistic deployment scenarios where memory resources are constrained—such as on-
device execution of LMMs—we compress visual tokens to reduced lengths (1/8, 1/16, 1/32 of the
optimal visual token number) and evaluate the models’ robustness through long video understanding.
This setup allows us to assess how well LMMs retain performance under severe token budget
limitations. We additionally measured the compression time of each algorithm to analyze the
trade-off between performance and efficiency, providing insights into their practical applicability.

Table ] presents a comparative analysis of video understanding performance using above-mentioned
6 benchmarks with 9 different baseline methods as described in[4.3] We evaluate these methods under
various visual token compression ratios of 272, 27, and 273, Figure [1|illustrates the performance of
each compression algorithm in terms of accuracy retention (x-axis), measured as a percentage relative
to the full-token baseline, and compression time (y-axis). The results are based on a 1/8 compression
ratio using the Qwen2.5-VL-7B model.

As shown in the results, our method consistently outperforms existing visual token compression
techniques across different datasets, compression ratios, and backbone models. We attribute this
superiority to FLoC’s ability to overcome the structural limitations of prior approaches. Specifically,
graph-based merging methods (e.g., STTM, LLaVA Scissor) often suffer from the “weak connection”
problem, where distinct tokens—such as small objects and their background—are irreversibly merged
based on local similarity thresholds, leading to significant detail loss especially at low compression
ratios. Similarly, while diversity-based methods (e.g., DivPrune) effectively capture outliers, they
often fail to retain representative tokens that describe the core context of the video. In contrast, our
facility location-based approach mathematically guarantees a balance between representativeness
and diversity, successfully retaining both the central narrative and fine-grained visual cues that other
methods overlook.

As shown in Figure [T} clustering-based methods such as K-Means and Spectral Clustering occa-
sionally achieve performance comparable to our proposed approach. However, these methods incur
approximately 10x higher compression time, indicating a significant disadvantage in terms of ef-
ficiency. A detailed comparison of the efficiency of clustering-based methods is provided in the
following subsection.

In the final experiment, we aimed to fully leverage the optimal token length of the LMM by extracting
all visual tokens from as many frames as possible in a long video sequence, and compressing them
to the model’s optimal token length. Specifically, we modified the default Qwen2.5-VL vision
processing script—which originally supports up to 768 frames—to handle up to 7,200 frames. The
resulting visual tokens were then compressed to 24,576 tokens, corresponding to the optimal token
length of the model. The performance under this setting is presented in Table 2]

As shown in Table 2} FLoC can significantly improve the performance of LMM:s that are convention-
ally measured using a limited number of frames. For the 7B model, the accuracy increased by an
average of 1.38 points, and for the 32B model, it rose by an average of 2.36 points. These results
indicate that while existing LMMs are forced to process fewer frames due to their limited context
length, our proposed algorithm enables them to handle a larger number of frames through efficient
compression. We believe this approach substantially enhances their overall video understanding
capabilities.

These findings demonstrate that our proposed algorithm enables LMMs to generate high-quality
responses under resource-constrained conditions, with significantly reduced processing time.

4.5 ANALYSIS
4.5.1 REPRESENTATIVE AND DIVERSE VISUAL TOKENS

We demonstrate the effectiveness of our method in selecting representative and diverse visual tokens
through t-SNE visualization. For the visualization, we use Qwen2-VL 7B as the model and a
randomly selected video in VideoMME as the dataset. We compare the projected embedding spaces
obtained using K-means, K-Medoids, spectral clustering, and ours. In Fig. EL red-colored stars and
black-colored dots represent the selected and discarded visual tokens for each algorithm, respectively.

As shown, K-means and K-Medoids clustering predominantly select representative visual tokens
from dense regions while failing to capture diverse tokens. In contrast, facility location selects
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Figure 4: TSNE visualization of visual tokens. The red-colored stars and black-colored dots indicate
the selected and discarded visual tokens, respectively. As shown, our method selects both representa-
tive and diverse visual tokens.

DivPrune TS-LLaVA FLOC (Ours) | Q) What is the woman wearing
during the summer sunset?
(A) Winter coat
(B) A dress and heels
(CJ A swimsuit
(D) A hat and sunglasses (Correct)
‘\lll —al =i = |
Prediction: (B) A dress and heels Prediction: (B) A dress and heels Prediction: (D) A hat and sunglasses {[[] - Selected Tokens

Figure 5: FLoC captures diverse visual tokens (e.g., hat, sunglasses) missed by DivPrune and TS-
LLaVA, enabling accurate answers about what the woman is wearing.

visual tokens those are evenly distributed from both major and minor clusters, ensuring a more
diverse representation. This visualization clearly highlights that our proposed method effectively
preserves both representative and diverse visual tokens, which are crucial for comprehensive video
understanding.

Additionally, as shown in Fig.[5] our proposed FLoC selects diverse tokens, successfully capturing
visual cues like hats and sunglasses, unlike DivPrune and TS-LLaVA, which often miss them. This
enables more accurate answers to questions about what the woman is wearing. Additional results
with more examples are provided in the Appendix, specifically illustrated in Figure[§]and [9]

We further validate that visual tokens compressed by FLoC are more representative and diverse
compared to those produced by alternative compression algorithms, supported by both quantitative
metrics and empirical evidence. These comparisons are visualized in Figure [7] of the Appendix,
where representativeness and diversity are explicitly quantified. Moreover, as shown in Table [6] of
the Appendix, our framework achieves outstanding performance on the MLV U dataset, particularly
in tasks requiring fine-grained video understanding such as Needle QA and Ego Reasoning, further
substantiating the superiority of our approach.

4.5.2 MINIMAL COMPUTATIONAL OVERHEADS

We also compare the computational overhead of our proposed method with other visual token
compression techniques. We use Qwen2-VL 7B as the model and VideoMME as the dataset for the
experiment. We measure the time taken by each method to perform visual token compression.

As shown in Table 3] our method consistently achieves the lowest computational cost across different
numbers of the block length, denoted as 7". Notably, the performance gap in computational efficiency
between our method and clustering-based approaches widens as T increases, further highlighting
the scalability of our approach. Clustering-based methods, such as K-Means, K-Medoids, and
spectral clustering, often incur substantial computational overhead when applied to visual token
compression. For instance, K-Means requires multiple iterations to update cluster centroids until
convergence, involving computations proportional to O(n/K di), where d denotes the dimensionality
of features, and ¢ indicates the number of iterations. Although K-Medoids selects actual data points
as cluster centers and may converge faster in practice, it still typically scales as O(K (n — K)?),
becoming computationally intensive as n grows. Similarly, spectral clustering involves expensive
eigen-decomposition of similarity matrices, incurring a computational complexity of approximately
O(n?) in general. These inherent limitations significantly reduce the practicality of clustering-based
methods for compressing visual tokens, especially in long video sequences with extremely large
token sets.

In contrast, our method circumvents these computational bottlenecks by leveraging the lazy greedy
algorithm, which exploits submodularity to efficiently select a near-optimal subset of tokens. Instead
of exhaustively evaluating all possible token selections, the lazy greedy approach prioritizes promising
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Table 3: Comparisons of average computation times (sec).

2—5 2—4 2—3
=2 T=38 T:32‘T:2 T=8 T:SQ‘T:2 T=8 T:BQ‘

Methods ‘ Time Complexity ‘T Average Accuracy

K-Means O -K-d-i) 0.551  4.630  59.00 | 0.790 8.860  113.0 | 1.390 16.80  218.0 58.66
K-Medoids O(K-(n—K)?) | 0022 0113 0716 | 0018 0.119 0747 | 0.021 0.135 0877 56.22
Spectral Clustering o (n3) 0232 0569  5.160 | 0.794 2260 9.650 | 0270 1.180  21.10 58.97
FLoC (Ours) O(n-K) 0.010 0.056 0.413 | 0.012 0.065 0475 | 0.014 0.075  0.527 59.74

candidates while skipping redundant computations, significantly reducing the runtime. These results
demonstrate that our method not only provides superior video understanding performance but also
achieves minimal computational overhead, making it highly practical for real-world applications.

4.5.3 ROBUSTNESS ON BLOCK LENGTHS

To examine the impact of the sole hyperparame- videaMME

ter in our proposed algorithm—the block length “ e T T

T—we evaluated performance across various . -

datasets and compression ratios while varying gl 7 ’*', e

T. In this experiment, the Qwen2VL-7B model % o s

was used. e g e
56 ’:‘ -8~ 1/8 compression

As illustrated in Figure 6, we observe distinct L ‘-"' = iiiSi:iEZ:’:Q

behaviors depending on the block length 7. In L T

the region where T' < 4, performance tends to Mivy

degrade because the narrow temporal window I P e S

prevents the algorithm from identifying redun- i T T

dancy across adjacent blocks (inter-block redun- o .

dancy). Conversely, as T increases, the facility ~ £% " I S

location objective optimizes representativeness ¢ o

and diversity over a broader temporal context, : il & DR

leading to performance saturation. Crucially, un- o’ =8+ 1132 compression

like traditional clustering methods where com- St e

putational cost scales quadratically with input " Longvideodench

size, our lazy greedy implementation ensures . aeer T -

that increasing 7" incurs negligible latency over- s P e

head. This suggests that a sufficiently large fixed &= v St =

block length (e.g., T = 32) serves as a robust % ° ,f s

and efficient default, minimizing the need for T P a

per-video hyperparameter tuning. However, we e o 116 cmpmccio

acknowledge that relying on fixed uniform seg- . T e Stk

mentation is a heuristic simplification and may Black et log2 scafe

not be strictly optimal for every video content.
We anticipate that developing an adaptive mech-
anism to automatically determine 7" based on
temporal dynamics could yield further perfor-
mance improvements. A more detailed discussion on this limitation and potential future directions is
provided in Appendix|]

Figure 6: Performance versus block length 7" (log2-
scale) for a number of benchmark datasets.

5 CONCLUSION

As long video understanding advances, handling the overwhelming number of visual tokens remains
a key bottleneck. While prior methods such as uniform sampling and clustering have addressed
this issue, they often fail to capture sufficient visual diversity and add computational overhead. We
tackle these limitations by proposing a visual token compression framework based on the facility
location function. Our method selects tokens that are both representative and diverse, preserving
essential scene information while significantly reducing computation via a lazy greedy algorithm.
Extensive experiments on large-scale benchmarks, including Video-MME, LongVideoBench, and
MLVU show that our method consistently outperforms existing compression techniques. Its efficiency
and strong performance without added overhead make it well-suited for real-world applications such
as surveillance, augmented reality, and autonomous navigation. As video-LMMs scale, improving
efficiency and information retention will be key to advancing long video understanding.
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APPENDIX

A REPRESENTATIVENESS AND DIVERSITY

To quantitatively verify the representativeness and diversity of our proposed facility location-based
visual token selection algorithm, we conducted an analysis using two complementary metrics: (1)
averaged sum coverage, measuring how comprehensively the selected tokens cover the entire set of
visual tokens, defined as

Averaged Sum Coverage(.S)

|V|| |ZZSIHI’U u

veV uesS

where V' is the entire set of visual tokens, S is the selected subset, and sim(v,u) is the cosine
similarity between tokens v and u, and (2) averaged distance, computed as the average pairwise
distance (using 1 — sim(u, w)) among the selected tokens:

Averaged Distance(S) = EEED) |S| Z Z (1 —sim(u, w)).

uES weS, wH#u

We compared our method against three clustering-based baselines: K-means, K-medoids, and spectral
clustering.

We utilized 50 randomly selected videos from the Video MME dataset and employed the Qwen2-vl
7B model. Due to the significant variability in the range of measures across different data points, we
normalized the six measures obtained from six algorithms for each video to have a zero mean and a
standard deviation of one. The normalized results were then visualized using a scatter plot.
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Figure 7: Scatter plot of each algorithm’s representativeness and diversity.
As shown in Figure[7] our facility location approach consistently outperformed the baselines in both
representativeness and diversity measures. Specifically, our method achieved higher averaged sum
coverage scores, indicating superior representativeness, and greater averaged distance, demonstrating
its effectiveness in selecting both representative and diverse tokens.

In the scatter plot, the values obtained using the proposed FLoC algorithm are predominantly
located in the first quadrant. This indicates that, after normalization, the values are on average more
representative and diverse compared to other algorithms. When compared to k-medoids, the FLoC
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algorithm shows lower representativeness but superior diversity. When compared to DivPrune, our
proposed algorithm shows slightly lower diversity but superior representativeness. Additionally,
when compared to TS-LLaVA, k-means and spectral clustering, the FLoC algorithm demonstrates
superiority in both representativeness and diversity.

These results suggest that when selecting representative samples from an entire ground set, two
crucial factors to consider are representativeness and diversity, which inherently exist in a trade-off
relationship. If samples are densely distributed in a specific region, selecting a disproportionately
large number of samples from that area can reduce overall diversity. Conversely, focusing excessively
on diversity might lead to neglecting important samples from these densely populated, and potentially
critical, regions. Our proposed FLoC effectively addresses this trade-off by selecting tokens that are
both representative and diverse. Consequently, FLoC achieves superior performance in long video
understanding tasks.

B COMPREHENSIVE PERFORMANCE EVALUATION

We present the performance of all evaluated visual token compression algorithms across the three
benchmark datasets and three backbone LLM models in Table 4 and Table [5} In the previously
submitted manuscript, results for several clustering-based methods, namely k-means, k-medoids, and
spectral clustering, were omitted from the main performance tables due to space constraints. These
are now included for a comprehensive comparison.

Table 4: Full comparison of visual token compression methods. Backbone LLM is LLaVA-Video-7B-
Qwen?2.

. Video-MME Long Video Bench
‘ Ratio ‘ Tokens | Frames | Methods | g nrediu Long  Overall | 15 60 600 3600 Overall ‘ MLVU ‘ Avg.
| 100% | 21632 | 128 | - | 7578 6333 5467 6459 | 6667 6861 5895 5177 5827 | 7039 | 6442
| | | 16 | FrameUniform | 68.78 5478 4933 57.63 | 5450 6638 5437 5000 5408 | 53.66 | 5031
Pooling | 6533 5389 4867 5596 | 5661 6861 5631 4805 5445 | 6124 | 57.22
LongVU | 6889 5844 5167 59.67 | 5661 6512 5583 5231 5565 | 62.57 | 59.30
s | 2704 TS-LLaVA | 71.00 5956 50.56 6037 | 57.67 6802 5898 5160 5684 | 65.15 | 60.79
128 DivPrune | 69.11 5922  52.56 6030 | 5820 65.12 5655 5142 5572 | 6500 | 60.34
K-means | 7178 5922 5011 6037 | 60.38 69.93 6041 5089 57.19 | 66.59 | 61.38
K-medoids | 68.56 5689 4978 5841 | 5661 6802 S7.77 5071 5595 | 62.11 | 58.82
sC 7211 6178 5156 6L81 | 60.32 6802 5922 5213 5752 | 66.07 | 61.80
FLoC (Ours) | 7168  60.56 5089 61.04 | 6191 69.19 60.19 51.60 57.97 6743 | 62.15
| 8 | FrameUniform | 6078 S51.89 4856 5374 | 4392 5640 S53.16 49.82 5086 | 5720 | 53.93
Pooling | 60.00 50.11 4533 5181 | 5450 5930 5073 4486 4989 | 57.56 | 53.09
LongVU | 62.56 5378 4711 5448 | 5185 6221 5121 4965 5206 | 5674 | 5443
ot | 135 TS-LLaVA | 6722 5678 50.56 5819 | 5609 6802 5825 47.52 5468 | 6152 | 58.13
128 DivPrunc | 67.67 5767 5000 5844 | 5661 6454 5484 4823 5355 | 6224 | 58.08
K-means | 6922 5567 5033 5841 | 5926 6628 5874 4911 5572 | 63.08 | 59.07
K-medoids | 65.56  53.67 47.89 5570 | 53.44 6628 5485 4734 5295 | 59.17 | 55.94
sC 68.44 5656 5156 5885 | 5661 68.02 5607 5000 5512 | 64.05 | 59.34
FLoC (Ours) | 6933 5744 5100 5926 | 6032 6802 5874 4876 5595 6454 | 59.92
\ \ | 4 | Frame Uniform | 5256 4944 4444 4881 | 4392 5116 5146 4699 4847 | 5366 | 5031
Pooling | 5700 4911 4500 5037 | 5079 5640 4927 4397 48.17 | 5494 | 5116
LongVU | 5733 4978 4578 5096 | 4921 5640 4830 4823 4944 | 53.61 | 5134
JP TS-LLaVA | 6422 5500 4778 5567 | 5238 65.12 5364 4645 5191 | 57.52 | 55.03
128 DivPrunc | 6400 5622 4900 5641 | 5397 5581 5194 4610 5026 | 5943 | 5537
K-means | 6522 4956 4722 5400 | 5667 67.02 5750 46.87 5412 | 5849 | 55.54
K-medoids | 63.67 50.67 4744 53.93 | 5132 6337 55.10 4628 5191 | 5582 | 53.80
sC 6500 5456 4789 5581 | 4974 6395 5388 4805 5213 | 5940 | 55.78
FLoC (Ours) | 6644 5400 4822 5622 | 5503 6744 5534 4876 5407 6122 | 57.17

As evidenced by these tables, our proposed model achieves the highest average performance across
all three benchmark datasets for all considered backbone LLM models and at all compression ratios.
This consistent superiority indicates that our algorithm effectively selects representative visual tokens
crucial for long video understanding, irrespective of the specific backbone model architecture or the
nature of the question query.

C DETAILED TASK-SPECIFIC PERFORMANCE ANALYSIS ON MLVU

To thoroughly investigate the factors contributing to the performance improvements of our proposed
algorithm, we conducted a comparative analysis of its performance on seven distinct sub-tasks within
the MLVU dataset. The MLVU dataset is broadly categorized into three main types of tasks: Holistic
Long Video Understanding (LVU), Single Detail LVU, and Multi Detail LVU. These are further
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Table 5: Full comparison of visual token compression methods. Backbone LLMs are Qwen2-VL-2B
and Qwen2-VL-7B.

. Video-MME Long Video Bench
Model | Ratio | Tokens | Frames Methods Short Medium Long Overall | 15 60 600 3600 Overall ‘ MLVU‘ Avg.
| 100% | 34560 | 256 | - | 6489 5056 4589 5378 | 5556 58.14 5049 4220 4860 | 6225 | 54.91
| | | 32 | Frame Uniform | 65.11 4933  43.67 5270 | 5397 6395 4757 4379 4899 | 5054 | 53.74
Pooling 5578 4433 4200 4737 | 5344 5872 4757 4167 4735 | 57.06 | 50.59
LongVU | 6500 5244 4711 5485 | 5609 59.88 4830 41.67 4809 | 6046 | 54.47
ot | 4320 TS-LLaVA | 66.89 5233 4533 5485 | 5600 6221 4757 4273 4862 | 61.10 | 54.86
256 DivPrune | 6544 5078 4544 5389 | 5503 61.63 5049 4238 49.14 | 5676 | 53.26
K-means | 63.67 49.67 44.11 5248 | 56.61 6221 46.85 4468 4929 | 60.69 | 54.15
K-medoids | 63.44 5156 4489 5330 | 55.03 6279 46.85 41.14 47.64 | 60.18 | 53.71
sc 6644 5244 4733 5541 | 5609 6221 4806 43.62 49.14 | 6143 | 5533
FLoC (Ours) | 66.11 5244  47.00 5519 | 5344 6047 47.57 4450 4877 6230 | 55.42
| | | 16 | Frame Uniform | 6244 4722 4244 5070 | 5397 6047 4685 4326 48.09 | 5632 | 5170
Pooling 4756 39.67 3922 4215 | 4921 5116 4636 41.14 4518 | 52.69 | 46.67
2B LongVU | 6156 47.56 4378 5096 | 56.09 59.88 46.12 4291 4794 | 5577 | 51.56
i | 2160 TS-LLaVA | 6444 5056 4356 5285 | 56.61 61.05 47.00 41.67 4794 | 6023 | 53.67
256 DivPrune | 64.44  48.67 4444 5252 | 55.03 58.72 47.09 40.60 4697 | 5570 | 51.73
K-means | 61.56  47.11 4211 5026 | 56.09 61.05 5073 42.02 49.14 | 59.40 | 52.93
K-medoids | 62.67  49.00 4156 51.07 | 5238 6047 47.33 4131 4720 | 5922 | 5250
sc 6522 5167 4478 5389 | 5556 59.88 47.57 4539 4936 | 59.45 | 54.23
FLoC (Ours) | 64.67 5278 4567 5437 | 5556 61.63 49.03 4397 4944  60.74 | 54.85
| | | 8 | FrameUniform | 58.11 4467 4156 48.11 | 5344 6279 4636 41.84 4757 | 5274 | 4947
Pooling 4444 3889 3856 4063 | 47.09 5000 4539 3972 4383 | 5034 | 44.93
LongVU | 5778  43.67 41.89 4778 | 53.44 59.88 4636 4379 48.02 | 5251 | 49.44
- | 1080 TS-LLaVA | 6278 4733  43.67 5126 | 5926 6221 4539 4043 47.42 | 5821 | 5230
056 DivPrune | 61.78  47.00 43.89 50.89 | 53.44 5872 46.12 4096 46.60 | 54.19 | 50.56
K-means | 5633 4433 4044 47.04 | 5556 58.14 4830 40.60 4735 | 5738 | 50.59
K-medoids | 58.89 4556 4111 48.52 | 5238 5581 4515 41.67 4607 | 56.00 | 50.20
sC 6300 4956 4500 5252 | 57.67 5640 4733 4238 47.87 | 58.62 | 53.00
FLoC (Ours) | 6422 4900 4500 5274 | 57.67 6047 4806 4096 48.02  59.31 | 53.36
| 100% | 34560 | 256 | - | 7210 6320 5390 6307 | 6455 7151 5485 4805 5550 | 64.69 | 61.09
| | | 32 | Frame Uniform | 71.00 5600 48.89 5863 | 67.73 7093 53.64 4699 5505 | 6451 | 59.40
Pooling 6333 5089 4600 5341 | 6032 6279 5170 4823 5288 | 6340 | 56.56
LongVU | 7111  57.67 47.89 5889 | 6878 7326 53.16 49.47 5640 | 65.01 | 60.10
ot | 4320 TS-LLaVA | 7240 5960 50.80 6093 | 6825 7326 5631 49.11 57.14 | 66.53 | 61.53
- DivPrune | 7122 59.00 5178 60.67 | 69.31 72.67 57.52 49.11 5759 | 65.82 | 6136
K-means | 69.00 5500 4678 5693 | 6720 72.67 5777 4645 5625 | 64.69 | 59.29
K-medoids | 7033 5978  50.89 6033 | 6349 64.54 5267 4681 5325 | 65.10 | 59.56
sc 7122 6100 5100 6107 | 6773 72.67 5801 47.87 5699 | 67.36 | 6181
FLoC (Ours) | 7200 6022 5044 60.89 | 69.84 7209 57.04 5000 57.82 6777 | 62.16
| | | 16 | FrameUniform | 67.22 5300 4722 5581 | 6455 7093 5437 4681 5475 | 61.10 | 57.22
Pooling 5778 4833 4378 4996 | 5450 6047 4854 4539 49.59 | 60.92 | 53.49
7B LongVU | 6589 5400 4778 5580 | 6455 67.44 5146 4645 5325 | 61.70 | 56.95
ot | 2160 TS-LLaVA | 70.00 5570 4840 58.04 | 6773 7035 54.13 4982 5632 | 64.69 | 59.68
- DivPrune | 70.67  57.00 5033 5930 | 66.14 72.67 56.80 47.16 56.10 | 63.62 | 59.67
K-means | 6578  52.89 4722 5530 | 65.61 7093 56.55 4681 5557 | 62.76 | 57.88
K-medoids | 69.67 5689 5078 59.11 | 61.38 6570 5170 4592 5243 | 6143 | 57.66
sc 6878 5789 5100 5922 | 6508 7035 5655 4681 5542 | 65.79 | 60.14
FLoC (Ours) | 6922 5800 5100 59.41 | 6561 7267 5583 49.11 5655 6694 | 60.97
| | | 8 | FrameUniform | 6278  49.89 4689 53.19 | 6191 6512 5121 4397 5146 | 57.56 | 54.07
Pooling 5367 4722 4256 4781 | 5397 5465 4490 4309 4667 | 57.98 | 50.82
LongVU | 6370 5020 4870 5419 | 6296 65.12 5097 4450 5176 | 57.61 | 54.52
o | 1080 TS-LLaVA | 6740 5430 4830 5670 | 6825 68.61 5340 4734 5490 | 61.66 | 57.75
256 DivPrune | 6822  53.67 4933 57.07 | 66.13 7035 53.64 4681 5467 | 6122 | 57.65
. K-means | 6111  50.56 4656 5274 | 6191 63.37 5340 4504 5236 | 60.18 | 55.09
K-medoids | 6522 5144 4633 5433 | 5820 63.37 4927 4397 50.11 | 58.99 | 54.48
sc 67.89 5356 4833 5659 | 64.55 69.19 5218 4654 5370 | 6326 | 57.85
FLoC (Ours) | 69.33 5556 4822 5770 | 64.55 69.77 5437 4734 5482  64.23 | 58.92

divided into a total of seven sub-categories: Temporal Recognition (TR), Action Recognition (AR),
Needle Question Answering (NQA), Ego Reasoning (ER), Plot Question Answering (PQA), Action
Order (AO), and Action Count (AC).

As demonstrated in the Table[6] our proposed algorithm consistently achieved the best performance
across all compression ratios for two specific tasks: Needle Question Answering (NQA) and Ego
Reasoning (ER). The NQA task involves inserting a relatively very short video segment, with content
entirely different from the original video, into a long video sequence and then posing questions about
this inserted segment. The Ego Reasoning (ER) task predominantly features questions about the
location or state of objects that appear fleetingly in videos recorded from a first-person perspective
(e.g., a user wearing a smart device while navigating daily life or performing tasks).

When conventional token compression methods are applied to such tasks, critical information
pertaining to these fine details can be easily lost during the compression process. However, the
empirical results robustly demonstrate that our proposed algorithm maintains its effectiveness in these
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Table 6: Performance comparison on MLV U sub-tasks across different compression ratios. Our
proposed method is highlighted.

Holistic Single Detail Multi Detail
TR AR | NQA' ER PQA | AO AC

Frame Uniform | 80.68 65 | 5437 47.16 56.03 | 41.7 26.7 | 53.66%
Pooling 81.44 52 | 59.15 47.16 57.7 | 471 32.52 | 54.94%
K-means 84.85 625 | 62.82 5227 66.79 | 46.33 28.16 | 58.49%
K-medoids 8598 63 | 58.87 5028 56.59 | 43.63 27.67 | 55.82%
275 SC 86.74 65.5 | 61.13 52.84 64.75 | 4517 30.58 | 59.40%
LongVU 80.68 61.5 | 52.96 46.59 57.51 | 42.86 27.67 | 53.61%
TS-LLaVA 8561 65 | 59.44 50.85 61.78 | 444 27.67 | 57.52%
DivPrune 85.17 69 | 68.45 5455 60.85 | 44.79 24.76 | 59.43%

Ratio Methods Overall

Ours 85.17 65.5 | 71.27 56.25 66.79 | 45.17 233 61.22%
Frame Uniform | 81.44 68.5 | 57.18 50.57 61.22 | 444 32.04 | 57.20%
Pooling 8295 57 | 64779 48.58 61.41 | 4826 30.1 | 57.56%

K-means 8598 68.5 | 69.01 5426 69.57 | 48.65 34.47 | 63.08%
K-medoids 87.12 635 | 62.82 5227 64.01 | 4479 30.1 | 59.17%
24 SC 88.64 70 | 67.04 5455 7217 | 5097 33.01 | 64.05%

LongVU 84.47 665 | 57.18 50.57 59.37 | 44.79 29.61 | 56.74%
TS-LLaVA 8561 73 | 6535 5256 6698 | 50.19 28.16 | 61.52%

DivPrune 85.17 72 | 72.11 5824 63.64 | 47.1 28.64 | 62.24%

Ours 8479 68 | 7493 59.09 705 | 4942 301 64.54%
Frame Uniform | 84.85 68 | 67.32 5455 66.6 | 41.7 31.55 | 60.83%
Pooling 83.71 59.5 | 70.42 5341 6531 | 51.74 33.01 | 61.24%

K-means 84.85 73 | 7352 60.51 73.65 | 529 44.66 | 66.59%
K-medoids 86.74 68 | 67.61 5227 69.39 | 4826 30.58 | 62.11%
273 SC 86.74 73.5 | 7099 56.82 7291 | 54.05 36.89 | 66.07%

LongVU 86.74 74.5 | 67.89 5455 6494 | 49.03 3544 | 62.57%
TS-LLaVA 85.61 72 | 7239 55.11 72.17 | 4981 37.86 | 65.15%

DivPrune 85.17 1715 | 74.08 60.8 68.27 | 50.58 33.98 | 65.00%

Ours 86.31 735 | 76.06 6222 73.1 | 5328 3447 67.43%

challenging scenarios. Furthermore, it is evident that our algorithm’s performance on the other tasks
does not lag behind that of competing algorithms. This suggests that our approach not only preserves
global contextual information but also minimizes the loss of crucial details.

In a subsequent subsection dedicated to qualitative result analysis, we will delve into a more specific
examination of the visual tokens selected by our proposed algorithm.
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Dataset: MLVU, Task: Needle QA, Filename: needle_92.mp4

Q: What is the woman wearing during the summer sunset?

(A) A winter coat
(B) Adress and heels
(C) A swimsuit
(D) A hat and sunglasses
FLoC Prediction: (D) | DivPrune Prediction: (B)
- D’;" A SRS — & ad '?
% . m}
O
B (I
O = O
)
TSLLaVA Prediction: (B) | Spectral Clustering Prediction: (B)
L o Y T Y R -
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Dataset: MLVU, Task: Ego, Filename: ego_16.mp4

Q: Where was the water bottle?
) Under the black chair in the dining room
) In the red drawer in the kitchen
) On the white table in the kided room

D) On the blue table in the living room

(A
(B
(9
(

4

FLoC Prediction: (C)

DivPrune Prediction: (C)

R <

TSLLaVA Prediction: (| Spectral Clustering Prediction: (C)
K-means Prediction: (| K-medoids Prediction: (D)

- AR X

Figure 8: The first and second examples of qualitative analysis.
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Dataset: MLVU, Task: Ego, Filename: ego_36.mp4

Q: Where was the yellow bag?
(A) in the red drawer

(B) on the black cabinet top
(C) under the white chair

(D) next to the blue vase

Prediction: (C)

TS-LLavA Prediction: (C) Prediction: (B)

Prediction: (D) Prediction: (C)

Q: Did I leave the desktop on?
(A) Maybe

Prediction: (B) | DivPrune Prediction: (B)

Prediction: (D)

Prediction: (D)

Figure 9: The third and fourth examples of qualitative analysis.
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D QUALITATIVE RESULT ANALYSIS

To further substantiate the efficacy of our proposed visual token compression algorithm, we conducted
a qualitative analysis. This analysis specifically focuses on examples from the MLVU dataset,
particularly the needle QA and ego reasoning tasks, where our method demonstrated pronounced
performance gains. We meticulously examined four video-question pairs, comparing the token
selection and prediction outcomes of our algorithm against baseline methods. For all experiments,
the compression ratio was uniformly set to 1/32. The first three examples were processed using the
Qwen2-vl 7B model, while the final example utilized the Llava Next Video Qwen 7B model.

As illustrated in Fig. [§ and Fig. O] these tasks present a significant challenge: they require the
identification of minute details within long video sequences, often spanning hundreds of frames,
where the crucial information for answering the question is embedded in only a few key frames. The
visual tokens selected by each compression algorithm are highlighted with green bounding boxes
overlaid on their corresponding patches in the video frames.

The results compellingly demonstrate our algorithm’s superior ability to pinpoint the decisive visual
tokens essential for inferring the correct answer in all evaluated scenarios.

* In the first example, our method successfully identified patches corresponding to the
woman’s sunglasses and hat, leading to the correct answer.

* For the second example, the crucial visual tokens representing the water bottle on the
white table were accurately selected.

¢ In the third example, our algorithm focused on the yellow bag placed on the black cabinet.

* The fourth example saw our method select patches depicting the powered-on monitor.

Consequently, our algorithm correctly answered all four questions.

In stark contrast, the baseline algorithms rarely selected the visual tokens corresponding to these
critical objects. While they occasionally managed to infer the correct answer by selecting nearby or
contextually related tokens, they failed in the majority of these challenging instances. This observation
underscores the baselines’ limitations in preserving fine-grained details under high compression.

These qualitative findings strongly suggest that our proposed algorithm can effectively retain detailed
visual information, even at an extreme compression ratio such as 1/32. This capability is paramount
for tasks that demand a granular understanding of visual content within extensive video data. The
ability to isolate and preserve these “needle-in-a-haystack” visual cues is a key differentiator of our
approach.

E BASELINE IMPLEMENTATION DETAILS

This section outlines the implementation specifics and hyperparameter settings for the baseline
algorithms used in our experiments.

* K-means, K-medoids, Spectral Clustering: For these clustering-based approaches, we
utilized the scikit-learn library, employing its default parameters. For k-means and spectral
clustering, after determining the clusters, the representative token for each cluster was
selected as the token closest to the mean of all tokens within that cluster. Due to a significant
increase in computation time with larger block sizes, the block size was set to 8 for these
methods.

* LongVU: We implemented and utilized only the spatial token compression component of
LongVU, excluding the query-based cross-attention mechanism. To ensure precise control
over the compression ratio, which is not achievable with a fixed similarity threshold, we
implemented an adaptive thresholding mechanism. This approach dynamically determines
the appropriate threshold value to merge token pairs based on their similarity, thereby
achieving the target compression ratio.

* PruneVID: We utilized only the first stage of the algorithm, which performs query-agnostic
spatial-temporal token merging. To ensure a fair comparison, the subsequent query-aware

21



Under review as a conference paper at ICLR 2026

stage was excluded. All experiments were conducted based on the official GitHub repository
provided by the authors.

* DyCoke: we adopted the query-agnostic compression component corresponding to Stage 1,
specifically the visual token temporal merging module. The implementation was based on
the official GitHub repository provided by the authors.

* TS-LLaVA: TS-LLaVA originally combines two strategies: creating thumbnails from raw
frames and uniformly sampling visual tokens. However, in our experiments with the selected
benchmark datasets and backbone LLMs, incorporating the thumbnail generation aspect
led to a degradation in performance. Consequently, we only included the uniform token
sampling component of TS-LLaVA in our baseline comparisons.

* DivPrune: Due to code compatibility issues with the officially provided GitHub repository,
we re-implemented DivPrune based on the pseudo-code presented in its original publication.
The algorithm was straightforward to implement from the provided pseudo-code. For our
experiments, the block size for DivPrune was set to 32.

* STTM and LLaVA Scissor: We used the official implementations provided by the authors
for all benchmarks. Hyperparameters were kept at their default settings, while threshold
values were adjusted to achieve the desired compression ratio.

e FastVID: We conducted experiments based on the official GitHub repository provided
by the authors. Among the models we tested, implementation was available only for the
Qwen2.5-VL model; therefore, experiments were limited to this model. We varied only the
retention ratio while keeping all other hyperparameters at their default values.

F T-SNE VISUALIZATION OF TOKEN DISTRIBUTIONS

While a t-SNE visualization of the selected token distributions was included in the originally submitted
manuscript, space constraints necessitated the use of smaller images. For enhanced clarity and easier
inspection, we have attached larger versions of these visualizations in Fig[I0]

These visualizations demonstrate that the tokens selected by our proposed method more uniformly
cover the entire t-SNE distribution compared to those selected by other baseline approaches. Notably,
while the DivPrune method also aims to select diverse tokens based on a min-max distance criterion,
its chosen tokens do not achieve the same level of even coverage across the entire distribution as
observed with our algorithm. This suggests our method is more effective at capturing a comprehensive
and representative set of visual features.

G PROFILING OF COMPUTATIONAL AND MEMORY FOOTPRINT
Method \ Inference (s) Compression (s) Total (s) GFLOPS VRAM (GB)

Full \ 3.22 - 2.69 - 27.33
FLoC 0.99 3.00 318 17.96
DyCoke 0.13 1.83 0.46 17.96
PruneVID 0.19 1.89 1.69 17.96
STTM 0.07 1.77 0.17 17.96
Scissor 1.24 2.94 783 17.96
FastVID 1.70 0.44 2.14 6 17.96
DivPrune 2.37 4.07 317 17.96
LongVU 0.38 2.08 317 17.96
kmeans 12.31 14.01 82 17.96
kmedoids 241 4.11 82 17.96
spectral 8.12 9.82 82 17.96

Table 7: Performance comparison of different methods

To compare the resource consumption and speed of our proposed algorithm against baseline methods,
we measured LLM inference time, compression time, FLOPs, and peak VRAM usage. All experi-
ments were conducted using the Qwen2.5-VL 7B model on an NVIDIA H100 GPU, with a compres-
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K-means K-medoids

Figure 10: T-SNE plots for proposed and other visual token compression algorithms.

sion ratio of 12.5%. The reported times correspond to end-to-end processing of 784 frames, each con-
taining 60 visual tokens. FLOPs were estimated by accumulating the actual operation counts during ex-
ecution, with approximations for modularized components (which may introduce minor inaccuracies).
Peak VRAM usage was recorded using PyTorch’s torch.cuda.max.memory_allocated ()
function.

Overall, graph-based methods tend to achieve faster compression and require fewer operations,
but—as shown in previous experiments—they exhibit inferior performance. In contrast, clustering-
based methods incur significantly higher computational costs, resulting in slower processing speeds.
Our proposed algorithm performs compression in less time than the LLM inference step, demonstrat-
ing practical efficiency. However, it exhibits relatively high FLOPs, most of which are attributed to
pairwise similarity computations.
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H ABLATION STUDY ON SIMILARITY METRICS IN FACILITY LOCATION

To investigate the impact of the similarity measure on the facility location function, we conducted an
ablation study comparing our default Cosine Similarity with Euclidean Distance. Since the facility
location function requires a similarity matrix, we converted the Euclidean distance into a similarity
measure using a Gaussian kernel:

_ 2
Seuc(x7 y) = exp (_M>

202

where o is set to the median of all pairwise Euclidean distances within the set, following the standard
median heuristic. We performed experiments using the InternVL3-8B model across different
compression ratios (1/8, 1/16, and 1/32).

Table 8: Performance with different distance metrics.

T Metric VideoMME MLVU LVB LVBench NextQA EgoSchema Average Difference
Cosine 64.93 71.57  56.69 43.19 81.21 69.40 64.50

-3

27" Buclidean 6426 7226 5849 4332 8117 69.80 64.88 +0.38

o1 Cosine 6341 6909 5647 4274 8052 66.20 63.07 o
Euclidean  62.74 69.50 5542 4235 8037 66.40 62.80 :

,—s Cosine 60.81 6693 5423 4080  79.19 63.80 60.96 0.8
Euclidean 5959 6559 5370 3964 7892 63.00 60.07 :

The results are summarized in Table[8] We observed that while the Euclidean-based metric showed a
slight advantage (+0.38 accuracy) at a low compression ratio (1/8), Cosine Similarity consistently
outperformed Euclidean similarity as the compression ratio increased. Specifically, Cosine
similarity achieved higher accuracy at 1/16 (+0.27) and 1/32 (+0.89) ratios.

This suggests that while Euclidean distance captures fine-grained magnitude differences useful when
retaining many tokens, Cosine similarity is more robust for abstract feature space coverage,
particularly in high-compression regimes where capturing the dominant semantic directions is crucial.
Based on these findings, we adopted Cosine similarity as the default metric to ensure consistent
performance across varying degrees of compression.

I LIMITATIONS AND FUTURE DIRECTIONS

A key limitation of the proposed FLoC algorithm lies in the empirical determination of its sole
hyperparameter: the block length (77). The choice of T" involves a critical trade-off that can impact
both performance and computational efficiency.

* Longer block lengths allow the algorithm to consider representativeness and diversity over
a more extended temporal context. This can be advantageous for capturing the nuances of
slowly evolving scenes. However, it also leads to a proportional increase in computational
overhead during the token selection process.

* Shorter block lengths reduce the computational cost. However, they can introduce a risk of
inter-block redundancy. For example, if a long, static scene is segmented into multiple short
blocks, the algorithm might select very similar (or even identical) tokens from each block.
This diminishes the diversity of the final selected set, as redundancy is only minimized
within each block, not across them.

This trade-off implies that the optimal setting for the block length is content-dependent. For instance,
a static video (e.g., a lecture) might benefit from a longer block length, whereas a highly dynamic
video with frequent cuts may be better served by a shorter one.

A promising direction for future work is to develop a method for automatically determining the block
length. One could, for example, employ a pre-processing step using a scene detection algorithm. By
aligning block boundaries with detected scene changes, the algorithm could dynamically adapt the
block length to the video’s temporal structure. This would not only make the framework more robust
but could also further enhance performance by ensuring that each block represents a semantically
coherent segment, thereby mitigating inter-block redundancy and improving the quality of the selected
tokens.
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