

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FLoC: FACILITY LOCATION-BASED EFFICIENT VI- SUAL TOKEN COMPRESSION FOR LONG VIDEO UN- DERSTANDING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent studies in long video understanding have harnessed the advanced visual-language reasoning capabilities of Large Multimodal Models (LMMs), driving the evolution of video-LMMs specialized for processing extended video sequences. However, the scalability of these models is severely limited by the overwhelming volume of visual tokens generated from extended video sequences. To address this challenge, this paper proposes FLoC, an efficient visual token compression framework based on the facility location function, a principled approach that swiftly selects a compact yet highly representative and diverse subset of visual tokens within a predefined budget on the number of visual tokens. By integrating the lazy greedy algorithm, our method achieves remarkable efficiency gains by swiftly selecting a compact subset of tokens, drastically reducing the number of visual tokens while guaranteeing near-optimal performance. Notably, our approach is training-free, model-agnostic, and query-agnostic, providing a versatile solution that seamlessly integrates with diverse video-LLMs and existing workflows. Extensive evaluations on large-scale benchmarks, such as Video-MME, MLVU, and LongVideoBench, demonstrate that our framework consistently surpasses recent compression techniques, highlighting not only its effectiveness and robustness in addressing the critical challenges of long video understanding, but also its efficiency in processing speed.

1 INTRODUCTION

With the recent emergence of Large Language Models (LLMs) in natural language processing, there has been a surge of interest in extending their capabilities to the visual domain (Achiam et al., 2023). By utilizing the visual embeddings as token inputs to the LLMs, referred to as visual tokens, these Large Multimodal Models (LMMs) have already demonstrated their performances surpassing human-level accuracy on vision tasks, such as visual question answering (Liu et al., 2024; Fang et al., 2024; Team et al., 2023). More recently, the research focus has shifted towards enabling these models to understand video sequences (Lin et al., 2023), giving rise to video-LMMs (Song et al., 2024; Xue et al., 2024; Wang et al., 2024a; Balazevic et al., 2024). Such models not only excel in tasks like captioning (Krishna et al., 2017; Xu et al., 2015; Vinyals et al., 2015), event detection (Xu et al., 2019; Shou et al., 2021), and action recognition (Zhao et al., 2017; Simonyan & Zisserman, 2014), but also show significant potential in various real-world applications, including surveillance through CCTV systems, immersive experiences in smart glasses, and autonomous navigation for mobile robots.

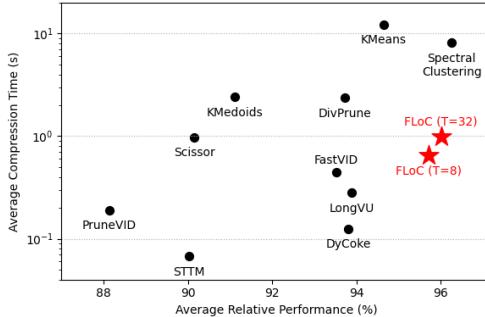


Figure 1: Performance (Average relative accuracy compared to full token usage) versus compression time (log-scale) for a number of compression algorithms. Details are described in Section 4.

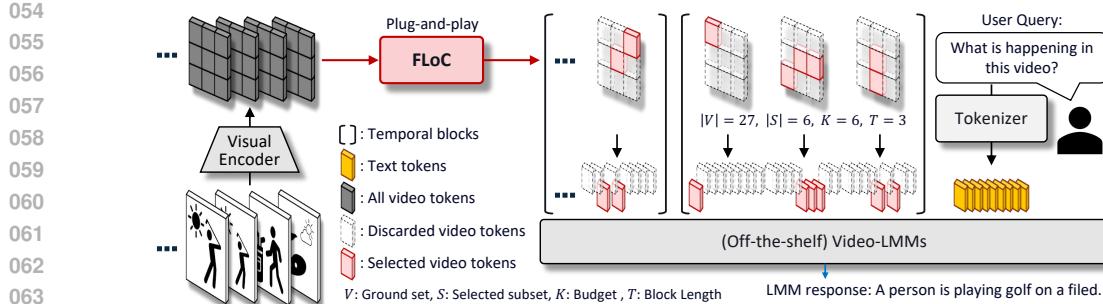


Figure 2: Overview of the proposed framework for selecting a visual token subset. Our method compresses the visual tokens extracted by a visual encoder from input video sequences into a diverse and representative subset within a given budget. The selected visual tokens are then concatenated with text tokens and fed into the video-LMM. Since our method is training-free and model-agnostic, it can be seamlessly integrated into any video-LMM in a plug-and-play manner.

Despite this progress, long video understanding remains particularly challenging due to the explosive growth in the number of visual tokens as the video sequence length increases (Xue et al., 2024; Fu et al., 2024). When dealing with high-resolution or long-duration videos (e.g., 4K content), it becomes computationally infeasible to process every token end-to-end, especially given that most LLM-based architectures support input contexts of only 4K to 32K tokens. This limitation is exacerbated in real-world scenarios: for instance, continuous CCTV footage can span days or weeks, smart glasses may capture extended, first-person video streams, and mobile robots frequently operate in dynamic environments requiring real-time video analysis. Consequently, the gap between human-level performance and current model capabilities still exists, highlighting the complexity and significance of this research direction.

To tackle the issue of handling long video sequences, *visual token compression* is indispensable. In practice, when examining consecutive frames of a video, many tokens share highly redundant information unless there is a substantial scene change (Potapov et al., 2014). Eliminating these redundancies often does not harm the downstream performance, while excessively pruning tokens could lead to the loss of critical information. It is therefore critical to strike a delicate balance in token compression to minimize information loss.

Previous approaches to selecting representative visual tokens often relied on filtering out temporally redundant tokens or frames (Shen et al., 2024; Tao et al., 2024) or clustering techniques to extract representative information from each cluster (Wang et al., 2024c; Shang et al., 2024; Zhang et al., 2024a). While these methods may work at a reasonable level, they often fall short in capturing the full diversity needed to interpret complex visual scenes. Consider a scenario where a user wearing smart glasses searches for car keys in a cluttered room. Visual tokens representing the small object of interest (the keys) occur infrequently and sparsely within the video sequence, whereas tokens depicting general scenery, such as furniture or background, appear repeatedly and redundantly. In this setting, clustering-based approaches are likely to fail in capturing rare but important tokens—such as those corresponding to the keys—since they primarily focus on densely populated regions in the feature space. Therefore, a visual token compression algorithm that simultaneously ensures representativeness and diversity is essential to effectively retain these critical but sparse visual cues.

In order to overcome these limitations, we propose a novel visual token compression algorithm based on the *facility location* function (Lin & Bilmes, 2011; Lin et al., 2009). Our approach interprets token selection through the lens of submodular optimization, ensuring that the selected set of tokens covers all original tokens under a given budget constraint. Specifically, each subset considers the similarity between its subset and the entire tokens, enabling to include diverse information of the entire video sequence. While finding the optimal subsets in this manner is known to be a NP-hard problem, we sidestep the computational overhead by utilizing the lazy greedy algorithm (Minoux, 1978), enabling to select the visual tokens with minimal computational overheads. As a result, the chosen tokens are both representative and diverse, effectively preserving essential information for video understanding tasks. Our experiments on benchmarks such as Video-MME, and LongVideoBench (Zhou et al., 2024; Wu et al., 2025) demonstrate the superiority of our method over existing approaches.

108 The remainder of this paper is organized as follows. In Section 2, we provide a comprehensive
 109 review of related work. Section 3 details our proposed facility location-based algorithm for visual
 110 token compression. Experimental settings and results are presented in Section 4, and we conclude in
 111 Section 5 by summarizing our key findings and discussing potential future directions.
 112

113 2 RELATED WORK 114

115 **Sampling / Pooling** A common and straightforward strategy to deal with the abundance of visual
 116 tokens in long video sequences is to reduce the input size via pooling or sampling (Potapov et al.,
 117 2014; Cai et al., 2024; Qu et al., 2024; Wu, 2024). For instance, uniform sampling of frames or
 118 pooling across spatial/temporal dimensions can substantially cut down the computational overhead
 119 and memory usage. However, these methods often ignore the semantic importance of certain frames
 120 or regions. Such a *one-size-fits-all* approach may discard critical cues or overly compress redundant
 121 segments, leading to suboptimal performance when higher-level understanding of video content is
 122 required.

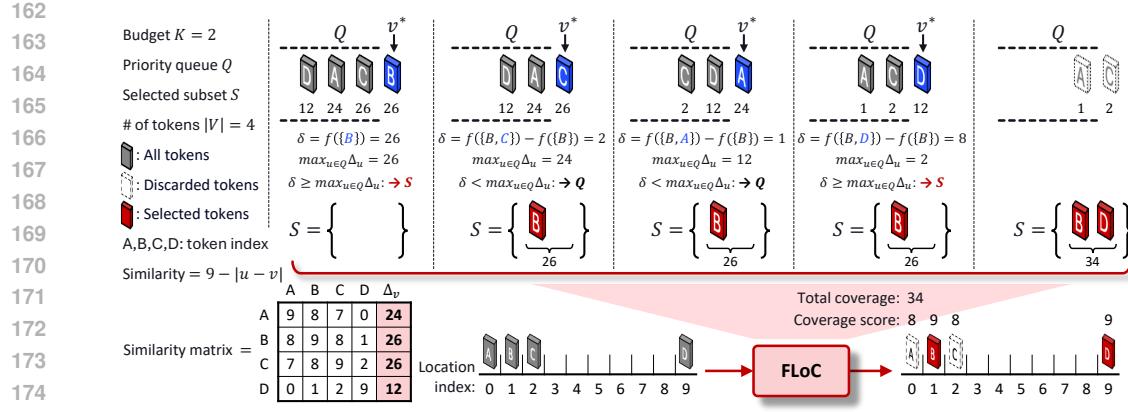
123 **Clustering** Another widely studied line of research involves clustering techniques to group similar
 124 frames or tokens and select representative exemplars (de Avila et al., 2011; Khosla et al., 2013; Wang
 125 et al., 2024c; Shang et al., 2024; Zhang et al., 2024a). By partitioning the visual space into clusters,
 126 these methods attempt to capture the overall distribution of the video content, retaining only the
 127 most “central” examples in each cluster. While clustering can better preserve representativeness
 128 than naive sampling, it can still struggle to guarantee coverage of rare but potentially important
 129 events. Moreover, the offline clustering process may be computationally expensive, especially for
 130 long videos, and is typically not optimized in an end-to-end manner, which can result in mismatches
 131 between clustering objectives and downstream video understanding tasks.

132 **Query-Aware Compression** In query-aware or task-specific compression, the aim is to select those
 133 frames or tokens that are most relevant to a given query, user interest, or downstream task (Zhang
 134 et al., 2016; Shen et al., 2024; Korbar et al., 2024; Wang et al., 2024c). This category of methods can
 135 effectively reduce the search space by focusing on what is deemed important. However, they require
 136 prior knowledge of the query or task, making them less flexible for general-purpose or zero-shot
 137 scenarios. When the query space expands or changes, such approaches often need retraining or
 138 redesign, limiting their applicability in dynamic environments (e.g., surveillance systems, smart
 139 glasses, or robots) where the set of possible queries is not fixed.

140 **Retraining** Learnable compression algorithms employ neural networks to decide which tokens or
 141 frames to discard or keep (Zhang et al., 2025; Argaw et al., 2024; Lee et al., 2025). By training end-to-
 142 end, they can theoretically capture complex patterns and adapt to different tasks. Nonetheless, these
 143 methods tend to require large labeled datasets and substantial training time. They are also dependent
 144 on model architecture and specific training objectives, which makes them less *model-agnostic*.
 145 Consequently, deploying such methods in rapidly evolving research fields or on resource-constrained
 146 platforms (e.g., embedded systems in mobile robots) can be challenging.

147 In contrast to the above approaches, our method operates in a *training-free*, plug-and-play fashion,
 148 allowing it to be easily integrated into existing pipelines with minimal overhead. Built on the principle
 149 of facility location (Lin & Bilmes, 2011; Lin et al., 2009), it interprets token selection as a submodular
 150 optimization problem, ensuring both representativeness and diversity under a given budget constraint.
 151 Additionally, we adopt a lazy greedy algorithm that significantly reduces computation time while
 152 maintaining near-optimal performance (Minoux, 1978). By decoupling the compression strategy
 153 from the underlying vision model, our approach remains *model-agnostic*, thus enabling seamless
 154 deployment in various real-world scenarios, from large-scale video analytics to on-device processing
 155 for surveillance, smart eyewear, and mobile robots. Moreover, our proposed approach operates
 156 in a *query-agnostic* manner, independent of user input. Unlike query-aware methods that require
 157 recompression for each incoming query and must retain all uncompressed tokens in memory, our
 158 method performs a one-time compression and stores only the compressed tokens. This leads to
 159 significant gains in both computational and memory efficiency.

160 As demonstrated in Figure 1, our proposed method, FLoC, empirically outperforms both previously
 161 proposed approaches and traditional clustering-based methods in terms of accuracy and processing
 162 speed. This highlights its effectiveness in addressing the token compression challenge for long video
 163 understanding.



216 where $\text{sim}(v, u)$ denotes the similarity between tokens v and u . In this work, we employ cosine
 217 similarity between token embeddings as our similarity measure:
 218

$$219 \quad \text{sim}(v, u) = \frac{v^\top u}{\|v\| \|u\|}.$$

220
 221 The motivation for adopting the facility lo-
 222 cation function stems from its effectiveness
 223 in balancing representativeness and diversity,
 224 making it one of the traditional and widely-
 225 used approaches for summarization tasks.
 226 By maximizing this function, the selected
 227 subset is encouraged to cover all tokens in
 228 the original set as comprehensively as possi-
 229 ble, while avoiding redundancy by penalizing
 230 highly overlapping selections. Due to this
 231 property, facility location has been success-
 232 fully applied across various summarization
 233 domains, including document summarization
 234 and video summarization tasks.

235 Finding an optimal subset that maximizes
 236 the facility location function is known to be
 237 NP-hard. To address this complexity, a com-
 238 mon approximation method is the greedy al-
 239 gorithm, which iteratively selects tokens with the highest marginal gain until the budget constraint is
 240 satisfied. This greedy selection method guarantees a solution with a performance lower bound of
 241 $(1 - 1/e) \approx 0.632$ relative to the optimal solution (Nemhauser et al., 1978). Specifically, the greedy
 242 algorithm incrementally adds the token that provides the largest increase in coverage at each iteration.

243 To further enhance computational efficiency, we implement a lazy greedy algorithm (Minoux, 1978),
 244 which significantly reduces the computational overhead by avoiding unnecessary recomputation of
 245 marginal gains. Specifically, the algorithm exploits the submodularity (diminishing returns) property
 246 of the facility location function f . Formally, for any subsets $A \subseteq B \subseteq V$ and a token $v \in V \setminus B$, the
 247 marginal gain satisfies:

$$248 \quad f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B)$$

249 This inequality implies that the marginal benefit of adding a visual token v can only decrease or
 250 remain constant as the selected subset grows. Consequently, the marginal gain computed in a previous
 251 iteration serves as a valid upper bound for the current marginal gain. We leverage this by maintaining
 252 a priority queue of these upper bounds. In each step of the search process, we pop the candidate v^*
 253 with the highest upper bound and recompute its exact marginal gain δ with respect to the current
 254 subset. If δ remains greater than or equal to the upper bounds of all other candidates in the queue,
 255 submodularity guarantees that v^* is the optimal choice for the current iteration without needing to
 256 re-evaluate the rest. Algorithm 1 outlines the detailed procedure, and Figure 3 provides a visual
 257 illustration of this process.

258 The lazy greedy algorithm significantly reduces computational complexity compared to the naive
 259 greedy approach. While the naive greedy algorithm for maximizing submodular functions has
 260 a time complexity of $O(nK)$, the lazy greedy approach leverages the submodularity property to
 261 avoid unnecessary recomputation of marginal gains. By using a priority queue, it updates marginal
 262 gains only when needed, achieving empirical speedups often approaching an order of magnitude.
 263 Consequently, it becomes particularly efficient for handling numerous visual tokens and enabling
 264 real-time processing of long videos.

265 Compared to traditional clustering-based methods, our lazy greedy-based facility location method
 266 offers several advantages. First, it eliminates iterative refinement and costly operations such as
 267 eigen-decompositions. Instead, our approach directly selects tokens in a single forward pass by
 268 maximizing global coverage, ensuring a diverse and representative subset is chosen efficiently. Thus,
 269 it provides a highly efficient and scalable alternative, especially suitable for real-time or on-device
 processing requirements. Next, the facility location function explicitly optimizes global coverage by

270 Table 1: Comparison of visual token compression methods. The ratio indicates the compression ratio
 271 relative to the original number of visual tokens.

Model		Qwen2.5-VL-7B							InternVL3-8B						
Comp. Ratio	Method	Video MME	MLVU	LVB	LV Bench	Next QA	Ego Schema	Avg.	Video MME	MLVU	LVB	LV Bench	Next QA	Ego Schema	Avg.
1	-	66.33	70.31	60.51	46.22	74.91	61.40	63.28	66.63	72.68	59.39	44.54	82.37	70.00	65.94
2 ⁻³	TS-LLaVA	61.15	67.57	55.20	41.38	70.08	59.60	59.16	62.78	67.30	56.02	41.32	80.59	68.20	62.70
	LongVU	62.19	66.61	55.42	43.12	69.76	59.40	59.42	64.70	69.50	55.35	43.19	81.18	69.20	63.85
	DivPrune	61.63	67.57	56.17	41.90	70.17	58.40	59.31	64.07	70.06	56.92	42.48	80.22	65.00	63.13
	Random	60.30	66.24	55.72	40.99	69.27	58.60	58.52	60.59	65.69	56.02	41.45	80.23	65.20	61.53
	DyCoke	62.11	67.53	55.12	42.29	69.54	59.60	59.37	63.96	68.45	55.72	42.35	81.06	69.00	63.42
	PruneVid	58.19	64.54	54.15	37.25	66.27	54.20	55.77	57.41	62.05	53.48	35.64	79.48	62.80	58.48
	STTM	59.52	63.57	54.60	40.80	67.52	55.80	56.97	63.52	64.26	54.90	41.77	80.48	66.20	61.86
	Scissor	58.59	65.04	54.08	39.12	69.06	56.40	57.05	61.15	67.76	55.12	40.93	80.90	65.80	61.94
2 ⁻⁴	FastVID	60.89	67.31	57.14	41.25	69.91	58.60	59.18							
	FLoC (Ours)	63.33	68.81	58.12	42.87	71.40	60.00	60.76	64.93	71.57	56.69	43.19	81.21	69.40	64.50
	TS-LLaVA	58.78	64.67	52.51	38.80	67.69	57.20	56.61	59.63	64.95	53.85	40.35	79.09	62.80	60.11
	LongVU	58.07	62.97	52.73	39.44	64.35	55.40	55.49	56.48	60.12	51.31	37.12	78.07	60.40	57.25
	DivPrune	58.85	64.67	54.00	40.74	67.56	55.80	56.94	61.93	68.08	54.82	41.19	78.72	61.80	61.09
	Random	57.44	63.80	53.63	40.41	67.14	58.20	56.77	59.74	64.77	54.23	40.35	79.16	66.60	60.81
	DyCoke	57.00	63.02	53.78	40.54	64.57	54.00	55.49	61.37	65.13	53.10	41.12	79.75	67.40	61.31
	PruneVid	54.11	61.59	51.83	35.89	60.78	52.00	55.84	53.81	59.48	52.28	35.57	77.44	58.40	56.16
2 ⁻⁵	STTM	57.15	61.73	51.68	38.35	63.30	50.80	53.84	60.15	62.93	52.28	40.48	78.69	63.40	59.66
	Scissor	55.26	60.95	53.55	40.74	65.46	54.00	54.99	58.89	64.44	53.77	40.74	79.57	63.40	60.14
	FastVID	58.67	65.52	54.23	40.57	67.78	57.20	57.33	-	-	-	-	-	-	-
	FLoC (Ours)	60.89	66.19	55.27	42.16	68.79	58.00	58.55	63.41	69.09	56.47	42.74	80.52	66.20	63.07
	TS-LLaVA	55.07	62.37	50.49	38.67	62.79	54.60	54.00	58.89	63.89	53.33	39.77	78.50	61.00	59.23
	LongVU	53.41	58.42	50.34	37.06	58.03	53.20	51.74	55.96	59.52	51.01	35.77	77.43	58.80	56.42
	DivPrune	55.78	61.91	52.28	39.57	63.10	53.60	54.37	60.85	65.46	52.88	39.83	76.83	59.40	59.21
	Random	55.56	61.41	49.89	38.54	62.76	53.60	53.63	57.30	63.57	52.13	39.19	78.23	60.40	58.47
2 ⁻⁶	DyCoke	54.37	59.98	51.38	37.77	62.05	54.60	53.36	59.22	62.60	51.98	40.03	77.52	63.00	59.06
	PruneVid	51.11	58.51	49.66	32.67	58.33	49.00	53.09	51.41	56.39	49.96	33.63	74.71	53.00	53.18
	STTM	55.26	59.25	50.11	37.19	58.63	49.40	51.64	57.52	61.73	52.43	38.93	76.63	60.80	58.01
	Scissor	51.89	58.74	51.46	36.86	59.27	50.00	51.37	56.33	61.68	51.31	38.61	78.27	62.60	58.13
	FastVID	57.19	62.94	52.95	38.56	63.46	55.00	55.02	-	-	-	-	-	-	-
	FLoC (Ours)	58.63	64.08	53.10	40.61	65.46	54.00	55.98	60.81	66.93	54.23	40.80	79.19	63.80	60.96

295 selecting tokens that best represent the entire set of visual tokens. Unlike k -means, which tends to
 296 select tokens from dense regions and may overlook sparsely populated yet important regions (e.g.,
 297 *rare objects like keys, subtle actions, or fine-grained details such as small text or facial expressions*),
 298 our method ensures that selected tokens span diverse feature regions by defining utility in terms of
 299 coverage, prioritizing selections that maximize representativeness. This prevents oversampling from
 300 dense clusters while preserving rare but meaningful patterns.

301 In our empirical evaluation, we observed that the proposed lazy greedy-based facility location
 302 algorithm significantly outperforms traditional clustering methods, such as k -means and spectral
 303 clustering, in terms of computational efficiency. Specifically, our experiments demonstrate substantial
 304 runtime improvements, achieving speedups of several times or more depending on the dataset size and
 305 scenario. We provide detailed experimental results and analysis comparing the runtime performance
 306 of our method against other clustering baselines in Section 4.

4 EXPERIMENTS

4.1 MODELS

312 **Qwen2.5-VL** (Bai et al., 2025) is an advanced vision-language model capable of handling high-
 313 resolution images and long video sequences. It introduces dynamic resolution processing via a
 314 Window Attention-based Vision Transformer and supports absolute temporal encoding.

315 **InternVL3** (Zhu et al., 2025) is a multimodal model designed with native vision-language pretraining
 316 and Cascade Reinforcement Learning. For long video understanding, it incorporates a Visual
 317 Resolution Router to dynamically allocate visual token capacity across frames.

318 **Others.** We also conducted experiments on **Qwen2-VL** (Wang et al., 2024a) and **LLaVA-Next-
 319 Video** (Zhang et al., 2024c) models to further validate the generalizability of our approach. Due to
 320 space limitations, detailed results and analysis for these models are provided in the Appendix.¹

322
 323 ¹Qwen2.5-VL, Qwen2-VL, and LLaVA-Video-7B-Qwen2 are all under the Apache-2.0 license. InternVL3
 is under the MIT license.

324 Table 2: Evaluation of token compression with extended temporal input (1 FPS, up to 7200 Frames)
325

Model		Qwen2.5-VL-7B					Qwen2.5-VL-32B				
Max Frames	Method	Video MME	MLVU	LVB	LVBench	Avg.	Video MME	MLVU	LVB	LVBench	Avg.
768	-	66.33	70.31	60.51	46.22	60.92	70.41	71.57	62.60	48.10	63.17
7200	TS-LLaVA	65.07	72.40	62.08	45.06	61.15	70.22	73.09	65.00	46.74	63.76
	LongVU	65.04	71.02	62.75	44.87	60.92	70.37	72.22	64.62	44.80	63.00
	DivPrune	64.93	70.19	62.30	44.54	60.49	70.26	73.37	64.32	45.97	63.48
	Random	64.56	70.52	61.63	44.93	60.41	69.70	72.49	64.62	46.22	63.26
	DyCoke	65.78	71.30	62.98	45.58	61.41	71.00	72.26	63.87	46.42	63.39
	PruneVid	62.96	68.63	62.45	38.67	58.18	68.00	70.19	63.50	41.77	60.87
	FLoC (Ours)	65.85	72.63	62.60	48.10	62.30	71.56	73.83	66.49	50.23	65.53

335
336
337 4.2 BENCHMARKS
338

339 **Video-MME** (Fu et al., 2024) is a multi-modal evaluation benchmark designed to assess visual and
340 textual understanding in videos, covering diverse real-life footage across domains such as sports,
341 news, and user-generated content. It focuses on tasks like video captioning, event detection, and
342 question answering.

343 **LongVideoBench** (Wu et al., 2025) is curated for long-form video understanding, featuring extended
344 videos such as lectures, live events, and surveillance footage, emphasizing topic segmentation and
345 global summarization.

346 **MLVU** (Multi-Level Video Understanding) (Zhou et al., 2024) evaluates hierarchical comprehension
347 from frame-level recognition to storyline interpretation, using clips from movies, documentaries, and
348 instructional videos.²

349 **LVBench** (Wang et al., 2024b) targets long video reasoning with videos exceeding one hour, focusing
350 on temporal reasoning and cross-segment context understanding.

352 **NextQA** (Xiao et al., 2021) is a widely used benchmark for video question answering, featuring short
353 clips that require causal and temporal reasoning.

354 **EgoSchema** (Mangalam et al., 2023) evaluates egocentric video understanding through short, first-
355 person perspective clips, emphasizing schema-level reasoning and activity prediction.

357 Among these, **Video-MME**, **LongVideoBench**, **MLVU**, and **LVBench** include videos longer than
358 one hour, making them suitable for long-form video understanding. In contrast, **NextQA** and
359 **EgoSchema** consist of relatively short, minute-level clips but remain widely adopted benchmarks for
360 video understanding research.

362 4.2.1 IMPLEMENTATION
363

364 We effectively evaluated the performance of various visual token compression algorithms using the
365 `lmms-eval` toolkit (Li et al., 2024; Zhang et al., 2024b) as our codebase, which supports multiple
366 video LMM models and diverse benchmarks. All experiments were conducted leveraging NVIDIA
367 H100 GPUs and multiprocessing for efficient computation.

368 4.3 BASELINES
369

370 **Recent Algorithms** We compared the performance of recently proposed algorithms, LongVU (Shen
371 et al., 2024), DyCoke (Tao et al., 2024), TS-LLaVA (Qu et al., 2024), PruneVid (Huang et al., 2024),
372 DivPrune (Alvar et al., 2025), STTM (Hyun et al., 2025), LLaVA Scissor (Sun et al., 2025), and
373 FastVID (Shen et al., 2025). Implementation details are described in Section E of Appendix.

374 **Clustering Algorithms** We used K-means, K-medoids, and Spectral clustering algorithms as our
375 baselines.

377 ²Video-MME, LongVideoBench, and MLVU are all under the CC BY-SA 4.0 International License.

378 4.4 RESULTS
379

380 To simulate realistic deployment scenarios where memory resources are constrained—such as on-
381 device execution of LMMs—we compress visual tokens to reduced lengths (1/8, 1/16, 1/32 of the
382 optimal visual token number) and evaluate the models’ robustness through long video understanding.
383 This setup allows us to assess how well LMMs retain performance under severe token budget
384 limitations. We additionally measured the compression time of each algorithm to analyze the
385 trade-off between performance and efficiency, providing insights into their practical applicability.

386 **Table 1** presents a comparative analysis of video understanding performance using above-mentioned
387 6 benchmarks with 9 different baseline methods as described in 4.3. We evaluate these methods under
388 various visual token compression ratios of 2^{-5} , 2^{-4} , and 2^{-3} . Figure 1 illustrates the performance of
389 each compression algorithm in terms of accuracy retention (x-axis), measured as a percentage relative
390 to the full-token baseline, and compression time (y-axis). The results are based on a 1/8 compression
391 ratio using the Qwen2.5-VL-7B model.

392 As shown in the results, our method consistently outperforms existing visual token compression
393 techniques across different datasets, compression ratios, and backbone models. We attribute this
394 superiority to FLoC’s ability to overcome the structural limitations of prior approaches. Specifically,
395 graph-based merging methods (e.g., STTM, LLaVA Scissor) often suffer from the “weak connection”
396 problem, where distinct tokens—such as small objects and their background—are irreversibly merged
397 based on local similarity thresholds, leading to significant detail loss especially at low compression
398 ratios. Similarly, while diversity-based methods (e.g., DivPrune) effectively capture outliers, they
399 often fail to retain representative tokens that describe the core context of the video. In contrast, our
400 facility location-based approach mathematically guarantees a balance between representativeness
401 and diversity, successfully retaining both the central narrative and fine-grained visual cues that other
402 methods overlook.

403 As shown in Figure 1, clustering-based methods such as K-Means and Spectral Clustering occa-
404 sionally achieve performance comparable to our proposed approach. However, these methods incur
405 approximately 10x higher compression time, indicating a significant disadvantage in terms of ef-
406 ficiency. A detailed comparison of the efficiency of clustering-based methods is provided in the
407 following subsection.

408 In the final experiment, we aimed to fully leverage the optimal token length of the LMM by extracting
409 all visual tokens from as many frames as possible in a long video sequence, and compressing them
410 to the model’s optimal token length. Specifically, we modified the default Qwen2.5-VL vision
411 processing script—which originally supports up to 768 frames—to handle up to 7,200 frames. The
412 resulting visual tokens were then compressed to 24,576 tokens, corresponding to the optimal token
413 length of the model. The performance under this setting is presented in Table 2.

414 As shown in Table 2, FLoC can significantly improve the performance of LMMs that are conven-
415 tionally measured using a limited number of frames. For the 7B model, the accuracy increased by an
416 average of **1.38 points**, and for the 32B model, it rose by an average of **2.36 points**. These results
417 indicate that while existing LMMs are forced to process fewer frames due to their limited context
418 length, our proposed algorithm enables them to handle a larger number of frames through efficient
419 compression. We believe this approach substantially enhances their overall video understanding
420 capabilities.

421 These findings demonstrate that our proposed algorithm enables LMMs to generate high-quality
422 responses under resource-constrained conditions, with significantly reduced processing time.

423 4.5 ANALYSIS
424

425 4.5.1 REPRESENTATIVE AND DIVERSE VISUAL TOKENS

426 We demonstrate the effectiveness of our method in selecting representative and diverse visual tokens
427 through t-SNE visualization. For the visualization, we use Qwen2-VL 7B as the model and a
428 randomly selected video in VideoMME as the dataset. We compare the projected embedding spaces
429 obtained using K-means, K-Medoids, spectral clustering, and ours. In Fig. 4, red-colored stars and
430 black-colored dots represent the selected and discarded visual tokens for each algorithm, respectively.

431 As shown, K-means and K-Medoids clustering predominantly select representative visual tokens
432 from dense regions while failing to capture diverse tokens. In contrast, facility location selects

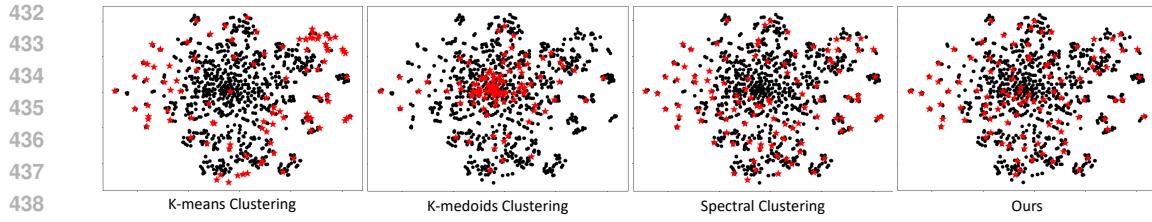


Figure 4: TSNE visualization of visual tokens. The red-colored stars and black-colored dots indicate the selected and discarded visual tokens, respectively. As shown, our method selects both representative and diverse visual tokens.

Figure 5: FLoC captures diverse visual tokens (e.g., hat, sunglasses) missed by DivPrune and TS-LLaVA, enabling accurate answers about what the woman is wearing.

visual tokens those are evenly distributed from both major and minor clusters, ensuring a more diverse representation. This visualization clearly highlights that our proposed method effectively preserves both representative and diverse visual tokens, which are crucial for comprehensive video understanding.

Additionally, as shown in Fig. 5, our proposed FLoC selects diverse tokens, successfully capturing visual cues like hats and sunglasses, unlike DivPrune and TS-LLaVA, which often miss them. This enables more accurate answers to questions about what the woman is wearing. Additional results with more examples are provided in the Appendix, specifically illustrated in Figure 8 and 9.

We further validate that visual tokens compressed by FLoC are more representative and diverse compared to those produced by alternative compression algorithms, supported by both quantitative metrics and empirical evidence. These comparisons are visualized in Figure 7 of the Appendix, where representativeness and diversity are explicitly quantified. Moreover, as shown in Table 6 of the Appendix, our framework achieves outstanding performance on the MLVU dataset, particularly in tasks requiring fine-grained video understanding such as Needle QA and Ego Reasoning, further substantiating the superiority of our approach.

4.5.2 MINIMAL COMPUTATIONAL OVERHEADS

We also compare the computational overhead of our proposed method with other visual token compression techniques. We use Qwen2-VL 7B as the model and VideoMME as the dataset for the experiment. We measure the time taken by each method to perform visual token compression.

As shown in Table 3, our method consistently achieves the lowest computational cost across different numbers of the block length, denoted as T . Notably, the performance gap in computational efficiency between our method and clustering-based approaches widens as T increases, further highlighting the scalability of our approach. Clustering-based methods, such as K-Means, K-Medoids, and spectral clustering, often incur substantial computational overhead when applied to visual token compression. For instance, K-Means requires multiple iterations to update cluster centroids until convergence, involving computations proportional to $O(nKdi)$, where d denotes the dimensionality of features, and i indicates the number of iterations. Although K-Medoids selects actual data points as cluster centers and may converge faster in practice, it still typically scales as $O(K(n - K)^2)$, becoming computationally intensive as n grows. Similarly, spectral clustering involves expensive eigen-decomposition of similarity matrices, incurring a computational complexity of approximately $O(n^3)$ in general. These inherent limitations significantly reduce the practicality of clustering-based methods for compressing visual tokens, especially in long video sequences with extremely large token sets.

In contrast, our method circumvents these computational bottlenecks by leveraging the lazy greedy algorithm, which exploits submodularity to efficiently select a near-optimal subset of tokens. Instead of exhaustively evaluating all possible token selections, the lazy greedy approach prioritizes promising

486
487 **Table 3: Comparisons of average computation times (sec).**
488

Methods	Time Complexity	2^{-5}			2^{-4}			2^{-3}			Average Accuracy
		$T = 2$	$T = 8$	$T = 32$	$T = 2$	$T = 8$	$T = 32$	$T = 2$	$T = 8$	$T = 32$	
K-Means	$O(n \cdot K \cdot d \cdot i)$	0.551	4.630	59.00	0.790	8.860	113.0	1.390	16.80	218.0	58.66
K-Medoids	$O(K \cdot (n - K)^2)$	0.022	0.113	0.716	0.018	0.119	0.747	0.021	0.135	0.877	56.22
Spectral Clustering	$O(n^3)$	0.232	0.569	5.160	0.794	2.260	9.650	0.270	1.180	21.10	58.97
FLoC (Ours)	$O(n \cdot K)$	0.010	0.056	0.413	0.012	0.065	0.475	0.014	0.075	0.527	59.74

492 candidates while skipping redundant computations, significantly reducing the runtime. These results
493 demonstrate that our method not only provides superior video understanding performance but also
494 achieves minimal computational overhead, making it highly practical for real-world applications.
495

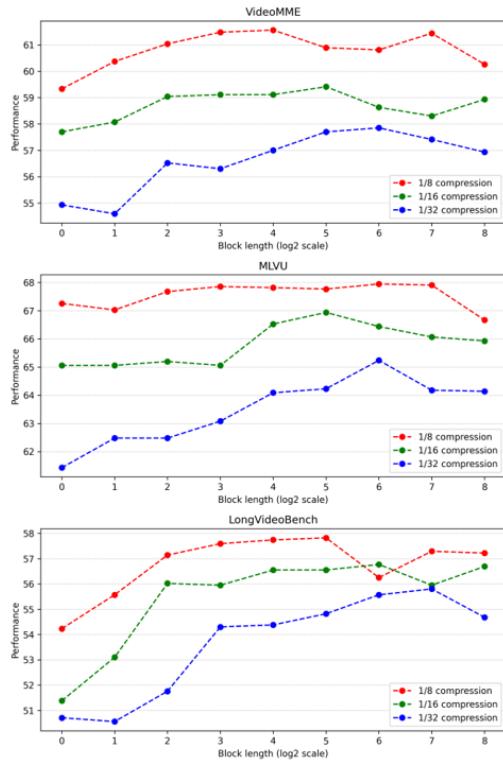
496 4.5.3 ROBUSTNESS ON BLOCK LENGTHS

497 To examine the impact of the sole hyperparameter in our proposed algorithm—the block length
498 T —we evaluated performance across various
499 datasets and compression ratios while varying
500 T . In this experiment, the Qwen2VL-7B model
501 was used.

502 As illustrated in Figure 6, we observe distinct
503 behaviors depending on the block length T . In
504 the region where $T \leq 4$, performance tends to
505 degrade because the narrow temporal window
506 prevents the algorithm from identifying redundancy
507 across adjacent blocks (inter-block redundancy). Conversely, as T increases, the facility
508 location objective optimizes representativeness
509 and diversity over a broader temporal context,
510 leading to performance saturation. Crucially, unlike
511 traditional clustering methods where computational
512 cost scales quadratically with input
513 size, our lazy greedy implementation ensures
514 that increasing T incurs negligible latency overhead.
515 This suggests that a sufficiently large fixed
516 block length (e.g., $T = 32$) serves as a robust
517 and efficient default, minimizing the need for
518 per-video hyperparameter tuning. However, we
519 acknowledge that relying on fixed uniform seg-
520 mentation is a heuristic simplification and may
521 not be strictly optimal for every video content.
522 We anticipate that developing an adaptive mech-
523 anism to automatically determine T based on
524 temporal dynamics could yield further per-
525 formance improvements. A more detailed discussion on this limitation and potential future directions is
526 provided in Appendix I

527 5 CONCLUSION

528 As long video understanding advances, handling the overwhelming number of visual tokens remains
529 a key bottleneck. While prior methods such as uniform sampling and clustering have addressed
530 this issue, they often fail to capture sufficient visual diversity and add computational overhead. We
531 tackle these limitations by proposing a visual token compression framework based on the facility
532 location function. Our method selects tokens that are both representative and diverse, preserving
533 essential scene information while significantly reducing computation via a lazy greedy algorithm.
534 Extensive experiments on large-scale benchmarks, including Video-MME, LongVideoBench, and
535 MLVU show that our method consistently outperforms existing compression techniques. Its efficiency
536 and strong performance without added overhead make it well-suited for real-world applications such
537 as surveillance, augmented reality, and autonomous navigation. As video-LMMs scale, improving
538 efficiency and information retention will be key to advancing long video understanding.



539 Figure 6: Performance versus block length T (log2-scale) for a number of benchmark datasets.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 *arXiv preprint arXiv:2303.08774*, 2023.

545 Saeed Ranjbar Alvar, Gursimran Singh, Mohammad Akbari, and Yong Zhang. Divprune: Diversity-
546 based visual token pruning for large multimodal models. *arXiv preprint arXiv:2503.02175*, 2025.
547

548 Dawit Mureja Argaw, Seunghyun Yoon, Fabian Caba Heilbron, Hanieh Deilamsalehy, Trung Bui,
549 Zhaowen Wang, Franck Dernoncourt, and Joon Son Chung. Scaling up video summarization
550 pretraining with large language models. In *Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition*, pp. 8332–8341, 2024.
551

552 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
553 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
554 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
555 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
556 <https://arxiv.org/abs/2502.13923>.

557 Ivana Balazevic, Yuge Shi, Pinelopi Papalampidi, Rahma Chaabouni, Skanda Koppula, and Olivier J
558 Hénaff. Memory consolidation enables long-context video understanding. In *Forty-first Interna-
559 tional Conference on Machine Learning*, 2024.
560

561 Mu Cai, Jianwei Yang, Jianfeng Gao, and Yong Jae Lee. Matryoshka multimodal models. *arXiv
562 preprint arXiv:2405.17430*, 2024.

563 Sandra E. F. de Avila, Antonio Lopes, Cesar A. A. da Luz Jr, and Arnaldo de Albuquerque Araujo.
564 Vsumm: A mechanism designed to produce static video summaries and a novel evaluation method.
565 In *Pattern Recognition Letters*, 2011.
566

567 Yunhao Fang, Ligeng Zhu, Yao Lu, Yan Wang, Pavlo Molchanov, Jan Kautz, Jang Hyun Cho, Marco
568 Pavone, Song Han, and Hongxu Yin. Vila²: Vila augmented vila. *arXiv preprint arXiv:2407.17453*,
569 2024.

570 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
571 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
572 benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.
573

574 Xiaohu Huang, Hao Zhou, and Kai Han. Prunevid: Visual token pruning for efficient video large
575 language models. *arXiv preprint arXiv:2412.16117*, 2024.

576 Jeongseok Hyun, Sukjun Hwang, Su Ho Han, Taeoh Kim, Inwoong Lee, Dongyoong Wee, Joon-
577 Young Lee, Seon Joo Kim, and Minho Shim. Multi-granular spatio-temporal token merging for
578 training-free acceleration of video llms. *arXiv preprint arXiv:2507.07990*, 2025.
579

580 Aditya Khosla, Jie Chen, Serena Yeung, and Li Fei-Fei. Large-scale video summarization using
581 web-image priors. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2013.

582 Bruno Korbar, Yongqin Xian, Alessio Tonioni, Andrew Zisserman, and Federico Tombari. Text-
583 conditioned resampler for long form video understanding. In *European Conference on Computer
584 Vision*, pp. 271–288. Springer, 2024.
585

586 Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning
587 events in videos. In *International Conference on Computer Vision (ICCV)*, 2017.

588 Seon-Ho Lee, Jue Wang, Zhikang Zhang, David Fan, and Xinyu Li. Video token merging for long
589 video understanding. *Advances in Neural Information Processing Systems*, 37:13851–13871, 2025.
590

591 Bo Li, Peiyuan Zhang, Kaichen Zhang, Fanyi Pu, Xinrun Du, Yuhao Dong, Haotian Liu, Yuan-
592 han Zhang, Ge Zhang, Chunyuan Li, et al. Lmms-eval: Accelerating the development of
593 large multimodal models, March 2024. URL <https://github.com/EvolvingLMs-Lab/lmms-eval>.

594 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 595 united visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*,
 596 2023.

597 Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In *Human
 598 Language Technologies: The 2011 Annual Conference of the North American Chapter of the
 599 Association for Computational Linguistics (HLT-NAACL)*, 2011.

600 Hui Lin, Jeff Bilmes, and Shasha Xie. Graph-based submodular selection for extractive summarization.
 601 In *2009 IEEE Workshop on Automatic Speech Recognition & Understanding*, pp. 381–386. IEEE,
 602 2009.

603 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 604 neural information processing systems*, 36, 2024.

605 Kartikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
 606 benchmark for very long-form video language understanding, 2023. URL <https://arxiv.org/abs/2308.09126>.

607 Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. *Optimiza-
 608 tion Techniques*, pp. 234–243, 1978.

609 George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
 610 maximizing submodular set functions—i. *Mathematical programming*, 14:265–294, 1978.

611 Kirill Potapov, Matthijs Douze, Zaid Harchaoui, and Cordelia Schmid. Category-specific video
 612 summarization. In *European Conference on Computer Vision (ECCV)*, 2014.

613 Tingyu Qu, Mingxiao Li, Tinne Tuytelaars, and Marie-Francine Moens. Ts-llava: Constructing visual
 614 tokens through thumbnail-and-sampling for training-free video large language models. *arXiv
 615 preprint arXiv:2411.11066*, 2024.

616 Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
 617 reduction for efficient large multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.

618 Leqi Shen, Guoqiang Gong, Tao He, Yifeng Zhang, Pengzhang Liu, Sicheng Zhao, and Guiguang
 619 Ding. Fastvid: Dynamic density pruning for fast video large language models, 2025. URL
 620 <https://arxiv.org/abs/2503.11187>.

621 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
 622 Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adaptive
 623 compression for long video-language understanding. *arXiv preprint arXiv:2410.17434*, 2024.

624 Mike Zheng Shou, Stan Weixian Lei, Weiyao Wang, Deepti Ghadiyaram, and Matt Feiszli. Generic
 625 event boundary detection: A benchmark for event segmentation. In *Proceedings of the IEEE/CVF
 626 International Conference on Computer Vision (ICCV)*, pp. 8075–8084, October 2021.

627 Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition
 628 in videos. In *NeurIPS*, 2014.

629 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
 630 Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for
 631 long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 632 Pattern Recognition*, pp. 18221–18232, 2024.

633 Boyuan Sun, Jiaxing Zhao, Xihan Wei, and Qibin Hou. Llava-scissor: Token compression with
 634 semantic connected components for video llms. *arXiv preprint arXiv:2506.21862*, 2025.

635 Keda Tao, Can Qin, Haoxuan You, Yang Sui, and Huan Wang. Dycoke: Dynamic compression of
 636 tokens for fast video large language models. *arXiv preprint arXiv:2411.15024*, 2024.

637 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 638 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 639 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

648 Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
 649 caption generator. In *CVPR*, 2015.

650

651 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 652 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 653 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

654

655 Weihang Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Shiyu Huang, Bin
 656 Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Lvbench: An extreme long video understanding
 657 benchmark, 2024b.

658

659 Ziyang Wang, Shoubin Yu, Elias Stengel-Eskin, Jaehong Yoon, Feng Cheng, Gedas Bertasius, and
 660 Mohit Bansal. Videotree: Adaptive tree-based video representation for llm reasoning on long
 661 videos. *arXiv preprint arXiv:2405.19209*, 2024c.

662

663 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 664 interleaved video-language understanding. *Advances in Neural Information Processing Systems*,
 37:28828–28857, 2025.

665

666 Wenhao Wu. Freeva: Offline mllm as training-free video assistant. *arXiv preprint arXiv:2405.07798*,
 667 2024.

668

669 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa:next phase of question-answering
 670 to explaining temporal actions, 2021. URL <https://arxiv.org/abs/2105.08276>.

671

672 Huijuan Xu, Boyang Li, Vasili Ramanishka, Leonid Sigal, and Kate Saenko. Joint event detection
 673 and description in continuous video streams. *WACV*, 2019.

674

675 Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
 676 Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
 677 attention. In *ICML*, Proceedings of Machine Learning Research, 2015.

678

679 Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 680 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
 681 long videos. *arXiv preprint arXiv:2408.10188*, 2024.

682

683 Haoji Zhang, Yiqin Wang, Yansong Tang, Yong Liu, Jiashi Feng, Jifeng Dai, and Xiaojie Jin.
 Flash-vstream: Memory-based real-time understanding for long video streams. *arXiv preprint
 684 arXiv:2406.08085*, 2024a.

685

686 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
 687 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on
 688 the evaluation of large multimodal models, 2024b. URL <https://arxiv.org/abs/2407.12772>.

689

690 Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman. Video summarization with long short-term
 691 memory. In *European Conference on Computer Vision (ECCV)*, 2016.

692

693 Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video
 694 large multimodal models with one vision token. *arXiv preprint arXiv:2501.03895*, 2025.

695

696 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 697 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024c.

698

699 Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaou Tang, and Dahua Lin. Temporal action
 700 detection with structured segment networks. In *ICCV*, 2017.

701

702 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 703 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 704 understanding. *arXiv preprint arXiv:2406.04264*, 2024.

702 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
703 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
704 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,
705 Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
706 Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han
707 Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou,
708 Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Internvl3:
709 Exploring advanced training and test-time recipes for open-source multimodal models, 2025. URL
710 <https://arxiv.org/abs/2504.10479>.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A REPRESENTATIVENESS AND DIVERSITY

To quantitatively verify the representativeness and diversity of our proposed facility location-based visual token selection algorithm, we conducted an analysis using two complementary metrics: (1) **averaged sum coverage**, measuring how comprehensively the selected tokens cover the entire set of visual tokens, defined as

$$\text{Averaged Sum Coverage}(S) = \frac{1}{|V||S|} \sum_{v \in V} \sum_{u \in S} \text{sim}(v, u),$$

where V is the entire set of visual tokens, S is the selected subset, and $\text{sim}(v, u)$ is the cosine similarity between tokens v and u , and (2) **averaged distance**, computed as the average pairwise distance (using $1 - \text{sim}(u, w)$) among the selected tokens:

$$\text{Averaged Distance}(S) = \frac{1}{|S|(|S| - 1)} \sum_{u \in S} \sum_{w \in S, w \neq u} (1 - \text{sim}(u, w)).$$

We compared our method against three clustering-based baselines: K-means, K-medoids, and spectral clustering.

We utilized 50 randomly selected videos from the Video MME dataset and employed the Qwen2-vl 7B model. Due to the significant variability in the range of measures across different data points, we normalized the six measures obtained from six algorithms for each video to have a zero mean and a standard deviation of one. The normalized results were then visualized using a scatter plot.

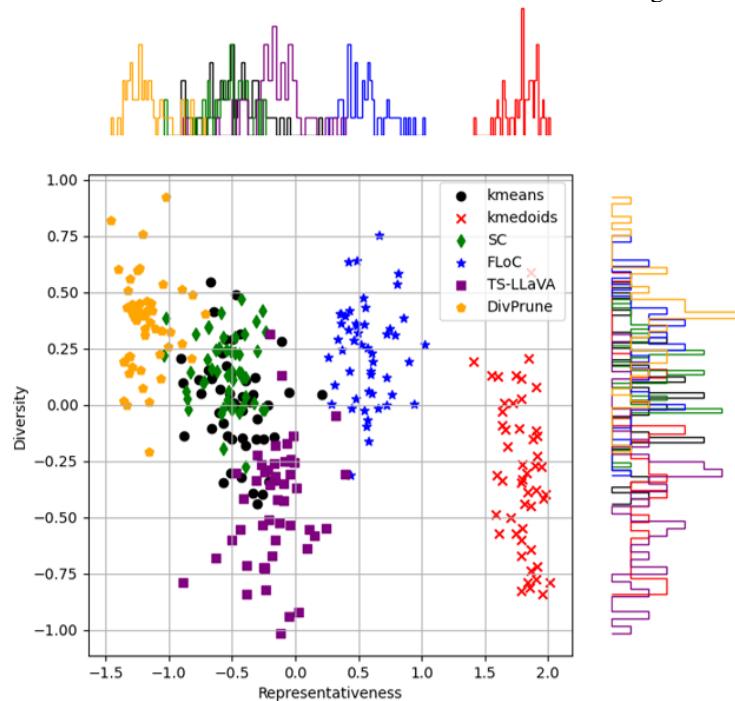


Figure 7: Scatter plot of each algorithm's representativeness and diversity.

As shown in Figure 7, our facility location approach consistently outperformed the baselines in both representativeness and diversity measures. Specifically, our method achieved higher averaged sum coverage scores, indicating superior representativeness, and greater averaged distance, demonstrating its effectiveness in selecting both representative and diverse tokens.

In the scatter plot, the values obtained using the proposed FLoC algorithm are predominantly located in the first quadrant. This indicates that, after normalization, the values are on average more representative and diverse compared to other algorithms. When compared to k-medoids, the FLoC

810 algorithm shows lower representativeness but superior diversity. When compared to DivPrune, our
 811 proposed algorithm shows slightly lower diversity but superior representativeness. Additionally,
 812 when compared to TS-LLaVA, k-means and spectral clustering, the FLoC algorithm demonstrates
 813 superiority in both representativeness and diversity.

814 These results suggest that when selecting representative samples from an entire ground set, two
 815 crucial factors to consider are representativeness and diversity, which inherently exist in a trade-off
 816 relationship. If samples are densely distributed in a specific region, selecting a disproportionately
 817 large number of samples from that area can reduce overall diversity. Conversely, focusing excessively
 818 on diversity might lead to neglecting important samples from these densely populated, and potentially
 819 critical, regions. Our proposed FLoC effectively addresses this trade-off by selecting tokens that are
 820 both representative and diverse. Consequently, FLoC achieves superior performance in long video
 821 understanding tasks.

823 B COMPREHENSIVE PERFORMANCE EVALUATION

825 We present the performance of all evaluated visual token compression algorithms across the three
 826 benchmark datasets and three backbone LLM models in Table 4 and Table 5. In the previously
 827 submitted manuscript, results for several clustering-based methods, namely k-means, k-medoids, and
 828 spectral clustering, were omitted from the main performance tables due to space constraints. These
 829 are now included for a comprehensive comparison.

830 Table 4: Full comparison of visual token compression methods. Backbone LLM is LLaVA-Video-7B-
 831 Qwen2.

Ratio	Tokens	Frames	Methods	Video-MME				Long Video Bench					MLVU	Avg.
				Short	Medium	Long	Overall	15	60	600	3600	Overall		
100%	21632	128	-	75.78	63.33	54.67	64.59	66.67	68.61	58.98	51.77	58.27	70.39	64.42
		16	Frame Uniform	68.78	54.78	49.33	57.63	54.50	66.38	54.37	50.00	54.08	53.66	50.31
2 ⁻³	2704	128	Pooling	65.33	53.89	48.67	55.96	56.61	68.61	56.31	48.05	54.45	61.24	57.22
			LongVU	68.89	58.44	51.67	59.67	56.61	65.12	55.83	52.31	55.65	62.57	59.30
			TS-LLaVA	71.00	59.56	50.56	60.37	57.67	68.02	58.98	51.60	56.84	65.15	60.79
			DivPrune	69.11	59.22	52.56	60.30	58.20	65.12	56.55	51.42	55.72	65.00	60.34
			K-means	71.78	59.22	50.11	60.37	60.38	69.93	60.41	50.89	57.19	66.59	61.38
			K-medoids	68.56	56.89	49.78	58.41	56.61	68.02	57.77	50.71	55.95	62.11	58.82
			SC	72.11	61.78	51.56	61.81	60.32	68.02	59.22	52.13	57.52	66.07	61.80
			FLoC (Ours)	71.68	60.56	50.89	61.04	61.91	69.19	60.19	51.60	57.97	67.43	62.15
			Frame Uniform	60.78	51.89	48.56	53.74	43.92	56.40	53.16	49.82	50.86	57.20	53.93
			Pooling	60.00	50.11	45.33	51.81	54.50	59.30	50.73	44.86	49.89	57.56	53.09
2 ⁻⁴	1352	128	LongVU	62.56	53.78	47.11	54.48	51.85	62.21	51.21	49.65	52.06	56.74	54.43
			TS-LLaVA	67.22	56.78	50.56	58.19	56.09	68.02	58.25	47.52	54.68	61.52	58.13
			DivPrune	67.67	57.67	50.00	58.44	56.61	64.54	54.84	48.23	53.55	62.24	58.08
			K-means	69.22	55.67	50.33	58.41	59.26	66.28	58.74	49.11	55.72	63.08	59.07
			K-medoids	65.56	53.67	47.89	55.70	53.44	66.28	54.85	47.34	52.95	59.17	55.94
			SC	68.44	56.56	51.56	58.85	56.61	68.02	56.07	50.00	55.12	64.05	59.34
			FLoC (Ours)	69.33	57.44	51.00	59.26	60.32	68.02	58.74	48.76	55.95	64.54	59.92
			Frame Uniform	52.56	49.44	44.44	48.81	43.92	51.16	51.46	46.99	48.47	53.66	50.31
			Pooling	57.00	49.11	45.00	50.37	50.79	56.40	49.27	43.97	48.17	54.94	51.16
			LongVU	57.33	49.78	45.78	50.96	49.21	56.40	48.30	48.23	49.44	53.61	51.34
2 ⁻⁵	676	128	TS-LLaVA	64.22	55.00	47.78	55.67	52.38	65.12	53.64	46.45	51.91	57.52	55.03
			DivPrune	64.00	56.22	49.00	56.41	53.97	55.81	51.94	46.10	50.26	59.43	55.37
			K-means	65.22	49.56	47.22	54.00	56.67	67.02	57.50	46.87	54.12	58.49	55.54
			K-medoids	63.67	50.67	47.44	53.93	51.32	63.37	55.10	46.28	51.91	55.82	53.89
			SC	65.00	54.56	47.89	55.81	49.74	63.95	53.88	48.05	52.13	59.40	55.78
			FLoC (Ours)	66.44	54.00	48.22	56.22	55.03	67.44	55.34	48.76	54.07	61.22	57.17

833 As evidenced by these tables, our proposed model achieves the highest average performance across
 834 all three benchmark datasets for all considered backbone LLM models and at all compression ratios.
 835 This consistent superiority indicates that our algorithm effectively selects representative visual tokens
 836 crucial for long video understanding, irrespective of the specific backbone model architecture or the
 837 nature of the question query.

858 C DETAILED TASK-SPECIFIC PERFORMANCE ANALYSIS ON MLVU

861 To thoroughly investigate the factors contributing to the performance improvements of our proposed
 862 algorithm, we conducted a comparative analysis of its performance on seven distinct sub-tasks within
 863 the MLVU dataset. The MLVU dataset is broadly categorized into three main types of tasks: Holistic
 864 Long Video Understanding (LVU), Single Detail LVU, and Multi Detail LVU. These are further

864
865
866
Table 5: Full comparison of visual token compression methods. Backbone LLMs are Qwen2-VL-2B
and Qwen2-VL-7B.

Model	Ratio	Tokens	Frames	Methods	Video-MME				Long Video Bench				MLVU	Avg.	
					Short	Medium	Long	Overall	15	60	600	3600			
2B	100%	34560	256	-	64.89	50.56	45.89	53.78	55.56	58.14	50.49	42.20	48.69	62.25	54.91
			32	Frame Uniform	65.11	49.33	43.67	52.70	53.97	63.95	47.57	43.79	48.99	59.54	53.74
	2 ⁻³	4320	256	Pooling	55.78	44.33	42.00	47.37	53.44	58.72	47.57	41.67	47.35	57.06	50.59
				LongVU	65.00	52.44	47.11	54.85	56.09	59.88	48.30	41.67	48.09	60.46	54.47
				TS-LLaVA	66.89	52.33	45.33	54.85	56.09	62.21	47.57	42.73	48.62	61.10	54.86
				DivPrune	65.44	50.78	45.44	53.89	55.03	61.63	50.49	42.38	49.14	56.76	53.26
				K-means	63.67	49.67	44.11	52.48	56.61	62.21	46.85	44.68	49.29	60.69	54.15
	2 ⁻⁴	2160	256	K-medoids	63.44	51.56	44.89	53.30	55.03	62.79	46.85	41.14	47.64	60.18	53.71
				SC	66.44	52.44	47.33	55.41	56.09	62.21	48.06	43.62	49.14	61.43	55.33
				FLoC (Ours)	66.11	52.44	47.00	55.19	53.44	60.47	47.57	44.50	48.77	62.30	55.42
				Frame Uniform	62.44	47.22	42.44	50.70	53.97	60.47	46.85	43.26	48.09	56.32	51.70
				Pooling	47.56	39.67	39.22	42.15	49.21	51.16	46.36	41.14	45.18	52.69	46.67
7B	2 ⁻³	1080	256	LongVU	61.56	47.56	43.78	50.96	56.09	59.88	46.12	42.91	47.94	55.77	51.56
				TS-LLaVA	64.44	50.56	43.56	52.85	56.61	61.05	47.09	41.67	47.94	60.23	53.67
				DivPrune	64.44	48.67	44.44	52.52	55.03	58.72	47.09	40.60	46.97	55.70	51.73
				K-means	61.56	47.11	42.11	50.26	56.09	61.05	50.73	42.02	49.14	59.40	52.93
				K-medoids	62.67	49.00	41.56	51.07	52.38	60.47	47.33	41.31	47.20	59.22	52.50
	2 ⁻⁴	2160	256	SC	65.22	51.67	44.78	53.89	55.56	59.88	47.57	45.39	49.36	59.45	54.23
				FLoC (Ours)	64.67	52.78	45.67	54.37	55.56	61.63	49.03	43.97	49.44	60.74	54.85
				Frame Uniform	58.11	44.67	41.56	48.11	53.44	62.79	46.36	41.84	47.57	52.74	49.47
				Pooling	44.44	38.89	38.56	40.63	47.09	50.00	45.39	39.72	43.83	50.34	44.93
				LongVU	57.78	43.67	41.89	47.78	53.44	59.88	46.36	43.79	48.02	52.51	49.44
900	2 ⁻⁵	1080	256	TS-LLaVA	62.78	47.33	43.67	51.26	59.26	62.21	45.39	40.43	47.42	58.21	52.30
				DivPrune	61.78	47.00	43.89	50.89	53.44	58.72	46.12	40.96	46.60	54.19	50.56
				K-means	56.33	44.33	40.44	47.04	55.56	58.14	48.30	40.60	47.35	57.38	50.59
				K-medoids	58.89	45.56	41.11	48.52	52.38	55.81	45.15	41.67	46.07	56.00	50.20
				SC	63.00	49.56	45.00	52.52	57.67	56.40	47.33	42.38	47.87	58.62	53.00
	2 ⁻⁵	1080	256	FLoC (Ours)	64.22	49.00	45.00	52.74	57.67	60.47	48.06	40.96	48.02	59.31	53.36
				Frame Uniform	72.10	63.20	53.90	63.07	64.55	71.51	54.85	48.05	55.50	64.69	61.09
				32	71.00	56.00	48.89	58.63	67.73	70.93	53.64	46.99	55.05	64.51	59.40
				Pooling	63.33	50.89	46.00	53.41	60.32	62.79	51.70	48.23	52.88	63.40	56.56
				LongVU	71.11	57.67	47.89	58.89	68.78	73.26	53.16	49.47	56.40	65.01	60.10
905	2 ⁻³	4320	256	TS-LLaVA	72.40	59.60	50.80	60.93	68.25	73.26	56.31	49.11	57.14	66.53	61.53
				DivPrune	71.22	59.00	51.78	60.67	69.31	72.67	57.52	49.11	57.59	65.82	61.36
				K-means	69.00	55.00	46.78	56.93	67.20	72.67	57.77	46.45	56.25	64.69	59.29
				K-medoids	70.33	59.78	50.89	60.33	63.49	64.54	52.67	46.81	53.25	65.10	59.56
				SC	71.22	61.00	51.00	61.07	67.73	72.67	58.01	47.87	56.99	67.36	61.81
	2 ⁻⁴	2160	256	FLoC (Ours)	72.00	60.22	50.44	60.89	69.84	72.09	57.04	50.00	57.82	67.77	62.16
				Frame Uniform	67.22	53.00	47.22	55.81	64.55	70.93	54.37	46.81	54.75	61.10	57.22
				Pooling	57.78	48.33	43.78	49.96	54.50	60.47	48.54	45.39	49.59	60.92	53.49
				LongVU	65.89	54.00	47.78	55.89	64.55	67.44	51.46	46.45	53.25	61.70	56.95
				TS-LLaVA	70.00	55.70	48.40	58.04	67.73	70.35	54.13	49.82	56.32	64.69	59.68
906	2 ⁻⁵	1080	256	DivPrune	70.67	57.00	50.33	59.30	66.14	72.67	56.80	47.16	56.10	63.62	59.67
				K-means	65.78	52.89	47.22	55.30	65.61	70.93	56.55	46.81	55.57	62.76	57.88
				K-medoids	69.67	56.89	50.78	59.11	61.38	65.70	51.70	45.92	52.43	61.43	57.66
				SC	68.78	57.89	51.00	59.22	65.08	70.35	56.55	46.81	55.42	65.79	60.14
				FLoC (Ours)	69.22	58.00	51.00	59.41	65.61	72.67	55.83	49.11	56.55	66.94	60.97
	2 ⁻⁵	1080	256	Frame Uniform	62.78	49.89	46.89	53.19	61.91	65.12	51.21	43.97	51.46	57.56	54.07
				Pooling	53.67	47.22	42.56	47.81	53.97	54.65	44.90	43.09	46.67	57.98	50.82
				LongVU	63.70	50.20	48.70	54.19	62.96	65.12	50.97	44.50	51.76	57.61	54.52
				TS-LLaVA	67.40	54.30	48.30	56.70	68.25	68.61	53.40	47.34	54.90	61.66	57.75
				DivPrune	68.22	53.67	49.33	57.07	66.13	70.35	53.64	46.81	54.67	61.22	57.65
907	2 ⁻⁵	1080	256	K-means	61.11	50.56	46.56	52.74	61.91	63.37	53.40	45.04	52.36	60.18	55.09
				K-medoids	65.22	51.44	46.33	54.33	58.20	63.37	49.27	43.97	50.11	58.99	54.48
				SC	67.89	53.56	48.33	56.59	64.55	69.19	52.18	46.54	53.70	63.26	57.85
				FLoC (Ours)	69.33	55.56	48.22	57.70	64.55	69.77	54.37	47.34	54.82	64.23	58.92
				Frame Uniform	62.44	47.22	42.44	50.70	53.97	60.47	46.85	43.26	48.09	56.32	51.70
	2 ⁻⁵	1080	256	Pooling	53.67	47.22	42.56	47.81	53.97	54.65	44.90	43.09	46.67	57.98	50.82
				LongVU	63.70	50.20	48.70	54.19	62.96	65.12	50.97	44.50	51.76	57.61	54.52
				TS-LLaVA	67.40	54.30	48.30	56.70	68.25	68.61	53.40	47.34	54.90	61.66	57.75
				DivPrune	68.22	53.67	49.33	57.07	66.13	70.35	53.64	46.81	54.67	61.22	57.65
				K-means	61.11	50.56	46.56	52.74	61.91	63.37	53.40	45.04	52.36	60.18	55.09
908	2 ⁻⁵	1080	256	K-medoids	65.22	51.44	46.33	54.33	58.20	63.37	49.27	43.97	50.11	58.99	54.48
				SC	67.89	53.56	48.33	56.59	64.55	69.19	52.18	46.54	53.70	63.26	57.85
				FLoC (Ours)	69.33	55.56	48.22	57.7							

918
919 Table 6: Performance comparison on MLVU sub-tasks across different compression ratios. Our
920 proposed method is highlighted.

Ratio	Methods	Holistic		Single Detail			Multi Detail		Overall
		TR	AR	NQA	ER	PQA	AO	AC	
2^{-5}	Frame Uniform	80.68	65	54.37	47.16	56.03	41.7	26.7	53.66%
	Pooling	81.44	52	59.15	47.16	57.7	47.1	32.52	54.94%
	K-means	84.85	62.5	62.82	52.27	66.79	46.33	28.16	58.49%
	K-medoids	85.98	63	58.87	50.28	56.59	43.63	27.67	55.82%
	SC	86.74	65.5	61.13	52.84	64.75	45.17	30.58	59.40%
	LongVU	80.68	61.5	52.96	46.59	57.51	42.86	27.67	53.61%
	TS-LLaVA	85.61	65	59.44	50.85	61.78	44.4	27.67	57.52%
	DivPrune	85.17	69	68.45	54.55	60.85	44.79	24.76	59.43%
	Ours	85.17	65.5	71.27	56.25	66.79	45.17	23.3	61.22%
2^{-4}	Frame Uniform	81.44	68.5	57.18	50.57	61.22	44.4	32.04	57.20%
	Pooling	82.95	57	64.79	48.58	61.41	48.26	30.1	57.56%
	K-means	85.98	68.5	69.01	54.26	69.57	48.65	34.47	63.08%
	K-medoids	87.12	63.5	62.82	52.27	64.01	44.79	30.1	59.17%
	SC	88.64	70	67.04	54.55	72.17	50.97	33.01	64.05%
	LongVU	84.47	66.5	57.18	50.57	59.37	44.79	29.61	56.74%
	TS-LLaVA	85.61	73	65.35	52.56	66.98	50.19	28.16	61.52%
	DivPrune	85.17	72	72.11	58.24	63.64	47.1	28.64	62.24%
	Ours	84.79	68	74.93	59.09	70.5	49.42	30.1	64.54%
2^{-3}	Frame Uniform	84.85	68	67.32	54.55	66.6	41.7	31.55	60.83%
	Pooling	83.71	59.5	70.42	53.41	65.31	51.74	33.01	61.24%
	K-means	84.85	73	73.52	60.51	73.65	52.9	44.66	66.59%
	K-medoids	86.74	68	67.61	52.27	69.39	48.26	30.58	62.11%
	SC	86.74	73.5	70.99	56.82	72.91	54.05	36.89	66.07%
	LongVU	86.74	74.5	67.89	54.55	64.94	49.03	35.44	62.57%
	TS-LLaVA	85.61	72	72.39	55.11	72.17	49.81	37.86	65.15%
	DivPrune	85.17	71.5	74.08	60.8	68.27	50.58	33.98	65.00%
	Ours	86.31	73.5	76.06	62.22	73.1	53.28	34.47	67.43%

946 challenging scenarios. Furthermore, it is evident that our algorithm’s performance on the other tasks
947 does not lag behind that of competing algorithms. This suggests that our approach not only preserves
948 global contextual information but also minimizes the loss of crucial details.

949 In a subsequent subsection dedicated to qualitative result analysis, we will delve into a more specific
950 examination of the visual tokens selected by our proposed algorithm.

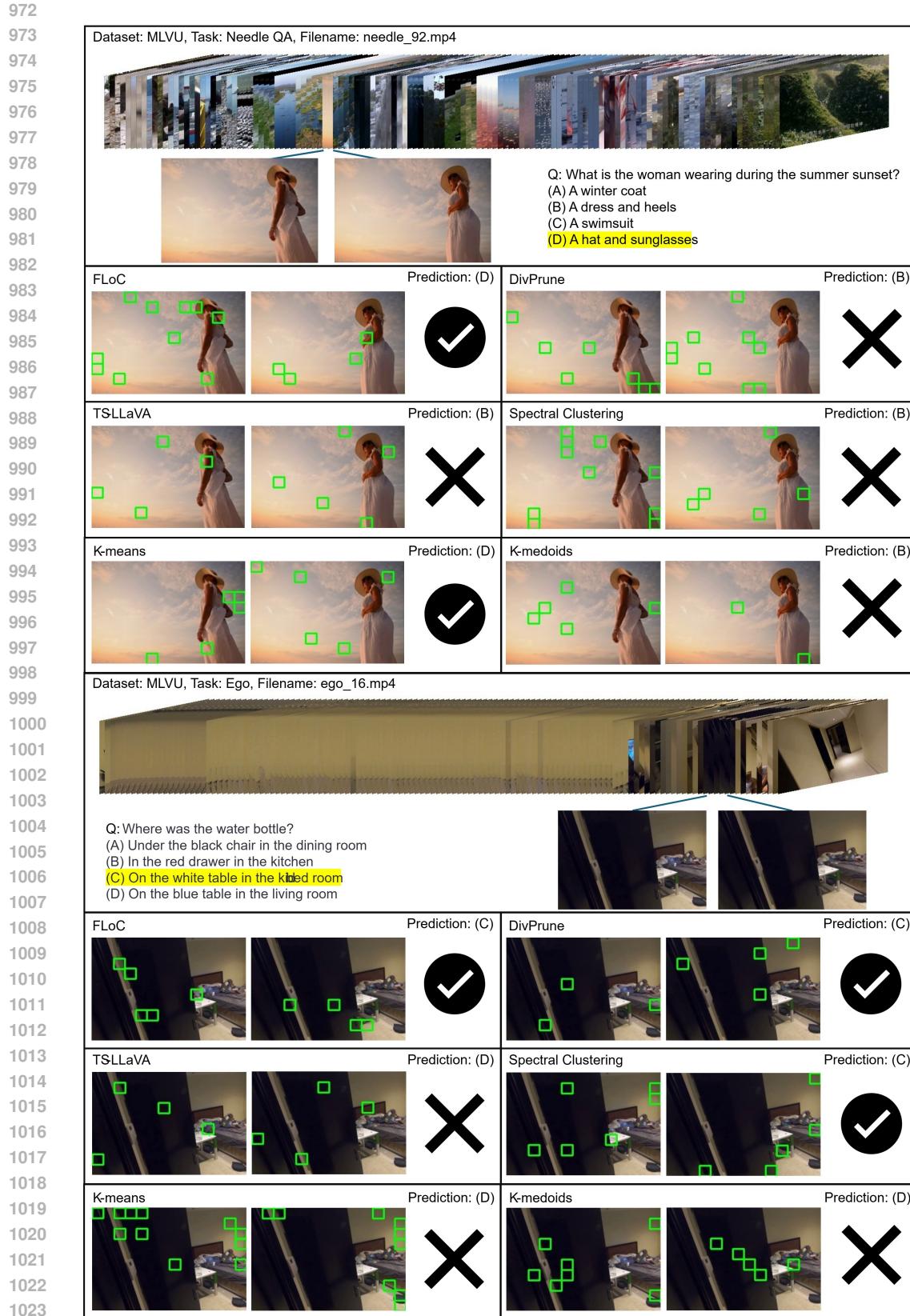


Figure 8: The first and second examples of qualitative analysis.

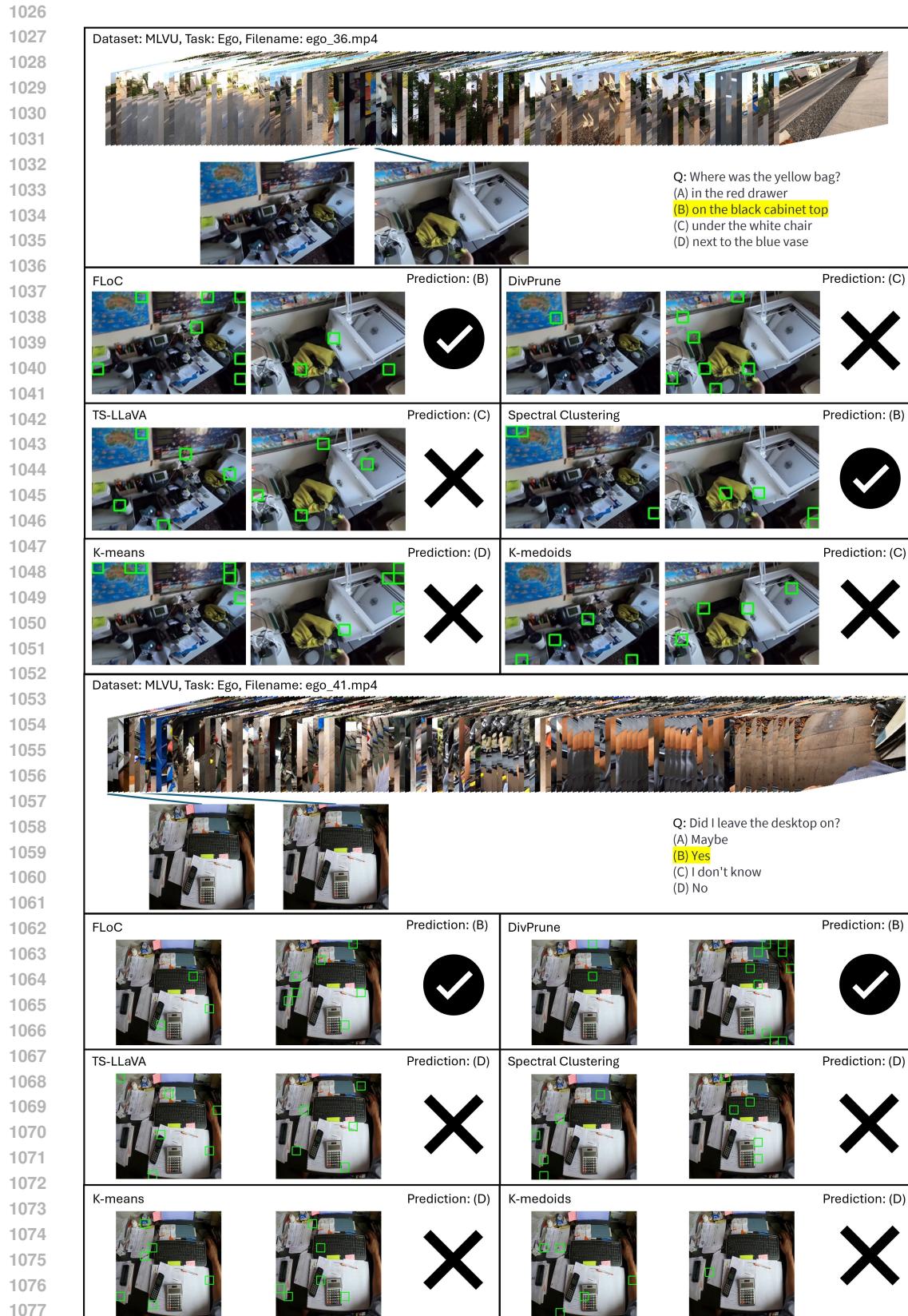


Figure 9: The third and fourth examples of qualitative analysis.

1080
1081

D QUALITATIVE RESULT ANALYSIS

1082
1083
1084
1085
1086
1087
1088
To further substantiate the efficacy of our proposed visual token compression algorithm, we conducted
a qualitative analysis. This analysis specifically focuses on examples from the MLVU dataset,
particularly the **needle QA** and **ego reasoning** tasks, where our method demonstrated pronounced
performance gains. We meticulously examined four video-question pairs, comparing the token
selection and prediction outcomes of our algorithm against baseline methods. For all experiments,
the compression ratio was uniformly set to 1/32. The first three examples were processed using the
Qwen2-vl 7B model, while the final example utilized the Llava Next Video Qwen 7B model.1089
1090
1091
1092
1093
As illustrated in Fig. 8 and Fig. 9, these tasks present a significant challenge: they require the
identification of minute details within long video sequences, often spanning hundreds of frames,
where the crucial information for answering the question is embedded in only a few key frames. The
visual tokens selected by each compression algorithm are highlighted with green bounding boxes
overlaid on their corresponding patches in the video frames.1094
1095
1096
The results compellingly demonstrate our algorithm’s superior ability to pinpoint the decisive visual
tokens essential for inferring the correct answer in all evaluated scenarios.1097
1098
1099
1100
1101
1102
1103
• In the **first example**, our method successfully identified patches corresponding to the
woman’s **sunglasses and hat**, leading to the correct answer.
• For the **second example**, the crucial visual tokens representing the **water bottle on the
white table** were accurately selected.
• In the **third example**, our algorithm focused on the **yellow bag placed on the black cabinet**.
• The **fourth example** saw our method select patches depicting the **powered-on monitor**.1104
1105
Consequently, our algorithm correctly answered all four questions.1106
1107
1108
1109
In stark contrast, the baseline algorithms rarely selected the visual tokens corresponding to these
critical objects. While they occasionally managed to infer the correct answer by selecting nearby or
contextually related tokens, they failed in the majority of these challenging instances. This observation
underscores the baselines’ limitations in preserving fine-grained details under high compression.1110
1111
1112
1113
1114
These qualitative findings strongly suggest that our proposed algorithm can effectively retain detailed
visual information, even at an extreme compression ratio such as 1/32. This capability is paramount
for tasks that demand a granular understanding of visual content within extensive video data. The
ability to isolate and preserve these “needle-in-a-haystack” visual cues is a key differentiator of our
approach.1115
1116
1117

E BASELINE IMPLEMENTATION DETAILS

1118
1119
This section outlines the implementation specifics and hyperparameter settings for the baseline
algorithms used in our experiments.1120
1121
1122
1123
1124
1125
1126
• **K-means, K-medoids, Spectral Clustering:** For these clustering-based approaches, we
utilized the scikit-learn library, employing its default parameters. For k-means and spectral
clustering, after determining the clusters, the representative token for each cluster was
selected as the token closest to the mean of all tokens within that cluster. Due to a significant
increase in computation time with larger block sizes, the block size was set to 8 for these
methods.
• **LongVU:** We implemented and utilized only the spatial token compression component of
LongVU, excluding the query-based cross-attention mechanism. To ensure precise control
over the compression ratio, which is not achievable with a fixed similarity threshold, we
implemented an adaptive thresholding mechanism. This approach dynamically determines
the appropriate threshold value to merge token pairs based on their similarity, thereby
achieving the target compression ratio.
• **PruneVID:** We utilized only the first stage of the algorithm, which performs query-agnostic
spatial-temporal token merging. To ensure a fair comparison, the subsequent query-aware

1134 stage was excluded. All experiments were conducted based on the official GitHub repository
 1135 provided by the authors.
 1136

- **DyCoke:** we adopted the query-agnostic compression component corresponding to Stage 1, specifically the visual token temporal merging module. The implementation was based on the official GitHub repository provided by the authors.
- **TS-LLaVA:** TS-LLaVA originally combines two strategies: creating thumbnails from raw frames and uniformly sampling visual tokens. However, in our experiments with the selected benchmark datasets and backbone LLMs, incorporating the thumbnail generation aspect led to a degradation in performance. Consequently, we only included the uniform token sampling component of TS-LLaVA in our baseline comparisons.
- **DivPrune:** Due to code compatibility issues with the officially provided GitHub repository, we re-implemented DivPrune based on the pseudo-code presented in its original publication. The algorithm was straightforward to implement from the provided pseudo-code. For our experiments, the block size for DivPrune was set to 32.
- **STTM and LLaVA Scissor:** We used the official implementations provided by the authors for all benchmarks. Hyperparameters were kept at their default settings, while threshold values were adjusted to achieve the desired compression ratio.
- **FastVID:** We conducted experiments based on the official GitHub repository provided by the authors. Among the models we tested, implementation was available only for the Qwen2.5-VL model; therefore, experiments were limited to this model. We varied only the retention ratio while keeping all other hyperparameters at their default values.

F T-SNE VISUALIZATION OF TOKEN DISTRIBUTIONS

1159 While a t-SNE visualization of the selected token distributions was included in the originally submitted
 1160 manuscript, space constraints necessitated the use of smaller images. For enhanced clarity and easier
 1161 inspection, we have attached larger versions of these visualizations in Fig 10.

1162 These visualizations demonstrate that the tokens selected by our proposed method more uniformly
 1163 cover the entire t-SNE distribution compared to those selected by other baseline approaches. Notably,
 1164 while the DivPrune method also aims to select diverse tokens based on a min-max distance criterion,
 1165 its chosen tokens do not achieve the same level of even coverage across the entire distribution as
 1166 observed with our algorithm. This suggests our method is more effective at capturing a comprehensive
 1167 and representative set of visual features.

G PROFILING OF COMPUTATIONAL AND MEMORY FOOTPRINT

Method	Inference (s)	Compression (s)	Total (s)	GFLOPS	VRAM (GB)
Full	3.22	—	2.69	—	27.33
FLoC		0.99	3.00	318	17.96
DyCoke		0.13	1.83	0.46	17.96
PruneVID		0.19	1.89	1.69	17.96
STTM		0.07	1.77	0.17	17.96
Scissor		1.24	2.94	783	17.96
FastVID	1.70	0.44	2.14	6	17.96
DivPrune		2.37	4.07	317	17.96
LongVU		0.38	2.08	317	17.96
kmeans		12.31	14.01	82	17.96
kmedoids		2.41	4.11	82	17.96
spectral		8.12	9.82	82	17.96

1184 Table 7: Performance comparison of different methods
 1185

1186 To compare the resource consumption and speed of our proposed algorithm against baseline methods,
 1187 we measured LLM inference time, compression time, FLOPs, and peak VRAM usage. All experiments
 1188 were conducted using the Qwen2.5-VL 7B model on an NVIDIA H100 GPU, with a compres-

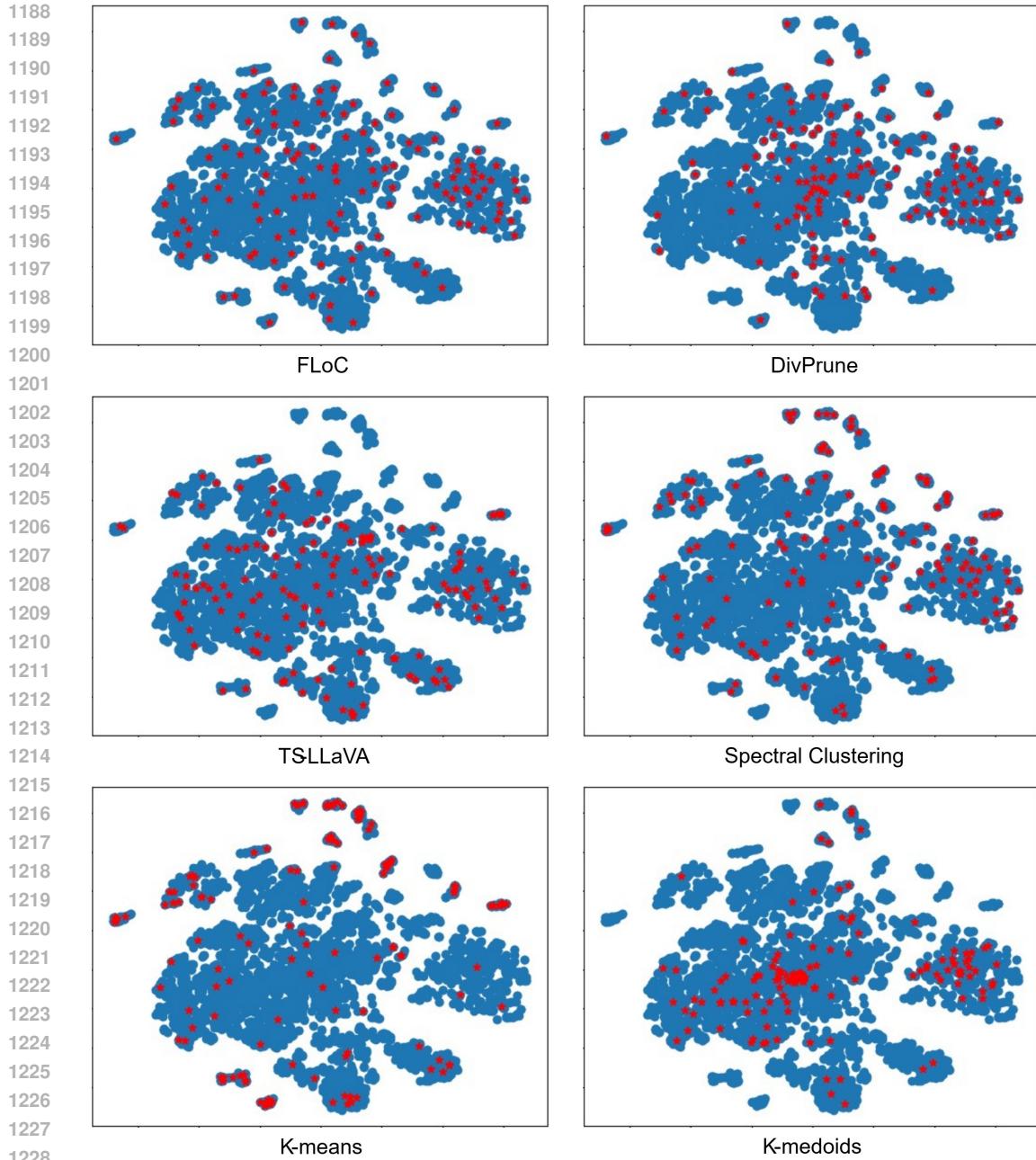


Figure 10: T-SNE plots for proposed and other visual token compression algorithms.

sion ratio of 12.5%. The reported times correspond to end-to-end processing of 784 frames, each containing 60 visual tokens. FLOPs were estimated by accumulating the actual operation counts during execution, with approximations for modularized components (which may introduce minor inaccuracies). Peak VRAM usage was recorded using PyTorch’s `torch.cuda.max_memory_allocated()` function.

Overall, graph-based methods tend to achieve faster compression and require fewer operations, but—as shown in previous experiments—they exhibit inferior performance. In contrast, clustering-based methods incur significantly higher computational costs, resulting in slower processing speeds. Our proposed algorithm performs compression in less time than the LLM inference step, demonstrating practical efficiency. However, it exhibits relatively high FLOPs, most of which are attributed to pairwise similarity computations.

H ABLATION STUDY ON SIMILARITY METRICS IN FACILITY LOCATION

To investigate the impact of the similarity measure on the facility location function, we conducted an ablation study comparing our default **Cosine Similarity** with **Euclidean Distance**. Since the facility location function requires a similarity matrix, we converted the Euclidean distance into a similarity measure using a Gaussian kernel:

$$S_{euc}(x, y) = \exp \left(-\frac{\|x - y\|^2}{2\sigma^2} \right)$$

where σ is set to the median of all pairwise Euclidean distances within the set, following the standard median heuristic. We performed experiments using the **InternVL3-8B** model across different compression ratios (1/8, 1/16, and 1/32).

Table 8: Performance with different distance metrics.

T	Metric	VideoMME	MLVU	LVB	LBVBench	NextQA	EgoSchema	Average	Difference
2 ⁻³	Cosine	64.93	71.57	56.69	43.19	81.21	69.40	64.50	+0.38
	Euclidean	64.26	72.26	58.49	43.32	81.17	69.80	64.88	
2 ⁻⁴	Cosine	63.41	69.09	56.47	42.74	80.52	66.20	63.07	-0.27
	Euclidean	62.74	69.50	55.42	42.35	80.37	66.40	62.80	
2 ⁻⁵	Cosine	60.81	66.93	54.23	40.80	79.19	63.80	60.96	-0.89
	Euclidean	59.59	65.59	53.70	39.64	78.92	63.00	60.07	

The results are summarized in Table 8. We observed that while the Euclidean-based metric showed a slight advantage (+0.38 accuracy) at a low compression ratio (1/8), **Cosine Similarity consistently outperformed Euclidean similarity as the compression ratio increased**. Specifically, Cosine similarity achieved higher accuracy at 1/16 (+0.27) and 1/32 (+0.89) ratios.

This suggests that while Euclidean distance captures fine-grained magnitude differences useful when retaining many tokens, **Cosine similarity is more robust for abstract feature space coverage**, particularly in high-compression regimes where capturing the dominant semantic directions is crucial. Based on these findings, we adopted Cosine similarity as the default metric to ensure consistent performance across varying degrees of compression.

I LIMITATIONS AND FUTURE DIRECTIONS

A key limitation of the proposed **FLoC** algorithm lies in the empirical determination of its sole hyperparameter: the block length (T). The choice of T involves a critical trade-off that can impact both performance and computational efficiency.

- **Longer block lengths** allow the algorithm to consider representativeness and diversity over a more extended temporal context. This can be advantageous for capturing the nuances of slowly evolving scenes. However, it also leads to a proportional increase in computational overhead during the token selection process.
- **Shorter block lengths** reduce the computational cost. However, they can introduce a risk of inter-block redundancy. For example, if a long, static scene is segmented into multiple short blocks, the algorithm might select very similar (or even identical) tokens from each block. This diminishes the diversity of the final selected set, as redundancy is only minimized within each block, not across them.

This trade-off implies that the optimal setting for the block length is content-dependent. For instance, a static video (e.g., a lecture) might benefit from a longer block length, whereas a highly dynamic video with frequent cuts may be better served by a shorter one.

A promising direction for future work is to develop a method for automatically determining the block length. One could, for example, employ a pre-processing step using a scene detection algorithm. By aligning block boundaries with detected scene changes, the algorithm could dynamically adapt the block length to the video's temporal structure. This would not only make the framework more robust but could also further enhance performance by ensuring that each block represents a semantically coherent segment, thereby mitigating inter-block redundancy and improving the quality of the selected tokens.