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Abstract001

The rapid progress of Large Language Mod-002
els has advanced agentic systems in decision-003
making, coordination, and task execution. Yet,004
existing agentic system generation frameworks005
lack full autonomy, missing from-scratch agent006
generation, self-optimizing functionality, and007
collaboration, limiting adaptability and automa-008
tion. We propose SwarmAgentic, a frame-009
work for fully automated agentic system gener-010
ation, extending Particle Swarm Optimization011
(PSO) into a language-driven search space for012
structure-level optimization. SwarmAgentic013
instantiates agents from scratch and jointly op-014
timizes agent functionality and collaboration as015
interdependent components. We evaluate our016
method on six real-world, open-ended, and ex-017
ploratory tasks involving high-level planning,018
system-level coordination, and creative reason-019
ing. Given only a task description and an objec-020
tive function, SwarmAgentic outperforms all021
baselines, achieving a +261.8% relative im-022
provement over ADAS on the TravelPlanner023
benchmark, highlighting the effectiveness of024
full automation in structurally unconstrained025
tasks. This framework marks a significant step026
toward scalable and autonomous agentic sys-027
tem design, bridging swarm intelligence with028
fully automated system multi-agent generation.029

1 Introduction030

The advancement of Large Language Models031

(LLMs) (Achiam et al., 2023; Guo et al., 2025)032

has substantially advanced the capabilities of agen-033

tic systems(Du et al., 2023; Shinn et al., 2024;034

Wang et al., 2024), enabling autonomous decision-035

making (Li et al., 2025), coordination (Qian et al.,036

2024), and complex task execution (Xi et al., 2024;037

Zhang et al., 2025). Nonetheless, current agen-038

tic system generation frameworks lack full auton-039

omy, missing from-scratch agent generation, self-040

optimizing functionality, and collaboration (Wu041

et al., 2023; Li et al., 2023; Hong et al., 2023).042

These design rigidities limit adaptability and scal- 043

ability, suppress the emergence of self-optimizing 044

system behaviors, and impose significant engineer- 045

ing overhead. As a result, such systems struggle to 046

accommodate diverse and complex task specifica- 047

tions without substantial manual intervention. 048

This challenge is further amplified in open- 049

ended, exploratory tasks that demand high-level 050

planning and system-level coordination, where 051

both agents and their collaboration strategies must 052

be synthesized from scratch. In such struc- 053

turally unconstrained settings, fixed templates and 054

static pipelines become ineffective. To address 055

this, a practical framework must support three 056

key capabilities: From-Scratch Agent Generation, 057

Self-Optimizing Agent Functionality, and Self- 058

Optimizing Agent Collaboration, enabling scalable, 059

fully autonomous agentic system construction. 060

While recent work has explored agentic system 061

automation (Khattab et al., 2023; Zhang et al.; 062

Wang et al., 2023), no existing framework satisfies 063

all three autonomy criteria. SPP (Wang et al., 2023) 064

lacks from-scratch agent generation, behavior adap- 065

tation, and collaboration restructuring. EvoA- 066

gent (Yuan et al., 2024) and AgentSquare (Shang 067

et al., 2024) support functionality optimization but 068

rely on fixed structures. AutoAgents (Chen et al., 069

2023a), AFlow (Zhang et al., 2024a), Agent Sym- 070

bolic Learning (Zhou et al., 2024), and ADAS (Hu 071

et al., 2024) depend on templates or seed agents, 072

and thus fail to generate agents from scratch. As 073

shown in Tab. 1, no prior work jointly supports all 074

three capabilities in a fully automated framework. 075

To address this gap, we introduce SwarmAgen- 076

tic, a framework that extends Particle Swarm Op- 077

timization (PSO) (Kennedy and Eberhart, 2002) 078

into a language-driven search space, enabling from- 079

scratch agent generation and the self-optimization 080

of both agent functionalities and collaboration 081

strategies, entirely without human intervention. 082

The gradient-free, population-based nature of PSO 083

1



Framework From-Scratch
Agent Generation

Self-Optimizing
Agent Functionality

Self-Optimizing
Agent Collaboration

SPP (Wang et al., 2023) ✁ ✁ ✁
EvoAgent (Yuan et al., 2024) ✁ ↭ ✁
AgentSquare (Shang et al., 2024) ✁ ↭ ✁
AutoAgents (Chen et al., 2023a) ✁ ↭ ↭
AFlow (Zhang et al., 2024a) ✁ ↭ ↭
Agent Sym. Learning (Zhou et al., 2024) ✁ ↭ ↭
ADAS (Hu et al., 2024) ✁ ↭ ↭
SwarmAgentic ↭ ↭ ↭

Table 1: Comparison of SwarmAgentic and existing frameworks across three dimensions of agentic system autonomy.
SwarmAgentic is the only framework satisfying all three, enabling fully automated and scalable agentic system
generation without human intervention. See Appendix A for definitions and capability assessments.

makes it particularly well-suited for exploring sym-084

bolic, non-differentiable agentic system design085

spaces, supporting parallel search over diverse086

agentic system configurations and iterative refine-087

ment of complete agentic systems.088

Specifically, SwarmAgentic represents each089

agentic system as a particle, encoding agents and090

their collaboration strategies in structured language.091

Unlike traditional PSO, which optimizes numerical092

vectors, SwarmAgentic employs language-based093

transformations for velocity and position updates,094

ensuring interpretable optimization. The process095

begins with particle initialization to generate di-096

verse agentic systems, followed by LLM-driven097

flaw identification to detect inefficiencies. Velocity098

updates integrate failure-driven adjustments, per-099

sonal best guidance, and global best guidance to100

balance self-learning and swarm-based improve-101

ments. Position updates iteratively refine system102

configurations until a stopping criterion is met.103

We evaluate SwarmAgentic on six real-world,104

open-ended, and exploratory tasks that demand105

high-level planning, system-level coordination, and106

creative reasoning. Given only a task descrip-107

tion and an objective function, SwarmAgentic con-108

sistently outperforms prior methods, achieving a109

261.8% relative gain over ADAS on TravelPlan-110

ner, and outperforming all baselines across Trip111

Planning, Meeting Planning, Calendar Scheduling,112

Creative Writing, and MGSM. These results high-113

light the effectiveness of fully automated agentic114

system generation on structurally unconstrained115

tasks, where no fixed templates or handcrafted116

agents can be reused. This framework marks a117

significant step toward scalable and autonomous118

agentic system design, bridging swarm intelligence119

with fully automated system generation.120

The key contributions of this work are:121

1. SwarmAgentic enables fully automated agen- 122

tic system generation, leveraging a language- 123

driven PSO framework for agent generation, self- 124

optimization, and adaptive collaboration without 125

predefined agents or human intervention. 126

2. We reformulate PSO as a language-driven opti- 127

mization process, encoding agents and their collab- 128

oration strategies as structured representations. 129

3. We develop a Failure-Aware Velocity Update 130

mechanism, integrating LLM-guided flaw identifi- 131

cation to dynamically refine system configurations, 132

ensuring targeted self-optimization. 133

4. SwarmAgentic achieves SOTA performance on 134

real-world, open-ended tasks requiring high-level 135

planning and system-level coordination, given only 136

a task description and an objective function. 137

2 Related Work 138

2.1 Agentic System Generation 139

LLM-based multi-agent frameworks (Li et al., 140

2023; Wu et al., 2023; Hong et al., 2023) enhance 141

task-solving through agent collaboration but rely 142

on fixed workflows and human intervention, lim- 143

iting adaptability. Recent approaches, such as 144

SPP (Wang et al., 2023) and AgentVerse (Chen 145

et al., 2023b), automate large-scale agent genera- 146

tion—SPP simulates multi-persona collaboration, 147

while AgentVerse assembles expert teams. AutoA- 148

gents (Chen et al., 2023a) refines agents through 149

discussion-driven iteration, and EvoAgent (Yuan 150

et al., 2024) optimizes multi-agent configurations 151

via evolutionary algorithms. Despite progress in 152

automation, these methods treat agent collabora- 153

tion strategies as static templates, restricting adapt- 154

ability. In contrast, SwarmAgentic eliminates pre- 155

defined constraints by jointly optimizing agent 156

functionality and collaboration strategies through 157
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a language-driven PSO framework, enabling fully158

automated and scalable agentic system generation.159

2.2 Agentic System Optimization160

Optimizing agentic systems requires refining both161

agent functionalities and collaboration strategies.162

In single-agent settings, methods like Agent-163

Pro (Zhang et al., 2024b) improve agent poli-164

cies through trajectory-based updates, while multi-165

agent approaches, such as GPTSwarm (Zhuge166

et al., 2024) and DyLAN (Liu et al., 2024), fo-167

cus on optimizing inter-agent coordination. AU-168

TOACT (Qiao et al., 2024) refines agent decisions169

through filtered trajectories, while AutoFlow (Li170

et al., 2024) leverages reinforcement learning for171

workflow optimization. ADAS (Hu et al., 2024)172

and AgentSquare (Shang et al., 2024) further en-173

hance adaptability by exploring diverse system174

module compositions. Additionally, Agent Sym-175

bolic Learning (Zhou et al., 2024) and GödelA-176

gent (Yin et al., 2024) leverage text-based gradi-177

ent optimization for recursive self-improvement.178

However, these methods separately optimize agent179

functionality and collaboration, limiting adaptabil-180

ity. SwarmAgentic unifies both as interdependent181

components, using language-driven PSO to dynam-182

ically refine agentic systems.183

3 Preliminary184

3.1 Agentic System Optimization185

An agentic system at generation t, denoted as186

S(t)
i , represents the i-th solution within the pop-187

ulation. It comprises an agent set A(t)
i =188

{A(t)
i,1, A

(t)
i,2, . . . , A

(t)
i,m} and a collaborative struc-189

ture W(t)
i . Each agent A(t)

i,k, where k → {1, . . . ,m},190

is represented as: A(t)
i,k =

(
I(t)i,k , R

(t)
i,k, P

(t)
i,k

)
, where191

I(t)i,k is the agent identifier, uniquely defining its192

role within the system, R(t)
i,k is the responsibility,193

specifying the tasks it is capable of performing,194

and P (t)
i,k is the execution policy, governing its195

decision-making and task execution. Agents op-196

erate within a collaborative structure, defined as:197

W(t)
i = {W (t)

i,1 ,W
(t)
i,2 , . . . ,W

(t)
i,n}, where each step198

W (t)
i,l , l → {1, . . . , n} assigns a specific agent A(t)

i,k199

to execute the corresponding task. SwarmAgentic200

iteratively refines the agent set A and collabora-201

tive structures W to optimize the agentic system202

S, aiming to maximize task performance, which203

is quantitatively assessed by the fitness function204

J(S). The Basic Structure of the Agentic System 205

is detailed in Appendix D.1. 206

3.2 Particle Swarm Optimization 207

PSO (Kennedy and Eberhart, 2002), inspired by 208

swarm intelligence, models the dynamic adapta- 209

tion processes observed in natural systems, such as 210

bird flocking and fish schooling. Each particle iter- 211

atively refines its position based on individual expe- 212

riences while incorporating shared knowledge from 213

the swarm, balancing exploration and exploitation. 214

This decentralized and self-organizing mechanism 215

makes PSO particularly well-suited for optimiza- 216

tion in complex search spaces. Each particle main- 217

tains a position x(t)i , representing a candidate solu- 218

tion, and a velocity v(t)i , which updates its move- 219

ment in the search space. The position and velocity 220

updates follow: 221

v(t+1)
i = ωv(t)i + c1r1(p→i ↑ x(t)i ) + c2r2(g ↑ x(t)i ), (1) 222

223
x(t+1)
i = x(t)i + v(t+1)

i , (2) 224

where p→i is the personal best found by particle i, 225

and g is the global best in the swarm. The iner- 226

tia weight ω balances exploration and exploitation, 227

while the learning coefficients c1, c2 determine the 228

influence of personal and global bests. The stochas- 229

tic factors r1, r2 introduce randomness to enhance 230

diversity and prevent premature convergence. After 231

each iteration, each particle is evaluated using the 232

fitness function J , guiding the optimization pro- 233

cess until a predefined stopping criterion, such as 234

a fixed number of iterations, is met. Unlike tra- 235

ditional PSO on continuous vectors, our setting 236

optimizes discrete, structured configurations. We 237

reinterpret velocity and position updates as seman- 238

tic transformations over language-based represen- 239

tations, enabling swarm-based search in symbolic, 240

high-dimensional language spaces. 241

4 SwarmAgentic 242

SwarmAgentic adapts PSO to a language-based 243

search space, optimizing agentic systems as struc- 244

tured textual representations. Unlike traditional 245

PSO in continuous vector spaces, it explores a 246

combinatorial space of agent functionalities and 247

collaboration strategies. Each particle encodes an 248

agentic system in language, and position updates 249

are realized as text-based transformations guided 250

by structural feedback, enabling population-based 251

search in discrete, non-numeric domains. 252
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Figure 1: Overview of SwarmAgentic for automated agentic system optimization. (1) Initialization: Generates a
diverse population of agentic systems, encoding agent sets, and collaboration structures in a structured language
space. (2) Particle Update: Iteratively refines agentic systems through failure-aware velocity updates and position
updates, incorporating failure-driven adjustments, personal best guidance, and global best guidance. Both velocity
and position updates operate on structured language representations, enabling interpretable transformations over
agent roles and collaboration strategies (see Appendix E.1 for examples). (3) Search Result: Returns the best-
performing agentic system g, refined through structured updates that balance self-adaptation and swarm-based
optimization for enhanced coordination and efficiency. The pseudo code for SwarmAgentic is in Appendix D.2

The optimization process begins with particle253

initialization, where candidate agentic systems are254

randomly synthesized from the task description255

using an LLM. Unlike numerical optimization,256

where position updates are directly guided by fit-257

ness scores, SwarmAgentic first performs flaw iden-258

tification by analyzing system performance against259

the objective function, identifying inefficiencies260

before making adjustments to ensure targeted opti-261

mization. Building on flaw identification, SwarmA-262

gentic generates optimization directions through263

failure-aware velocity updates, integrating failure-264

driven adjustments, personal best guidance (self-265

learning), and global best guidance (swarm-based).266

The refinements from velocity updates are applied267

through position updates, modifying agent func-268

tionalities and collaboration strategies. By trans-269

lating optimization directions into concrete adjust-270

ments, position updates iteratively refine agentic271

system configurations until the predefined itera-272

tion limit is met. The best-performing system g273

is retained as the final solution. The following274

sections detail each step, illustrating how SwarmA-275

gentic transitions from numerical-based updates to276

language-driven transformations for structured and277

interpretable optimization.278

4.1 Particle Initialization279

SwarmAgentic initializes a diverse population of280

candidate agentic system S(0)
i each represented as281

a particle in the PSO search space. A system com-282

prises a collaborative structure W(0)
i and an agent283

set A(0)
i , with its configuration encoded as an ini- 284

tial position x(0)i . The velocity v(0)i governs iter- 285

ative textual modifications, progressively refining 286

Ai and Wi throughout the optimization process. 287

To enhance structural diversity, we employ a 288

temperature-controlled sampling strategy. Specif- 289

ically, low-temperature particles generate stable 290

configurations closely aligned with established pat- 291

terns. Medium-temperature particles introduce 292

moderate variability, balancing structural stability 293

and design innovation. High-temperature particles 294

maximize exploration, yielding unconventional ar- 295

chitectures that expand the search space. This strat- 296

ification balances exploitation of high-performing 297

structures with exploration of novel solutions. 298

Velocity initialization influences early search by 299

directing particles toward promising regions while 300

maintaining diversity. Initial velocities are assigned 301

based on estimated fitness, promoting convergence 302

while preventing stagnation in suboptimal config- 303

urations. The personal best of each particle is set 304

to its initial position, with fitness evaluated using 305

predefined task-specific metrics. The global best 306

remains undefined until all particles are assessed, 307

after which the top-performing configuration serves 308

as a reference for subsequent optimization. 309

4.2 Flaw Identification 310

In language-driven optimization frameworks, iden- 311

tifying flaws is essential to ensure refinements are 312

targeted and effective. Unlike traditional PSO, 313

which updates positions based on scalar fitness 314
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scores, SwarmAgentic detects system deficiencies315

through an LLM-driven analysis of execution fail-316

ures, enabling structured and interpretable updates.317

Flaws in agentic systems can be categorized into318

agent flaws and collaborative structures flaws, both319

of which impact efficiency and reliability. Agent320

flaws include missing agents that leave critical tasks321

unassigned, redundant agents that introduce inef-322

ficiencies, and ambiguous policies that hinder co-323

ordination. Collaborative structures flaws encom-324

pass missing steps that disrupt execution, redundant325

steps that increase overhead, incomplete contextual326

information that prevents agents from making in-327

formed decisions, and misaligned task outcomes328

that propagate errors to subsequent steps, leading to329

cascading failures. SwarmAgentic systematically330

identifies system deficiencies through structured331

evaluation. Task performance is assessed based on332

the objective function, producing an error set E(t)
i .333

Given E(t)
i and the current system S(t)

i , an LLM334

analyzes failure patterns and derives flaw f (t+1)
i ,335

which consists of agent flaws and structures flaws.336

This structured diagnosis ensures that velocity up-337

dates are informed by actual performance bottle-338

necks rather than arbitrary modifications, leading339

to more effective system refinements.340

4.3 Failure-Aware Velocity Update341

SwarmAgentic enhances traditional PSO by incor-342

porating memory-based adaptation and language-343

driven velocity updates, structuring refinements as344

textual transformations rather than numerical ad-345

justments. SwarmAgentic leverages an LLM to per-346

form failure-aware refinements, enabling precise347

corrections rather than indiscriminately reinforcing348

past configurations. By integrating failure-driven349

adjustments, personal best guidance, and global350

best guidance, SwarmAgentic systematically elim-351

inates recurring flaws, ensuring that velocity up-352

dates lead to meaningful structural improvements.353

The velocity update follows:354

v(t+1)
i = LLMvel(cfrfF (v(t)i ),

cprp(p
→
i ↑ x(t)i ), cgrg(g ↑ x(t)i )),

(3)355

where cf , cp, cg represent the repulsion coefficient,356

cognitive coefficient, and social coefficient, respec-357

tively, governing failure-driven adjustments, per-358

sonal best guidance, and global best guidance.359

rf , rp, rg are stochastic exploration factors, intro-360

ducing controlled randomness to enhance search361

diversity. F (v(t)i ) encapsulates failure-driven ad- 362

justments, identifying the failed component of the 363

previous velocity update. 364

Failure-Driven Adjustments. SwarmAgentic 365

records failed modifications and uses LLM-based 366

refinement to eliminate ineffective updates. The 367

failure experience term captures unsuccessful ve- 368

locity updates that did not improve task perfor- 369

mance. Integrated into the velocity update, this 370

memory mechanism prevents repeated suboptimal 371

adjustments. To refine updates, SwarmAgentic 372

provides the LLM with identified flaws from the 373

previous configuration f (t)
i , current configuration 374

f (t+1)
i , and prior update plan v(t)i . By analyzing 375

these inputs, the LLM detects persistent flaws and 376

ineffective corrections, refining velocity updates 377

as: 378

cfrfF (v(t)i ) = LLMfail(v
(t)
i , f (t)

i , f (t+1)
i ). (4) 379

Personal Best Guidance. Each particle retains 380

its highest-performing configuration as a personal 381

best p→i . Instead of directly following p→i , Swar- 382

mAgentic utilizes an LLM to compare the current 383

configuration x(t)i with p→i , refining updates based 384

on the identified flaws f (t+1)
i to ensure precise cor- 385

rections. Formally, 386

cprp(p
→
i ↑ x(t)i ) = LLMpers(x

(t)
i , p→i , f

(t+1)
i ). (5) 387

Global Best Guidance. Each particle references 388

the highest-performing configuration in the swarm 389

as the global best g, guiding updates while balanc- 390

ing exploration and exploitation to prevent prema- 391

ture convergence. Instead of directly following g, 392

SwarmAgentic employs an LLM to refine updates 393

by comparing the current configuration x(t)i with g 394

and identifying transferable improvements based 395

on detected flaws f (t+1)
i . Formally, 396

cgrg(g ↑ x(t)i ) = LLMglob(x
(t)
i , g, f (t+1)

i ). (6) 397

4.4 Position Update 398

After updating velocity, each agentic system ap- 399

plies structural transformations to refine its config- 400

uration as follows: 401

x(t+1)
i = LLMpos(x

(t)
i , v(t+1)

i ). (7) 402

SwarmAgentic optimizes agentic systems 403

through two key adaptation mechanisms: (1) 404

Agent-Level Adaptation: Modifies individual 405
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Method Delivery Commonsense Hard Constraint Final
Rate Micro Macro Micro Macro

Direct 100.0 / 100.0 57.3 / 79.4 3.9 / 15.8 11.0 / 27.5 3.3 / 16.1 0.0 / 2.2
CoT (Wei et al., 2022) 100.0 / 100.0 61.0 / 76.7 2.8 / 11.7 10.0 / 22.4 3.3 / 12.8 0.0 / 2.2
Self-Refine (Madaan et al., 2024) 100.0 / 98.9 56.0 / 75.3 1.7 / 7.2 3.1 / 12.4 1.1 / 7.2 0.0 / 1.1
SPP (Wang et al., 2023) 99.4 / 96.7 54.6 / 70.6 1.7 / 5.6 3.8 / 11.4 1.1 / 7.8 0.0 / 0.6
EvoAgent (Yuan et al., 2024) 100.0 / 100.0 64.2 / 81.5 7.8 / 21.1 11.0 / 31.4 4.4 / 18.9 1.1 / 7.2
ADAS (Hu et al., 2024) 100.0 / 100.0 70.9 / 88.5 6.1 / 34.4 17.4 / 50.2 9.4 / 27.8 1.1 / 8.9
SwarmAgentic(5,10) 100.0 / 100.0 70.9 / 92.9 12.8 / 56.1 21.0 / 66.7 9.4 / 52.8 3.3 / 32.2

Table 2: Performance on the TravelPlanner. Each cell shows results in the format: GPT-3.5 / GPT-4o. SwarmAgentic
outperforms all baseline methods, highlighting its effectiveness in automated agentic system generation.

agents A(t)
i,k by adjusting roles I(t)i,k , responsibility406

R(t)
i,k, and execution policies P (t)

i,k to enhance per-407

formance. New agents may be introduced, while408

redundant ones are removed based on feedback.409

(2) Collaborative Structures Reconfiguration:410

Enhances the collaborative structures W(t)
i by411

optimizing task sequencing, refining dependencies,412

and improving inter-agent coordination. Steps413

are reordered to streamline execution, redundant414

ones eliminated to reduce overhead, and new415

steps incorporated as necessary. Through iterative416

refinement, SwarmAgentic continuously improves417

agent functionality and collaborative structures,418

ensuring efficiency, adaptability, and structural419

coherence across generations.420

5 Experiments421

5.1 Experimental Setup422

Tasks. We evaluate SwarmAgentic on six real-423

world tasks spanning planning, collaboration, gen-424

eration, and reasoning. Most are open-ended425

and structurally unconstrained, requiring high-426

level planning, system-level coordination. Specif-427

ically, we consider: (1) TravelPlanner (TP) (Xie428

et al., 2024), which tests long-horizon planning429

under user-defined constraints; (2–4) Trip Plan-430

ning, Meeting Planning, and Calendar Scheduling431

from Natural Plan (NP) (Zheng et al., 2024), which432

involve multi-agent scheduling with conflict min-433

imization; (5) Creative Writing (CW) (Yao et al.,434

2024), which requires coherent multi-paragraph435

generation from unordered key points. These tasks436

challenge predefined agent templates due to their437

structural variability and open-ended semantics.438

Additionally, we include (6) MGSM (Shi et al.,439

2022), a structured math reasoning task where pre-440

defined logic may suffice, to evaluate generaliza-441

tion to template-compatible domains. Dataset de-442

tails and evaluation metrics are in Appendix C.1 443

Baselines. We compare SwarmAgentic with both 444

standard prompting methods and automated ap- 445

proaches for agentic system generation. The 446

prompting baselines include: (1) Direct, where the 447

model responds with a fixed prompt; (2) CoT (Wei 448

et al., 2022), which improves reasoning via step-by- 449

step generation; and (3) Self-Refine (Madaan et al., 450

2024), which iteratively refines outputs through 451

self-feedback. For automated agentic systems, we 452

select methods that minimize task-specific priors 453

to reduce human intervention and better expose the 454

underlying capacity for autonomous agent discov- 455

ery, including: (4) SPP (Wang et al., 2023), which 456

performs multi-turn self-collaboration across mul- 457

tiple personas; (5) EvoAgent (Yuan et al., 2024), 458

which evolves agent configurations via optimiza- 459

tion over roles, prompts, and behavior policies; and 460

(6)ADAS (Hu et al., 2024), which uses a meta agent 461

to discover agentic systems in code through itera- 462

tive generation and refinement. Detailed baseline 463

implementations are in Appendix C.2. 464

Models and Implementation Details SwarmA- 465

gentic, following ADAS, employs distinct models 466

for optimization and execution. Specifically, we 467

use GPT-4o-mini-0718 (OpenAI, 2024b) as the op- 468

timizer, and select GPT-3.5-turbo-0125 (OpenAI, 469

2022), GPT-4o-0806 (OpenAI, 2024a), Claude- 470

3.5-sonnet-0620 (Anthropic, 2024), DeepSeek- 471

V3 (DeepSeek-AI, 2024), Gemini-1.5-Pro (Pichai 472

and Hassabis, 2024) as executor models. Swar- 473

mAgentic is configured with 5 particles and 10 474

optimization iterations, while ADAS is run with a 475

maximum of 30 iterations. 476

5.2 Results 477

Tab. 2 and 3 report results across all tasks. Full 478

agentic systems discovered by SwarmAgentic for 479
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Method Natural Plan Tasks (NP) Creative Writing (CW) MGSM
Trip

Planning
Meeting
Planning

Calendar
Scheduling

Direct 7.3 / 3.7 19.0 / 45.0 19.9 / 43.0 5.0 / 6.3 28.1 / 87.3
CoT (Wei et al., 2022) 9.0 / 1.0 19.0 / 50.0 20.0 / 60.0 5.3 / 7.0 28.7 / 81.0
Self-Refine (Madaan et al., 2024) 4.4 / 4.4 12.0 / 41.0 13.0 / 63.0 5.2 / 6.2 30.5 / 86.4
SPP (Wang et al., 2023) 5.0 / 1.3 4.0 / 33.0 22.0 / 44.0 5.9 / 7.6 55.2 / 84.9
EvoAgent (Yuan et al., 2024) 5.6 / 1.9 4.0 / 38.0 21.6 / 52.0 6.1 / 7.1 57.3 / 87.0
ADAS (Hu et al., 2024) 1.9 / 3.1 11.0 / 43.0 21.0 / 66.0 6.2 / 7.3 29.0 / 87.0
SwarmAgentic(5,10) 13.1 / 13.1 23.0 / 56.0 28.0 / 82.0 8.2 / 8.5 65.6 / 88.4

Table 3: Performance on Natural Plan, Creative Writing, and MGSM. Results are shown as GPT-3.5 / GPT-4o.
SwarmAgentic achieves the highest performance across all tasks, significantly outperforming baseline methods.

Agent Name GPT-4o Claude-3.5-sonnet DeepSeek-V3 Gemini-1.5 Gemini-1.5*

Direct 6.3 5.6 6.4 5.4 -
CoT (Wei et al., 2022) 7.0 5.7 5.9 5.8 -
Self-Refine (Madaan et al., 2024) 6.2 5.8 6.1 5.4 -
SPP(Wang et al., 2023) 7.6 8.0 8.3 7.1 -
EvoAgent(Yuan et al., 2024) 7.1 7.9 8.8 6.8 -
ADAS(Hu et al., 2024) 7.3 7.9 7.8 7.1 6.6
SwarmAgentic(5,10) 8.5 8.3 9.0 7.5 7.8

Table 4: Performance on Creative Writing when transferring the best agentic system discovered by GPT-4o-mini to
other LLMs. SwarmAgentic consistently outperforms all baselines across different LLMs, demonstrating strong
cross-model transferability. Details of the best-discovered system are provided in Appendix F. * indicates results
where the agent is both trained on Gemini-1.5-flash (Subramanya, 2024) and tested on Gemini-1.5-Pro.

each task are provided in Appendix F.480

SwarmAgentic achieves strong gains in open-481

ended, structurally unconstrained tasks. Swar-482

mAgentic consistently outperforms all baselines on483

TP, NP, and CW—achieving a 261.8% gain over484

ADAS on TP, leading all subtasks in NP, and gen-485

erating more coherent outputs in CW. While prior486

frameworks rely on varying degrees of task-specific487

priors, SwarmAgentic operates solely based on a488

task description and an objective function. These489

results highlight the effectiveness of full autonomy490

in real-world tasks where static templates fall short.491

This underscores its generality across diverse tasks492

without hand-crafted assumptions.493

Full automation remains effective in structured,494

template-compatible tasks. In MGSM, a math495

reasoning task with minimal structural variability,496

SwarmAgentic still achieves the best score. This497

demonstrates strong generalization and confirms498

that autonomy does not trade off performance even499

when predefined logic suffices.500

SwarmAgentic surpasses both manual and auto-501

matic baselines through unified autonomy. Di-502

rect, CoT, and Self-Refine rely on fixed workflows,503

lacking adaptive structure. SPP, EvoAgent, and 504

ADAS offer partial automation, but fall short of 505

full autonomy: SPP depends on rigid persona tem- 506

plates, EvoAgent mutates fixed agent scaffolds, and 507

ADAS initiates its search from hand-crafted seed 508

agents. In contrast, SwarmAgentic constructs agent 509

functionalities, behaviors, and collaboration strate- 510

gies from scratch and jointly optimizes them with 511

interpretable, feedback-driven updates, enabling 512

scalable, task-specific agentic systems. 513

6 Analysis 514

6.1 Cross-Model Transferability Analysis 515

We first optimize the agentic system using GPT-4o- 516

mini and transfer the discovered system to other 517

LLMs to test whether the system found with one 518

model generalizes to others. As shown in Tab. 4, 519

the transferred SwarmAgentic system consistently 520

outperforms all baselines, demonstrating strong 521

cross-model generalizability. Notably, when Swar- 522

mAgentic is directly optimized and evaluated on 523

Gemini-1.5-Pro (Gemini-1.5*), the performance 524

further improves, indicating that model-specific op- 525

timization can yield additional gains. These results 526

suggest that while SwarmAgentic systems exhibit 527
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Methods Score !

Direct 6.2 0%

Different Iteration Count
SwarmAgentic(3,1) 5.9 -4.8%
SwarmAgentic(3,5) 6.4 +3.2%
SwarmAgentic(3,10) 7.0 +12.9%

Different Particle Count
SwarmAgentic(1,5) 6.3 +1.6%
SwarmAgentic(3,5) 6.7 +8.1%
SwarmAgentic(5,5) 6.9 +11.3%

Different Design Settings
SwarmAgentic(5,10) w/o Collab. Struc. Reconfig. 6.7 +8.1%
SwarmAgentic(5,10) w/o Agent-Level Adapt. 7.3 +17.7%
SwarmAgentic(5,10) w/o Failure-Driven Adjust. 8.4 +35.5%
SwarmAgentic(5,10) 8.8 +41.9%

Table 5: Ablation Study on Creative Writing, evaluating
the impact of key components and hyperparameters in
SwarmAgentic. Removing Failure-Driven Adjustments,
Agent-Level Adaptation, or Collaborative Structures Re-
configuration degrades performance, confirming their
importance. Increasing iteration counts and particle
counts improves performance, highlighting the benefits
of iterative refinement and broader exploration. ! indi-
cates the differences compared with Direct.

robust transferability across foundation models, tai-528

loring the optimization to the target LLM remains529

beneficial for achieving optimal results.530

6.2 Ablation Study531

We assess the impact of key components in Swar-532

mAgentic, along with the effects of varying itera-533

tion counts and particle counts. A comprehensive534

analysis is conducted on 20 instances of the CW535

task, with results in Tab. 5.536

Component Analysis. To analyze the optimiza-537

tion dynamics of SwarmAgentic, we assess the im-538

pact of its three core mechanisms: Failure-Driven539

Adjustments, Agent-Level Adaptation, and Collab-540

orative Structures Reconfiguration. As shown in541

Tab. 5, removing failure-driven adjustments allows542

errors to persist across iterations, significantly im-543

pairing performance. Disabling agent-level adapta-544

tion restricts role flexibility, reducing system adapt-545

ability. Excluding collaborative structures reconfig-546

uration disrupts task sequencing and dependency547

management, leading to execution inefficiencies.548

Impact of Iteration and Particle Count. Tab. 5549

shows that increasing either training iterations or550

particle count improves performance. More itera-551

tions enable progressive refinement through struc-552

tured feedback, while a larger particle set enhances553

exploration, yielding up to +11.3% improvement554

Figure 2: Search trajectory of SwarmAgentic on Trav-
elPlanner. The Success Rate (SR) improves iteratively
as specialized agents are introduced to refine constraint
handling and enhance plan feasibility.

over Direct. These results highlight the benefits of 555

both iterative optimization and population diversity 556

in generating high-quality agentic systems. 557

6.3 Case Study: Search Trajectory on TP 558

Fig.2 illustrates the iterative optimization of Swar- 559

mAgentic on TP, refining both agent sets and col- 560

laborative structure. The process begins with intro- 561

ducing a Quality Assurance Specialist and a veri- 562

fication step for accommodations, boosting SR to 563

11%. Adding a dedicated verifier to check bud- 564

get and preference alignment raises performance 565

to 22%. Finally, the Quality Assurance Specialist 566

is updated to explicitly enforce budget compliance, 567

achieving a 33% SR and surpassing all baselines. 568

While the figure highlights agent evolution, collab- 569

orative structure optimization occurs in parallel, re- 570

configuring task dependencies and execution order 571

to enhance coordination. See App. E.1 for step- 572

by-step illustrations of this evolution process, and 573

App. F.5 for representative agentic systems found 574

by SwarmAgentic and ADAS. 575

7 Conclusion 576

We proposed SwarmAgentic, a language-driven 577

PSO framework that enables fully automated, self- 578

optimizing agentic systems. By integrating LLM- 579

guided optimization, our method refines agent sets 580

and collaborative structures dynamically, overcom- 581

ing the rigidity of existing approaches. Extensive 582

experiments on complex, real-world tasks show 583

superior adaptability, constraint satisfaction, and 584

coordination. SwarmAgentic bridges swarm intelli- 585

gence and autonomous agent evolution, paving the 586

way for scalable, self-optimizing agentic systems. 587
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Limitations588

Lack of Inductive Priors. SwarmAgentic is de-589

signed for agentic system construction in settings590

without predefined structural assumptions. While591

this promotes generalization to open-ended tasks,592

the framework does not incorporate inductive pri-593

ors—such as domain-specific templates or hier-594

archical agent roles—that may accelerate conver-595

gence in more structured environments. Integrating596

such priors through language-driven initialization597

or constraint-guided search presents a promising598

direction for future work, offering a trade-off be-599

tween structure-guided efficiency and open-ended600

flexibility.601

LLM Limitations. Despite its effectiveness in602

automated agentic system generation, SwarmAgen-603

tic inherits inherent limitations of LLMs, particu-604

larly in factual reliability and grounded interaction.605

Hallucinations and Inaccuracies. SwarmA-606

gentic relies on LLMs for structured reasoning607

and decision-making, which makes it susceptible608

to hallucinations—plausible but incorrect outputs.609

These errors can propagate through optimization610

cycles, affecting agent configurations and coordina-611

tion structures. While iterative refinement helps612

mitigate issues, persistent inaccuracies may re-613

quire integration of external knowledge or retrieval-614

augmented mechanisms.615

Lack of Embodied Interaction. Operating purely616

in a text-based environment, SwarmAgentic lacks617

perception and action capabilities in real-world con-618

texts. Unlike embodied systems, it cannot pro-619

cess multimodal inputs or interact with physical620

environments, limiting its applicability in dynamic,621

sensor-driven tasks. Future extensions could ex-622

plore integration with multimodal models or em-623

bodied agents to bridge this gap.624
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A Agentic Autonomy Evaluation Framework 870

A.1 Defining Agentic Autonomy: Three Core Properties 871

We define three core properties to evaluate the level of autonomy in agentic system generation. These 872

properties are mutually exclusive and collectively reflect the system’s ability to construct, adapt, and scale 873

agent-based solutions. 874

• From-Scratch Agent Generation requires that the framework must dynamically synthesize complete 875

agent instances—including their roles, decision logic, and internal structure—without relying on 876

predefined functional modules, such as hard-coded operators, or task-specific behaviors. Minimal 877

task-agnostic scaffolding (e.g., I/O wrappers or abstract interface definitions) may be reused, but 878

all task-specific reasoning strategies, coordination flows, and behavioral compositions must be 879

newly generated based on the task context. This capability is essential for real-world, open-ended 880

tasks involving high-level planning, system-level coordination, and creative reasoning, where agent 881

functionalities and coordination patterns must be automatically derived from the task description and 882

objective function. Manual design or fixed generation pipelines impose structural priors that hinder 883

adaptability and prevent the system from generalizing to novel or diverse scenarios. 884

• Self-Optimizing Agent Functionality indicates whether an agent’s internal logic, such as its role, 885

responsibility, or execution policy, can be automatically refined by the system itself, during execution 886

or across iterations, in response to feedback or performance signals, without manual intervention. 887

This dynamic adaptation must target the agent’s own behavior (not merely global workflow wiring) 888

and go beyond a fixed, static prompt. This is particularly important in exploratory tasks where agents 889

often face ambiguous goals or unexpected failures. Without self-adjustment, the system would rely 890

on brittle static prompts and require external corrections, undermining its autonomy and scalability. 891

• Self-Optimizing Agent Collaboration indicates whether the framework can autonomously re- 892

configure collaborative structures, including task sequencing, dependency refinement, inter-agent 893

coordination, and the addition or removal of execution steps. This supports dynamic restructuring of 894

how agents interact to improve efficiency and adaptability. Effective collaboration in open-ended 895

multi-agent settings demands flexibility: task decomposition, role delegation, and information flow 896

often need to be revised mid-execution. Without the ability to restructure inter-agent workflows, the 897

system cannot recover from coordination failures or adapt to emergent task constraints. 898

A.2 Autonomy Evaluation of Existing Agentic Frameworks 899

We evaluate each baseline framework against these autonomy properties defined above. Below we provide 900

justification for each binary assignment in Tab. 1. 901

• SPP (Wang et al., 2023) does not satisfy From-Scratch Agent Generation: it relies on a hard- 902

coded multi-persona prompt scaffold that prescribes the three-stage pattern (persona identification 903

→ brainstorm → revision) and embeds two hand-crafted examples. The agents’ roles, dialogue 904

order and interaction protocol are therefore predefined rather than synthesised from the task. SPP 905

also fails Self-Optimizing Agent Functionality: the underlying prompts and decision policies are 906

frozen, so feedback only changes the answer text, not the agents’ own behaviour. It likewise fails 907

Self-Optimizing Agent Collaboration, because the interaction pattern cannot be expanded, pruned 908

or reordered at run time. 909

• EvoAgent (Yuan et al., 2024) does not satisfy From-Scratch Agent Generation: evolution begins 910

from a hand-written specialist agent supplied by MetaGPT, AutoGen, or a similar template, and 911

merely mutates its roles, skills and prompts, so the core logic is derived rather than synthesised 912

directly from the task. It does satisfy Self-Optimizing Agent Functionality, as LLM-guided 913

mutation plus fitness evaluation iteratively refines each agent’s internal behaviour. However, it 914

fails Self-Optimizing Agent Collaboration: the interaction topology is fixed by the underlying 915

framework—evolution can modify individuals but cannot reorder tasks, alter message routing or 916

create new coordination flows. 917
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• AgentSquare (Shang et al., 2024) does not satisfy From-Scratch Agent Generation: search starts918

from a fixed library of four standardised module types—planning, reasoning, tool-use and mem-919

ory—extracted from sixteen existing agents. New agents are only recombinations or mutations of920

these predefined modules, so core behaviour is not synthesised solely from the task description.921

It satisfies Self-Optimizing Agent Functionality, since each module can be mutated or rewritten922

by the LLM and retained or discarded based on performance, allowing an agent’s internal logic to923

evolve across iterations. It fails Self-Optimizing Agent Collaboration: the framework optimizes a924

single-agent modular architecture and never reconfigures multi-agent interaction patterns or execution925

topology.926

• AutoAgents (Chen et al., 2023a) does not satisfy From-Scratch Agent Generation: the framework927

is hard-wired with four manager roles—Planner, Agent-Observer, Plan-Observer, and a run-time928

Action-Observer. These modules embed planning, evaluation, and dispatch logic, exceeding the929

allowance for minimal task-agnostic scaffolding and anchoring core reasoning to a preset template930

rather than synthesizing it solely from the task description. These human-designed interventions931

limit their scalability and functionality (Yuan et al., 2024). Specifically, AutoAgents relies on these932

four predefined manager roles, and all agent generation and collaboration processes must revolve933

around them. The agent team structure and execution plan are not freely synthesized solely from934

the task but are constrained within a fixed template. This restricts the system’s flexibility and935

dynamic generation capability in adapting to complex and variable tasks. For example, it cannot936

effectively handle highly open-ended tasks like TravelPlanner that require dynamic multi-role and937

complex constraint coordination. It satisfies Self-Optimizing Agent Functionality: each task-938

specific expert executes a THINK↓PLAN↓ACT↓REFLECT loop that automatically rewrites its939

own prompt, plan, and memory in response to feedback. It also satisfies Self-Optimizing Agent940

Collaboration: the planner–observer dialogue can add or remove experts and resequence steps,941

while the Action-Observer dynamically adjusts the plan during execution.942

• AFlow (Zhang et al., 2024a) fails From-Scratch Agent Generation: it assembles workflows from a943

fixed palette of hard-coded operators (Generate, Revise, Ensemble, Test), so task-specific logic944

is selected rather than newly synthesized. It satisfies Self-Optimizing Agent Functionality, as945

execution feedback triggers automatic prompt edits, control-flow tweaks, and operator replacement946

without human input. It also satisfies Self-Optimizing Agent Collaboration, because the MCTS947

search can dynamically reorder tasks, add or prune branches, and revise coordination strategies.948

• Agent Symbolic Learning (Zhou et al., 2024) does not satisfy From-Scratch Agent Generation,949

because it starts from a manually crafted pipeline inherited from prior work (Zhou et al., 2023) rather950

than synthesising roles directly from the task description. It does meet Self-Optimizing Agent951

Functionality: each node’s prompt and tool usage are refined via symbolic gradients driven by952

language loss. The system also satisfies Self-Optimizing Agent Collaboration, since the pipeline953

optimizer can add, delete or move nodes to restructure coordination.954

• ADAS (Hu et al., 2024) fails From-Scratch Agent Generation: the search starts from seven hand-955

written seed agents, so new agents are mutated variants of these seeds rather than being created956

solely from the task description. It satisfies Self-Optimizing Agent Functionality, as the meta-agent957

repeatedly rewrites each candidate’s code, prompts, and tool calls using performance feedback,958

preserving only the best variants. It satisfies Self-Optimizing Agent Collaboration, since the959

meta-agent can insert or remove internal roles and reorder their interactions, letting coordination960

structures evolve across iterations.961

B Comparison with MODEL SWARMS: From Model Fusion to Agentic System962

Generation963

MODEL SWARMS (Feng et al., 2024) is a collaborative optimization framework that adapts pretrained964

LLM experts by searching in the model weight or token probability space. It applies particle swarm965
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optimization (PSO) to iteratively interpolate and update a pool of existing models, guided by a task-specific 966

utility function. The goal is to discover a single adapted model that performs well under limited data 967

conditions, without requiring fine-tuning or strong assumptions about expert composition. 968

Despite sharing high-level inspiration from swarm intelligence, our approach differs fundamentally from 969

MODEL SWARMS in objective, search space, optimization strategy, and output structure. While MODEL 970

SWARMS optimizes model parameters within a fixed expert pool, our method explores a language-based 971

agentic system design space. We construct executable multi-agent systems from scratch—each comprising 972

dynamic roles, internal logic, tool usage, and coordination strategies—based solely on task descriptions. 973

Additionally, whereas MODEL SWARMS relies on interpolation and performance-based selection, we 974

introduce a Failure-Aware Velocity Update mechanism that performs symbolic, LLM-guided rewriting 975

of agent functionalities and collaboration flows. Finally, the outputs are categorically distinct: MODEL 976

SWARMS produces a single, opaque model optimized for static evaluation, while our framework generates 977

a modular, interpretable agentic system capable of reasoning, adapting, and evolving in complex, dynamic 978

environments. This marks a paradigm shift from model fusion to full-system generation. 979

C Experimental Details 980

C.1 Dataset Statistics and Evaluation 981

MGSM Following (Hu et al., 2024), we sample 128 training and 800 test questions. 982

Creative Writing We use all 100 tasks, reserving the first 5 for training and the remaining 95 for 983

evaluation. 984

Natural Plan We train on a difficulty-balanced subset of the Natural Plan dataset: one example per 985

difficulty level—cities-to-visit N → [3, 10] for Trip Planning, friends-to-meet N → [1, 10] for Meeting 986

Planning, and Calendar Scheduling with (i) one-day schedules (N → [3, 7] meetings) and (ii) two-day 987

schedules (D → [1, 5] days apart). This results in 8 Trip Planning and 10 Meeting and Calendar Scheduling 988

training examples. Evaluation is conducted on a held-out validation set comprising 10% of the full dataset, 989

sampled with the same difficulty distribution and disjoint from the training data to avoid leakage. 990

TravelPlanner We follow the setup in (Yuan et al., 2024) and evaluate on 180 user queries. For training, 991

we use 9 representative queries from the original TravelPlanner training set, selected to match the difficulty 992

distribution of the validation set. 993

Evaluation Metrics For all tasks, we follow the evaluation metrics established in the original setting. 994

(1) TP is assessed based on delivery rate, commonsense constraint pass rate, hard constraint pass rate, and 995

final pass rate, with micro and macro strategies providing a detailed analysis of constraint satisfaction; 996

(2) NP employs an exact match score, where generated plans are compared against ground truth using 997

regex-based parsing to extract key details; (3) CW is evaluated using LLM with a zero-shot prompt, 998

assigning scalar scores (1-10) and averaging five samples per output to enhance reliability; (4) MGSM 999

employs an exact match score, where the generated integer answer is compared directly with the reference 1000

answer for correctness. 1001

C.2 Baseline Implementations and Configurations 1002

We detail the setup for all baselines to ensure a fair and representative comparison. For each method, we 1003

follow the official implementation and apply task-specific adaptations where required, consistent with the 1004

original design intent. 1005

1. Direct The LLM answers the input directly without intermediate reasoning or feedback. 1006

2. CoT (Wei et al., 2022). The LLM is prompted to reason step by step before producing a final answer. 1007

3. Self-Refine (Madaan et al., 2024). We adopt the iterative refinement pipeline proposed in the original 1008

paper, using the official codebase and settings. 1009
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4. SPP (Wang et al., 2023). We follow the structured persona prompting format from the original paper.1010

The persona pool and dialogue structure are fixed across tasks, reflecting its hard-coded multi-agent1011

interaction template.1012

5. EvoAgent (Yuan et al., 2024). We adopt the official mutation strategies and role initialization1013

schemes from the released implementation.1014

6. ADAS (Hu et al., 2024). We employ the full Meta Agent Search framework, including 7 pre-1015

written seed agents and meta-agent rewriting policies. Following the original setup, we update1016

task-specific information (e.g., constraints and formats) in the meta-agent prompt to reflect each1017

domain. Additionally, we adapted the role-based methods from the initial library to better fit each1018

task.1019

Prompt Adaptation For all methods, we made necessary prompt word adjustments to fit each task1020

(e.g., "writing result" instead of "answer" for Creative Writing) while preserving each method’s logic. No1021

additional search or adaptation beyond the original algorithm was performed.1022

D Implementation Details1023

D.1 Basic Structure of Agentic System1024

We implement a modular framework for role-based multi-agent collaboration. The system defines struc-1025

tured classes for dynamically instantiating callable functions, parsing inputs, and orchestrating multi-role1026

execution. The Role class serves as a structural placeholder for role-specific behavior, execution policies,1027

and responsibilities, which are dynamically instantiated and optimized via LLM-guided search during the1028

PSO process. The Team class manages inter-agent coordination and information flow. This architecture1029

supports flexible task delegation and compositional control, and is designed for automated agentic system1030

generation and refinement. This framework forms the structural backbone of SwarmAgentic, enabling1031

dynamic agent instantiation and coordination during the PSO-driven search process.1032
1033

def set_forward(next_solution):1034
"""1035
Dynamically creates and returns a callable Python object defined by the input1036

code string.1037
1038

Args:1039
next_solution (str): A string containing valid Python code that defines a1040

function or a callable object.1041
1042

Returns:1043
Callable: The function or callable object generated from the provided code.1044

"""1045
...1046
return func1047

1048
class Role():1049

"""1050
Base class representing a role within an agentic system.1051

1052
Attributes:1053

name (str): Name of the agent.1054
responsibility (str): Description of the agent’s responsibility.1055
policy (str): Operational policy or behavioral guideline for the agent.1056
llm (Any): Language model instance used for generating responses.1057
message (Any): Object that stores the agent’s most recent communication.1058

"""1059
1060

def __init__(self , role: dict , llm) -> None:1061
...1062

1063
def parse_inputs(self , inputs: List) -> str:1064

"""1065
Constructs a task prompt based on the provided inputs.1066

1067
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Args: 1068
inputs (List): A list of inputs , typically including the task and 1069

outputs from other agents. 1070
1071

Returns: 1072
Tuple[str , str]: A tuple containing the current task instance and 1073

combined outputs from other agents. 1074
""" 1075
... 1076
return task_instance , others_outputs 1077

1078
def response(self , task_instance , others_outputs , output): 1079

""" 1080
Generates the agent’s response using LLM. 1081
Args: 1082

task_instance (str): The current task or instruction for this agent. 1083
others_outputs (str): Outputs or messages received from other agents. 1084
output (str): Desired output format or specification. 1085

1086
Returns: 1087

str: The final response generated by the agent. 1088
""" 1089
return self.message.content 1090

1091
def __call__(self , inputs , output): 1092

""" 1093
Executes the agent ’s full decision -making process: input parsing , response 1094

generation , and return. 1095
1096

Args: 1097
inputs (List): List of inputs , including task and other agents ’ outputs. 1098
output (str): Output format specification. 1099

1100
Returns: 1101

str: The response generated by the agent. 1102
""" 1103
task_instance , others_outputs = self.parse_inputs(inputs) 1104
return self.response(task_instance , others_outputs , output) 1105

1106
class Team(): 1107

""" 1108
class for a team , which consists of multiple agents and a workflow about how 1109

they interact with each other. A particle consists of a team , composed of 1110
multiple interacting agents defined by a workflow , and the executable code 1111
generated by LLM_write_forward. 1112

1113
Attributes: 1114
- llm: LLM model to be used 1115
- roles: List of agents in the team 1116
- workflow: Workflow of the team 1117
- task: Task to be solved by the team 1118
- message_pool: Message pool for the team 1119
""" 1120
def __init__(self , llm , logger) -> None: 1121

... 1122
def call(self , required_role: str , inputs: List = [], output: str = ""): 1123

"""call the role with the required agent name. The inputs are the outputs 1124
from other agents. 1125

1126
Args: 1127

required_role (str): name of the required agent. 1128
inputs (List , optional): inputs for the agent. Defaults to []. 1129
output (str , optional): output requirements for the agent. Defaults to " 1130

". 1131
1132

Returns: 1133
response: response of the role. 1134

""" 1135
... 1136
return responses 11371138
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D.2 Pseudo Code for SwarmAgentic 1139

Algorithm 1 Agentic System Search with Particle Swarm Optimization
Require: LLM temperatures {tempi}ni=1, fitness function J : x ↓ R; system initialization function

LLMinit_team; system code-generation function LLMwrite_forward; performance evaluation function
LLMeval; system flaw identification function LLMflaw; velocity initialization function LLMinit_vel;
failure identification function LLMidentify_fail; learning from failure function LLMfail; global best
guidance function LLMglob; personal best guidance function LLMpers; velocity update function
LLMvel; position update function LLMpos;
swarm size N , max iteration T

1: Input: dataset for training D
2: Output: global best checkpoint g
3: // Initialize search
4: for i ↔ 1 to N do
5: // LLMwrite_forward enables automatic code execution
6: Initialize position: x(0)i ↔ LLMinit_team(tempi)
7: Initialize fitness: j(0)i ↔ J(x(0)i , D)

8: Identify Problem: p(0)i ↔ LLMeval(x
(0)
i , j(0)i )

9: Refection Summarization: f (1)
i ↔ LLMflaw(x

(0)
i , p(0)i )

10: Initialize velocity: v(1)i ↔ LLMinit_vel(x
(0)
i , f (1)

i ))

11: Initialize personal best: p→i ↔ x(0)i , jp,i ↔ j(0)i

12: Update Position: x(1)i ↔ LLMpos(x
(0)
i , v(1)i )

13: end for
14: Initialize global best: g ↔ argmaxi j

(0)
p,i , fg ↔ maxi j

(0)
p,i

15: // Start search
16: for t ↔ 1 to T do
17: for all i = 1, . . . , N (in parallel) do
18: Execution:
19: Update Fitness: j(t)i ↔ J(x(t)i , D)

20: Identify Problem: p(t)i ↔ LLMeval(x
(t)
i , j(t)i )

21: Refection Summarization: f (t+1)
i ↔ LLMflaw(x

(t)
i , p(t)i )

Update Global Best:
22: if j(t+1)

i > jg then
23: g ↔ x(t+1)

i ; jg ↔ j(t+1)
i

24: end if
Update Personal Best:

25: if j(t+1)
i > jp then

26: p→i ↔ x(t+1)
i ; jp,i ↔ j(t+1)

i
27: end if
28: Update Velocity:
29: // LLMidentify_fail identify the previous failed adjustments
30: cfrfF (v(t)i ) = LLMfail(v

(t)
i , f (t)

i , f (t+1)
i ) ε Eq. (4)

31: cprp(p→i ↑ x(t)i ) = LLMpers(x
(t)
i , p→i , f

(t+1)
i ) ε Eq. (5)

32: cgrg(g ↑ x(t)i ) = LLMglob(x
(t)
i , g, f (t+1)

i ) ε Eq. (6)
33: v(t+1)

i ↔ LLMvel(cfrfF (v(t)i ), cprp(p→i ↑ x(t)i ), cgrg(g ↑ x(t)i )) ε Eq. (3)
34: Update Position: x(t+1)

i ↔ LLMpos(x
(t)
i , v(t+1)

i ) ε Eq. (7)
35: end for
36: end for
37: return g
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D.3 Prompt Repository1140

We employ the following prompts to achieve the automated generation of agentic systems with PSO.1141

Specifically, we use LLMinit_team to initialize both the roles and the team for each particle at the start1142

of the process, ensuring consistency in team composition and task allocation. LLMwrite_forward is then1143

used to generate the corresponding code based on the initialized roles and the given workflow, enabling1144

forward progression of each particle’s function. To identify problems in the responses, we employ1145

performance evaluation LLMeval, which analyzes the workflow and task execution to reveal underlying1146

issues and explain their root causes in relation to the intended process. Once a problem is identified, flaw1147

identification LLMflaw is applied to trace it back to underlying issues in the role or team configuration.1148

This step helps uncover structural or logical flaws that may hinder performance.1149

Next, we initialize the velocity of each particle LLMinit_vel, considering the current team composition1150

and the identified design flaws. This initialization provides direction and momentum for adjustment1151

in future iterations. We then examine the failed adjustments LLMidentify_fail from the previous iteration1152

using a specialized prompt designed to extract and document ineffective changes. The Learning from1153

Failure prompt LLMfail is used to suggest improved strategies, leveraging past failures to guide more1154

effective future adjustments. To complement this, we use additional prompts to discover meaningful1155

adjustments inspired by both the global best team LLMglob and the personal best team LLMpers, promoting1156

convergence towards optimal configurations. Velocity is updated LLMvel by integrating suggestions from1157

global best guidance, personal best guidance, and failure-driven learning. This multi-source adjustment1158

balances exploration and exploitation. Finally, the team configuration is updated LLMpos according to the1159

plan generated during the velocity update phase, completing one full iteration of the optimization cycle1160

and preparing for the next.1161

Prompt Template for Agents

ROLE_PROMPT = ’’’You are {name}. You are working in a team solving the
following specific task:

<task instance >
{instance}
</task instance >

You are also provided with helpful information from other team members:
<helpful information >
{information}
</helpful information >

# Instruction
Based on the <task instance > and <helpful information >, your responsibility is

: {responsibility}
Please follow the instructions step by step to give an answer:
<instruction >
{policy}
</instruction >

# Output Guidance
Your answer only needs to include: {output}
Think step by step and limit your answer to 100 words.
’’’

1162

Prompt for Agentic System Initialization LLMinit_team

You are an expert in designing a highly efficient , specialized , and
collaborative multi -agent team for a specific task.

** Requirements :**
- The team must break down the task into highly specialized , modular roles.
- Each role should have a focused domain of responsibility , handling only one

1163
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primary aspect of the task.
- The information flow must be strictly modular , with each step primarily

receiving structured input from the outputs of previous steps. Steps can
refer to the initial task definition implicitly as needed , but it should
not be treated as a direct input for workflow dependencies.

- Each step ’s output must be structured and usable as a direct input for
subsequent steps , creating a clear , step -by-step workflow.

- Each step can only be assigned to a single role and cannot involve multiple
roles simultaneously.

- The resulting team structure should allow for easy scalability and clarity ,
ensuring that each module can be independently optimized or replaced
without affecting other parts of the system.

** Deliverables :**
1. Define Each Role:

- Name: A clear and descriptive title.
- Responsibility: A narrowly focused set of tasks aligned with that domain.
- Policy: Specific operational guidelines for fulfilling these tasks.

2. Collaboration Structure:
- Clearly outline how roles interact and pass information to one another.
- Ensure that information flows from one role to another in a well -defined

manner. Each role should clearly know which role ’s output it relies on,
if any. If there is no upstream role , it operates independently (with

no input).
3. Sequential Workflow:

- Illustrate a concrete workflow from start to finish.
- For each step:

* Specify the single role responsible for that step.
* Define its input , which must come from previous roles ’ outputs or be

empty.
* Define its output , which will be used as input for subsequent steps.

- Ensure there is a designated role at the end to integrate all components
into the final deliverable.

Now , giving the following task: {task}

Please design a detailed multi -agent collaborative team that could efficiently
solve the task.

1164

Prompt for System Compilation LLMwrite_forward

You are an expert Python programmer. You are tasked with writing
a function to organize available roles to solve a specific task.
{function description}

You are provided with the following available roles. Each role
can solve a subtask of the complex task:
<available roles >
{roles}
</available roles >

You are also given the workflow of these roles:
<workflow >
{workflow}
</workflow >

Your job is to design the function that represents how the roles
will work together to solve the task.
Use these guidelines when generating the function:
- ALWAYS use **role_response = team.call(role_name: str , inputs: List , output:

str)** to call a role. This will give inputs and required output
instructions to the role and return the role ’s response.
* role_name: The name of the role to call in this step. You can only call

roles in the current team. MUST NOT call a non -existent role from the
available roles.

* inputs: List of the outputs produced by one or more roles in the

1165
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previous steps.
* output: What output is expected from the role in this step? Must be

enclosed in double quotation marks (" output ").
- Use the provided workflow instruction as a guide for designing the function ’

s structure.
- Create a well -organized function that represents how the roles will work

together to solve the task efficiently.
- MUST not make any assumptions in the code.
- Ensure that every variable declared in the function is utilized , with no

unused or redundant variables.
- Ensure the created function is complete and correct to avoid runtime

failures.

# Examples

Here is an example to help you design the function:
<examples >
{examples}
</examples >

1166

Prompt for Performance Evaluation LLMeval

You are an expert assistant. You are tasked with analyzing the given workflow
to identify where issues occurred , leading to the problem. You must
provide a detailed explanation of the cause of the error.

The team is solving the following tasks:
<task >
{task}
</task >

The roles are collaborative in the following workflow:
<workflow >
{workflow}
</workflow >

You are also provided with the problem in the team result:
<problem >
{evaluation}
</problem >

Please provide a detailed explanation of the root cause of the
<problem > at the identified step(s) with by referencing the
detail information of the <task >, while considering factors such
as incorrect execution , missing information , or deviations from the intended

process.

1167

Prompt for Flaw Identification LLMflaw

You are an expert assistant tasked with reflecting on feedback and indicating
specific flaws in the current team.

Given the following feedback:
<feedback >
{feedback}
</feedback >

The team to optimize is as follows , including its roles and collaborative
workflow:

<current team >
{current team}
</current team >

1168
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# Instruction

Based on the <feedback >, identify the specific flaws in the roles or workflow
steps that directly contributed to the <feedback >. The flaw should be
within the following types:
1. Missing Role: Were there missing roles in the team that left certain

tasks inadequately addressed or overlooked? Clearly specify which role
may be needed.

2. Redundant Role: Were there redundant roles in the team that were
unnecessary? Clearly indicate the specific role that is redundant.

3. Role Policy Deficiency: If the policy of the role is sufficiently
instructive , clear , and effective. Are there gaps , ambiguities , or
contradictions in the policy that affect role performance? Clearly
specify the name of the role.

4. Missing Workflow Step: Were there missing steps in the workflow that
left certain tasks inadequately addressed or overlooked? Clearly
specify between which two steps the missing step should have occurred.

5. Redundant Workflow Step: Were there redundant steps in the workflow
that are unnecessary? Clearly indicate the specific role and the exact
step number that is redundant.

6. Insufficient Input: Were the inputs insufficient for the workflow steps
? Assess if it includes all the necessary information needed to get
the role ’s output with its responsibility effectively. Clearly specify
the role responsible for the step and the exact step number where the
input was insufficient.

7. Inappropriate Output: Before identifying an output as inappropriate ,
verify whether the requested output falls within the role ’s scope of
responsibility. If the requested output exceeds the role ’s
responsibility , reassign the task to an existing role better suited
for it or create a new role specifically responsible for the output if
no such role exists. Only when the required output is within the role

’s responsibility and still incorrect , missing , or incomplete should
it be classified as inappropriate output for that role. Clearly
specify the role responsible for the step and the exact step number
where the output was inappropriate.

1169

Prompt for Velocity Initialization LLMinit_vel

You are tasked with optimizing a multi -agent team setup to enhance its
performance in solving a specific task.

The team to optimize is as follows , including its roles and collaborative
workflow:

<current team >
{current_team}
</current team >

However , the <current team >’s performance is insufficient and must be improved
based on the following feedback:

<feedback >
{feedback}
</feedback >

# Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution , when the identified inefficiencies or gaps can be addressed
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through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its

responsibility.
* Delete Role: Remove roles that are redundant , unnecessary , or conflict

with the team ’s primary objectives.
- Use the following OPERATIONS to optimize the workflow of the <current team >:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re -order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific flaw identified in the <

feedback > section.
* Proposed Adjustment: Specify the exact OPERATIONS to address the **

Identified Flaw **.
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Prompt for Failure Identification LLMidentify_fail

You are a strategic advisor focused on enhancing the team ’s performance. Your
role is to carefully analyze the feedback provided and identify failed
adjustments with the previous adjustment plan.

You are given the following feedback on areas for the team
improvement:
<feedback >
{feedback}
</feedback >

You are also provided with the previous adjustment plan , the measures taken to
enhance team performance:

<previous adjustment plan >
{velocity}
</previous adjustment plan >

# Instruction

For each flaw in <feedback >, please apply the following steps:
1. Identified Flaw:

- Clearly outline the specific flaw identified in the <feedback > section.
2. Thought:

- Carefully think if there is any ** Proposed Adjustment ** in the <previous
adjustment plan > section for the exact same ** Identified Flaw **.

3. Failed Adjustment:
- Based on your ** Thought**, quote the exact ** Proposed Adjustment ** as

described in <previous adjustment plan > if there is any ** Proposed
Adjustment ** for the same kind of Identified Flaw in <previous
adjustment plan >. Otherwise , say ’None ’ here.
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Prompt for Learning from Failure LLMfail

You are a strategic advisor focused on enhancing the team ’s performance. Your
role is to carefully analyze the feedback provided and align team
improvements with previous adjustment directions.

The team to optimize is as follows , including its roles and collaborative
workflow:

<current team >
{team}
</current team >

You are given the following feedback , including every "Identified Flaw" and
its "Failed Adjustment ":

<feedback >
{feedback}
</feedback >

# Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its responsibility
.

* Delete Role: Remove roles that are redundant , unnecessary , or conflict
with the team ’s primary objectives.

- Use the following OPERATIONS to optimize the workflow of the <current team >:
* Add Step: Add a new step if a gap exists in the workflow that hinders

overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re -order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific flaw identified in the <

feedback > section.
* Failed Adjustment: Quote the corresponding ** Failed Adjustment ** of the

** Identified Flaw** in <feedback >.
* Proposed Adjustment: Specify the exact OPERATIONS to address the **

Identified Flaw **. Do not reintroduce or reword the same solution in
** Failed Adjustment **.
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Prompt for Learning from the Global Best LLMglob

You are a strategic assistant tasked with improving a team ’s performance by
analyzing the strengths of a higher -performing example team. Your
objective is to understand the specific practices and configurations of
the more optimized team that are directly relevant to solving the current
team ’s issues. You will suggest practical improvements to the current team
without copying outright.

You are tasked with improving the current team ’s roles and collaborative
workflow:

<current team >
{current_team}
</current team >

This team is designed to solve the following types of tasks:
<task >
{task}
</task >

However , the <current team >’s performance is insufficient and must be improved
based on the following feedback:

<feedback >
{feedback}
</feedback >

You have been provided with details of a globally recognized high -performing
team , optimized specifically for solving the same type of <task > as the <
current team >:

<global best team >
{g_best}
</global best team >

# Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution , when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its

responsibility.
* Delete Role: Remove roles that are redundant , unnecessary , or conflict

with the team ’s primary objectives.
- Use the following OPERATIONS to optimize the workflow of the <current team >:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
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contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re -order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific flaw identified in the <

feedback > section.
* Thought: What can we learn from the <global best team >’s descriptions to

do better in the ** Identified Flaw **?
* Comparative Insights:

- Extract specific elements from the <global best team >’s descriptions
that demonstrate excellence in the ** Identified Flaw **.

- Present these elements as part of a structured sentence , explicitly
quoting the key phrases from their role responsibilities , role
policies , step inputs , step outputs , or step orders.

- Ensure the response integrates the quoted descriptions into a
coherent sentence without adding commentary , assumptions , or
analysis.

- If nothing helpful to solve the ** Identified Flaw**, say ’None ’.
* Proposed Adjustment: The adjustment must directly reflect and utilize

the specific phrases quoted in the ** Comparative Insights **. The
wording and content of the adjustment must align with these insights
without introducing unrelated suggestions , rephrased ideas , or
unquoted elements. The response must clearly demonstrate how the
adjustment directly incorporates the practices described in **
Comparative Insights **. If ** Comparative Insights ** is ’None ’, say ’
None ’ here.
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Prompt for Learning from the Personal Best LLMpers

You are a strategic assistant tasked with improving a team ’s performance by
analyzing the strengths of a higher -performing example team. Your
objective is to understand the specific practices and configurations of
the more optimized team that are directly relevant to solving the current
team ’s issues and to suggest practical improvements to your team without
copying outright.

You are tasked with improving the current team ’s roles and collaborative
workflow:

<current team >
{current_team}
</current team >

This team is designed to solve the following types of tasks:
<task >
{task}
</task >

However , the <current team >’s performance is insufficient and must be improved
based on the following feedback:

<feedback >
{feedback}
</feedback >

You are provided with the following "personal best team", identified as the
most effective setup for addressing the <feedback > throughout the sequence
of adjustments made from the initial team setup to the <current team >.

This "personal best team" captures the optimal roles and workflow that
have proven most successful in solving similar <feedback >, serving as a
refined benchmark for guiding improvements to the <current team >’s
performance.

<personal best team >
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{p_best}
</personal best team >

# Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution , when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its

responsibility.
* Delete Role: Remove roles that are redundant , unnecessary , or conflict

with the team ’s primary objectives.
- Use the following OPERATIONS to optimize the workflow of the <current team >:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re -order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific flaw identified in the <

feedback > section.
* Thought: What can we learn from the <personal best team >’s descriptions

to do better in the ** Identified Flaw **?
* Comparative Insights:

- Extract specific elements from the <personal best team >’s
descriptions that demonstrate excellence in the ** Identified Flaw
**.

- Present these elements as part of a structured sentence , explicitly
quoting the key phrases from their role responsibilities , role
policies , step inputs , step outputs , or step orders.

- Ensure the response integrates the quoted descriptions into a
coherent sentence without adding commentary , assumptions , or
analysis.

- If nothing helpful to solve the ** Identified Flaw**, say ’None ’.
* Proposed Adjustment: The adjustment must directly reflect and utilize

the specific phrases quoted in the ** Comparative Insights **. The
wording and content of the adjustment must align with these insights
without introducing unrelated suggestions , rephrased ideas , or
unquoted elements. The response must clearly demonstrate how the
adjustment directly incorporates the practices described in **
Comparative Insights **. If ** Comparative Insights ** is ’None ’, say ’
None ’ here.
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Prompt for Velocity Update LLMvel

You are tasked with optimizing a multi -agent team setup to enhance its
performance in solving a specific task.

The team to optimize is as follows , including its roles and collaborative
workflow:

<current team >
{team}
</current team >

This team is designed to solve the following types of tasks:
<task >
{task}
</task >

# Objective

Develop a detailed adjustment plan focused on optimizing roles and the
collaborative workflow to maximize the <current team >’s performance in
addressing the specified <task >. The adjustments must be based on the
following feedback:

<feedback >
{feedback}
</feedback >

# Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution , when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its

responsibility.
* Delete Role: Remove roles that are redundant , unnecessary , or conflict

with the team ’s primary objectives.
- Use the following OPERATIONS to optimize the workflow of the <current team >:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re -order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.
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- For each Identified Flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific Identified Flaw in the <

feedback > section.
* Proposed Adjustment: Based on the ** Recommended Adjustment **, **Best

Team Insights**, and **Past Best Setup Reflection **, generate a final
adjustment plan that directly addresses the ** Identified Flaw**, while
avoiding any repetition of the ** Failed Adjustments **.
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Prompt for Position Update LLMpos

You are an expert assistant and writer. You are tasked with generating a
refined team from an existing team according to the reflection.

You are given the roles within the current team:
<roles >
{roles}
</roles >

You are also provided with the workflow of the current team:
<workflow >
{workflow}
</workflow >

The team is solving the following types of tasks:
<task >
{task}
</task >

# Instruction

Your job is to update the roles and workflow of the team based on the
following plan:

<plan >
{plan}
</plan >

Use these guidelines when generating the answer:
<system -guidelines >
1. If a role does not require modification in the plan , it must be retained in

the final "roles" list with its original "Name ," "Responsibility ," and "
Policy ."

2. If the plan specifies that a role should be modified , only update the "
Policy "; do not change the "Name" or "Responsibility ."

3. If the plan specifies that a role should be removed , then remove it from
the final "roles" list.

4. If the plan specifies adding a new role , include it in the final "roles"
list with its "Name ," "Responsibility ," and "Policy ."

5. When generating the final answer , verify the total number of roles to
ensure:
- All roles that do not require modification remain unchanged.
- Roles marked for removal are actually removed.
- Newly added roles appear in the final list.
- Modified roles are correctly updated.

6. The information flow must be strictly modular , with each step primarily
receiving structured input from the outputs of previous steps. Steps can
refer to the initial task definition implicitly as needed , but it should
not be treated as a direct input for workflow dependencies.

7. Each step ’s output must be structured and usable as a direct input for
subsequent steps , creating a clear , step -by-step workflow.

8. Each step can only be assigned to a single role and cannot involve multiple
roles simultaneously.

9. The final step in the workflow must produce the exact deliverable specified
in the <task > without referencing any intermediate steps.

</system -guidelines >
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E Case Study 1181

E.1 Optimization Mechanism Illustration 1182

The following example demonstrates how each component of the velocity update—Global Best, Personal 1183

Best, and Failure-Driven Adjustments—contributes to system refinement during the optimization process. 1184

The Global Best guidance led to the first major improvement by introducing a dedicated Quality Assurance 1185

Specialist role, ensuring structural completeness and consistency across the generated travel plan. The 1186

Personal Best guidance triggered the second improvement by identifying a missing verification step 1187

between accommodation planning and downstream modules. To address this, a cross-validation step was 1188

added, enabling the Accommodation Coordinator to verify constraints such as budget, minimum stays, 1189

child suitability, and room availability before forwarding data. Finally, the Failure-Driven Adjustment 1190

mechanism refined the Quality Assurance module by incorporating budget compliance checks, directly 1191

addressing prior execution failures related to cost violations. 1192

This example illustrates how each optimization signal enables targeted refinements, jointly driving 1193

the emergence of well-structured, constraint-compliant agentic workflows. Personal Best Guidance 1194

identified a missing verification step between accommodation planning and downstream tasks. Without 1195

cross-checking accommodations against user requirements, there was a risk of passing forward incomplete 1196

or non-compliant data. To resolve this, a new workflow step was added in which the Accommodation 1197

Coordinator performs a cross-verification of accommodation options to confirm alignment with constraints 1198

such as budget, minimum stays, child suitability, and room count. 1199

Listing 1: Example optimization process of the Personal Best Guidance with LLMpers
1200

// previous team 1201
{ 1202

"roles": [ 1203
... 1204

], 1205
"workflow ": [ 1206

..., 1207
{ 1208

"Step": "2", 1209
"Role": "Accommodation Coordinator", 1210
"Input": "Transportation plan detailing the chosen mode of travel.", 1211
"Output ": "Accommodation plan including the number of nights , recommended 1212
hotels , confirmation of minimum stay requirements , suitability for children , 1213
and the number of rooms needed ." 1214

}, 1215
{ 1216

"Step": "3", 1217
"Role": "Restaurant Advisor", 1218
"Input": "Accommodation plan including the number of nights and recommended 1219
hotels , along with cuisine preferences and dietary restrictions from 1220
travelers.", 1221
"Output ": "Restaurant recommendations for each non -travel day." 1222

} 1223
] 1224

} 1225
// personal best guidance. Output of LLM_pers 1226
{ 1227

"Identified Flaw": "Missing Workflow Step: There is a missing workflow step 1228
between Step 2 and Step 3 that should involve a final review or 1229
cross -verification of accommodation options against user requirements before 1230
the Quality Assurance Specialist review.", 1231
"Thought ": "Incorporating a cross -verification step can prevent oversights and 1232
ensure accommodation options align with requirements before further review.", 1233
"Comparative Insights ": "The personal best team includes a validation step to 1234
’Verify minimum stay requirements for all accommodations ,’ ensuring a thorough 1235
check before final approval.", 1236
"Proposed Adjustment ": "Add a new workflow step after Step 2 where the 1237
Accommodation Coordinator performs a cross -verification of accommodation 1238
options against user requirements before proceeding to Quality Assurance 1239
Specialist ." 1240

} 1241
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1242
// updated team1243
{1244

"roles": [1245
...,1246
{1247
"Name": "Accommodation Coordinator",1248
"Responsibility ": "Plan accommodations for the trip , including the number1249

of nights and suitable hotels.",1250
"Policy ": "1. Review the travel itinerary and number of nights in each1251

city. 2. Research suitable accommodations based on budget and preferences. 3.1252
Verify minimum stay requirements for all accommodations. 4. Confirm the number1253
of rooms needed for all travelers and ensure accommodations align with user1254
constraints. 5. Provide a primary and a secondary accommodation option for each1255
city , explicitly stating whether the selected accommodations meet the minimum1256
stay requirements and suitability for children ."1257

}1258
...1259

],1260
"workflow ": [1261

...1262
{1263

"Step": "2",1264
"Role": "Accommodation Coordinator",1265
"Input": "Transportation plan detailing the chosen mode of travel.",1266
"Output ": "Accommodation plan including the number of nights , recommended1267
hotels , confirmation of minimum stay requirements , suitability for children ,1268
and the number of rooms needed ."1269

},1270
{1271
"Step": "3",1272
"Role": "Accommodation Coordinator",1273
"Input ": "Accommodation plan including the number of nights , recommended1274

hotels , and user constraints .",1275
"Output ": "Cross -verified accommodation options confirming adherence to all1276

specified constraints ."1277
},1278
{1279

"Step": "4",1280
"Role": "Restaurant Advisor",1281
"Input": "Accommodation plan including the number of nights and recommended1282
hotels , along with cuisine preferences and dietary restrictions from1283
travelers.",1284
"Output ": "Restaurant recommendations for each non -travel day."1285

}1286
]1287

}12881289

In this case, Global Best Guidance identified a gap in the original workflow: the absence of a final1290

review step to ensure all travel constraints and requirements were met. While the Travel Plan Integrator1291

emphasized consistency, it lacked a dedicated validation phase. To resolve this, a new Quality Assurance1292

Specialist role was added. This role systematically reviews the entire travel plan—covering transportation,1293

accommodations, dining, and attractions—to catch errors and ensure compliance before finalization.1294

Listing 2: Example optimization process of the Global Best Guidance with LLMglob
1295

// previous team1296
{1297

"roles": [1298
[1299
{1300

"Name": "Transportation Planner",1301
"Responsibility ": "...",1302
"Policy ": "..."1303

},1304
{1305

"Name": "Accommodation Coordinator",1306
"Responsibility ": "...",1307
"Policy ": "..."1308
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}, 1309
{ 1310

"Name": "Restaurant Advisor", 1311
"Responsibility ": "...", 1312
"Policy ": "..." 1313

}, 1314
{ 1315

"Name": "Attraction Specialist", 1316
"Responsibility ": "...", 1317
"Policy ": "..." 1318

}, 1319
{ 1320

"Name": "Travel Plan Integrator", 1321
"Responsibility ": "...", 1322
"Policy ": "..." 1323

} 1324
] 1325
], 1326
"workflow ": [ 1327

... 1328
] 1329

} 1330
// global best guidance. Output of LLM_glob 1331
{ 1332

"Identified Flaw": "The travel plan may lack a final review step to ensure all 1333
constraints and requirements are fully met before confirmation .", 1334
"Thought ": "The global best team incorporates a review process to ensure the 1335
final travel plan is comprehensive and consistent , suggesting the potential 1336
benefit of a dedicated Quality Assurance Specialist role.", 1337
"Comparative Insights ": "The Travel Plan Integrator ’s policy emphasizes the 1338
importance of a review: ’Review the entire plan for consistency and 1339
completeness.’", 1340
"Proposed Adjustment ": "Introduce a new Quality Assurance Specialist role 1341
responsible for reviewing the entire travel plan to ensure compliance with all 1342
constraints and requirements before finalization ." 1343

} 1344
// updated team 1345
{ 1346

"roles": [ 1347
... 1348

{ 1349
"Name": "Travel Plan Integrator", 1350
"Responsibility ": "...", 1351
"Policy ": "..." 1352

}, 1353
{ 1354

"Name": "Quality Assurance Specialist", 1355
"Responsibility ": "Review the entire travel plan to ensure compliance with all 1356
constraints and requirements before finalization .", 1357
"Policy ": "1. Examine the transportation plan for conflicts and alignment with 1358
the itinerary. 2. Verify that accommodations meet all minimum stay and user 1359
constraints. 3. Ensure restaurant recommendations align with traveler 1360
preferences and dietary restrictions. 4. Confirm attraction selections fit 1361
within the planned schedule. 5. Provide feedback for adjustments if necessary ." 1362

} 1363
], 1364
"workflow ": [ 1365

... 1366
] 1367

} 13681369

In this case of Failure-Driven Adjustment, the system identified a recurring issue: the Quality Assurance 1370

Specialist lacked explicit policy guidelines for verifying the accuracy of outputs from preceding roles. This 1371

gap continued to result in budget discrepancies and incomplete itineraries, even after a prior adjustment. 1372

The initial revision introduced a general review process, but it lacked a clear, enforceable structure 1373

and proved ineffective. Building on this insight, the improved adjustment implemented a mandatory 1374

verification process supported by a checklist, ensuring that all outputs are thoroughly reviewed for 1375

accuracy and completeness before the finalization of the travel plan. This refinement transforms a vague 1376
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recommendation into a structured and enforceable policy, significantly enhancing the integrity of the final1377

output.1378

Listing 3: Example optimization process of the Failure-Driven Adjustments with LLMfail
1379

// previous team1380
{1381

"roles": [1382
...,1383
{1384

"Name": "Quality Assurance Specialist",1385
"Responsibility ": "Review the entire travel plan to ensure compliance with all1386
constraints and requirements before finalization .",1387
"Policy ": "1. Examine the transportation plan for conflicts and alignment with1388
the itinerary. 2. Verify that accommodations meet all minimum stay and user1389
constraints. 3. Ensure restaurant recommendations align with traveler1390
preferences and dietary restrictions. 4. Confirm attraction selections fit1391
within the planned schedule. 5. Provide feedback for adjustments if necessary ."1392
}1393

...1394
],1395
"workflow ": [1396

...1397
]1398

}1399
//Failure -Driven Adjustment. Output of LLM_fail.1400
{1401
"Identified Flaw": "Role Policy Deficiency: The policy for the Quality Assurance1402

Specialist lacks specific guidelines for verifying the accuracy of outputs from1403
previous steps , which could prevent budget discrepancies and incomplete1404
itineraries .",1405

"Failed Adjustment ": "Modify Role: Revise the Quality Assurance Specialist ’s policy1406
to include a review process for cross -verifying outputs from all roles before1407
finalizing the travel plan. The revised policy will state: ’3. Review all1408
outputs from previous roles for consistency and completeness before finalizing1409
the travel plan.’",1410

"Proposed Adjustment ": "Modify Role: Clarify the Quality Assurance Specialist ’s1411
policy to mandate a verification process that includes a checklist to ensure1412
all outputs from previous roles are accurate and complete before finalization ."1413

}1414
// updated team1415
{1416

"roles": [1417
...,1418
{1419

"Name": "Quality Assurance Specialist",1420
"Responsibility ": "Review the entire travel plan to ensure compliance with all1421
constraints and requirements before finalization .",1422
"Policy ": "1. Examine the transportation plan for conflicts and alignment with1423
the itinerary. 2. Verify that accommodations meet all minimum stay and user1424
constraints. 3. Ensure restaurant recommendations align with traveler1425
preferences and dietary restrictions. 4. Confirm attraction selections fit1426
within the planned schedule. 5. Provide feedback for adjustments if necessary.1427
6. Verification of all components , including accommodations , restaurants , and1428
attractions , to confirm alignment with user constraints and comply with1429
budgetary limits ."1430
}1431

...1432
],1433
"workflow ": [1434

...1435
]1436

}14371438

F Discovered Agentic System1439

In this section, we present the final agentic system discovered by SwarmAgentic. These optimized1440

systems—spanning MGSM, Creative Writing, Meeting Scheduling, and TravelPlanner—demonstrate the1441
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flexibility and generality of SwarmAgentic in generating task-adaptive agentic structures across diverse 1442

domains. 1443

F.1 MGSM 1444

1445
def forward(team): 1446

1447
1448

# Step 1: Problem Analysis Specialist analyzes the problem and produces a 1449
structured summary of the problem components. 1450

problem_summary = team.call( 1451
’Problem Analysis Specialist ’, 1452
[], 1453
"Structured summary of the problem components.", 1454

) 1455
1456

# Step 2: Mathematical Operations Specialist uses the structured summary to 1457
create a detailed outline of calculations needed to solve the problem. 1458

calculation_outline = team.call( 1459
’Mathematical Operations Specialist ’, 1460
[problem_summary], 1461
"Detailed outline of calculations required to solve the problem.", 1462

) 1463
1464

# Step 3: Quality Assurance Specialist reviews the detailed outline for accuracy 1465
. 1466

reviewed_outline = team.call( 1467
’Quality Assurance Specialist ’, 1468
[calculation_outline], 1469
"Reviewed assumptions and interpretations ready for verification.", 1470

) 1471
1472

# Step 4: Quality Assurance Specialist verifies the reviewed outline for 1473
execution readiness. 1474

verified_operations = team.call( 1475
’Quality Assurance Specialist ’, 1476
[reviewed_outline], 1477
"Verified operations ready for execution with corrections if necessary.", 1478

) 1479
1480

# Step 5: Calculation Execution Specialist executes the verified operations and 1481
returns the final result. 1482

final_result = team.call( 1483
’Calculation Execution Specialist ’, 1484
[verified_operations], 1485
"Final result of the calculations.", 1486

) 1487
1488

# Step 6: Solution Integration Specialist formats the final result as the final 1489
answer. 1490

formatted_answer = team.call( 1491
’Solution Integration Specialist ’, 1492
[final_result], 1493
"Formatted final answer.", 1494

) 1495
1496

# Return the final formatted answer 1497
return formatted_answer 14981499

F.2 Creative Writing 1500

1501
def forward(team): 1502

# Step 1: Sentence Analyzer analyzes sentences for thematic connections. 1503
categorized_sentences = team.call(’Sentence Analyzer ’, [], ’Categorized 1504

sentences with themes and narrative roles.’) 1505
1506

# Step 2: Narrative Architect creates a narrative framework based on the 1507
categorized sentences. 1508
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narrative_framework = team.call(’Narrative Architect ’, [categorized_sentences],1509
’Narrative framework outlining the placement of each sentence.’)1510

1511
# Step 3: Narrative Coherence Reviewer reviews the narrative framework for1512

thematic coherence.1513
coherence_feedback = team.call(’Narrative Coherence Reviewer ’, [1514

narrative_framework], ’Feedback on thematic coherence of the narrative1515
framework.’)1516

1517
# Step 4: Feedback Integrator revises the framework based on feedback received.1518
revised_narrative_framework = team.call(’Feedback Integrator ’, [1519

coherence_feedback], ’Revised narrative framework ready for paragraph1520
development , detailing how transitions have been integrated.’)1521

1522
# Step 5: Thematic Integration Specialist enhances the thematic integration of1523

the revised framework.1524
enhanced_thematic_integration = team.call(’Thematic Integration Specialist ’, [1525

revised_narrative_framework], ’Enhanced thematic integration of the1526
narrative framework.’)1527

1528
# Step 6: Integration Clarity Review confirms readiness for discussion with the1529

Paragraph Developer.1530
clarity_confirmation = team.call(’Integration Clarity Review ’, [1531

enhanced_thematic_integration], ’Confirmation of thematic continuity and1532
readiness for discussion.’)1533

1534
# Step 7: Integrated Feedback Review produces a comprehensive review document.1535
review_document = team.call(’Integrated Feedback Review ’, [1536

revised_narrative_framework , clarity_confirmation], ’Comprehensive review1537
document that captures all necessary adjustments.’)1538

1539
# Step 8: Feedback Review Discussion clarifies feedback integration details for1540

paragraph writing.1541
discussion_outcome = team.call(’Feedback Review Discussion ’, [review_document],1542

’Clarified feedback integration details for paragraph writing.’)1543
1544

# Step 9: Paragraph Developer writes the paragraphs based on the integrated1545
feedback.1546

final_paragraphs = team.call(’Paragraph Developer ’, [revised_narrative_framework1547
], ’Four concise paragraphs that demonstrate clear thematic coherence and1548
emotional depth.’)1549

1550
# Step 10: Final Integrator reviews the paragraphs and produces the final1551

cohesive narrative document.1552
final_narrative = team.call(’Final Integrator ’, [final_paragraphs], ’Final1553

cohesive narrative document , including a comprehensive evaluation of1554
coherence issues.’)1555

1556
# Return the final narrative as the answer.1557
return final_narrative15581559

F.3 Meeting Scheduling1560

1561
def forward(team):1562

1563
1564

# Step 1: Friend Locator identifies and lists all friends , their locations , and1565
available times.1566

friends_list = team.call(1567
’Friend Locator ’,1568
[],1569
"[{ Friend: Name , Location: Place , TimePeriod: [Start , End]}, ...]",1570

)1571
1572

# Step 2: Travel Time Estimator calculates the travel time between each friend ’s1573
location.1574

travel_times = team.call(1575
’Travel Time Estimator ’,1576
[friends_list],1577
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"[{From: LocationA , To: LocationB , TravelTime: Time}, ...]", 1578
) 1579

1580
# Step 3: Travel Time Verifier verifies all travel and waiting times. 1581
verified_travel_times = team.call( 1582

’Travel Time Verifier ’, 1583
[travel_times], 1584
"Verified travel and waiting times list", 1585

) 1586
1587

# Step 4: Waiting Time Validator reviews validated data for waiting times. 1588
validated_waiting_times = team.call( 1589

’Waiting Time Validator ’, 1590
[verified_travel_times], 1591
"Validated list of waiting times.", 1592

) 1593
1594

# Step 5: Final Integrator ensures all travel and waiting times are adjusted 1595
properly. 1596

adjusted_times = team.call( 1597
’Final Integrator ’, 1598
[validated_waiting_times], 1599
( 1600

"Adjusted travel and waiting times list that resolves discrepancies 1601
before scheduling." 1602

), 1603
) 1604

1605
# Step 6: Meeting Time Optimizer develops a schedule to meet as many friends as 1606

possible. 1607
meeting_schedule = team.call( 1608

’Meeting Time Optimizer ’, 1609
[friends_list , adjusted_times], 1610
( 1611

"Finalized meeting schedule that incorporates all validated " 1612
"travel and waiting times , including a detailed breakdown." 1613

), 1614
) 1615

1616
# Step 7: Schedule Validator reviews the final meeting schedule for feasibility. 1617
validated_schedule = team.call( 1618

’Schedule Validator ’, 1619
[meeting_schedule], 1620
"Validated meeting schedule document.", 1621

) 1622
1623

# Return the final validated meeting schedule document. 1624
return validated_schedule 16251626

F.4 TravelPlanner 1627

1628
def forward(team): 1629

1630
1631

# Step 1: Transportation Planner creates a transportation schedule. 1632
transportation_schedule = team.call( 1633

"Transportation Planner", 1634
[], 1635
( 1636

"Transportation schedule detailing mode of transport " 1637
"for each leg of the journey." 1638

), 1639
) 1640

1641
# Step 2: Accommodation Coordinator creates an accommodation plan based on the 1642

transportation schedule. 1643
accommodation_plan_initial = team.call( 1644

"Accommodation Coordinator", 1645
[transportation_schedule], 1646
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"Accommodation plan including number of nights and recommended hotels.",1647
)1648

1649
# Step 3: Accommodation Coordinator verifies transportation details and user -1650

specific requirements regarding accommodations.1651
verified_transportation_details = team.call(1652

"Accommodation Coordinator",1653
[transportation_schedule],1654
(1655

"Verified transportation details and user -specific requirements1656
regarding accommodations."1657

),1658
)1659

1660
# Step 4: Accommodation Coordinator finalizes the accommodation plan , including1661

user preferences and verified details.1662
accommodation_plan_final = team.call(1663

"Accommodation Coordinator",1664
[accommodation_plan_initial],1665
"Accommodation plan including user preferences and verified details.",1666

)1667
1668

# Step 5: Restaurant Advisor recommends restaurants for each non -travel day1669
based on the accommodation plan and user cuisine preferences.1670

restaurant_recommendations = team.call(1671
"Restaurant Advisor",1672
[accommodation_plan_final , verified_transportation_details],1673
"Restaurant recommendations for each non -travel day.",1674

)1675
1676

# Step 6: Attraction Specialist recommends attractions for each day of the trip.1677
attraction_recommendations = team.call(1678

"Attraction Specialist",1679
[accommodation_plan_initial],1680
"Attraction recommendations for each day of the trip.",1681

)1682
1683

# Step 7: Quality Assurance Specialist verifies all components , ensuring1684
constraints are met.1685

qa_verification = team.call(1686
"Quality Assurance Specialist",1687
[1688

accommodation_plan_final ,1689
restaurant_recommendations ,1690
attraction_recommendations ,1691

],1692
"Verification of all components ensuring constraints are met.",1693

)1694
1695

# Step 8: Travel Plan Integrator compiles all components into a comprehensive1696
travel plan.1697

comprehensive_travel_plan = team.call(1698
"Travel Plan Integrator",1699
[1700

transportation_schedule ,1701
accommodation_plan_final ,1702
restaurant_recommendations ,1703
attraction_recommendations ,1704
qa_verification1705

],1706
(1707

"Comprehensive travel plan including transportation , "1708
"accommodation , dining , and attractions."1709

),1710
)1711

1712
# Return the final comprehensive travel plan.1713
return comprehensive_travel_plan17141715
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Figure 3: Optimal agents generated from TravelPlanner (SwarmAgentic)

F.5 Comparison with ADAS-Discovered Agentic Systems 1716

Because Meta Agent Search keeps every previously-generated workflow in its archive, each new prompt 1717

handed to the language model must include a long, ever-growing list of full workflow definitions. The sheer 1718

size and structural complexity of this archive, as well as the irrelevant details that inevitably accumulate 1719

over many search iterations, quickly exhaust the model’s context window and muddle its reasoning. The 1720

search algorithm itself prioritizes novelty over optimization, relying on a straightforward strategy aimed 1721

at discovering new and potentially interesting designs. Consequently, the search process of ADAS tends 1722

to enumerate limitless possibilities within the search space, making it difficult to identify the truly optimal 1723

workflow. 1724

As shown in Listing 4, the ADAS-discovered workflow assigns distinct roles to specialized agents, 1725

including itinerary, budget, dining, activity, and meta agents. However, a critical limitation is the absence of 1726

a dedicated accommodation agent. As a result, the system fails to reliably address constraints such as room 1727

type, minimum night stays, occupancy limits, and rule-specific conditions (e.g., pet-friendliness). These 1728

constraints are central to many travel-related queries, yet no agent is explicitly responsible for enforcing 1729

them. Furthermore, the system exhibits difficulty reasoning over multiple constraints jointly, while 1730

individual agent proposals may satisfy some conditions, the final plan often violates global requirements 1731
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Figure 4: Optimal agents generated from TravelPlanner (ADAS)

due to a lack of coherent integration by the meta-agent.1732

Listing 4: Optimal workflow generated for TravelPlanner by ADAS
1733

def forward(self , taskInfo):1734
# Role definitions for specialized agents1735
itinerary_instruction = "Please create a detailed travel itinerary considering1736

the constraints and preferences."1737
budget_instruction = "Please analyze the budget and suggest accommodations and1738

activities that fit within the budget."1739
dining_instruction = "Please suggest restaurants or dining options that match1740

the user’s cuisine preferences."1741
activity_instruction = "Please recommend activities or attractions based on the1742

user’s interests and location."1743
dialogue_instruction = "Discuss your proposals with other agents , highlighting1744

strengths and negotiating improvements."1745
1746

# Instantiate specialized agents1747
itinerary_agent = LLMAgentBase ([’thinking ’, ’itinerary ’], ’Itinerary Planner ’)1748
budget_agent = LLMAgentBase ([’thinking ’, ’budget ’], ’Budget Manager ’)1749
dining_agent = LLMAgentBase ([’thinking ’, ’dining ’], ’Dining Advisor ’)1750
activity_agent = LLMAgentBase ([’thinking ’, ’activity ’], ’Activity Coordinator ’)1751
meta_agent = LLMAgentBase ([’thinking ’, ’final_plan ’], ’Meta Decision Agent’)1752

1753
# Gather initial proposals from specialized agents1754
itinerary_info = itinerary_agent ([ taskInfo], itinerary_instruction)[0]1755
budget_info = budget_agent ([ taskInfo], budget_instruction)[0]1756
dining_info = dining_agent ([ taskInfo], dining_instruction)[0]1757
activity_info = activity_agent ([ taskInfo], activity_instruction)[0]1758

1759
# Collaborative negotiation phase among agents1760
proposals = [itinerary_info , budget_info , dining_info , activity_info]1761
for i, proposal in enumerate(proposals):1762

for j, other_proposal in enumerate(proposals):1763
if i != j:1764

dialogue = itinerary_agent ([taskInfo , proposal , other_proposal],1765
dialogue_instruction)1766

# Update the proposal based on feedback from other agents1767
proposals[i] = dialogue [1] # Assuming the updated proposal comes in1768

the second position1769
1770

# Prepare responses for meta -agent1771
meta_instruction = "Evaluate the following proposals and create a cohesive final1772

travel plan:"1773
final_thinking , final_plan = meta_agent(proposals , meta_instruction)1774

40



1775
return final_plan 17761777

1778
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