SwarmAgentic: Towards Fully Automated Agentic System Generation via
Swarm Intelligence

Anonymous ACL submission

Abstract

The rapid progress of Large Language Mod-
els has advanced agentic systems in decision-
making, coordination, and task execution. Yet,
existing agentic system generation frameworks
lack full autonomy, missing from-scratch agent
generation, self-optimizing functionality, and
collaboration, limiting adaptability and automa-
tion. We propose SwarmAgentic, a frame-
work for fully automated agentic system gener-
ation, extending Particle Swarm Optimization
(PSO) into a language-driven search space for
structure-level optimization. SwarmAgentic
instantiates agents from scratch and jointly op-
timizes agent functionality and collaboration as
interdependent components. We evaluate our
method on six real-world, open-ended, and ex-
ploratory tasks involving high-level planning,
system-level coordination, and creative reason-
ing. Given only a task description and an objec-
tive function, SwarmAgentic outperforms all
baselines, achieving a +261.8% relative im-
provement over ADAS on the TravelPlanner
benchmark, highlighting the effectiveness of
full automation in structurally unconstrained
tasks. This framework marks a significant step
toward scalable and autonomous agentic sys-
tem design, bridging swarm intelligence with
fully automated system multi-agent generation.

1 Introduction

The advancement of Large Language Models
(LLMs) (Achiam et al., 2023; Guo et al., 2025)
has substantially advanced the capabilities of agen-
tic systems(Du et al., 2023; Shinn et al., 2024;
Wang et al., 2024), enabling autonomous decision-
making (Li et al., 2025), coordination (Qian et al.,
2024), and complex task execution (Xi et al., 2024;
Zhang et al., 2025). Nonetheless, current agen-
tic system generation frameworks lack full auton-
omy, missing from-scratch agent generation, self-
optimizing functionality, and collaboration (Wu
et al., 2023; Li et al., 2023; Hong et al., 2023).

These design rigidities limit adaptability and scal-
ability, suppress the emergence of self-optimizing
system behaviors, and impose significant engineer-
ing overhead. As a result, such systems struggle to
accommodate diverse and complex task specifica-
tions without substantial manual intervention.
This challenge is further amplified in open-
ended, exploratory tasks that demand high-level
planning and system-level coordination, where
both agents and their collaboration strategies must
be synthesized from scratch. In such struc-
turally unconstrained settings, fixed templates and
static pipelines become ineffective. To address
this, a practical framework must support three
key capabilities: From-Scratch Agent Generation,
Self-Optimizing Agent Functionality, and Self-
Optimizing Agent Collaboration, enabling scalable,
fully autonomous agentic system construction.
While recent work has explored agentic system
automation (Khattab et al., 2023; Zhang et al.;
Wang et al., 2023), no existing framework satisfies
all three autonomy criteria. SPP (Wang et al., 2023)
lacks from-scratch agent generation, behavior adap-
tation, and collaboration restructuring. EvoA-
gent (Yuan et al., 2024) and AgentSquare (Shang
et al., 2024) support functionality optimization but
rely on fixed structures. AutoAgents (Chen et al.,
2023a), AFlow (Zhang et al., 2024a), Agent Sym-
bolic Learning (Zhou et al., 2024), and ADAS (Hu
et al., 2024) depend on templates or seed agents,
and thus fail to generate agents from scratch. As
shown in Tab. 1, no prior work jointly supports all
three capabilities in a fully automated framework.
To address this gap, we introduce SwarmAgen-
tic, a framework that extends Particle Swarm Op-
timization (PSO) (Kennedy and Eberhart, 2002)
into a language-driven search space, enabling from-
scratch agent generation and the self-optimization
of both agent functionalities and collaboration
strategies, entirely without human intervention.
The gradient-free, population-based nature of PSO

From-Scratch
Agent Generation

Framework

Self-Optimizing Self-Optimizing
Agent Functionality Agent Collaboration

SPP (Wang et al., 2023)

EvoAgent (Yuan et al., 2024)
AgentSquare (Shang et al., 2024)
AutoAgents (Chen et al., 2023a)

AFlow (Zhang et al., 2024a)

Agent Sym. Learning (Zhou et al., 2024)
ADAS (Hu et al., 2024)

X X X X X X X

X X
X
X

SwarmAgentic

Table 1: Comparison of SwarmAgentic and existing frameworks across three dimensions of agentic system autonomy.
SwarmAgentic is the only framework satisfying all three, enabling fully automated and scalable agentic system
generation without human intervention. See Appendix A for definitions and capability assessments.

makes it particularly well-suited for exploring sym-
bolic, non-differentiable agentic system design
spaces, supporting parallel search over diverse
agentic system configurations and iterative refine-
ment of complete agentic systems.

Specifically, SwarmAgentic represents each
agentic system as a particle, encoding agents and
their collaboration strategies in structured language.
Unlike traditional PSO, which optimizes numerical
vectors, SwarmAgentic employs language-based
transformations for velocity and position updates,
ensuring interpretable optimization. The process
begins with particle initialization to generate di-
verse agentic systems, followed by LLM-driven
flaw identification to detect inefficiencies. Velocity
updates integrate failure-driven adjustments, per-
sonal best guidance, and global best guidance to
balance self-learning and swarm-based improve-
ments. Position updates iteratively refine system
configurations until a stopping criterion is met.

We evaluate SwarmAgentic on six real-world,
open-ended, and exploratory tasks that demand
high-level planning, system-level coordination, and
creative reasoning. Given only a task descrip-
tion and an objective function, SwarmAgentic con-
sistently outperforms prior methods, achieving a
261.8% relative gain over ADAS on TravelPlan-
ner, and outperforming all baselines across Trip
Planning, Meeting Planning, Calendar Scheduling,
Creative Writing, and MGSM. These results high-
light the effectiveness of fully automated agentic
system generation on structurally unconstrained
tasks, where no fixed templates or handcrafted
agents can be reused. This framework marks a
significant step toward scalable and autonomous
agentic system design, bridging swarm intelligence
with fully automated system generation.

The key contributions of this work are:

1. SwarmAgentic enables fully automated agen-
tic system generation, leveraging a language-
driven PSO framework for agent generation, self-
optimization, and adaptive collaboration without
predefined agents or human intervention.

2. We reformulate PSO as a language-driven opti-
mization process, encoding agents and their collab-
oration strategies as structured representations.

3. We develop a Failure-Aware Velocity Update
mechanism, integrating LLM-guided flaw identifi-
cation to dynamically refine system configurations,
ensuring targeted self-optimization.

4. SwarmAgentic achieves SOTA performance on
real-world, open-ended tasks requiring high-level
planning and system-level coordination, given only
a task description and an objective function.

2 Related Work

2.1 Agentic System Generation

LLM-based multi-agent frameworks (Li et al.,
2023; Wu et al., 2023; Hong et al., 2023) enhance
task-solving through agent collaboration but rely
on fixed workflows and human intervention, lim-
iting adaptability. Recent approaches, such as
SPP (Wang et al., 2023) and AgentVerse (Chen
et al., 2023b), automate large-scale agent genera-
tion—SPP simulates multi-persona collaboration,
while AgentVerse assembles expert teams. AutoA-
gents (Chen et al., 2023a) refines agents through
discussion-driven iteration, and EvoAgent (Yuan
et al., 2024) optimizes multi-agent configurations
via evolutionary algorithms. Despite progress in
automation, these methods treat agent collabora-
tion strategies as static templates, restricting adapt-
ability. In contrast, SwarmAgentic eliminates pre-
defined constraints by jointly optimizing agent
functionality and collaboration strategies through

a language-driven PSO framework, enabling fully
automated and scalable agentic system generation.

2.2 Agentic System Optimization

Optimizing agentic systems requires refining both
agent functionalities and collaboration strategies.
In single-agent settings, methods like Agent-
Pro (Zhang et al., 2024b) improve agent poli-
cies through trajectory-based updates, while multi-
agent approaches, such as GPTSwarm (Zhuge
et al., 2024) and DyLAN (Liu et al., 2024), fo-
cus on optimizing inter-agent coordination. AU-
TOACT (Qiao et al., 2024) refines agent decisions
through filtered trajectories, while AutoFlow (Li
et al., 2024) leverages reinforcement learning for
workflow optimization. ADAS (Hu et al., 2024)
and AgentSquare (Shang et al., 2024) further en-
hance adaptability by exploring diverse system
module compositions. Additionally, Agent Sym-
bolic Learning (Zhou et al., 2024) and Go6delA-
gent (Yin et al., 2024) leverage text-based gradi-
ent optimization for recursive self-improvement.
However, these methods separately optimize agent
functionality and collaboration, limiting adaptabil-
ity. SwarmAgentic unifies both as interdependent
components, using language-driven PSO to dynam-
ically refine agentic systems.

3 Preliminary

3.1 Agentic System Optimization

An agentic system at generation ¢, denoted as
Si(t), represents the i-th solution within the pop-

ulation. It comprises an agent set Agt) =
{AE?,A t2, .. ,Al(t,)n} and a collaborative struc-

(

7;7

ture Wi(t). Each agent A%, where k € {1,...,m},

: A (7 p@) p(t)

is represented as: A, I R, ., P), where
® . o : N

I, is the agent identifier, uniquely defining its

N
role within the system, Rgtll is the responsibility,

specifying the tasks it is capable of performing,
and PZ(Q is the execution policy, governing its
decision-making and task execution. Agents op-
erate within a collaborative structure, defined as:
Wi(t) = {Wﬁ), Wi%), . WZ(';)}, where each step
Wi(;), l € {1,...,n} assigns a specific agent AE%
to execute the corresponding task. SwarmAgentic
iteratively refines the agent set .4 and collabora-
tive structures ¥V to optimize the agentic system
S, aiming to maximize task performance, which

is quantitatively assessed by the fitness function

J(S). The Basic Structure of the Agentic System
is detailed in Appendix D.1.

3.2 Particle Swarm Optimization

PSO (Kennedy and Eberhart, 2002), inspired by
swarm intelligence, models the dynamic adapta-
tion processes observed in natural systems, such as
bird flocking and fish schooling. Each particle iter-
atively refines its position based on individual expe-
riences while incorporating shared knowledge from
the swarm, balancing exploration and exploitation.
This decentralized and self-organizing mechanism
makes PSO particularly well-suited for optimiza-

tion in complex search spaces. Each particle main-
()

tains a position x; ’, representing a candidate solu-

tion, and a velocity UZ-(t), which updates its move-
ment in the search space. The position and velocity
updates follow:

UZ(HI) = wvgt) +eri(pf — xl(t)) + cora(g — xl(»t)), (1

(t+1)

)

Doy, 2)

_ (@
€ = i

where p; is the personal best found by particle 7,
and g is the global best in the swarm. The iner-
tia weight w balances exploration and exploitation,
while the learning coefficients c;, co determine the
influence of personal and global bests. The stochas-
tic factors 71, 7o introduce randomness to enhance
diversity and prevent premature convergence. After
each iteration, each particle is evaluated using the
fitness function J, guiding the optimization pro-
cess until a predefined stopping criterion, such as
a fixed number of iterations, is met. Unlike tra-
ditional PSO on continuous vectors, our setting
optimizes discrete, structured configurations. We
reinterpret velocity and position updates as seman-
tic transformations over language-based represen-
tations, enabling swarm-based search in symbolic,
high-dimensional language spaces.

4 SwarmAgentic

SwarmAgentic adapts PSO to a language-based
search space, optimizing agentic systems as struc-
tured textual representations. Unlike traditional
PSO in continuous vector spaces, it explores a
combinatorial space of agent functionalities and
collaboration strategies. Each particle encodes an
agentic system in language, and position updates
are realized as text-based transformations guided
by structural feedback, enabling population-based
search in discrete, non-numeric domains.

: T Operators
i (O :Particle == : Velocity :
| ® : Add ® :Delete |

¥ : Velocity Component @ :Modify @ : Reorder H

Personal Best p,'

1
Optimization Direction V;“)

Gty ©& + O@:® + O®

38t g,
~~Suig,
fnce
@

Global best g

® Particle Update

Current position New position (t+1)

of i-th particle X;

of i-th particle

Best Found Particle g

~

- x‘\;
t)
g-x

Initial Particles

@ Initialization @ Search Result |

.

Figure 1: Overview of SwarmAgentic for automated agentic system optimization. (1) Initialization: Generates a
diverse population of agentic systems, encoding agent sets, and collaboration structures in a structured language
space. (2) Particle Update: Iteratively refines agentic systems through failure-aware velocity updates and position
updates, incorporating failure-driven adjustments, personal best guidance, and global best guidance. Both velocity
and position updates operate on structured language representations, enabling interpretable transformations over
agent roles and collaboration strategies (see Appendix E.1 for examples). (3) Search Result: Returns the best-
performing agentic system g, refined through structured updates that balance self-adaptation and swarm-based
optimization for enhanced coordination and efficiency. The pseudo code for SwarmAgentic is in Appendix D.2

The optimization process begins with particle
initialization, where candidate agentic systems are
randomly synthesized from the task description
using an LLM. Unlike numerical optimization,
where position updates are directly guided by fit-
ness scores, SwarmAgentic first performs flaw iden-
tification by analyzing system performance against
the objective function, identifying inefficiencies
before making adjustments to ensure targeted opti-
mization. Building on flaw identification, SwarmA-
gentic generates optimization directions through
failure-aware velocity updates, integrating failure-
driven adjustments, personal best guidance (self-
learning), and global best guidance (swarm-based).
The refinements from velocity updates are applied
through position updates, modifying agent func-
tionalities and collaboration strategies. By trans-
lating optimization directions into concrete adjust-
ments, position updates iteratively refine agentic
system configurations until the predefined itera-
tion limit is met. The best-performing system g
is retained as the final solution. The following
sections detail each step, illustrating how SwarmA-
gentic transitions from numerical-based updates to
language-driven transformations for structured and
interpretable optimization.

4.1 Particle Initialization

SwarmAgentic initializes a diverse population of

candidate agentic system Si((]) each represented as

a particle in the PSO search space. A system com-
w”

prises a collaborative structure WV,

and an agent

set .AZ(O), with its configuration encoded as an ini-
tial position :cgo). The velocity vgo) governs iter-
ative textual modifications, progressively refining
A; and W; throughout the optimization process.

To enhance structural diversity, we employ a
temperature-controlled sampling strategy. Specif-
ically, low-temperature particles generate stable
configurations closely aligned with established pat-
terns. Medium-temperature particles introduce
moderate variability, balancing structural stability
and design innovation. High-temperature particles
maximize exploration, yielding unconventional ar-
chitectures that expand the search space. This strat-
ification balances exploitation of high-performing
structures with exploration of novel solutions.

Velocity initialization influences early search by
directing particles toward promising regions while
maintaining diversity. Initial velocities are assigned
based on estimated fitness, promoting convergence
while preventing stagnation in suboptimal config-
urations. The personal best of each particle is set
to its initial position, with fitness evaluated using
predefined task-specific metrics. The global best
remains undefined until all particles are assessed,
after which the top-performing configuration serves
as a reference for subsequent optimization.

4.2 Flaw Identification

In language-driven optimization frameworks, iden-
tifying flaws is essential to ensure refinements are
targeted and effective. Unlike traditional PSO,
which updates positions based on scalar fitness

scores, SwarmAgentic detects system deficiencies
through an LLM-driven analysis of execution fail-
ures, enabling structured and interpretable updates.
Flaws in agentic systems can be categorized into
agent flaws and collaborative structures flaws, both
of which impact efficiency and reliability. Agent
flaws include missing agents that leave critical tasks
unassigned, redundant agents that introduce inef-
ficiencies, and ambiguous policies that hinder co-
ordination. Collaborative structures flaws encom-
pass missing steps that disrupt execution, redundant
steps that increase overhead, incomplete contextual
information that prevents agents from making in-
formed decisions, and misaligned task outcomes
that propagate errors to subsequent steps, leading to
cascading failures. SwarmAgentic systematically
identifies system deficiencies through structured
evaluation. Task performance is assessed based on

)

the objective function, producing an error set SZ.(t .

Given Ei(t) and the current system SZ.(t), an LLM

analyzes failure patterns and derives flaw fz.(tH),

which consists of agent flaws and structures flaws.
This structured diagnosis ensures that velocity up-
dates are informed by actual performance bottle-
necks rather than arbitrary modifications, leading
to more effective system refinements.

4.3 Failure-Aware Velocity Update

SwarmAgentic enhances traditional PSO by incor-
porating memory-based adaptation and language-
driven velocity updates, structuring refinements as
textual transformations rather than numerical ad-
justments. SwarmAgentic leverages an LLM to per-
form failure-aware refinements, enabling precise
corrections rather than indiscriminately reinforcing
past configurations. By integrating failure-driven
adjustments, personal best guidance, and global
best guidance, SwarmAgentic systematically elim-
inates recurring flaws, ensuring that velocity up-
dates lead to meaningful structural improvements.
The velocity update follows:

oY = LLMvel(CfrfF(vi(t)),

i
t
eprp(py — 955)

3)
), cqrg(g — i),

where ¢y, ¢, ¢, represent the repulsion coefficient,
cognitive coefficient, and social coefficient, respec-
tively, governing failure-driven adjustments, per-
sonal best guidance, and global best guidance.
Tf,Tp, Tg are stochastic exploration factors, intro-
ducing controlled randomness to enhance search

diversity. F (Ul(t)) encapsulates failure-driven ad-
justments, identifying the failed component of the
previous velocity update.

Failure-Driven Adjustments. SwarmAgentic
records failed modifications and uses LLM-based
refinement to eliminate ineffective updates. The
failure experience term captures unsuccessful ve-
locity updates that did not improve task perfor-
mance. Integrated into the velocity update, this
memory mechanism prevents repeated suboptimal
adjustments. To refine updates, SwarmAgentic
provides the LLLM with identified flaws from the

. . t .
previous configuration fi(), current configuration

f,(tH), and prior update plan vl-(t)

i . By analyzing
these inputs, the LLM detects persistent flaws and
ineffective corrections, refining velocity updates
as:

epreF () = LLMpa (0", £, 1Y), @)
Personal Best Guidance. Each particle retains
its highest-performing configuration as a personal
best p;. Instead of directly following p;, Swar-

mAgentic utilizes an LLM to compare the current
(t)

configuration z,; * with p7, refining updates based

on the identified flaws fi(tH) to ensure precise cor-
rections. Formally,

cprp(p; — xz(t)) = LLMperS(a:<t),pf, fi(t+1))' &)

)

Global Best Guidance. Each particle references
the highest-performing configuration in the swarm
as the global best g, guiding updates while balanc-
ing exploration and exploitation to prevent prema-
ture convergence. Instead of directly following g,
SwarmAgentic employs an LLM to refine updates
by comparing the current configuration mgt) with g
and identifying transferable improvements based

on detected flaws fi(tﬂ). Formally,

cqrolg — 21) = LLMyop(2, g,). (6)

7

4.4 Position Update

After updating velocity, each agentic system ap-
plies structural transformations to refine its config-
uration as follows:
2 = LEMog (29, o), 7)
SwarmAgentic optimizes agentic systems
through two key adaptation mechanisms: (1)
Agent-Level Adaptation: Modifies individual

Method Delivery Commonsense Hard Constraint Final
Rate Micro Macro Micro Macro

Direct 100.0/100.0 57.3/794 39/158 11.0/275 33/16.1 0.0/2.2
CoT (Wei et al., 2022) 100.0/100.0 61.0/76.7 2.8/11.7 10.0/224 33/12.8 0.0/22
Self-Refine (Madaan et al., 2024) 100.0/98.9 56.0/753 1.7/7.2 3.1/124 1.1/72 0.0/1.1
SPP (Wang et al., 2023) 99.4/96.7 54.6/70.6 1.7/5.6 38/114 1.1/7.8 0.0/0.6
EvoAgent (Yuan et al., 2024) 100.0/100.0 64.2/81.5 7.8/21.1 11.0/314 44/189 1.1/72
ADAS (Hu et al., 2024) 100.0/100.0 70.9/88.5 6.1/344 17.4/502 9.4/27.8 1.1/89
SwarmAgentic s ;¢ 100.0/100.0 70.9/929 12.8/56.1 21.0/66.7 9.4/52.8 3.3/32.2

Table 2: Performance on the TravelPlanner. Each cell shows results in the format: GPT-3.5 / GPT-40. SwarmAgentic
outperforms all baseline methods, highlighting its effectiveness in automated agentic system generation.

agents Agtg by adjusting roles Ii(tk), responsibility

®)

Rg,z, and execution policies PZ.’ 1. to enhance per-
formance. New agents may be introduced, while
redundant ones are removed based on feedback.
(2) Collaborative Structures Reconfiguration:
Enhances the collaborative structures Wi(t) by
optimizing task sequencing, refining dependencies,
and improving inter-agent coordination. Steps
are reordered to streamline execution, redundant
ones eliminated to reduce overhead, and new
steps incorporated as necessary. Through iterative
refinement, SwarmAgentic continuously improves
agent functionality and collaborative structures,
ensuring efficiency, adaptability, and structural
coherence across generations.

S Experiments

5.1 Experimental Setup

Tasks. We evaluate SwarmAgentic on six real-
world tasks spanning planning, collaboration, gen-
eration, and reasoning. Most are open-ended
and structurally unconstrained, requiring high-
level planning, system-level coordination. Specif-
ically, we consider: (1) TravelPlanner (TP) (Xie
et al., 2024), which tests long-horizon planning
under user-defined constraints; (2—4) Trip Plan-
ning, Meeting Planning, and Calendar Scheduling
from Natural Plan (NP) (Zheng et al., 2024), which
involve multi-agent scheduling with conflict min-
imization; (5) Creative Writing (CW) (Yao et al.,
2024), which requires coherent multi-paragraph
generation from unordered key points. These tasks
challenge predefined agent templates due to their
structural variability and open-ended semantics.
Additionally, we include (6) MGSM (Shi et al.,
2022), a structured math reasoning task where pre-
defined logic may suffice, to evaluate generaliza-
tion to template-compatible domains. Dataset de-

tails and evaluation metrics are in Appendix C.1

Baselines. We compare SwarmAgentic with both
standard prompting methods and automated ap-
proaches for agentic system generation. The
prompting baselines include: (1) Direct, where the
model responds with a fixed prompt; (2) CoT (Wei
et al., 2022), which improves reasoning via step-by-
step generation; and (3) Self-Refine (Madaan et al.,
2024), which iteratively refines outputs through
self-feedback. For automated agentic systems, we
select methods that minimize task-specific priors
to reduce human intervention and better expose the
underlying capacity for autonomous agent discov-
ery, including: (4) SPP (Wang et al., 2023), which
performs multi-turn self-collaboration across mul-
tiple personas; (5) EvoAgent (Yuan et al., 2024),
which evolves agent configurations via optimiza-
tion over roles, prompts, and behavior policies; and
(6)ADAS (Hu et al., 2024), which uses a meta agent
to discover agentic systems in code through itera-
tive generation and refinement. Detailed baseline
implementations are in Appendix C.2.

Models and Implementation Details SwarmA-
gentic, following ADAS, employs distinct models
for optimization and execution. Specifically, we
use GPT-40-mini-0718 (OpenAl, 2024b) as the op-
timizer, and select GPT-3.5-turbo-0125 (OpenAl,
2022), GPT-40-0806 (OpenAl, 2024a), Claude-
3.5-sonnet-0620 (Anthropic, 2024), DeepSeek-
V3 (DeepSeek-Al, 2024), Gemini-1.5-Pro (Pichai
and Hassabis, 2024) as executor models. Swar-
mAgentic is configured with 5 particles and 10
optimization iterations, while ADAS is run with a
maximum of 30 iterations.

5.2 Results

Tab. 2 and 3 report results across all tasks. Full
agentic systems discovered by SwarmAgentic for

Natural Plan Tasks (NP)

Method Creative Writing (CW) MGSM
Trip Meeting Calendar
Planning Planning Scheduling
Direct 7.3/37 19.0/450 19.9/43.0 5.0/6.3 28.1/87.3
CoT (Wei et al., 2022) 9.0/1.0 19.0/50.0 20.0/60.0 5.3/17.0 28.7/81.0
Self-Refine (Madaan et al., 2024) 4.4/44 12.0/41.0 13.0/63.0 52/6.2 30.5/86.4
SPP (Wang et al., 2023) 5.0/1.3 4.0/33.0 22.0/44.0 59/17.6 55.2/84.9
EvoAgent (Yuan et al., 2024) 5.6/19 4.0/380 21.6/520 6.1/7.1 57.3/87.0
ADAS (Hu et al., 2024) 1.9/3.1 11.0/43.0 21.0/66.0 6.2/7.3 29.0/87.0
SwarmAgentic(s 1) 13.1/13.1 23.0/56.0 28.0/82.0 8.2/8.5 65.6/88.4

Table 3: Performance on Natural Plan, Creative Writing, and MGSM. Results are shown as GPT-3.5 / GPT-4o.
SwarmAgentic achieves the highest performance across all tasks, significantly outperforming baseline methods.

Agent Name GPT-40 Claude-3.5-sonnet DeepSeek-V3 Gemini-1.5 Gemini-1.5%
Direct 6.3 5.6 6.4 54 -

CoT (Wei et al., 2022) 7.0 5.7 59 5.8 -
Self-Refine (Madaan et al., 2024) 6.2 5.8 6.1 54 -
SPP(Wang et al., 2023) 7.6 8.0 8.3 7.1 -
EvoAgent(Yuan et al., 2024) 7.1 7.9 8.8 6.8 -
ADAS(Hu et al., 2024) 7.3 7.9 7.8 7.1 6.6
SwarmAgentic(s, o) 8.5 8.3 9.0 7.5 7.8

Table 4: Performance on Creative Writing when transferring the best agentic system discovered by GPT-40-mini to
other LLMs. SwarmAgentic consistently outperforms all baselines across different LLMs, demonstrating strong
cross-model transferability. Details of the best-discovered system are provided in Appendix F. * indicates results
where the agent is both trained on Gemini-1.5-flash (Subramanya, 2024) and tested on Gemini-1.5-Pro.

each task are provided in Appendix F.

SwarmAgentic achieves strong gains in open-
ended, structurally unconstrained tasks. Swar-
mAgentic consistently outperforms all baselines on
TP, NP, and CW—achieving a 261.8% gain over
ADAS on TP, leading all subtasks in NP, and gen-
erating more coherent outputs in CW. While prior
frameworks rely on varying degrees of task-specific
priors, SwarmAgentic operates solely based on a
task description and an objective function. These
results highlight the effectiveness of full autonomy
in real-world tasks where static templates fall short.
This underscores its generality across diverse tasks
without hand-crafted assumptions.

Full automation remains effective in structured,
template-compatible tasks. In MGSM, a math
reasoning task with minimal structural variability,
SwarmAgentic still achieves the best score. This
demonstrates strong generalization and confirms
that autonomy does not trade off performance even
when predefined logic suffices.

SwarmA gentic surpasses both manual and auto-
matic baselines through unified autonomy. Di-
rect, CoT, and Self-Refine rely on fixed workflows,

lacking adaptive structure. SPP, EvoAgent, and
ADAS offer partial automation, but fall short of
full autonomy: SPP depends on rigid persona tem-
plates, EvoAgent mutates fixed agent scaffolds, and
ADAS initiates its search from hand-crafted seed
agents. In contrast, SwarmAgentic constructs agent
functionalities, behaviors, and collaboration strate-
gies from scratch and jointly optimizes them with
interpretable, feedback-driven updates, enabling
scalable, task-specific agentic systems.

6 Analysis

6.1 Cross-Model Transferability Analysis

We first optimize the agentic system using GPT-4o-
mini and transfer the discovered system to other
LLMs to test whether the system found with one
model generalizes to others. As shown in Tab. 4,
the transferred SwarmAgentic system consistently
outperforms all baselines, demonstrating strong
cross-model generalizability. Notably, when Swar-
mAgentic is directly optimized and evaluated on
Gemini-1.5-Pro (Gemini-1.5%), the performance
further improves, indicating that model-specific op-
timization can yield additional gains. These results
suggest that while SwarmAgentic systems exhibit

Methods Score A
Direct 6.2 0%
Different Iteration Count
SwarmAgentic; 59 -4.8%
SwarmAgentic s s 6.4 +3.2%
SwarmAgenticz 70 +12.9%
Different Particle Count
SwarmAgentic; 5, 6.3 +1.6%
SwarmAgentic s s 6.7 +8.1%
SwarmAgentics s 69 +11.3%
Different Design Settings
SwarmAgentic(sle) w/o Collab. Struc. Reconfig. 6.7 +8.1%
SwarmAgentic(sle) w/o Agent-Level Adapt. 7.3 +17.7%
SwannAgentic(SJO) w/o Failure-Driven Adjust. 8.4 +35.5%
SwarmAgentics ;) 88 +41.9%

Table 5: Ablation Study on Creative Writing, evaluating
the impact of key components and hyperparameters in
SwarmAgentic. Removing Failure-Driven Adjustments,
Agent-Level Adaptation, or Collaborative Structures Re-
configuration degrades performance, confirming their
importance. Increasing iteration counts and particle
counts improves performance, highlighting the benefits
of iterative refinement and broader exploration. A indi-
cates the differences compared with Direct.

robust transferability across foundation models, tai-
loring the optimization to the target LLM remains
beneficial for achieving optimal results.

6.2 Ablation Study

We assess the impact of key components in Swar-
mAgentic, along with the effects of varying itera-
tion counts and particle counts. A comprehensive
analysis is conducted on 20 instances of the CW
task, with results in Tab. 5.

Component Analysis. To analyze the optimiza-
tion dynamics of SwarmAgentic, we assess the im-
pact of its three core mechanisms: Failure-Driven
Adjustments, Agent-Level Adaptation, and Collab-
orative Structures Reconfiguration. As shown in
Tab. 5, removing failure-driven adjustments allows
errors to persist across iterations, significantly im-
pairing performance. Disabling agent-level adapta-
tion restricts role flexibility, reducing system adapt-
ability. Excluding collaborative structures reconfig-
uration disrupts task sequencing and dependency
management, leading to execution inefficiencies.

Impact of Iteration and Particle Count. Tab. 5
shows that increasing either training iterations or
particle count improves performance. More itera-
tions enable progressive refinement through struc-
tured feedback, while a larger particle set enhances
exploration, yielding up to +11.3% improvement

351 —e— Ours
--- Direct
—-= CoT

301 --- Self-Refine
--- spp

/
Update Quality
Assurance Specialist
to ensure budget
compliance.

EvoAgent
254 e ADAS

Add Verification step to
confirm accommodations meet
preferences and budget.

Success Rate (%)

5 [Introduce the Quality Assurance Specialist role |
and add a verification step for the
accommodations.

0 2 4 6 8 10

Iteration

Figure 2: Search trajectory of SwarmAgentic on Trav-
elPlanner. The Success Rate (SR) improves iteratively
as specialized agents are introduced to refine constraint
handling and enhance plan feasibility.

over Direct. These results highlight the benefits of
both iterative optimization and population diversity
in generating high-quality agentic systems.

6.3 Case Study: Search Trajectory on TP

Fig.2 illustrates the iterative optimization of Swar-
mAgentic on TP, refining both agent sets and col-
laborative structure. The process begins with intro-
ducing a Quality Assurance Specialist and a veri-
fication step for accommodations, boosting SR to
11%. Adding a dedicated verifier to check bud-
get and preference alignment raises performance
to 22%. Finally, the Quality Assurance Specialist
is updated to explicitly enforce budget compliance,
achieving a 33% SR and surpassing all baselines.
While the figure highlights agent evolution, collab-
orative structure optimization occurs in parallel, re-
configuring task dependencies and execution order
to enhance coordination. See App. E.1 for step-
by-step illustrations of this evolution process, and
App. E5 for representative agentic systems found
by SwarmAgentic and ADAS.

7 Conclusion

We proposed SwarmAgentic, a language-driven
PSO framework that enables fully automated, self-
optimizing agentic systems. By integrating LLM-
guided optimization, our method refines agent sets
and collaborative structures dynamically, overcom-
ing the rigidity of existing approaches. Extensive
experiments on complex, real-world tasks show
superior adaptability, constraint satisfaction, and
coordination. SwarmAgentic bridges swarm intelli-
gence and autonomous agent evolution, paving the
way for scalable, self-optimizing agentic systems.

Limitations

Lack of Inductive Priors. SwarmAgentic is de-
signed for agentic system construction in settings
without predefined structural assumptions. While
this promotes generalization to open-ended tasks,
the framework does not incorporate inductive pri-
ors—such as domain-specific templates or hier-
archical agent roles—that may accelerate conver-
gence in more structured environments. Integrating
such priors through language-driven initialization
or constraint-guided search presents a promising
direction for future work, offering a trade-off be-
tween structure-guided efficiency and open-ended
flexibility.

LLM Limitations. Despite its effectiveness in
automated agentic system generation, SwarmAgen-
tic inherits inherent limitations of LLMs, particu-
larly in factual reliability and grounded interaction.

Hallucinations and Inaccuracies. SwarmA-
gentic relies on LLMs for structured reasoning
and decision-making, which makes it susceptible
to hallucinations—plausible but incorrect outputs.
These errors can propagate through optimization
cycles, affecting agent configurations and coordina-
tion structures. While iterative refinement helps
mitigate issues, persistent inaccuracies may re-
quire integration of external knowledge or retrieval-
augmented mechanisms.

Lack of Embodied Interaction. Operating purely
in a text-based environment, SwarmAgentic lacks
perception and action capabilities in real-world con-
texts. Unlike embodied systems, it cannot pro-
cess multimodal inputs or interact with physical
environments, limiting its applicability in dynamic,
sensor-driven tasks. Future extensions could ex-
plore integration with multimodal models or em-
bodied agents to bridge this gap.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Claude 3.5 sonnet.
anthropic.com/claude-3.5. Accessed: 2024-05-
18.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Borje F Karlsson, Jie Fu, and Yemin
Shi. 2023a. Autoagents: A framework for automatic
agent generation. arXiv preprint arXiv:2309.17288.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, et al. 2023b. Agentverse:
Facilitating multi-agent collaboration and exploring
emergent behaviors. In The Twelfth International
Conference on Learning Representations.

DeepSeek-Al 2024.
hf.co/deepseek-ai/v3.
18.

Deepseek-v3.
Accessed: 2025-05-

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Shangbin Feng, Zifeng Wang, Yike Wang, Sayna
Ebrahimi, Hamid Palangi, Lesly Miculicich, Achin
Kulshrestha, Nathalie Rauschmayr, Yejin Choi, Yulia
Tsvetkov, et al. 2024. Model swarms: Collaborative
search to adapt llm experts via swarm intelligence.
arXiv preprint arXiv:2410.11163.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Shengran Hu, Cong Lu, and Jeff Clune. 2024. Au-
tomated design of agentic systems. arXiv preprint
arXiv:2408.08435.

James Kennedy and Russell Eberhart. 2002. Particle
swarm optimization. Proceedings of ICNN’95 - In-
ternational Conference on Neural Networks, 4:1942—
1948 vol 4.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T
Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling
declarative language model calls into self-improving
pipelines. arXiv preprint arXiv:2310.03714.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang,
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony
Lee, Erran Li Li, Ruohan Zhang, et al. 2025. Embod-
ied agent interface: Benchmarking llms for embodied
decision making. Advances in Neural Information
Processing Systems, 37:100428-100534.

https://www.anthropic.com/news/claude-3-5-sonnet
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Bal-
aji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. 2024. Autoflow: Automated work-
flow generation for large language model agents.
arXiv preprint arXiv:2407.12821.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2024. A dynamic llm-powered agent network
for task-oriented agent collaboration. In First Con-
ference on Language Modeling.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

OpenAl. 2022. Introducing chatgpt.
openai.com/chatgpt. Accessed: 2025-05-18.

OpenAl 2024a.
platform.openai.com/gpt-4o.
2025-05-18.

Gpt-4o.
Accessed:

OpenAl. 2024b. Gpt-40 mini: advancing cost-efficient
intelligence. openai.com/gpt-40-mini. Accessed:
2025-05-18.

Sundar Pichai and Demis Hassabis. 2024.
Our next-generation model: Gemini 1.5.
blog.google/gemini-1.5. Accessed: 2025-

05-18.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yu-
fan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2024. Scaling
large-language-model-based multi-agent collabora-
tion. arXiv preprint arXiv:2406.07155.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning. arXiv
preprint arXiv:2401.05268.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu,
Fengli Xu, and Yong Li. 2024. Agentsquare: Au-
tomatic 1lm agent search in modular design space.
arXiv preprint arXiv:2410.06153.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022.
Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2210.03057.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Amar Subramanya. 2024. Gemini gets 1.5
flash, a new related content feature and more.
blog.google/gemini-july. Accessed: 2025-05-
18.

10

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang,
and James Zou. 2024. Mixture-of-agents enhances
large language model capabilities. arXiv preprint
arXiv:2406.04692.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao
Ge, Furu Wei, and Heng Ji. 2023. Unleashing the
emergent cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang
Hong, Honglin Guo, Junzhe Wang, Dingwen Yang,
Chenyang Liao, Xin Guo, Wei He, et al. 2024.
Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint
arXiv:2406.04151.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,
Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. 2024. Travelplanner: A benchmark for real-
world planning with language agents. arXiv preprint
arXiv:2402.01622.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun
Wan, and William Yang Wang. 2024. G\" odel agent:
A self-referential agent framework for recursive self-
improvement. arXiv preprint arXiv:2410.04444.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dong-
sheng Li, and Deqing Yang. 2024. Evoagent: To-
wards automatic multi-agent generation via evolution-
ary algorithms. arXiv preprint arXiv:2406.14228.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. 2024a. Aflow:
Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song,
Chi Wang, Ranjay Krishna, and Qingyun Wu. Offline
training of language model agents with functions as
learnable weights. In Forty-first International Con-
ference on Machine Learning.

https://openai.com/index/chatgpt/
https://platform.openai.com/docs/models/gpt-4o
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/products/gemini/google-gemini-new-features-july-2024/

Wengi Zhang, Ke Tang, Hai Wu, Mengna Wang,
Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. 2024b. Agent-
pro: Learning to evolve via policy-level reflection
and optimization. Preprint, arXiv:2402.17574.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,
and Volker Tresp. 2025. Webpilot: A versatile and au-
tonomous multi-agent system for web task execution
with strategic exploration. Proceedings of the AAAI
Conference on Artificial Intelligence, 39(22):23378—
23386.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. 2024.
Natural plan: Benchmarking llms on natural lan-
guage planning. arXiv preprint arXiv:2406.04520.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li,
Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,
Jing Chen, Ruipu Wu, Shuai Wang, et al. 2023.
Agents: An open-source framework for autonomous
language agents. arXiv preprint arXiv:2309.07870.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long
Li, Jialong Wu, Tiannan Wang, Jiamin Chen, Shuai
Wang, Xiaohua Xu, Ningyu Zhang, et al. 2024. Sym-
bolic learning enables self-evolving agents. arXiv
preprint arXiv:2406.18532.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. 2024. Language agents as optimizable
graphs. arXiv preprint arXiv:2402.16823.

11

https://arxiv.org/abs/2402.17574
https://arxiv.org/abs/2402.17574
https://arxiv.org/abs/2402.17574
https://arxiv.org/abs/2402.17574
https://arxiv.org/abs/2402.17574
https://doi.org/10.1609/aaai.v39i22.34505
https://doi.org/10.1609/aaai.v39i22.34505
https://doi.org/10.1609/aaai.v39i22.34505
https://doi.org/10.1609/aaai.v39i22.34505
https://doi.org/10.1609/aaai.v39i22.34505

Contents

Introduction

Related Work
2.1 Agentic System Generation e e e e
2.2 Agentic System Optimization L e e e e e e

Preliminary
3.1 Agentic System Optimization e
3.2 Particle Swarm Optimization e

SwarmA gentic

4.1 Particle Initialization
4.2 Flaw Identification
4.3 Failure-Aware Velocity Update
44 PositionUpdate L e e e

Experiments
5.1 Experimental Setup e
52 Results. e

Analysis

6.1 Cross-Model Transferability Analysis
6.2 Ablation Study e
6.3 Case Study: Search Trajectoryon TP

Conclusion

Agentic Autonomy Evaluation Framework
A.1 Defining Agentic Autonomy: Three Core Properties
A.2 Autonomy Evaluation of Existing Agentic Frameworks

Comparison with MODEL SWARMS: From Model Fusion to Agentic System Generation

Experimental Details
C.1 Dataset Statistics and Evaluation
C.2 Baseline Implementations and Configurations

Implementation Details

D.1 Basic Structure of Agentic System
D.2 Pseudo Code for SwarmAgentico e
D.3 Prompt Repository e e e e

Case Study
E.1 Optimization Mechanism Illustration

Discovered Agentic System

F1 MGSM . .
F2 Creative Writing e e e e e
E3 Meeting Scheduling
F4 TravelPlanner e
E5 Comparison with ADAS-Discovered Agentic Systems

12

13
13
13

15
15
15

16
16
19
20

31
31

A Agentic Autonomy Evaluation Framework

A.1 Defining Agentic Autonomy: Three Core Properties

We define three core properties to evaluate the level of autonomy in agentic system generation. These
properties are mutually exclusive and collectively reflect the system’s ability to construct, adapt, and scale
agent-based solutions.

* From-Scratch Agent Generation requires that the framework must dynamically synthesize complete
agent instances—including their roles, decision logic, and internal structure—without relying on
predefined functional modules, such as hard-coded operators, or task-specific behaviors. Minimal
task-agnostic scaffolding (e.g., I/O wrappers or abstract interface definitions) may be reused, but
all task-specific reasoning strategies, coordination flows, and behavioral compositions must be
newly generated based on the task context. This capability is essential for real-world, open-ended
tasks involving high-level planning, system-level coordination, and creative reasoning, where agent
functionalities and coordination patterns must be automatically derived from the task description and
objective function. Manual design or fixed generation pipelines impose structural priors that hinder
adaptability and prevent the system from generalizing to novel or diverse scenarios.

* Self-Optimizing Agent Functionality indicates whether an agent’s internal logic, such as its role,
responsibility, or execution policy, can be automatically refined by the system itself, during execution
or across iterations, in response to feedback or performance signals, without manual intervention.
This dynamic adaptation must target the agent’s own behavior (not merely global workflow wiring)
and go beyond a fixed, static prompt. This is particularly important in exploratory tasks where agents
often face ambiguous goals or unexpected failures. Without self-adjustment, the system would rely
on brittle static prompts and require external corrections, undermining its autonomy and scalability.

* Self-Optimizing Agent Collaboration indicates whether the framework can autonomously re-
configure collaborative structures, including task sequencing, dependency refinement, inter-agent
coordination, and the addition or removal of execution steps. This supports dynamic restructuring of
how agents interact to improve efficiency and adaptability. Effective collaboration in open-ended
multi-agent settings demands flexibility: task decomposition, role delegation, and information flow
often need to be revised mid-execution. Without the ability to restructure inter-agent workflows, the
system cannot recover from coordination failures or adapt to emergent task constraints.

A.2 Autonomy Evaluation of Existing Agentic Frameworks

We evaluate each baseline framework against these autonomy properties defined above. Below we provide
justification for each binary assignment in Tab. 1.

* SPP (Wang et al., 2023) does not satisfy From-Scratch Agent Generation: it relies on a hard-
coded multi-persona prompt scaffold that prescribes the three-stage pattern (persona identification
— brainstorm — revision) and embeds two hand-crafted examples. The agents’ roles, dialogue
order and interaction protocol are therefore predefined rather than synthesised from the task. SPP
also fails Self-Optimizing Agent Functionality: the underlying prompts and decision policies are
frozen, so feedback only changes the answer text, not the agents’ own behaviour. It likewise fails
Self-Optimizing Agent Collaboration, because the interaction pattern cannot be expanded, pruned
or reordered at run time.

* EvoAgent (Yuan et al., 2024) does not satisfy From-Scratch Agent Generation: evolution begins
from a hand-written specialist agent supplied by MetaGPT, AutoGen, or a similar template, and
merely mutates its roles, skills and prompts, so the core logic is derived rather than synthesised
directly from the task. It does satisfy Self-Optimizing Agent Functionality, as LLM-guided
mutation plus fitness evaluation iteratively refines each agent’s internal behaviour. However, it
fails Self-Optimizing Agent Collaboration: the interaction topology is fixed by the underlying
framework—evolution can modify individuals but cannot reorder tasks, alter message routing or
create new coordination flows.

13

B

* AgentSquare (Shang et al., 2024) does not satisfy From-Scratch Agent Generation: search starts
from a fixed library of four standardised module types—planning, reasoning, tool-use and mem-
ory—extracted from sixteen existing agents. New agents are only recombinations or mutations of
these predefined modules, so core behaviour is not synthesised solely from the task description.
It satisfies Self-Optimizing Agent Functionality, since each module can be mutated or rewritten
by the LLM and retained or discarded based on performance, allowing an agent’s internal logic to
evolve across iterations. It fails Self-Optimizing Agent Collaboration: the framework optimizes a
single-agent modular architecture and never reconfigures multi-agent interaction patterns or execution
topology.

AutoAgents (Chen et al., 2023a) does not satisfy From-Scratch Agent Generation: the framework
is hard-wired with four manager roles—Planner, Agent-Observer, Plan-Observer, and a run-time
Action-Observer. These modules embed planning, evaluation, and dispatch logic, exceeding the
allowance for minimal task-agnostic scaffolding and anchoring core reasoning to a preset template
rather than synthesizing it solely from the task description. These human-designed interventions
limit their scalability and functionality (Yuan et al., 2024). Specifically, AutoAgents relies on these
four predefined manager roles, and all agent generation and collaboration processes must revolve
around them. The agent team structure and execution plan are not freely synthesized solely from
the task but are constrained within a fixed template. This restricts the system’s flexibility and
dynamic generation capability in adapting to complex and variable tasks. For example, it cannot
effectively handle highly open-ended tasks like TravelPlanner that require dynamic multi-role and
complex constraint coordination. It satisfies Self-Optimizing Agent Functionality: each task-
specific expert executes a THINK — PLAN —ACT — REFLECT loop that automatically rewrites its
own prompt, plan, and memory in response to feedback. It also satisfies Self-Optimizing Agent
Collaboration: the planner—observer dialogue can add or remove experts and resequence steps,
while the Action-Observer dynamically adjusts the plan during execution.

AFlow (Zhang et al., 2024a) fails From-Scratch Agent Generation: it assembles workflows from a
fixed palette of hard-coded operators (Generate, Revise, Ensemble, Test), so task-specific logic
is selected rather than newly synthesized. It satisfies Self-Optimizing Agent Functionality, as
execution feedback triggers automatic prompt edits, control-flow tweaks, and operator replacement
without human input. It also satisfies Self-Optimizing Agent Collaboration, because the MCTS
search can dynamically reorder tasks, add or prune branches, and revise coordination strategies.

Agent Symbolic Learning (Zhou et al., 2024) does not satisfy From-Scratch Agent Generation,
because it starts from a manually crafted pipeline inherited from prior work (Zhou et al., 2023) rather
than synthesising roles directly from the task description. It does meet Self-Optimizing Agent
Functionality: each node’s prompt and tool usage are refined via symbolic gradients driven by
language loss. The system also satisfies Self-Optimizing Agent Collaboration, since the pipeline
optimizer can add, delete or move nodes to restructure coordination.

ADAS (Hu et al., 2024) fails From-Scratch Agent Generation: the search starts from seven hand-
written seed agents, so new agents are mutated variants of these seeds rather than being created
solely from the task description. It satisfies Self-Optimizing Agent Functionality, as the meta-agent
repeatedly rewrites each candidate’s code, prompts, and tool calls using performance feedback,
preserving only the best variants. It satisfies Self-Optimizing Agent Collaboration, since the
meta-agent can insert or remove internal roles and reorder their interactions, letting coordination
structures evolve across iterations.

Comparison with MODEL SWARMS: From Model Fusion to Agentic System
Generation

MODEL SWARMS (Feng et al., 2024) is a collaborative optimization framework that adapts pretrained
LLM experts by searching in the model weight or token probability space. It applies particle swarm

14

optimization (PSO) to iteratively interpolate and update a pool of existing models, guided by a task-specific
utility function. The goal is to discover a single adapted model that performs well under limited data
conditions, without requiring fine-tuning or strong assumptions about expert composition.

Despite sharing high-level inspiration from swarm intelligence, our approach differs fundamentally from
MODEL SWARMS in objective, search space, optimization strategy, and output structure. While MODEL
SWARMS optimizes model parameters within a fixed expert pool, our method explores a language-based
agentic system design space. We construct executable multi-agent systems from scratch—each comprising
dynamic roles, internal logic, tool usage, and coordination strategies—based solely on task descriptions.
Additionally, whereas MODEL SWARMS relies on interpolation and performance-based selection, we
introduce a Failure-Aware Velocity Update mechanism that performs symbolic, LLM-guided rewriting
of agent functionalities and collaboration flows. Finally, the outputs are categorically distinct: MODEL
SWARMS produces a single, opaque model optimized for static evaluation, while our framework generates
a modular, interpretable agentic system capable of reasoning, adapting, and evolving in complex, dynamic
environments. This marks a paradigm shift from model fusion to full-system generation.

C Experimental Details

C.1 Dataset Statistics and Evaluation

MGSM Following (Hu et al., 2024), we sample 128 training and 800 test questions.

Creative Writing We use all 100 tasks, reserving the first 5 for training and the remaining 95 for
evaluation.

Natural Plan We train on a difficulty-balanced subset of the Natural Plan dataset: one example per
difficulty level—cities-to-visit N € [3, 10] for Trip Planning, friends-to-meet N € [1, 10] for Meeting
Planning, and Calendar Scheduling with (i) one-day schedules (N € [3, 7] meetings) and (ii) two-day
schedules (D € [1, 5] days apart). This results in 8 Trip Planning and 10 Meeting and Calendar Scheduling
training examples. Evaluation is conducted on a held-out validation set comprising 10% of the full dataset,
sampled with the same difficulty distribution and disjoint from the training data to avoid leakage.

TravelPlanner We follow the setup in (Yuan et al., 2024) and evaluate on 180 user queries. For training,
we use 9 representative queries from the original TravelPlanner training set, selected to match the difficulty
distribution of the validation set.

Evaluation Metrics For all tasks, we follow the evaluation metrics established in the original setting.
(1) TP is assessed based on delivery rate, commonsense constraint pass rate, hard constraint pass rate, and
final pass rate, with micro and macro strategies providing a detailed analysis of constraint satisfaction;
(2) NP employs an exact match score, where generated plans are compared against ground truth using
regex-based parsing to extract key details; (3) CW is evaluated using LLM with a zero-shot prompt,
assigning scalar scores (1-10) and averaging five samples per output to enhance reliability; (4) MGSM
employs an exact match score, where the generated integer answer is compared directly with the reference
answer for correctness.

C.2 Baseline Implementations and Configurations

We detail the setup for all baselines to ensure a fair and representative comparison. For each method, we
follow the official implementation and apply task-specific adaptations where required, consistent with the
original design intent.

1. Direct The LLM answers the input directly without intermediate reasoning or feedback.
2. CoT (Wei et al., 2022). The LLM is prompted to reason step by step before producing a final answer.

3. Self-Refine (Madaan et al., 2024). We adopt the iterative refinement pipeline proposed in the original
paper, using the official codebase and settings.

15

4. SPP (Wang et al., 2023). We follow the structured persona prompting format from the original paper.
The persona pool and dialogue structure are fixed across tasks, reflecting its hard-coded multi-agent
interaction template.

5. EvoAgent (Yuan et al., 2024). We adopt the official mutation strategies and role initialization
schemes from the released implementation.

6. ADAS (Hu et al., 2024). We employ the full Meta Agent Search framework, including 7 pre-
written seed agents and meta-agent rewriting policies. Following the original setup, we update
task-specific information (e.g., constraints and formats) in the meta-agent prompt to reflect each
domain. Additionally, we adapted the role-based methods from the initial library to better fit each
task.

Prompt Adaptation For all methods, we made necessary prompt word adjustments to fit each task
(e.g., "writing result" instead of "answer" for Creative Writing) while preserving each method’s logic. No
additional search or adaptation beyond the original algorithm was performed.

D Implementation Details

D.1 Basic Structure of Agentic System

We implement a modular framework for role-based multi-agent collaboration. The system defines struc-
tured classes for dynamically instantiating callable functions, parsing inputs, and orchestrating multi-role
execution. The Role class serves as a structural placeholder for role-specific behavior, execution policies,
and responsibilities, which are dynamically instantiated and optimized via LLM-guided search during the
PSO process. The Team class manages inter-agent coordination and information flow. This architecture
supports flexible task delegation and compositional control, and is designed for automated agentic system
generation and refinement. This framework forms the structural backbone of SwarmAgentic, enabling
dynamic agent instantiation and coordination during the PSO-driven search process.

def set_forward(next_solution):
Dynamically creates and returns a callable Python object defined by the input
code string.

Args:
next_solution (str): A string containing valid Python code that defines a
function or a callable object.

Returns:
Callable: The function or callable object generated from the provided code.

W
return func

class Role():

nnon

Base class representing a role within an agentic system.

Attributes:
name (str): Name of the agent.
responsibility (str): Description of the agent’s responsibility.
policy (str): Operational policy or behavioral guideline for the agent.
11m (Any): Language model instance used for generating responses.
message (Any): Object that stores the agent’s most recent communication.

nnn

def __init__(self, role: dict, 1lm) -> None:

def parse_inputs(self, inputs: List) -> str:

naon

Constructs a task prompt based on the provided inputs.

16

def

def

Args:

inputs (List): A list of inputs, typically including the task and

outputs from other agents.

Returns:

Tuple[str, str]: A tuple containing the current task instance and

combined outputs from other agents.

nnn

return task_instance, others_outputs
response (self, task_instance, others_outputs, output):

Generates the agent’s response using LLM.
Args:

task_instance (str): The current task or instruction for this agent.
others_outputs (str): Outputs or messages received from other agents.

output (str): Desired output format or specification.

Returns:
str: The final response generated by the agent.

nnn

return self.message.content

__call__(self, inputs, output):

nnn

Executes the agent’s full decision-making process: input parsing, response

generation, and return.

Args:

inputs (List): List of inputs, including task and other agents’ outputs.

output (str): Output format specification.

Returns:

str: The response generated by the agent.
task_instance, others_outputs = self.parse_inputs(inputs)
return self.response(task_instance, others_outputs, output)

class Team():

naon

class for a team,

Attributes:

- 1lm: LLM model to be used

- roles: List of agents in the team

- workflow: Workflow of the team

- task: Task to be solved by the team

- message_pool: Message pool for the team

nnon

def

def

__init__(self, 1lm, logger) -> None:

call(self, required_role: str, inputs: List = [], output: str

"""call the role with the required agent name. The inputs are
from other agents.

Args:
required_role (str): name of the required agent.

which consists of multiple agents and a workflow about how
they interact with each other. A particle consists of a team,
multiple interacting agents defined by a workflow, and the exe
generated by LLM_write_forward.

composed of
cutable code

= H"):
the outputs

inputs (List, optional): inputs for the agent. Defaults to [].

output (str, optional): output requirements for the agent.

"

Returns:
response: response of the role.

nnn

return responses

Defaults to "

17

D.2 Pseudo Code for SwarmAgentic

Algorithm 1 Agentic System Search with Particle Swarm Optimization

Require: LLM temperatures {temp,}!" ,, fitness function J : = — R; system initialization function
LLMinit_team; System code-generation function LLMyriee_forward; performance evaluation function
LLMe,ya; system flaw identification function LLMjy,y; velocity initialization function LLMipj(vel;
failure identification function LLMjdentify _fai1; learning from failure function LLMg,;; global best
guidance function LLMyjop; personal best guidance function LLMpe; velocity update function

LLM,j; position update function LLM;s;
swarm size [N, max iteration T’

1: Input: dataset for training D

2: Output: global best checkpoint g

3: // Initialize search

4: fori <— 1to N do

5. // LLM\yite_forwara enables automatic code execution

6. Initialize position: 2 « LLMiy cam (temp;)

7: Initialize fitness: ji(o) —J (xgo), D)

g: Identify Problem: p” « LLMq(z.”, i)

9: Refection Summarization: fi(l) — LLMﬂaW(I',EO), pgo))
10: Initialize velocity: vz(l) — LLMinit_Vel(a:EO), fi(l)))

11: Initialize personal best: p; < ml(-o), Jpi < ji(o)

12 Update Position: a:z(.l) — LLMpos(xEO)7 UZ(l))

13: end for

14: Initialize global best: g <— arg max; j](,?i), fg < max; j;?i)

15: // Start search
16: fort < 1to T do
17: forallv=1,..., N (in parallel) do

18: Execution:

19: Update Fitness: ji(t) —J (:cgt), D)

20: Identify Problem: p” < LLMy(z\”,)

21: Refection Summarization: fi(tH) — LLMﬂaW(l'Z(-t), pgt))
Update Global Best:

22: ifji(tﬂ) > jg then

23: g :J:EH—I); Jg < jl-(Hl)

24: end if
Update Personal Best:

5. it j") > j, then

26: D :L‘Etﬂ); Jpi < jl-(tH)

27: end if

28: Update Velocity:

29: / LLM igensify_fail identify the previous failed adjustments

30: CfoF(UZ(t)) = LLMfail(Ui(t), fl-(t), fi(H_l))

31 ¢orp(; — 2) = LLMpers(2y) 7, /)

2 egrelo— o) = LiMgas(ay” g, £)

33: U§t+1) — LLMvel(CfrfF(vl(t)), cprp(pr — :Bgt)), cgrg(g — a:z(t)))

34: Update Position: xEtH) “— LLMpos(ch(t), vi(tﬂ))

35: end for

36: end for

37: return g

> Eq. (4)
> Eq. (5)
> Eq. (6)
> Eq. 3)
> Eq. (7)

19

D.3 Prompt Repository

We employ the following prompts to achieve the automated generation of agentic systems with PSO.
Specifically, we use LLMjy;; eam to initialize both the roles and the team for each particle at the start
of the process, ensuring consistency in team composition and task allocation. LLMyrite_forward 1 then
used to generate the corresponding code based on the initialized roles and the given workflow, enabling
forward progression of each particle’s function. To identify problems in the responses, we employ
performance evaluation LLMe,y,;, which analyzes the workflow and task execution to reveal underlying
issues and explain their root causes in relation to the intended process. Once a problem is identified, flaw
identification LLMg,,, is applied to trace it back to underlying issues in the role or team configuration.
This step helps uncover structural or logical flaws that may hinder performance.

Next, we initialize the velocity of each particle LLMiyi¢_vel, considering the current team composition
and the identified design flaws. This initialization provides direction and momentum for adjustment
in future iterations. We then examine the failed adjustments LLM;denify_fait from the previous iteration
using a specialized prompt designed to extract and document ineffective changes. The Learning from
Failure prompt LLMy,; is used to suggest improved strategies, leveraging past failures to guide more
effective future adjustments. To complement this, we use additional prompts to discover meaningful
adjustments inspired by both the global best team LL Mo, and the personal best team LLMpers, promoting
convergence towards optimal configurations. Velocity is updated LLM,, by integrating suggestions from
global best guidance, personal best guidance, and failure-driven learning. This multi-source adjustment
balances exploration and exploitation. Finally, the team configuration is updated LLM, according to the
plan generated during the velocity update phase, completing one full iteration of the optimization cycle
and preparing for the next.

Prompt Template for Agents

ROLE_PROMPT = ’’’You are {name}. You are working in a team solving the
following specific task:

<task instance>

{instance}

</task instance>

You are also provided with helpful information from other team members:
<helpful information>

{information}

</helpful information>

Instruction

Based on the <task instance> and <helpful information>, your responsibility is
{responsibility}

Please follow the instructions step by step to give an answer:

<instruction>

{policy}

</instruction>

Output Guidance
Your answer only needs to include: {output}
Think step by step and limit your answer to 100 words.

IR

Prompt for Agentic System Initialization LLMjpit_team

You are an expert in designing a highly efficient, specialized, and
collaborative multi-agent team for a specific task.

*xRequirements :*x*
- The team must break down the task into highly specialized, modular roles.
- Each role should have a focused domain of responsibility, handling only one

20

primary aspect of the task.

- The information flow must be strictly modular, with each step primarily
receiving structured input from the outputs of previous steps. Steps can
refer to the initial task definition implicitly as needed, but it should
not be treated as a direct input for workflow dependencies.

- Each step’s output must be structured and usable as a direct input for
subsequent steps, creating a clear, step-by-step workflow.

- Each step can only be assigned to a single role and cannot involve multiple
roles simultaneously.

- The resulting team structure should allow for easy scalability and clarity,
ensuring that each module can be independently optimized or replaced
without affecting other parts of the system.

**Deliverables:*xx
1. Define Each Role:
- Name: A clear and descriptive title.
- Responsibility: A narrowly focused set of tasks aligned with that domain.
- Policy: Specific operational guidelines for fulfilling these tasks.
2. Collaboration Structure:
- Clearly outline how roles interact and pass information to one another.
- Ensure that information flows from one role to another in a well-defined
manner. Each role should clearly know which role’s output it relies on,
if any. If there is no upstream role, it operates independently (with
no input).
3. Sequential Workflow:
- Illustrate a concrete workflow from start to finish.
- For each step:
* Specify the single role responsible for that step.
* Define its input, which must come from previous roles’ outputs or be
empty.
* Define its output, which will be used as input for subsequent steps.
- Ensure there is a designated role at the end to integrate all components
into the final deliverable.

Now, giving the following task: {task}

Please design a detailed multi-agent collaborative team that could efficiently
solve the task.

Prompt for System Compilation LLMyyite_forward

You are an expert Python programmer. You are tasked with writing
a function to organize available roles to solve a specific task.
{function description}

You are provided with the following available roles. Each role
can solve a subtask of the complex task:

<available roles>

{roles}

</available roles>

You are also given the workflow of these roles:
<workflow>
{workflow}
</workflow>

Your job is to design the function that represents how the roles

will work together to solve the task.

Use these guidelines when generating the function:

- ALWAYS use *xrole_response = team.call(role_name: str, inputs: List, output:
str)*x* to call a role. This will give inputs and required output
instructions to the role and return the role’s response.

* role_name: The name of the role to call in this step. You can only call
roles in the current team. MUST NOT call a non-existent role from the
available roles.

* inputs: List of the outputs produced by one or more roles in the

21

previous steps.
* output: What output is expected from the role in this step? Must be
enclosed in double quotation marks ("output”).
- Use the provided workflow instruction as a guide for designing the function
s structure.
- Create a well-organized function that represents how the roles will work
together to solve the task efficiently.
- MUST not make any assumptions in the code.
- Ensure that every variable declared in the function is utilized, with no
unused or redundant variables.
- Ensure the created function is complete and correct to avoid runtime
failures.

’

Examples

Here is an example to help you design the function:
<examples>
{examples?}
</examples>

Prompt for Performance Evaluation LLMeyy

You are an expert assistant. You are tasked with analyzing the given workflow
to identify where issues occurred, leading to the problem. You must
provide a detailed explanation of the cause of the error.

The team is solving the following tasks:
<task>
{task}
</task>

The roles are collaborative in the following workflow:
<workflow>
{workflow}
</workflow>

You are also provided with the problem in the team result:
<problem>

{evaluation}

</problem>

Please provide a detailed explanation of the root cause of the

<problem> at the identified step(s) with by referencing the

detail information of the <task>, while considering factors such

as incorrect execution, missing information, or deviations from the intended
process.

Prompt for Flaw Identification LLMgay,

You are an expert assistant tasked with reflecting on feedback and indicating
specific flaws in the current team.

Given the following feedback:
<feedback>
{feedback}
</feedback>

The team to optimize is as follows, including its roles and collaborative
workflow:

<current team>

{current team}

</current team>

22

Instruction

Based on the <feedback>, identify the specific flaws in the roles or workflow
steps that directly contributed to the <feedback>. The flaw should be
within the following types:

1. Missing Role: Were there missing roles in the team that left certain
tasks inadequately addressed or overlooked? Clearly specify which role

may be needed.

2. Redundant Role: Were there redundant roles in the team that were
unnecessary? Clearly indicate the specific role that is redundant.

3. Role Policy Deficiency: If the policy of the role is sufficiently
instructive, clear, and effective. Are there gaps, ambiguities, or
contradictions in the policy that affect role performance? Clearly
specify the name of the role.

4. Missing Workflow Step: Were there missing steps in the workflow that
left certain tasks inadequately addressed or overlooked? Clearly
specify between which two steps the missing step should have occurred.

5. Redundant Workflow Step: Were there redundant steps in the workflow
that are unnecessary? Clearly indicate the specific role and the exact

step number that is redundant.

6. Insufficient Input: Were the inputs insufficient for the workflow steps
? Assess if it includes all the necessary information needed to get
the role’s output with its responsibility effectively. Clearly specify

the role responsible for the step and the exact step number where the
input was insufficient.

7. Inappropriate Output: Before identifying an output as inappropriate,
verify whether the requested output falls within the role’s scope of
responsibility. If the requested output exceeds the role’s
responsibility, reassign the task to an existing role better suited
for it or create a new role specifically responsible for the output if

no such role exists. Only when the required output is within the role
’s responsibility and still incorrect, missing, or incomplete should
it be classified as inappropriate output for that role. Clearly
specify the role responsible for the step and the exact step number
where the output was inappropriate.

Prompt for Velocity Initialization LLM;pi;_vel

You are tasked with optimizing a multi-agent team setup to enhance its
performance in solving a specific task.

The team to optimize is as follows, including its roles and collaborative
workflow:

<current team>

{current_team}

</current team>

However, the <current team>’s performance is insufficient and must be improved
based on the following feedback:

<feedback>

{feedback}

</feedback>

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team>:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome, requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role’s:

- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role’s duties.

* Modify Role: Adjust the policy of an existing role for improved role

execution, when the identified inefficiencies or gaps can be addressed

23

through manageable refinements to its policy, ensuring the changes do
not overburden the role and are within the scope of its
responsibility.

* Delete Role: Remove roles that are redundant, unnecessary, or conflict
with the team’s primary objectives.

- Use the following OPERATIONS to optimize the workflow of the <current team>:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency, coordination, or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear

value to the process. Define the step’s:

- Role: The role responsible for acting in this step.

- Input: The input for this step must be the output produced by one or
more roles in previous steps.

- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant, no longer
contributes to team goals, or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps’
efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback>, apply the following steps:

* Identified Flaw: Clearly outline the specific flaw identified in the <
feedback> section.

* Proposed Adjustment: Specify the exact OPERATIONS to address the =*x
Identified Flawx*x.

Prompt for Failure Identification LLM;dentify_fail

You are a strategic advisor focused on enhancing the team’s performance. Your
role is to carefully analyze the feedback provided and identify failed
adjustments with the previous adjustment plan.

You are given the following feedback on areas for the team
improvement:

<feedback>

{feedback}

</feedback>

You are also provided with the previous adjustment plan, the measures taken to
enhance team performance:

<previous adjustment plan>

{velocity}

</previous adjustment plan>

Instruction

For each flaw in <feedback>, please apply the following steps:
1. Identified Flaw:
- Clearly outline the specific flaw identified in the <feedback> section.
2. Thought:
- Carefully think if there is any *xProposed Adjustment** in the <previous
adjustment plan> section for the exact same *xIdentified Flawxx.
3. Failed Adjustment:

- Based on your *xThought*x, quote the exact **Proposed Adjustment*x as
described in <previous adjustment plan> if there is any *xProposed
Adjustment*x for the same kind of Identified Flaw in <previous
adjustment plan>. Otherwise, say ’None’ here.

24

Prompt for Learning from Failure LLMg,

You are a strategic advisor focused on enhancing the team’s performance. Your
role is to carefully analyze the feedback provided and align team
improvements with previous adjustment directions.

The team to optimize is as follows, including its roles and collaborative
workflow:

<current team>

{team}

</current team>

You are given the following feedback, including every "Identified Flaw"” and
its "Failed Adjustment”:

<feedback>

{feedback}

</feedback>

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team>:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome, requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role’s:

- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy, ensuring the changes do
not overburden the role and are within the scope of its responsibility

* Delete Role: Remove roles that are redundant, unnecessary, or conflict
with the team’s primary objectives.

- Use the following OPERATIONS to optimize the workflow of the <current team>:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency, coordination, or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear

value to the process. Define the step’s:

- Role: The role responsible for acting in this step.

- Input: The input for this step must be the output produced by one or
more roles in previous steps.

- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant, no longer
contributes to team goals, or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps’
efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback>, apply the following steps:

* Identified Flaw: Clearly outline the specific flaw identified in the <
feedback> section.

* Failed Adjustment: Quote the corresponding **Failed Adjustmentx* of the
*xIdentified Flaw*x in <feedback>.

* Proposed Adjustment: Specify the exact OPERATIONS to address the =*x
Identified Flaw**. Do not reintroduce or reword the same solution in
*xFailed Adjustmentxx.

25

Prompt for Learning from the Global Best LLMgjop

You are a strategic assistant tasked with improving a team’s performance by
analyzing the strengths of a higher-performing example team. Your
objective is to understand the specific practices and configurations of
the more optimized team that are directly relevant to solving the current
team’s issues. You will suggest practical improvements to the current team

without copying outright.

You are tasked with improving the current team’s roles and collaborative
workflow:

<current team>

{current_team}

</current team>

This team is designed to solve the following types of tasks:
<task>
{task}
</task>

However, the <current team>’s performance is insufficient and must be improved
based on the following feedback:

<feedback>

{feedback}

</feedback>

You have been provided with details of a globally recognized high-performing
team, optimized specifically for solving the same type of <task> as the <
current team>:

<global best team>

{g_best}

</global best team>

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team>:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome, requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role’s:

- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role’s duties.
* Modify Role: Adjust the policy of an existing role for improved role
execution, when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy, ensuring the changes do
not overburden the role and are within the scope of its
responsibility.

* Delete Role: Remove roles that are redundant, unnecessary, or conflict
with the team’s primary objectives.

- Use the following OPERATIONS to optimize the workflow of the <current team>:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency, coordination, or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear

value to the process. Define the step’s:

- Role: The role responsible for acting in this step.

- Input: The input for this step must be the output produced by one or
more roles in previous steps.

- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant, no longer

26

contributes to team goals, or overlaps with other steps in the

workflow. Ensure the removal of the step does not impact other steps’

efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback>, apply the following steps:

* Identified Flaw: Clearly outline the specific flaw identified in the <
feedback> section.

* Thought: What can we learn from the <global best team>’s descriptions to

do better in the *xIdentified Flawxx?

* Comparative Insights:

- Extract specific elements from the <global best team>’s descriptions

that demonstrate excellence in the *xIdentified Flawx*=*.

- Present these elements as part of a structured sentence, explicitly
quoting the key phrases from their role responsibilities, role
policies, step inputs, step outputs, or step orders.

- Ensure the response integrates the quoted descriptions into a
coherent sentence without adding commentary, assumptions, or
analysis.

- If nothing helpful to solve the *xIdentified Flawx*, say ’None’.

* Proposed Adjustment: The adjustment must directly reflect and utilize
the specific phrases quoted in the *xComparative Insightsx*x. The
wording and content of the adjustment must align with these insights
without introducing unrelated suggestions, rephrased ideas, or
unquoted elements. The response must clearly demonstrate how the
adjustment directly incorporates the practices described in =x%*
Comparative Insights*x. If *xComparative Insights*x is ’None’, say '’
None’ here.

Prompt for Learning from the Personal Best LLMers

You are a strategic assistant tasked with improving a team’s performance by
analyzing the strengths of a higher-performing example team. Your
objective is to understand the specific practices and configurations of
the more optimized team that are directly relevant to solving the current
team’s issues and to suggest practical improvements to your team without
copying outright.

You are tasked with improving the current team’s roles and collaborative
workflow:

<current team>

{current_team}

</current team>

This team is designed to solve the following types of tasks:
<task>
{task}
</task>

However, the <current team>’s performance is insufficient and must be improved
based on the following feedback:

<feedback>

{feedback}

</feedback>

You are provided with the following "personal best team”, identified as the
most effective setup for addressing the <feedback> throughout the sequence
of adjustments made from the initial team setup to the <current team>.
This "personal best team” captures the optimal roles and workflow that
have proven most successful in solving similar <feedback>, serving as a
refined benchmark for guiding improvements to the <current team>’s
performance.

<personal best team>

27

{p_best}
</personal best team>

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team>:
* Add Role: Introduce a new role when an existing subtask becomes overly

- Use

complex or burdensome, requiring a specialized responsibility that

cannot be integrated into current roles without disrupting their

primary responsibilities. Define the role’s:

- Name: A clear name that reflects its specific responsibility.

- Responsibility: Specific tasks or functions the role will handle.

- Policy: Operational guidelines for fulfilling the role’s duties.

Modify Role: Adjust the policy of an existing role for improved role
execution, when the identified inefficiencies or gaps can be addressed

through manageable refinements to its policy, ensuring the changes do
not overburden the role and are within the scope of its
responsibility.

Delete Role: Remove roles that are redundant, unnecessary, or conflict
with the team’s primary objectives.

the following OPERATIONS to optimize the workflow of the <current team>:

Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency, coordination, or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear

value to the process. Define the step’s:

- Role: The role responsible for acting in this step.

- Input: The input for this step must be the output produced by one or

more roles in previous steps.

- Output: What output is expected from the role in this step?

Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

Delete Step: Delete a step if it has become redundant, no longer
contributes to team goals, or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps’
efficiency or completeness in achieving objectives.

Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

each identified flaw in <feedback>, apply the following steps:

Identified Flaw: Clearly outline the specific flaw identified in the <
feedback> section.

Thought: What can we learn from the <personal best team>’s descriptions
to do better in the *xIdentified Flawxx*?

Comparative Insights:

- Extract specific elements from the <personal best team>’s
descriptions that demonstrate excellence in the *xIdentified Flaw
*%k,

- Present these elements as part of a structured sentence, explicitly
quoting the key phrases from their role responsibilities, role
policies, step inputs, step outputs, or step orders.

- Ensure the response integrates the quoted descriptions into a
coherent sentence without adding commentary, assumptions, or
analysis.

- If nothing helpful to solve the *xIdentified Flaw**, say ’None’.

* Proposed Adjustment: The adjustment must directly reflect and utilize

the specific phrases quoted in the **xComparative Insights*x. The
wording and content of the adjustment must align with these insights
without introducing unrelated suggestions, rephrased ideas, or
unquoted elements. The response must clearly demonstrate how the
adjustment directly incorporates the practices described in =xx*
Comparative Insightsxx. If *xComparative Insights*x is ’None’, say '’
None’ here.

28

Prompt for Velocity Update LLM ¢

You are tasked with optimizing a multi-agent team setup to enhance its
performance in solving a specific task.

The team to optimize is as follows, including its roles and collaborative
workflow:

<current team>

{team}

</current team>

This team is designed to solve the following types of tasks:
<task>
{task}
</task>

Objective

Develop a detailed adjustment plan focused on optimizing roles and the
collaborative workflow to maximize the <current team>’s performance in
addressing the specified <task>. The adjustments must be based on the
following feedback:

<feedback>

{feedback}

</feedback>

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team>:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome, requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role’s:

- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role’s duties.
* Modify Role: Adjust the policy of an existing role for improved role
execution, when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy, ensuring the changes do
not overburden the role and are within the scope of its
responsibility.

* Delete Role: Remove roles that are redundant, unnecessary, or conflict
with the team’s primary objectives.

- Use the following OPERATIONS to optimize the workflow of the <current team>:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency, coordination, or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear

value to the process. Define the step’s:

- Role: The role responsible for acting in this step.

- Input: The input for this step must be the output produced by one or
more roles in previous steps.

- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant, no longer
contributes to team goals, or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps’
efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

29

- For each Identified Flaw in <feedback>, apply the following steps:

* Identified Flaw: Clearly outline the specific Identified Flaw in the <
feedback> section.

* Proposed Adjustment: Based on the *x*Recommended Adjustment=**, =*xBest
Team Insights**, and **Past Best Setup Reflection**, generate a final
adjustment plan that directly addresses the x*xIdentified Flawx*, while

avoiding any repetition of the x*Failed Adjustmentsxx.

Prompt for Position Update LLM,0s

You are an expert assistant and writer. You are tasked with generating a
refined team from an existing team according to the reflection.

You are given the roles within the current team:
<roles>
{roles}
</roles>

You are also provided with the workflow of the current team:
<workflow>
{workflow}
</workflow>

The team is solving the following types of tasks:
<task>
{task}
</task>

Instruction

Your job is to update the roles and workflow of the team based on the
following plan:

<plan>

{plan}

</plan>

Use these guidelines when generating the answer:

<system-guidelines>

1. If a role does not require modification in the plan, it must be retained in

the final "roles” list with its original "Name," "Responsibility,” and "
Policy."

2. If the plan specifies that a role should be modified, only update the
Policy"”; do not change the "Name"” or "Responsibility.”

3. If the plan specifies that a role should be removed, then remove it from
the final "roles” list.

4. If the plan specifies adding a new role, include it in the final "roles”
list with its "Name,"” "Responsibility,” and "Policy."

5. When generating the final answer, verify the total number of roles to
ensure:

- All roles that do not require modification remain unchanged.
- Roles marked for removal are actually removed.

- Newly added roles appear in the final list.

- Modified roles are correctly updated.

6. The information flow must be strictly modular, with each step primarily
receiving structured input from the outputs of previous steps. Steps can
refer to the initial task definition implicitly as needed, but it should
not be treated as a direct input for workflow dependencies.

7. Each step’s output must be structured and usable as a direct input for
subsequent steps, creating a clear, step-by-step workflow.

8. Each step can only be assigned to a single role and cannot involve multiple

roles simultaneously.

9. The final step in the workflow must produce the exact deliverable specified

in the <task> without referencing any intermediate steps.
</system-guidelines>

”

n

30

E Case Study

E.1 Optimization Mechanism Illustration

The following example demonstrates how each component of the velocity update—Global Best, Personal
Best, and Failure-Driven Adjustments—contributes to system refinement during the optimization process.
The Global Best guidance led to the first major improvement by introducing a dedicated Quality Assurance
Specialist role, ensuring structural completeness and consistency across the generated travel plan. The
Personal Best guidance triggered the second improvement by identifying a missing verification step
between accommodation planning and downstream modules. To address this, a cross-validation step was
added, enabling the Accommodation Coordinator to verify constraints such as budget, minimum stays,
child suitability, and room availability before forwarding data. Finally, the Failure-Driven Adjustment
mechanism refined the Quality Assurance module by incorporating budget compliance checks, directly
addressing prior execution failures related to cost violations.

This example illustrates how each optimization signal enables targeted refinements, jointly driving
the emergence of well-structured, constraint-compliant agentic workflows. Personal Best Guidance
identified a missing verification step between accommodation planning and downstream tasks. Without
cross-checking accommodations against user requirements, there was a risk of passing forward incomplete
or non-compliant data. To resolve this, a new workflow step was added in which the Accommodation
Coordinator performs a cross-verification of accommodation options to confirm alignment with constraints
such as budget, minimum stays, child suitability, and room count.

Listing 1: Example optimization process of the Personal Best Guidance with LLM ey

// previous team

{
"roles": [
]7
"workflow": [
{
"Step": "2",
"Role": "Accommodation Coordinator”,
"Input”: "Transportation plan detailing the chosen mode of travel.”,
"Output”: "Accommodation plan including the number of nights, recommended
hotels, confirmation of minimum stay requirements, suitability for children,
and the number of rooms needed.”
}7
{
"Step": "3",
"Role": "Restaurant Advisor",
"Input”: "Accommodation plan including the number of nights and recommended
hotels, along with cuisine preferences and dietary restrictions from
travelers."”,
"OQutput”: "Restaurant recommendations for each non-travel day."
3
]
}
// personal best guidance. Output of LLM_pers
{
"Identified Flaw": "Missing Workflow Step: There is a missing workflow step
between Step 2 and Step 3 that should involve a final review or
cross-verification of accommodation options against user requirements before
the Quality Assurance Specialist review.”,
"Thought": "Incorporating a cross-verification step can prevent oversights and
ensure accommodation options align with requirements before further review.",
"Comparative Insights"”: "The personal best team includes a validation step to
’Verify minimum stay requirements for all accommodations,’ ensuring a thorough
check before final approval.”,
"Proposed Adjustment”: "Add a new workflow step after Step 2 where the
Accommodation Coordinator performs a cross-verification of accommodation
options against user requirements before proceeding to Quality Assurance
Specialist.”
}

31

// updated team

{
"roles”: [

{

"Name": "Accommodation Coordinator”,

"Responsibility"”: "Plan accommodations for the trip, including the number
of nights and suitable hotels."”,

"Policy": "1. Review the travel itinerary and number of nights in each
city. 2. Research suitable accommodations based on budget and preferences. 3.
Verify minimum stay requirements for all accommodations. 4. Confirm the number
of rooms needed for all travelers and ensure accommodations align with user
constraints. 5. Provide a primary and a secondary accommodation option for each
city, explicitly stating whether the selected accommodations meet the minimum
stay requirements and suitability for children.”

}

]’
"workflow": [
{
"Step": "2",
"Role": "Accommodation Coordinator”,
"Input”: "Transportation plan detailing the chosen mode of travel.”,
"Qutput”: "Accommodation plan including the number of nights, recommended
hotels, confirmation of minimum stay requirements, suitability for children,
and the number of rooms needed.”
}’

{

"Step": "3",

"Role"”: "Accommodation Coordinator”,

"Input”: "Accommodation plan including the number of nights, recommended
hotels, and user constraints.”,

"Qutput”: "Cross-verified accommodation options confirming adherence to all
specified constraints.”

}!

{

"Step": "4",
"Role": "Restaurant Advisor”,
"Input”: "Accommodation plan including the number of nights and recommended
hotels, along with cuisine preferences and dietary restrictions from
travelers.”,
"Qutput”: "Restaurant recommendations for each non-travel day."”
3
]
}

In this case, Global Best Guidance identified a gap in the original workflow: the absence of a final
review step to ensure all travel constraints and requirements were met. While the Travel Plan Integrator
emphasized consistency, it lacked a dedicated validation phase. To resolve this, a new Quality Assurance
Specialist role was added. This role systematically reviews the entire travel plan—covering transportation,
accommodations, dining, and attractions—to catch errors and ensure compliance before finalization.

Listing 2: Example optimization process of the Global Best Guidance with LLMgjop

// previous team

{
"roles": [

L

{
"Name"”: "Transportation Planner”,
"Responsibility": "...",
"Policy": "..."

}!

{
"Name": "Accommodation Coordinator”,
"Responsibility”: "...",
"Policy": "..."

32

{
"Name": "Restaurant Advisor"”,
"Responsibility”: "...",
"Policy": "..."
}!
{
"Name"”: "Attraction Specialist”,
"Responsibility": "...",
"Policy": "..."
}!
{
"Name": "Travel Plan Integrator”,
"Responsibility”: "...",
"Policy": "..."
}
]
]r
"workflow": [
]
}
// global best guidance. Output of LLM_glob
{
"Identified Flaw": "The travel plan may lack a final review step to ensure all
constraints and requirements are fully met before confirmation.”,
"Thought": "The global best team incorporates a review process to ensure the
final travel plan is comprehensive and consistent, suggesting the potential
benefit of a dedicated Quality Assurance Specialist role.”,
"Comparative Insights"”: "The Travel Plan Integrator’s policy emphasizes the
importance of a review: ’Review the entire plan for consistency and
completeness.’"”,
"Proposed Adjustment”: "Introduce a new Quality Assurance Specialist role
responsible for reviewing the entire travel plan to ensure compliance with all
constraints and requirements before finalization."”
}
//updated team
{
"roles”: [
{
"Name": "Travel Plan Integrator”,
"Responsibility": "...",
"Policy": "..."
3,
{
"Name": "Quality Assurance Specialist”,
"Responsibility”: "Review the entire travel plan to ensure compliance with all
constraints and requirements before finalization."”,
"Policy"”: "1. Examine the transportation plan for conflicts and alignment with
the itinerary. 2. Verify that accommodations meet all minimum stay and user
constraints. 3. Ensure restaurant recommendations align with traveler
preferences and dietary restrictions. 4. Confirm attraction selections fit
within the planned schedule. 5. Provide feedback for adjustments if necessary.”
3
]7
"workflow": [
]
}

In this case of Failure-Driven Adjustment, the system identified a recurring issue: the Quality Assurance
Specialist lacked explicit policy guidelines for verifying the accuracy of outputs from preceding roles. This
gap continued to result in budget discrepancies and incomplete itineraries, even after a prior adjustment.
The initial revision introduced a general review process, but it lacked a clear, enforceable structure
and proved ineffective. Building on this insight, the improved adjustment implemented a mandatory
verification process supported by a checklist, ensuring that all outputs are thoroughly reviewed for
accuracy and completeness before the finalization of the travel plan. This refinement transforms a vague

33

recommendation into a structured and enforceable policy, significantly enhancing the integrity of the final

output.

Listing 3: Example optimization process of the Failure-Driven Adjustments with LLMjg,;

// previous team

{

"roles”: [
{

"Name": "Quality Assurance Specialist”,

"Responsibility”: "Review the entire travel plan to ensure compliance with all

constraints and requirements before finalization."”,

"Policy": "1. Examine the transportation plan for conflicts and alignment with

the itinerary. 2. Verify that accommodations meet all minimum stay and user

constraints. 3. Ensure restaurant recommendations align with traveler

preferences and dietary restrictions. 4. Confirm attraction selections fit

within the planned schedule. 5. Provide feedback for adjustments if necessary.”

3

] y
"workflow": [

]
}
//Failure-Driven Adjustment. Output of LLM_fail.

{

"Identified Flaw": "Role Policy Deficiency: The policy for the Quality Assurance
Specialist lacks specific guidelines for verifying the accuracy of outputs from

previous steps, which could prevent budget discrepancies and incomplete

itineraries."”,
"Failed Adjustment”: "Modify Role: Revise the Quality Assurance Specialist’s policy

to include a review process for cross-verifying outputs from all roles before
finalizing the travel plan. The revised policy will state: ’3. Review all
outputs from previous roles for consistency and completeness before finalizing

yn

the travel plan.’”,
"Proposed Adjustment”: "Modify Role: Clarify the Quality Assurance Specialist’s

policy to mandate a verification process that includes a checklist to ensure
all outputs from previous roles are accurate and complete before finalization."”

}
// updated team

{

"roles”: [

{

"Name": "Quality Assurance Specialist”,
"Responsibility”: "Review the entire travel plan to ensure compliance with all
constraints and requirements before finalization."”,
"Policy"”: "1. Examine the transportation plan for conflicts and alignment with
the itinerary. 2. Verify that accommodations meet all minimum stay and user
constraints. 3. Ensure restaurant recommendations align with traveler
preferences and dietary restrictions. 4. Confirm attraction selections fit
within the planned schedule. 5. Provide feedback for adjustments if necessary.
6. Verification of all components, including accommodations, restaurants, and
attractions, to confirm alignment with user constraints and comply with

budgetary limits.”
3

]

"workflow": [

]

F Discovered Agentic System

In this section, we present the final agentic system discovered by SwarmAgentic. These optimized
systems—spanning MGSM, Creative Writing, Meeting Scheduling, and TravelPlanner—demonstrate the

34

flexibility and generality of SwarmAgentic in generating task-adaptive agentic structures across diverse
domains.

F1 MGSM

def forward(team):

Step 1: Problem Analysis Specialist analyzes the problem and produces a
structured summary of the problem components.

problem_summary = team.call(
’Problem Analysis Specialist’,
(1,

"Structured summary of the problem components.”,

)

Step 2: Mathematical Operations Specialist uses the structured summary to
create a detailed outline of calculations needed to solve the problem.
calculation_outline = team.call(
’Mathematical Operations Specialist’,
[problem_summary],
"Detailed outline of calculations required to solve the problem.”,

)

Step 3: Quality Assurance Specialist reviews the detailed outline for accuracy

reviewed_outline = team.call(
’Quality Assurance Specialist’,
[calculation_outline],
"Reviewed assumptions and interpretations ready for verification.”,

)

Step 4: Quality Assurance Specialist verifies the reviewed outline for
execution readiness.
verified_operations = team.call(
"’Quality Assurance Specialist’,
[reviewed_outline],
"Verified operations ready for execution with corrections if necessary.”,

)

Step 5: Calculation Execution Specialist executes the verified operations and
returns the final result.
final_result = team.call(
"’Calculation Execution Specialist’,
[verified_operations],
"Final result of the calculations.”,

)

Step 6: Solution Integration Specialist formats the final result as the final
answer.

formatted_answer = team.call(

’Solution Integration Specialist’,
[final_result],
"Formatted final answer."”,

)

Return the final formatted answer
return formatted_answer

F.2 Creative Writing

def forward(team):
Step 1: Sentence Analyzer analyzes sentences for thematic connections.
categorized_sentences = team.call(’Sentence Analyzer’, [], ’'Categorized
sentences with themes and narrative roles.’)

Step 2: Narrative Architect creates a narrative framework based on the
categorized sentences.

35

narrative_framework = team.call(’Narrative Architect’, [categorized_sentences],
"Narrative framework outlining the placement of each sentence.’)

Step 3: Narrative Coherence Reviewer reviews the narrative framework for
thematic coherence.

coherence_feedback = team.call(’Narrative Coherence Reviewer’, [
narrative_framework], ’'Feedback on thematic coherence of the narrative
framework.’)

Step 4: Feedback Integrator revises the framework based on feedback received.

revised_narrative_framework = team.call(’Feedback Integrator’, [
coherence_feedback], ’Revised narrative framework ready for paragraph
development, detailing how transitions have been integrated.’)

Step 5: Thematic Integration Specialist enhances the thematic integration of
the revised framework.
enhanced_thematic_integration = team.call(’Thematic Integration Specialist’, [
revised_narrative_framework], ’Enhanced thematic integration of the
narrative framework.’)

Step 6: Integration Clarity Review confirms readiness for discussion with the
Paragraph Developer.

clarity_confirmation = team.call(’Integration Clarity Review’, [
enhanced_thematic_integration], ’Confirmation of thematic continuity and
readiness for discussion.’)

Step 7: Integrated Feedback Review produces a comprehensive review document.

review_document = team.call(’Integrated Feedback Review’, [
revised_narrative_framework, clarity_confirmation], ’Comprehensive review
document that captures all necessary adjustments.’)

Step 8: Feedback Review Discussion clarifies feedback integration details for
paragraph writing.

discussion_outcome = team.call(’Feedback Review Discussion’, [review_document],
"Clarified feedback integration details for paragraph writing.’)

Step 9: Paragraph Developer writes the paragraphs based on the integrated

feedback.
final_paragraphs = team.call(’Paragraph Developer’, [revised_narrative_framework
1, ’Four concise paragraphs that demonstrate clear thematic coherence and

emotional depth.’)

Step 10: Final Integrator reviews the paragraphs and produces the final
cohesive narrative document.

final_narrative = team.call(’Final Integrator’, [final_paragraphs], ’Final
cohesive narrative document, including a comprehensive evaluation of
coherence issues.’)

Return the final narrative as the answer.
return final_narrative

F.3 Meeting Scheduling

def forward(team):

Step 1: Friend Locator identifies and lists all friends, their locations, and
available times.

friends_list = team.call(
"Friend Locator’,

1,
"[{Friend: Name, Location: Place, TimePeriod: [Start, End]l}, ...1",

)

Step 2: Travel Time Estimator calculates the travel time between each friend’s
location.

travel_times = team.call(

"Travel Time Estimator’,
[friends_list],

36

"[{From: LocationA, To: LocationB, TravelTime: Time}, ...1",

)

Step 3: Travel Time Verifier verifies all travel and waiting times.
verified_travel_times = team.call(

’Travel Time Verifier’,

[travel_times],

"Verified travel and waiting times list”,

)

Step 4: Waiting Time Validator reviews validated data for waiting times.
validated_waiting_times = team.call(

"Waiting Time Validator’,

[verified_travel_times],

"Validated list of waiting times.",

)

Step 5: Final Integrator ensures all travel and waiting times are adjusted
properly.

adjusted_times = team.call(

"Final Integrator’,
[validated_waiting_times],

(
"Adjusted travel and waiting times list that resolves discrepancies
before scheduling.”
) ’
)
Step 6: Meeting Time Optimizer develops a schedule to meet as many friends as
possible.
meeting_schedule = team.call(

"Meeting Time Optimizer’,
[friends_list, adjusted_times],

(

"

"Finalized meeting schedule that incorporates all validated
"travel and waiting times, including a detailed breakdown.”
),
)

Step 7: Schedule Validator reviews the final meeting schedule for feasibility.
validated_schedule = team.call(

’Schedule Validator’,

[meeting_schedulel],

"Validated meeting schedule document.",

)

Return the final validated meeting schedule document.
return validated_schedule

F4

TravelPlanner

def

forward(team):

Step 1: Transportation Planner creates a transportation schedule.

transportation_schedule = team.call(
"Transportation Planner”,
(1,
(

n

"Transportation schedule detailing mode of transport
"for each leg of the journey.”
) ’
)

Step 2: Accommodation Coordinator creates an accommodation plan based on the
transportation schedule.

accommodation_plan_initial = team.call(
"Accommodation Coordinator”,
[transportation_schedulel],

37

"Accommodation plan including number of nights and recommended hotels.",

)

Step 3: Accommodation Coordinator verifies transportation details and user-

specific requirements regarding accommodations.
verified_transportation_details = team.call(

"Accommodation Coordinator”,

[transportation_schedulel],

(

"Verified transportation details and user-specific requirements
regarding accommodations.”

))

)

Step 4: Accommodation Coordinator finalizes the accommodation plan, including
user preferences and verified details.
accommodation_plan_final = team.call(
"Accommodation Coordinator”,
[accommodation_plan_initiall],
"Accommodation plan including user preferences and verified details.”,

)

Step 5: Restaurant Advisor recommends restaurants for each non-travel day
based on the accommodation plan and user cuisine preferences.
restaurant_recommendations = team.call(
"Restaurant Advisor”,
[accommodation_plan_final, verified_transportation_details],
"Restaurant recommendations for each non-travel day.",

)

Step 6: Attraction Specialist recommends attractions for each day of the trip.
attraction_recommendations = team.call(

"Attraction Specialist”,

[accommodation_plan_initiall,

"Attraction recommendations for each day of the trip.",

)

Step 7: Quality Assurance Specialist verifies all components, ensuring
constraints are met.
ga_verification = team.call(
"Quality Assurance Specialist”,
L
accommodation_plan_final,
restaurant_recommendations,
attraction_recommendations,
:l)
"Verification of all components ensuring constraints are met.”,

)

Step 8: Travel Plan Integrator compiles all components into a comprehensive
travel plan.

comprehensive_travel_plan = team.call(
"Travel Plan Integrator”,

L
transportation_schedule,
accommodation_plan_final,
restaurant_recommendations,
attraction_recommendations,
ga_verification

]’

(
"Comprehensive travel plan including transportation, "
"accommodation, dining, and attractions.”

)!

)

Return the final comprehensive travel plan.
return comprehensive_travel_plan

38

Task

!

Transportation Planner

!

Transportation

‘

Accommodation Coordinator

I
v v

Verified Transportation detail 4‘ Accommodations
Restaurant Advisor <« Attraction Specialist
Restaurant Recommendations Attraction Recommendations
v v v

Quality Assurance Specialist

'

QA Verification

'

> Travel Plan Integrator

¥

Final Plan

Figure 3: Optimal agents generated from TravelPlanner (SwarmAgentic)

F.5 Comparison with ADAS-Discovered Agentic Systems

Because Meta Agent Search keeps every previously-generated workflow in its archive, each new prompt
handed to the language model must include a long, ever-growing list of full workflow definitions. The sheer
size and structural complexity of this archive, as well as the irrelevant details that inevitably accumulate
over many search iterations, quickly exhaust the model’s context window and muddle its reasoning. The
search algorithm itself prioritizes novelty over optimization, relying on a straightforward strategy aimed
at discovering new and potentially interesting designs. Consequently, the search process of ADAS tends
to enumerate limitless possibilities within the search space, making it difficult to identify the truly optimal
workflow.

As shown in Listing 4, the ADAS-discovered workflow assigns distinct roles to specialized agents,
including itinerary, budget, dining, activity, and meta agents. However, a critical limitation is the absence of
a dedicated accommodation agent. As a result, the system fails to reliably address constraints such as room
type, minimum night stays, occupancy limits, and rule-specific conditions (e.g., pet-friendliness). These
constraints are central to many travel-related queries, yet no agent is explicitly responsible for enforcing
them. Furthermore, the system exhibits difficulty reasoning over multiple constraints jointly, while
individual agent proposals may satisfy some conditions, the final plan often violates global requirements

39

| ! ! !

‘ Itinerary Agent ‘ ‘ Budget Agent Dining Agent Activity Agent ‘
‘ Iitinerary Info ‘ ‘ Budget Info ‘ ‘ Dining Info ' ' Activity Info |
Itinerary Agent

1 (Collaborative negotiation)

v v v v

‘ itinerary Info ‘ ‘ Budget Info ‘ ‘ Dining Info | ’ Activity Info |

I I I |
v

‘ Meta Agent ‘

v

‘ Final Plan ‘

Figure 4: Optimal agents generated from TravelPlanner (ADAS)

due to a lack of coherent integration by the meta-agent.

Listing 4: Optimal workflow generated for TravelPlanner by ADAS

def forward(self, taskInfo):
Role definitions for specialized agents

itinerary_instruction = "Please create a detailed travel itinerary considering
the constraints and preferences.”

budget_instruction = "Please analyze the budget and suggest accommodations and
activities that fit within the budget.”

dining_instruction = "Please suggest restaurants or dining options that match
the user’s cuisine preferences.”

activity_instruction = "Please recommend activities or attractions based on the
user’s interests and location.”

dialogue_instruction = "Discuss your proposals with other agents, highlighting

strengths and negotiating improvements.”

Instantiate specialized agents

itinerary_agent = LLMAgentBase([’thinking’, ’itinerary’], ’Itinerary Planner’)
budget_agent = LLMAgentBase([’thinking’, ’budget’], ’Budget Manager’)
dining_agent = LLMAgentBase([’thinking’, ’dining’], ’'Dining Advisor’)
activity_agent = LLMAgentBase([’thinking’, ’activity’], ’Activity Coordinator’)
meta_agent = LLMAgentBase([’thinking’, ’final_plan’], ’Meta Decision Agent’)

Gather initial proposals from specialized agents

itinerary_info = itinerary_agent([taskInfo], itinerary_instruction)[0@]
budget_info = budget_agent([taskInfol, budget_instruction)[0]
dining_info = dining_agent([taskInfol], dining_instruction)[0@]
activity_info = activity_agent([taskInfol], activity_instruction)[0]

Collaborative negotiation phase among agents
proposals = [itinerary_info, budget_info, dining_info, activity_infol]
for i, proposal in enumerate(proposals):
for j, other_proposal in enumerate(proposals):
if i 1= j:
dialogue = itinerary_agent([taskInfo, proposal, other_proposall,
dialogue_instruction)
Update the proposal based on feedback from other agents
proposals[i] = dialogue[1] # Assuming the updated proposal comes in
the second position

Prepare responses for meta-agent

meta_instruction = "Evaluate the following proposals and create a cohesive final
travel plan:”
final_thinking, final_plan = meta_agent(proposals, meta_instruction)

40

return final_plan

41

	Introduction
	Related Work
	Agentic System Generation
	Agentic System Optimization

	Preliminary
	Agentic System Optimization
	Particle Swarm Optimization

	SwarmAgentic
	Particle Initialization
	Flaw Identification
	Failure-Aware Velocity Update
	Position Update

	Experiments
	Experimental Setup
	Results

	Analysis
	Cross-Model Transferability Analysis
	Ablation Study
	Case Study: Search Trajectory on TP

	Conclusion
	Agentic Autonomy Evaluation Framework
	Defining Agentic Autonomy: Three Core Properties
	Autonomy Evaluation of Existing Agentic Frameworks

	Comparison with MODEL SWARMS: From Model Fusion to Agentic System Generation
	Experimental Details
	Dataset Statistics and Evaluation
	Baseline Implementations and Configurations

	Implementation Details
	Basic Structure of Agentic System
	Pseudo Code for SwarmAgentic
	Prompt Repository

	Case Study
	Optimization Mechanism Illustration

	Discovered Agentic System
	MGSM
	Creative Writing
	Meeting Scheduling
	TravelPlanner
	Comparison with ADAS-Discovered Agentic Systems

