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Abstract

Understanding how the human brain progresses from processing simple linguistic
inputs to performing high-level reasoning is a fundamental challenge in neuro-
science. While modern large language models (LLMs) are increasingly used
to model neural responses to language, their internal representations are highly
"entangled," mixing information about lexicon, syntax, meaning, and reasoning.
This entanglement biases conventional brain encoding analyses toward linguisti-
cally shallow features (e.g., lexicon and syntax), making it difficult to isolate the
neural substrates of cognitively deeper processes. Here, we introduce a residual
disentanglement method that computationally isolates these components. By first
probing an LM to identify feature-specific layers, our method iteratively regresses
out lower-level representations to produce four nearly orthogonal embeddings for
lexicon, syntax, meaning, and, critically, reasoning. We used these disentangled
embeddings to model intracranial (ECoG) brain recordings from neurosurgical
patients listening to natural speech. We show that: 1) This isolated reasoning em-
bedding exhibits unique predictive power, accounting for variance in neural activity
not explained by other linguistic features and even extending to the recruitment
of visual regions beyond classical language areas. 2) The neural signature for
reasoning is temporally distinct, peaking later (~350-400ms) than signals related
to lexicon, syntax, and meaning, consistent with its position atop a processing
hierarchy. 3) Standard, non-disentangled LLM embeddings can be misleading, as
their predictive success is primarily attributable to linguistically shallow features,
masking the more subtle contributions of deeper cognitive processing. Our work
provides compelling neural evidence for an abstract reasoning computation dur-
ing language comprehension and offers a robust framework for mapping distinct
cognitive functions from artificial models to the human brain2.

A growing body of work has shown that LLMs exhibit strong representational alignment with human
brain activity during language comprehension. These studies employ language encoding models,
powerful predictors of measured brain activity in response to a language stimulus [41, 19, 10, 20, 38,
5, 13, 34, 17, 7, 27, 2, 3, 8, 9]. Typically, these models are created by inputting a language stimulus
into an LLM, to create a contextual embedding of the stimulus using the models’ internal hidden state.
A linear mapping is then learned between these hidden states and the measured brain response to that
stimulus. Modern language encoding models represent some of the most advanced computational
approaches for studying neural processing across sensory modalities, and they provide a unique
window into the semantic processing landscape of human cortex.

∗Equal Contribution.
2Code available here.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/LinyangHe/Far_from_the_Shallow_Reasoning_Embedding


Ls Lm Lr

Probing Results

Layer Localization

Meaning Task
• An oven can heat food.  ✓

• A refrigerator can heat food.  ✗

Reasoning Task
• A wug is a toaster. A dax is a 

refrigerator. Therefore, a wug

can heat food. ✓

• A wug is a toaster. A dax is a 

refrigerator. Therefore, a dax

can heat food. ✗

Syntax Task
• The cats annoy Tim.  ✓

• The cats annoys Tim.  ✗

...
...

...

QWen-2.5-14BLayer

Lexicon LayerLl (0)

1

Syntax LayerLs

Reasoning LayerLr

Meaning LayerLm

n

...

−

−

−

gs

gm

gr

ĤsHs

Hm

Ef =  Hr

Ĥm

Ĥr

=

=

=

Es

Em

Er

Ridge
Regression

Probing

LLMs’ Hierarchical Representation
Probing Tasks

Lexicon

Syntax saturation

Meaning saturation

More…

Reasoning saturation

Ll

Ls = ?

Lm = ? 

Lr = ? 

Original
Hidden States

Predicted
Hidden States

El = Hl

Residual
Embedding

−

Syntax - Meaning

Meaning - Reasoning
Reasoning Saturation

b
a

c

d

Syntax Feature Es
Meaning Feature Em
Reasoning Feature Er

Lexicon Feature El

Full Feature Ef

g

g

g

g

g

Ridge
Regression

Predicted
Neural Signals

Actual
Neural Signals

Corr.

eSyntax - Meaning

Meaning - Reasoning
Reasoning Saturation

Figure 1: a) Hierarchical representations in an LLM. Transformer layers accumulate information in
order: lexical features emerge first, followed by syntax, contextual meaning and eventually higher-
order reasoning, with still-richer knowledge continuing in later layers. b) Minimal-pair probing
tasks. Three diagnostic sentence sets separately test syntax, concept meaning and multi-premise
reasoning. c) Layer localization from probing curves. We define Ls – the earliest layer where syntax
performance saturates while meaning is still low; Lm – layer where meaning saturates but reasoning
has not yet emerged; and Lr – layer where reasoning performance plateaus. These identified layers
through probing will be used in later analyses. d) Feature disentangling across layers. Starting
from the localized layers, we iteratively regress lower-level features out of higher ones. Details of
residual embedding constructions could be found in Algorithm 1. Residual disentangling yields
four orthogonal embeddings that isolate lexicon, syntax, meaning and reasoning information. e)
Brain encoding with purified features. Each residual feature is fed into a ridge encoder to predict
high-gamma ECoG responses of Podcast listening. Comparing predicted and actual neural signals
reveals the spatiotemporal distribution of cortical activity uniquely associated with lexicon, syntax,
meaning and reasoning representations.

However, most work that has studied this brain-LLM alignment has focused on semantics and low-
level phonological relationships [1, 39, 32]: little is known about the degree to which LLMs and the
brain align in their higher-level reasoning processes. One reason is historical: reasoning capabilities
have only recently emerged robustly in modern LLMs [21]. Another issue is methodological. Most
prior studies have largely treated language encoding models as monolithic black boxes that map entire
hidden states to brain responses without disentangling the specific linguistic or cognitive functions
represented within them, such as lexical features, syntactic structure, semantic meaning, or reasoning
processes.

Recent findings [26] show that when models are trained to perform multiple tasks of varying com-
plexity, their internal representations disproportionately favor simpler and more linearly extractable
features, even when accuracy on complex tasks is equally high. This suggests that in brain alignment
studies, unsegmented LLM features may reflect a bias toward lexical or syntactic components simply
because they are computationally easier to represent.

To move beyond these biases and probe the deeper relationship between machine and human reason-
ing, we introduce a novel approach: residual reasoning embeddings. Rather than comparing raw LLM
activations to brain activations, we isolate the reasoning-specific component of LLM hidden states
by separating them from discrete lexical, syntactic, and meaning features. This residual embedding
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captures the unique portion of variance in the initial embedding that is attributable to high-level
reasoning information.

We then use these residual reasoning embeddings to build encoding models that predict human
electrocorticographic (ECoG) brain activity during tasks that require inference. We demonstrate that
these reasoning representations align with distinct spatiotemporal neural patterns, peaking later in
time and engaging more frontal and visual regions than lexical or syntactic signals, suggesting a
shared computational hierarchy between LLMs and the human brain. Furthermore, we show that full
LLM embeddings are biased toward lower-level features, and that only through disentanglement can
reasoning-related brain activity be meaningfully isolated. Together, our results offer a new lens on
both model interpretability and the neural basis of abstract linguistic reasoning.

2 Methods

2.1 Probing Datasets

To identify the LLM layers most specialized for encoding syntactic, semantic, and reasoning features,
we apply feature-specific probing using two diagnostic datasets. For syntactic probing, we use the
Benchmark of Linguistic Minimal Pairs (BLiMP) [40], which evaluates grammatical sensitivity
across 67 controlled paradigms. By training classifiers on hidden states from each layer of LLMs,
we determine where syntactic competence emerges and stabilizes. For meaning and reasoning
probing, we use the Conceptual Minimal Pair Sentences (COMPS) dataset [33], which tests con-
ceptual understanding and property inheritance. Its controlled sentence-pair design allows us to
distinguish between surface-level semantic association and inference-based reasoning. We further
extend reasoning evaluation with ProntoQA [35] and WinoGrande [22] to assess multi-hop deductive
and commonsense reasoning abilities respectively. These datasets together enable a hierarchical
dissection of linguistic representations. Detailed dataset structures, task formulations, and examples
are provided in Appendix A.

2.2 Language Model

Our main experiments use the Qwen2.5-14B model, a 14.7B-parameter transformer with 48 layers
[36]. Each layer outputs hidden states of dimension 5120. The model supports a maximum context
length of 131k tokens, though our experiments only use context sizes of 50 tokens. We use the base
model without any instruction tuning or task-specific fine-tuning, and employ it both to probe the
layer-wise emergence of linguistic and reasoning features and to perform brain encoding analyses.

To assess the robustness of our probing pipeline, we additionally examined other models across
the Qwen family, spanning sizes from 1.8B to 14B parameters and multiple generations (Qwen1,
Qwen1.5, Qwen2, Qwen2.5, and Qwen3) [4, 42, 36, 37]. We evaluated all models and found that
Qwen2.5-14B exhibited the strongest reasoning capability, which is why we selected it as our primary
model for subsequent analyses (see Appendix C.2).

2.3 Minimal Pair Probing

We apply minimal pair probing [14, 15] to identify the LLM layers most specialized for syntactic,
meaning, and reasoning features. For each probing dataset, we extract sentence representations from
each layer by feeding the sentence in isolation and taking the hidden state of its final token. We then
use these sentence representations to train a logistic regression classifier to predict the correct item in
each minimal pair. Model performance at a given layer is measured by the normalized F1 score of
this classifier.

Let Hl ∈ Rn×d denote the matrix of sentence embeddings at layer l, where each row corresponds
to the final-token hidden state of one sentence in the minimal pair dataset. To determine the most
specialized layer for a given feature, we define the saturation layer as the earliest layer where
performance plateaus:

Lx := min
{
l | ∀l′ > l, AccDx(Hl′)−AccDx(Hl) < ε

}
, x ∈ {s,m, r}

where Ds = BLiMP, Dm = COMPS-BASE, and Dr = COMPS-WUGS-DIST, and ε is a small
threshold representing the tolerance for marginal improvement. The hidden states at the identified
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Algorithm 1 Construction of Feature-Specific Residual Embeddings

1: Input: LLM hidden states {HL}Lmax
L=0 for each token; probing datasets Ds, Dm, Dr

2: Output: Feature-specific embeddings El, Es, Em, Er

3: Perform probing with Ds, Dm, Dr to find saturation layers:
4: Ls ← syntax saturation layer from Ds

5: Lm ← meaning saturation layer from Dm

6: Lr ← reasoning saturation layer from Dr

7: Ll ← 0

8: Define lexical embedding: El ← HLl
››

9: for each (Llow, Lhigh) in {(Ll, Ls), (Ls, Lm), (Lm, Lr)} do
10: Train ridge regression g to predict HLhigh from HLlow

11: Compute residual embedding: E ← HLhigh − g(HLlow)
12: Assign Es, Em, Er accordingly

saturation layers, denoted as Hs := HLs , Hm := HLm , and Hr := HLr , are used to construct
feature-specific embeddings in the next stage.

2.4 Feature-Specific Embeddings

Building on the saturation layers identified via minimal pair probing, we construct four feature-
specific embeddings to isolate distinct types of linguistic information: lexical, syntactic, meaning,
and reasoning. Since hidden states at various layers contain overlapping linguistic information, we
remove contributions from earlier representations to disentangle the targeted feature.

Lexical embedding. We define the lexical embedding El ∈ Rd as the hidden state at layer 0 of the
LLM. As this layer follows token embeddings directly, it reflects uncontextualized lexical properties.

Residual embeddings for syntax, meaning, and reasoning. For the remaining features, syntactic,
meaning, and reasoning, we construct residual embeddings by removing lower-level contributions
from higher-layer representations. For instance, to isolate reasoning information, we remove the
meaning contribution from the layer where reasoning saturates:

Er := Hr − gr(Hm), where gr = argmin
W

∥Hr −WHm∥2F + α ∥W∥2F ,

where gr is a ridge regression trained via 4-fold cross validation on a podcast corpus described in the
next paragraph (2.4). The same procedure applies to compute Es and Em. Specifically:

Em = Hm − gs(Hs) (meaning minus syntactic)
Es = Hs − gl(Hl) (syntax minus lexical)

This yields feature-specific representations that are aligned with the linguistic hierarchy (Appendix B)
and minimally confounded by lower-level signals.

Dataset for residual regression training. To extract feature-specific residual embeddings, we train
ridge regression models that require a large number of training samples. However, the transcript that
will later be used for neural alignment, which is drawn from a single 30-minute podcast episode, is
too short to support stable regression. To address this, we train the models on an expanded corpus of
16 transcribed episodes from the same podcast series, including the episode used in the alignment
analysis [30]. This 160k-token dataset enables regression without PCA, preserving richer structure in
the hidden states. We then apply the trained models to the target transcript to extract residuals for
encoding analysis.

2.5 Encoding Model

ECoG dataset. After constructing feature-specific embeddings, we assess their neural alignment us-
ing the Podcast ECoG dataset [43]. This dataset contains high-gamma band (70–200 Hz) intracranial
recordings from nine participants as they listened to a 30-minute narrative podcast. It includes 1,330
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electrodes and a time-aligned word-level transcript, making it ideal for testing how lexical, syntactic,
meaning, and reasoning embeddings align with neural activity during language comprehension.

As described in Section 2.4, we train ridge regression models on an expanded podcast corpus to
isolate feature-specific residuals. We then apply these models to the ECoG-aligned transcript to
extract feature-specific embeddings, which are used to predict neural responses. Each embedding is
aligned to individual word onsets, and for each word, neural signals are epoched in a ±2s window
and downsampled to 32 Hz, yielding t = 128 time bins per event. Let X ∈ Rn×d be the matrix
of input embeddings (lexical, syntactic, meaning, or reasoning) across n word-aligned tokens, and
Y ∈ Rn×(c·t) the corresponding ECoG response matrix across c electrodes and t time lags. We fit:

W ∗ = argmin
W

∥Y −XW∥2F + α∥W∥2F ,

with α selected via 5-fold cross-validation over a log-spaced grid, and b = 5 bootstrap resamples
per fold using contiguous chunks of length l = 32. Model performance is quantified by Pearson
correlation between predicted and actual signals. Temporal profiles are obtained by averaging over
channels at each lag; spatial maps visualize per-channel peak correlations on 3D brain coordinates.

Word-rate feature regress out. We controlled for generic acoustic onset responses by adding a
two-column word-rate covariate (word onsets and syllable-rate) to every ridge model. All variance-
partitioning steps therefore quantify the variance explained beyond that attributable to mere word
onsets. Let Rfull denote the cross-validated prediction correlation achieved using the combined
feature set (embedding + word rate), and let Rwc denote the correlation using only the word rate
features. Assuming approximate orthogonality between the two feature sets, we estimated the
unique contribution of the embedding features as: Rembed = sign(Rfull) ·

√
max(0, R2

full −R2
wr).

This operation projects the full correlation vector onto the embedding-only axis, removing variance
explained by word rate features. The assumption of orthogonality is approximately satisfied due to
the preprocessing pipeline, and helps to prevent over-attribution of shared variance.

Null distribution and responsiveness criterion. Considering that different channels and features
have varying signal-to-noise ratios (SNRs), we constructed a subject–electrode–specific null dis-
tribution to assess whether a feature block explains neural activity beyond chance and to enable
cross-electrode analysis. This was done by shuffling the feature rows 500 times while keeping
the word-onset covariates fixed. For every shuffle we refit the ridge model and recorded the peak
correlation R. Because Pearson correlations are bounded and skewed near ±1, we applied the
standard Fisher z-transform (atanh) to all correlations, computed the shuffle mean and s.d. in z-space,
and converted the true correlation to a z-score. Electrodes with z > 3.95 (one-tailed α = .05,
Bonferroni-corrected across N = 1268 electrodes) were deemed responsive, corresponding to values
exceeding 3.95 standard deviations above the shuffle mean.

3 Probing Results

Applying our probing pipeline to Qwen2.5-14B, we observe a clear progression in the emergence of
representational features. Syntax saturates earliest at layer 6, followed by meaning at layer 20, and
reasoning only at the deeper layer 30. This ordering highlights that low-level linguistic structure is
captured quickly, whereas high-level reasoning requires substantially more depth.

To verify that this pattern is not specific to a single model, we extended the probing pipeline across
multiple Qwen families spanning different sizes and generations. The same emergence order was
consistently observed, with only one exception in Qwen-1.8B, where syntax and meaning saturated
at the same layer. Full cross-model analyses are reported in Appendix B.

4 Disentanglement Validation

4.1 Matrix-Level Orthogonality of Residual Embeddings

We justify the approximate orthogonality of the feature-specific embeddings El, Es, Em, Er at the
level of their embedding matrices. Each residual embedding can be represented as an n× d matrix,
where n is the number of tokens in the dataset and d is the embedding dimension. Orthogonality here
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is considered along the sample axis: the n-dimensional feature columns of one residual embedding
matrix are approximately uncorrelated with those of another.

This follows from the progressive emergence of linguistic features across LLM layers (Table 1):
syntax peaks early, meaning in mid layers, and reasoning in later layers. Once a feature reaches
saturation, its accuracy score remains stable in deeper layers, indicating that later representations
retain earlier features. As a result, representations like Hm already embed information from Hl and
Hs, making regression from Hm alone comparably as informative as from all three:

gr(Hm) ≈ g′r([Hl, Hs, Hm]) ⇒ Er ≈ Hr − g′r([Hl, Hs, Hm]) =: E′
r

Since E′
r is the residual of a linear projection onto [Hl, Hs, Hm], it is orthogonal to each:

E′
r ⊥ Hl, E′

r ⊥ Hs, E′
r ⊥ Hm

Each residual embedding Ei ∈ {El, Es, Em} is a linear combination of earlier hidden states (e.g.,
Em = Hm − gm(Hs) = Hm −WmHs). By the bilinearity of covariance, we have:

Cov(Ei, E
′
r) = Cov(Hi −WiHj , E

′
r) = Cov(Hi, E

′
r)−Wi Cov(Hj , E

′
r) = 0

whenever E′
r ⊥ Hi and Hj , for appropriate i, j ∈ {l, s,m}. This implies:

⟨E′
r, Ei⟩ = 0 ∀i ∈ {l, s,m}

Applying this proof across all residual stages, we conclude approximate mutual orthogonality of
residual embedding matrices:

⟨Ei, Ej⟩ ≈ 0 for all i ̸= j.

This sample-axis orthogonality ensures that residual embedding matrices contribute non-overlapping
signals across the dataset, which is precisely the property required for the subsequent brain encoding
analysis.

4.2 Token-Level Independence via Cosine Similarity

While Section 4.1 establishes matrix-level orthogonality across the dataset, we also test independence
at the level of individual tokens. For each token i ∈ {1, . . . , N}, let Ei

l , E
i
s, E

i
m, Ei

r denote the four
feature-specific residual vectors. We compute a 4× 4 cosine similarity matrix Ci, take its absolute
value |Ci|, and average across samples:

[Ci]j,k =
⟨Ei

j , E
i
k⟩

∥Ei
j∥ · ∥Ei

k∥
, C̄ =

1

N

N∑
i=1

|Ci| , j, k ∈ {l, s,m, r}

In the ideal case of perfect disentanglement, off-diagonal entries of C̄ would be zero, indicating
orthogonality between different embeddings. Figure 2a compares the pairwise mean absolute cosine
similarity among raw hidden states at the four saturation layers (top) and among the corresponding
residual embeddings (bottom). While the hidden states show substantial overlap, especially between
meaning and reasoning layers (C̄ = 0.751), the residual embeddings exhibit near-zero off-diagonal
similarity(all <= 0.045) across all pairs.

Thus, Section 4.1 and Section 4.2 together provide complementary evidence: residuals are linearly
novel across the sample axis, and they also align with near-orthogonal directions at the token level.
These findings confirm that residualization yields disentangled representations of lexical, syntactic,
semantic, and reasoning information.

4.3 Feature Probing on Residual Embeddings

While mutual independence ensures that residual embeddings are separated from one another, each
residual should also preserve information relevant to its intended linguistic feature. We evaluate this
by reapplying the same probing tasks used to define feature emergence. Since the lexical embedding
El is directly extracted rather than residualized, we focus on the syntactic (Es), meaning (Em), and
reasoning (Er) residuals.
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a Mean Absolute Cosine Similarity

Residual Disentanglement

b Feature Probing Accuracy

Residual Disentanglement

Figure 2: a) Pairwise cosine similarity among representations before (left) and after (right) residual
disentanglement. The hidden states at feature saturation layers (Hl, Hs, Hm, Hr) exhibit substantial
overlap. In contrast, the residual embeddings (El, Es, Em, Er) show near-zero off-diagonal simi-
larity. b) Feature probing results on hidden states (left) and residual embeddings (right), shown as
accuracy. Each residual embedding achieves the highest performance on its corresponding task, while
performing worse on unrelated tasks.

For each case, we train a logistic regression classifier on the corresponding residual embedding and
report accuracy scores:

ŷi = σ(w⊤
j E

i
j + bj), j ∈ {s,m, r},

where σ(·) is the sigmoid function and Ei
j ∈ Rd is the residual embedding for token i.

Results are shown in Figure 2b. Each residual achieves the highest performance on its own task (e.g.,
Es on syntax probing, Em on meaning, Er on reasoning) while performing worse on unrelated tasks.
The diagonal entries retain accuracy similar to the hidden-state baseline, whereas the off-diagonal
entries drop substantially, with decreases of 33.8% (syntax task evaluated on the meaning residual),
36.8% (syntax task evaluated on the reasoning residual), and 19.4% (meaning task evaluated on
the reasoning residual). These findings demonstrate that the residual embeddings are meaningfully
disentangled and capture feature-specific information rather than reflecting general task complexity.
A more detailed analysis of cross-task accuracies, including Bag-of-Word baseline, is provided in
Appendix D.

Summary of Disentanglement Validation Across three complementary tests, layerwise saturation
analysis, matrix-level orthogonality proof, and token-wise independence probing, residualization
consistently produces four nearly orthogonal, interpretable embeddings corresponding to distinct
linguistic levels. These embeddings form the basis for our subsequent neural encoding experiments.

5 Encoding Results

5.1 Shallow features dominate neural prediction, but lexical activations are sparse.

Across time-aligned word events, encoding models based on shallower linguistic features, such as
lexical identity and syntactic structure, showed the strongest neural correlations (Figure 3). Electrodes
responsive to these features exhibited markedly higher peak correlation values than those driven by
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Figure 3: a) Peak correlation across linguistic feature models. As described in the Methods section,
electrodes with z > 3.95 (one-tailed α = .05, Bonferroni-corrected across N = 1268 electrodes)
were deemed responsive, corresponding to values exceeding 3.95 standard deviations above the
shuffle mean. Boxplots indicate the median and interquartile range across activated electrodes with
red lines indicating means additionally. Asterisks mark significant differences between adjacent
features (Welch’s t-test; p < 0.001), showing that lexical and syntax features yield significantly
higher correlations than high-level linguistic representations. b) Peak correlation by subject and
feature. The number of responsive electrodes for each subject is shown below the x-axis. Lexical
features generally exhibit higher correlations, indicating stronger neural alignment for lower-level
linguistic representations.

meaning or reasoning embeddings (Welch’s t-test, p < 0.001), confirming that lower-level linguistic
information accounts for a disproportionate share of brain–model alignment under linear encoding.
However, despite its high correlation strength, the lexicon embedding activated the fewest electrodes
overall, suggesting that its predictive precision arises from a smaller, more specialized subset of
cortical sites. In contrast, deeper features such as meaning and reasoning recruited broader but
less strongly tuned populations. This dissociation between activation magnitude and spatial extent
indicates that shallow representations, though limited in coverage, achieve tighter alignment within
localized neural circuits, whereas deeper representations engage distributed cortical networks with
weaker linear correspondence. Moreover, without disentanglement, the temporal dynamics in Figure 4
reveal that the full embedding is dominated by lexical and syntactic signals, whose early and sharp
peaks mask the slower, high-level temporal signatures of meaning and reasoning. This highlights
the necessity of residual separation for isolating deeper cognitive processes from low-level linguistic
confounds.

5.2 Reasoning embedding shows different temporal pattern compared to Lexicon, Syntax and
Meaning.

The temporal correlation profiles of Figure 4 illustrate a clear processing hierarchy among linguistic
representations. Syntactic signals exhibit an early rise that begins before word onset and reach their
maximum slightly pre-onset, suggesting that a large portion of predictive activity for upcoming
words might be syntactically driven. Lexical features show a sharp and temporally confined peak
immediately after onset, consistent with rapid low-level mapping between acoustic input and lexical
identity. Meaning representations start to increase even before onset but peak afterward, indicating
that contextual semantics contribute both to anticipatory prediction and to continued integration once
the word is heard. In contrast, reasoning signals begin to rise only after onset and reach their peak
at around 362 ms, reflecting a delayed, high-level computation that likely involves integrative or
inferential processes beyond immediate linguistic parsing. Finally, the full embedding closely tracks
the envelope of the four disentangled features, mirroring their composite dynamics and reinforcing the
reliability of our residual separation procedure. Together, these temporal patterns reveal a cascading
progression from predictive syntactic structure to contextual semantics, and finally to post-lexical
reasoning operations in the human cortex.
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Figure 4: a) Average correlation time courses for the top 10% most responsive electrodes reveal
distinct temporal dynamics across linguistic features. Responsive electrodes were identified following
the strategy described in the Methods section. Syntactic signals rise before word onset, followed by
meaning, lexicon and reasoning, which peak latest at ∼362 ms. Significance markers (×) indicate
time points where correlations are significantly greater than zero (one-tailed t-test, FDR-corrected
q < 0.05). b) Performance-based temporal receptive field (TRF) across time for electrodes selective
to one of the five features: Lexicon, Syntax, Meaning, Reasoning, and Full. Electrodes were selected
the same way as in panel a.
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Figure 5: a) Spatial distribution of feature-selective responsive electrodes (MNI space). Displayed
electrodes are those that met the responsiveness criterion defined in the Methods section. For
visualization, z-scores were clipped to 3–6 to prevent extreme values from dominating the color scale
and obscuring spatial patterns. b) For each electrode, the feature with the highest peak z-score among
Lexicon, Syntax, Meaning, and Reasoning models is shown as its dominant feature. Colored dots
indicate the dominant model. Across all electrodes, the counts of dominant features were: Syntax =
166, Meaning = 161, Reasoning = 128, and Lexicon = 42.

5.3 Reasoning recruits more than language area compared to low-level aspects.

As shown in Figure 5, shallow linguistic features such as lexicon exhibit high peak correlations
but remain confined to classical language regions, including the inferior frontal gyrus (IFG) and
superior temporal gyrus (STG). The strong yet spatially restricted activations indicate that lexical
representations are predominantly localized within the traditional perisylvian language network,
reflecting low-level linguistic encoding. In contrast, syntax, meaning, and particularly reasoning
embeddings engage a broader set of cortical regions. While all three maintain robust responses
in IFG and STG, reasoning-selective electrodes extend anteriorly into the superior frontal gyrus
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Figure 6: a) Peak correlation across cortical regions and feature models. Responsive electrodes were
selected based on bilateral significance above the null shuffle distribution, α < 0.05. The analysis
focuses on language-related cortical regions, including the inferior frontal gyrus (IFG), superior
temporal gyrus (STG), and surrounding Heschl’s Gyrus (HG), as well as the superior frontal gyrus
and visual cortex. The visual cortex group includes electrodes located in the superior occipital sulcus,
transverse occipital sulcus, calcarine sulcus, occipital pole, superior occipital gyrus, middle occipital
gyrus, and inferior occipital gyrus and sulcus. b) Welch’s t-test (one-tailed) revealed that electrodes in
visual cortex activated by the Reasoning feature showed significantly higher correlations than those
activated by all other features (p < 0.001 for ‘***’, p < 0.05 for ‘*’).

(SFG) and posteriorly into the visual cortex, showing significant activation compared with other
features (Welch’s t-test; p < 0.001; Figure 6). This expanded recruitment beyond canonical language
areas suggests that reasoning might involve higher-order cognitive operations that integrate linguistic
input with abstract inference, visual imagery, and executive control. Such cross-modal engagement
underscores that reasoning-related brain activity cannot be fully explained by linguistic processing
alone, but rather reflects the neural substrates of generalizable, multimodal cognition[25, 12].

6 Discussion

By isolating distinct types of linguistic information using residual embeddings, we disentangled the
contributions of lexicon, syntax, meaning, and reasoning to the neural encoding of natural speech.
This revealed new insights into the spatial and temporal organization of linguistic features that
cannot be captured by full LLM embeddings used in prior studies [20, 38, 13, 34, 17, 7, 27, 2, 3,
8, 9, 32, 6]. Previous work has tried hierarchical approaches to decompose low-level linguistic
and acoustic features in the brain (Keshishian et al. [23, 24]). However, our study is the first to
apply hierarchical disentanglement framework to large language models by first localizing feature
emergence layers through probing and then performing residual decoupling to construct layer-
wise feature representations, thereby demonstrating its utility for isolating higher-order reasoning
representations.

Our findings show that lower-level features, such as syntax and lexicon, elicit stronger neural
activations than higher-level features like meaning or reasoning. This reflects both the stronger linear
accessibility of shallow features and an inherent bias in full LLM embeddings, which primarily capture
syntactic regularities while obscuring deeper computations [26]. Residual disentanglement reveals
clear spatiotemporal hierarchies: shallow features emerge earlier and localize to classical language
regions (IFG, STG), whereas reasoning signals arise later and extend beyond the perisylvian network
into SFG and visual cortex. These results indicate that reasoning engages broader cortical systems
that integrate linguistic processing with higher-level cognitive and multimodal functions. Together,
our framework provides a principled approach for separating linguistic and cognitive components
in LLMs and mapping them onto the human brain, offering an alignment-based perspective on how
language and reasoning may correspond between artificial and neural systems.
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A Detailed Description of Probing Datasets

BLiMP for syntactic probing. To construct feature-specific representations for brain alignment, we
first identify LLM layers that specialize in syntactic encoding. Minimal pairs and probing techniques
have been widely used in NLP field to access LLM’s internal representation [31, 28, 11, 18, 29, 16].
Here we use the Benchmark of Linguistic Minimal Pairs (BLiMP) [40], which evaluates syntactic
knowledge through controlled minimal pairs differing in grammaticality across 67 paradigms. Each
pair isolates a specific grammatical phenomenon such as subject–verb agreement, reflexive anaphora,
or negative polarity. By training a classifier to distinguish acceptable from unacceptable sentences
using hidden states from each LLM layer, we detect where syntactic competence emerges and peaks.
For example, in a task targeting subject–verb agreement:

a. The cats annoy Tim. ✓

b. The cats annoys Tim. ✗

We average classifier performance across all paradigms to determine the saturation layer where
syntactic features are stably encoded.

COMPS for Meaning and Reasoning Probing. For meaning and reasoning probing, we use the
Conceptual Minimal Pair Sentences (COMPS) dataset [33]. Sentence pairs in COMPS differ in
whether the subject plausibly inherits a property. By probing whether each layer favors the correct
concept-property association, we detect the layers where meaning and reasoning abilities peak.

COMPS-BASE evaluates surface-level understanding without requiring inference. For example,
given the property “can heat food”:

a. An oven can heat food. ✓

b. A refrigerator can heat food. ✗

COMPS-WUGS-DIST increases reasoning complexity by replacing known concepts with nonsense
words (e.g., “wug”, “dax”) and inserting distractor sentences that introduce interference. This design
prevents the model from relying on surface-level co-occurrence or positional cues: distractors can
be reordered. The model must infer the identity of the nonsense word from context to generalize
property inheritance.

a. A wug is an oven. A dax is a refrigerator. Therefore, a wug can heat food. ✓

b. A wug is an oven. A dax is a refrigerator. Therefore, a dax can heat food. ✗

This progressive design increases reasoning difficulty and allows us to localize where models transition
from semantic to reasoning-level representation.

Additional reasoning benchmarks. Beyond COMPS, we incorporate two additional reasoning
benchmarks to validate robustness across task formats: ProntoQA [35], which evaluates multi-hop
deductive reasoning, and WinoGrande [22], which targets commonsense coreference resolution. For
ProntoQA, we only use examples that require 5-hop deductive inferences to ensure high difficulty,
where solving the task requires maintaining consistent symbolic relations across multiple premises
and performing compositional logical deduction. Two illustrative examples are:

a. Dogs are cats. Each dog is sour. Vertebrates are dull. Felines are dogs. Felines are not dull.
Cows are felines. Each cow is aggressive. Snakes are cows. Snakes are orange. Animals are
snakes. Every animal is not luminous. Mammals are animals. Each mammal is hot. Fae is a
mammal. Therefore, Fae is not dull. ✓

b. Every carnivore is a dog. Carnivores are angry. Every mammal is a carnivore. Each mammal
is not red. Each snake is a mammal. Each snake is transparent. Cats are snakes. Cats are
nervous. Each sheep is not angry. Each animal is a cat. Animals are earthy. Sam is an
animal. Therefore, Sam is not angry. ✗

For WinoGrande, which tests commonsense reasoning through contextual coreference resolution, the
model must leverage world knowledge and pragmatic inference to identify the correct referent under
minimal lexical cues. A pair of examples is:
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a. John moved the couch from the garage to the backyard to create space. The garage is small.
✓

b. John moved the couch from the garage to the backyard to create space. The backyard is
small. ✗

Together, these datasets complement COMPS by spanning property inheritance, deduction, and com-
monsense inference. Detailed experiments and cross-validation results are provided in Appendix C.

Bad Probing Task Filtering We employ a Bag-of-Words (BoW) baseline and exclude tasks where
the BoW model achieves an accuracy above 0.6, resulting in a final set of 29 BLiMP tasks (out of 67).
The meaning (COMPS-BASE) and reasoning (COMPS-WUGS-DIST) tasks remain unchanged.

This filtering step is motivated by the fact that BoW readily captures tasks solvable via simple lexical
cues, indicating a shallow design. By removing these superficially “easy” tasks, we ensure that the
retained tasks demand genuine syntactic or semantic understanding rather than mere lexicon-based
heuristics.

B Hierarchical Emergence of Linguistic Features

In the main text, we reported probing results for Qwen2.5-14B (Section 3), showing that syntax,
meaning, and reasoning features saturate at layers 6, 20, and 30, respectively. To evaluate the
robustness of this emergence pattern, we extended our probing pipeline to 17 models across the Qwen
family, including Qwen, Qwen1.5, Qwen2, Qwen2.5, and Qwen3 models.

Across nearly all models, we observed the same progression of feature emergence: syntax saturates
earliest, followed by meaning, and then reasoning. The only exception was Qwen-1.8B, where syntax
and meaning saturated at the same layer. Table 1 reports the saturation layers identified for all models.

Table 1: Saturation layers for syntax, meaning, and reasoning across Qwen models.

Model Syntax Meaning Reasoning
Qwen-1.8B 11 11 14
Qwen-7B 11 13 15
Qwen-14B 9 16 20
Qwen1.5-1.8B 10 11 14
Qwen1.5-7B 9 13 16
Qwen1.5-14B 8 16 20
Qwen2-1.5B 10 14 17
Qwen2-7B 7 14 18
Qwen2.5-1.5B 7 14 18
Qwen2.5-7B 7 15 19
Qwen2.5-14B 6 20 30
Qwen3-1.7B 9 16 19
Qwen3-8B 7 20 23
Qwen3-14B 5 17 27

C Consistency Across Reasoning Benchmarks

In the main text, reasoning saturation layers were identified using COMPS-WUGS-DIST. To evaluate
robustness across tasks of varying complexity, we additionally applied two further reasoning probes:
a 5-hop deductive reasoning task from ProntoQA and the WinoGrande benchmark for commonsense
coreference.

We tested all three probes, COMPS-WUGS-DIST, ProntoQA, and WinoGrande, across 17 Qwen
models spanning multiple sizes and training modes. Results show strong consistency: the average
difference in reasoning saturation layers between COMPS-WUGS-DIST and ProntoQA was 0.94,
and between COMPS-WUGS-DIST and WinoGrande was 0.53. Given overall model depths of 25–49
layers, these differences are negligible and support the robustness of our reasoning probe.
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C.1 Consistent Saturation Layers Across Reasoning Benchmarks.

Table 2 reports the reasoning saturation layers identified by each probe. The high degree of agreement
across the three tasks indicates that reasoning-specific representations are consistently localized in
deep layers, regardless of task format. The agreement across COMPS-WUGS-DIST, ProntoQA,
and WinoGrande confirms that our identification of reasoning-specific saturation layers generalizes
beyond a single benchmark. This consistency reinforces the conclusion that reasoning features
emerge reliably in deep layers across architectures and reasoning formats.

Table 2: Reasoning saturation layers identified by different probes across Qwen models.

Model ProntoQA COMPS-WUGS-DIST WinoGrande
Qwen-1.8B 13 14 14
Qwen-7B 13 15 16
Qwen-14B 18 20 20
Qwen1.5-1.8B 13 14 14
Qwen1.5-7B 14 16 16
Qwen1.5-14B 20 20 22
Qwen2-1.5B 17 17 17
Qwen2-7B 16 18 19
Qwen2.5-1.5B 16 18 17
Qwen2.5-7B 17 19 19
Qwen2.5-14B 29 30 29
Qwen3-1.7B 19 19 19
Qwen3-8B 23 23 23
Qwen3-14B 27 27 26

C.2 Qwen2.5-14B Achieves the Best Reasoning Performance (Small-Scale Models)

We evaluated the Qwen family on three reasoning benchmarks: ProntoQA (multi-hop deductive
reasoning), COMPS-WUGS-DIST (property inheritance with distractors), and WinoGrande (com-
monsense coreference). Table 3 reports accuracy on each benchmark, along with the average across
tasks. We observe consistent improvements in reasoning performance with increasing model scale
and newer Qwen generations. Among the base models, Qwen2.5-14B achieves the highest average
accuracy across benchmarks, reflecting its stronger reasoning capability, which is why we select it as
the primary model for our experiments. These results complement our saturation layer analysis by
showing that models allocating greater depth to reasoning layers also demonstrate superior task-level
reasoning performance.

Table 3: Reasoning task performance across Qwen models. The Average column reports the mean
accuracy across ProntoQA, COMPS-WUGS-DIST, and WinoGrande.

Model ProntoQA COMPS-WUGS-DIST WinoGrande Average
Qwen-1.8B 0.797 0.522 0.523 0.614
Qwen-7B 0.886 0.641 0.602 0.710
Qwen-14B 0.880 0.695 0.647 0.741
Qwen1.5-1.8B 0.792 0.513 0.523 0.609
Qwen1.5-7B 0.848 0.667 0.603 0.706
Qwen1.5-14B 0.910 0.670 0.653 0.744
Qwen2-1.5B 0.784 0.586 0.552 0.640
Qwen2-7B 0.851 0.636 0.660 0.716
Qwen2.5-1.5B 0.783 0.605 0.566 0.651
Qwen2.5-7B 0.879 0.673 0.664 0.739
Qwen2.5-14B 0.922 0.691 0.698 0.770
Qwen3-1.7B 0.739 0.500 0.530 0.589
Qwen3-8B 0.876 0.629 0.651 0.719
Qwen3-14B 0.912 0.716 0.670 0.766
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D Clarification on Residual Embedding Probing Results

In Section 4.3, we reported that each residual embedding performs best on its corresponding task while
performing worse on unrelated tasks. Some cross-task accuracies remain non-trivial, particularly on
the meaning and reasoning probes. We provide additional clarification here.

Lexical-level baseline. A control experiment with a bag-of-words (BoW) model, which ignores
syntax and word order, achieved 0.665 accuracy on COMPS-BASE. This shows that lexical cues alone
provide a strong baseline for the meaning task, well above random chance (0.5). In this context, the
raw scores of the syntax and reasoning residuals on COMPS-BASE (0.589 and 0.605, respectively)
are in fact below the BoW baseline, indicating that residualization successfully removes spurious
lexical and structural information from the meaning embedding. This control confirms that the
observed cross-task scores are largely explained by lexical baselines artifacts. The syntax, meaning,
and reasoning residuals each retain information most relevant to their target feature, supporting the
interpretation that residual embeddings are meaningfully disentangled.

E Supplemented Neuroscience Analysis

E.1 Activated-electrode Overlap Across Linguistic Feature Models

Figure 7. Activated-electrode overlap across feature models. Each cell shows the number of electrodes
that were identified as active in both the feature model indicated by the row and that indicated by
the column. Diagonal values represent the total number of electrodes active within each model,
while off-diagonal values quantify cross-feature overlaps. Notably, high overlaps between Syntax
and Meaning (143) and between Full and all subcomponents (around 180) suggest that electrodes
responsive to linguistic processing are largely shared across multiple feature spaces. This pattern
indicates that while distinct feature models capture partially unique neural activations, substantial
commonality exists among them, particularly for integrative language representations.
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Figure 7: Activated-electrode overlap across feature models. Each cell shows the number of
electrodes active in both feature sets, revealing substantial overlap among higher-level linguistic
representations.

E.2 Lateralization Analysis

Table 4: Hemispheric lateralization ratios.
Each proportion represents the fraction of active
electrodes relative to total electrodes within each
hemisphere (1057 left vs. 211 right). The ratio
indicates Left proportion

Right proportion .

Feature #L #R Prop.L Prop.R L/R

Lexicon 76 17 0.07 0.08 0.89
Syntax 225 41 0.21 0.20 1.10
Meaning 227 63 0.21 0.30 0.72
Reasoning 193 51 0.18 0.24 0.76
Full 300 79 0.28 0.37 0.76

To quantify hemispheric lateralization, we computed
the proportion of active electrodes relative to total
electrodes in the left and right hemispheres for each
linguistic feature. Although the total number of elec-
trodes is highly asymmetric across hemispheres (1057
on the left vs. 210 on the right), the normalized activa-
tion proportions still reveal clear trends. Specifically,
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Syntax-related encoding shows a higher proportion of
left-hemisphere activations (0.21 vs. 0.20), resulting
in the highest left/right ratio (1.09) among all fea-
tures. In contrast, Meaning and Reasoning features
exhibit relatively stronger right-hemisphere activations (ratios < 1). Given the uneven electrode
coverage across hemispheres, these findings should not be overinterpreted as true right-lateralization
for semantic or reasoning processing; however, they do suggest a stronger left-lateralization effect for
shallow representations (lexicon and syntax).

E.3 Activated Channels in All Brain Area

Please refer to Figure 8.

Figure 8: Peak correlation values of encoding performance across all cortical regions for five feature
types. Responsive electrodes were selected based on bilateral significance above the null shuffle
distribution, α < 0.05.
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F Limitations and Future Directions

Despite these advances, several limitations remain. Our reliance on ECoG data, although temporally
precise, provides limited spatial coverage, with insufficient sampling in frontal regions that are crucial
for reasoning. Future work should integrate complementary modalities such as fMRI to improve
spatial resolution. Also, while Qwen2.5-14B balances scale and accessibility, larger models optimized
for multi-step reasoning may reveal stronger or more specialized reasoning signals. While reasoning
representations saturate around layer 30 in Qwen2.5-14B, the role of subsequent layers remains
unclear. We hypothesize that deeper layers may encode more abstract or generative representations,
potentially related to discourse organization, narrative planning, or world modeling, beyond explicit
reasoning. Exploring how these higher-level representations might align with cortical hierarchies or
large-scale cognitive organization in the brain presents an especially interesting direction for future
work.

G Compute Resources and Execution Time

We report here the compute infrastructure and approximate runtime for each stage of our pipeline to
support reproducibility.

• Hidden State Extraction: Performed using 4× NVIDIA L40 GPUs. Extracting hidden
states for around 164,000 tokens from the Qwen2.5-14B model. The extraction took
approximately 40 minutes and required around 4× 30 GB of GPU memory.

• Layer-wise Probing: Conducted using 1×NVIDIA L40 GPUs. Each BLiMP task paradigm
took 2.2 minutes on average, totaling around 57.2 minutes for the selected 26 paradigms
focusing on syntax. COMPS-BASE consisting of 49,340 English sentence pairs took 1 hour
and 47 minutes on average. COMPS-WUGS-DIST consisting of 27,792 pairs took 1 hour
on average.

• Residual Embedding Construction: Ridge regression training was done using Scikit-learn
on CPU with 30 GB of memory. Each regression model took less than 10 minutes to
converge. NVIDIA cuML and GPU training was not adopted due to lack of support for
multi-output ridge regression training.

• Brain Encoding (ECoG): Conducted using CPU with self-developed package. Align-
ing model activations and training encoding models over all channels and time lags took
approximately 5 hours for all experiments done.

Overall, the full pipeline can be reproduced on a modern workstation or cloud instance equipped with
1 NVIDIA L40 GPU + 30 GB RAM.

H Licenses and Attribution of External Assets

This work uses several publicly available datasets and a language model, all of which are properly
cited and used in accordance with their respective licenses. No proprietary or scraped data was used.

• BLiMP Dataset [40]: A suite of syntactic probing tasks for language models.

– URL: https://github.com/alexwarstadt/blimp
– License: CC-BY 4.0

• COMPS Datasets [33]: COMPS-BASE and COMPS-WUGS-DIST are used to assess
semantic and reasoning representations.

– URL: https://github.com/kanishkamisra/comps/
– License: Apache License 2.0

• The Podcast ECoG Dataset [43]: High-resolution electrocorticographic recordings from
participants listening to a natural podcast.

– URL: https://openneuro.org/datasets/ds005574/versions/1.0.2
– License: CC0
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• Expanded Podcast Transcripts [30]: Text for additional podcast episodes used to extend
ECoG analysis.

– URL: https://github.com/calclavia/tal-asrd
– License: No explicit license is specified on the repository. However, the author provides

access to the dataset and indicates that it can be downloaded for research purposes. We
used the dataset solely for non-commercial academic research and did not redistribute
or modify it.

• Qwen2.5-14B [36]: Language model for LLM representations extraction.
– URL: https://huggingface.co/Qwen/Qwen2.5-14B
– License: Apache license 2.0

All datasets and model were used solely for research purposes. We did not modify or redistribute any
datasets beyond standard preprocessing steps for experimental use. All license terms were respected.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

The main claims in the abstract and introduction accurately reflect the paper’s contribu-
tions. The paper introduces a feature-specific disentangling method to isolate reasoning
representations in LLMs, applies this to brain encoding with ECoG data, and shows that
reasoning-specific embeddings capture unique variance in neural responses and enable more
interpretable alignment with high-level brain activity. These claims are well-supported by
the methodology and results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses its limitations in Section F. It acknowledges
constraints in the spatial coverage of the ECoG dataset, particularly the lack of frontal region
recordings, and suggests extending the work to other neural modalities like fMRI. It also
notes the limited scope of reasoning types represented in current probing datasets (e.g.,
COMPS), and proposes the use of more diverse reasoning tasks in future research.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical result in Section 4.1 (Mutual Independence Theorem) provides
a complete derivation under clearly stated assumptions, including progressive layer-wise
emergence of linguistic features and linear projection structure. The argument leverages bi-
linearity of covariance to justify approximate orthogonality of residual embeddings. Though
approximate, the result is mathematically sound and is further supported by empirical
validation in Sections 4.2 and 4.3.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper’s Section 2.1 (Methods) provides sufficient detail to reproduce the
main experimental results that support the paper’s claims. It includes descriptions of probing
datasets, procedures for identifying saturation layers, residual embedding construction,
brain encoding model setup (including regression type, cross-validation, and alignment
procedure), and evaluation metrics. These details are enough to replicate the core pipeline
even without access to the original code or data.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in this study are publicly available. For linguistic probing,
we use BLiMP, COMPS-BASE, COMPS-WUGS, and COMPS-WUGS-DIST [40, 33].
For brain encoding analysis, we use the Podcast ECoG dataset, which includes aligned
transcripts for one episode, and an expanded set of podcast transcripts introduced in [43, 30].
Code will be organized and released on a public platform upon publication.

6. Experimental Setting/Details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup is described in sufficient detail within the main body
of the paper, providing the context needed to interpret and understand the results. Core
elements such as probing setup, regression model, number of bootstrap resamples, and
evaluation metrics are included in Section 2Methods. While not all hyperparameters and
implementation details are included in the main paper, we provide the full information in
code to ensure reproducibility.

Guidelines:

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports appropriate measures of variability for both probing and
brain encoding results. For instance, in Figure 4, encoding correlations over time are
accompanied by 95% bootstrap confidence intervals, capturing uncertainty in the temporal
alignment between model embeddings and neural signals.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about computational resources used for each major experi-
ment—including model inference, probing, and brain encoding—is provided in Appendix G.
This includes details on hardware, memory usage, and runtime estimates to support repro-
ducibility.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper fully conforms to the NeurIPS Code of
Ethics. All datasets used are publicly available and de-identified, no personally identifi-
able information is involved, and the experiments were conducted with consideration for
reproducibility, transparency, and scientific integrity.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper does not explicitly discuss societal impacts. This work is primarily
foundational and focuses on interpretability and alignment between large language models
and brain activity. While there are possible downstream societal implications—both positive
(e.g., better understanding of AI and cognition) and negative (e.g., misuse of reasoning
representations)—these considerations are outside the scope of the current paper and are not
addressed directly.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This paper does not release any models or datasets that pose a high risk for
misuse. All datasets used are publicly available, non-sensitive, and de-identified, and no
new pretrained models or data with dual-use concerns are introduced.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in this paper—such as the BLiMP, COMPS, and
Podcast ECoG datasets—are properly cited with references to their original publications.
Where available, we have included dataset URLs and respected the licenses and terms of
use. No proprietary or scraped content was used, and we did not modify or redistribute any
datasets beyond standard preprocessing for reproducibility. License details are included in
Appendix Section H.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a new codebase for residual embedding construction and
brain encoding analysis. While the full code will be released publicly upon publication, we
commit to providing clear documentation alongside it, including environment requirements,
usage examples, and configuration details necessary to reproduce all key experiments.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve any new crowdsourcing or direct research with
human subjects. We use the publicly released Podcast ECoG dataset, which was collected
and shared by the original authors in accordance with institutional ethics approvals and
participant consent, as documented in their publication [43]. All data used are de-identified
and comply with the terms of use specified by the dataset providers.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve any new research with human subjects. We use
the publicly released Podcast ECoG dataset, which was collected by the original authors
under appropriate Institutional Review Board (IRB) approval and participant consent, as
documented in their publication [43]. No new data collection or interaction with human
participants was conducted in this work.
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