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ABSTRACT

In the scenario-based Question Answering (QA) task, models are asked to find
answers that are appropriate to the user scenarios associated with the question
and identify information that is missing from the scenarios but is necessary for
the answers to hold. Scenarios commonly include multiple properties of users,
such as age, employment status, and income level for the question “How much
can I claim from this benefit”. The properties relevant to a potential answer are
given in a document, which will state conditions necessary for the answer to hold.
Documents also may specify how conditions interact with each other, e.g. with
text like “one of the conditions below must apply”. Although understanding the
relationship between conditions is crucial for solving this challenging QA task,
limited work has been done so far in modeling this. In this paper, we propose the
T-Reasoner model, which solves this problem with three jointly learned modules:
an entailment module which checks whether a condition has been satisfied by the
scenario, a decoding module which locates eligible answers from documents, and
a reasoning module which infers the relationship between conditions and performs
a reasoning step to determine the logically consistent answers and identify missing
conditions. T-Reasoner outperforms strong baselines on a synthetic scenario-
based QA dataset and achieves a new state-of-the-art on two scenario-based QA
benchmarks, outperforming the prior best models by 3-10 points. 1

1 INTRODUCTION

Many questions can only be answered correctly after some context for the question is supplied or
inferred: e.g., “When is the next LA Lakers home game” needs temporal context, and “Where is the
closest pizza place” needs geographical context. Prior work on contextual QA (Zhang & Choi, 2021;
Dhingra et al., 2021; Kasai et al., 2022; Chen et al., 2021) has focused on tasks in which context is
important, but limited: generally a small number of properties of the user that posed the question need
be considered (e.g., location and time). However, many important questions depend on many more
properties of the user. In this paper we consider scenario-based QA, in which questions are augmented
with a textual “scenario” that describes some properties of the user. For example, in Figure 1 a user
has posed a question “how much support am I eligible for?” , and the answer depends on multiple
user properties (namely, their relationship with deceased, and whether they or other relatives have
claimed other benefits.) Having multiple contextual properties means these properties can interact.
For example, in Figure 1 the answer depends on a conjunction of conditions (e.g. “if both” in Scenario
1) and also a disjunction of conditions (e.g. either being a “relative” or a “close friend” in Scenario 2).

In our benchmarks, scenarios are informative but not complete, so the goal of the system is to
identify possible answers—i.e., answers that are logically consistent with the scenario—as well as
any conditions that necessary for the answer to hold which are not entailed by the scenario. For
example, in Figure 1 Scenario 1, the system should provide the answer “up to $1200” but must also
note that the condition “you didn’t claim other benefits” is required by the answer, and not entailed by
the scenario. We refer to such conditions as unsatisfied conditions. This task is challenging because in
addition to finding eligible answers from documents, it also requires models to perform two non-trivial
reasoning tasks. First, it must understand the document well enough to understand conditions given as

1Codes and data are available at https://github.com/haitian-sun/T-Reasoner.
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context for the answer (each property that may affect the answer is considered as a condition), and the
logical relationship between these conditions. For example, in Figure 1 Scenario 1, it requires both
“the partner of the deceased...” and “you didn’t claim other benefits” to be satisfied (i.e. conjunction),
while it requires either a “relative” or “close friend” (i.e. disjunction) in Scenario 2. Second, a model
must identify which conditions are entailed by information provided in user scenarios, which are
contradicted, and which are not mentioned but are required to support an eligible answer.

Previous work by Clark et al. (2020b) has shown that pretrained Language Models (LMs), e.g.
RoBERTa (Liu et al., 2019), can be finetuned to perform a similar reasoning task over hypothetical
statements, i.e. “if A and B then C”. However, conditions used in their experiments are over
simplified and sometimes semantically incorrect, e.g. A = “Mike is strong” and B = “Cindy is green”.
Furthermore, languages used to described the relationship between conditions are easy, and the
number of conditions involved in the reasoning process is small. All factors above make the proposed
task easy for existing models (Liu et al., 2019; Raffel et al., 2019), but under-represents the challenges
exists in real problems that require reasoning with logically interacting conditions.

Furthermore, previous work (Clark et al., 2020b) makes an assumption that every conditions must be
either satisfied or contradicted by the evidence provided in questions. As a result, no “unsatisfied
condition” is required in predictions. We do not make such assumption, but instead only provide evi-
dences for a subset of conditions, and ask models to predict a logically consistent answer and identify
conditions that are required but not yet satisfied, i.e. unsatisfied conditions. Indeed, experiments (Sun
et al., 2021a) show that pretrained language models (LMs), e.g. T5 (Raffel et al., 2019), struggle to
predict unsatisfied conditions. Even though an additional module is specifically trained to predict
unsatisfied conditions (Gao et al., 2020b; Ouyang et al., 2020), their performance is still limited.

We propose a simple yet effective model, T-Reasoner, which models the relationship between
conditions and performs the reasoning task to verify answers that are consistent with user scenarios
and identify conditions that are unsatisfied. T-Reasoner contains three main modules, an entailment
module, a reasoning module, and a decoding module, which are jointly trained. The entailment
module predicts whether conditions have been entailed or contradicted by users’ scenarios. The
reasoning module infers the relationship between conditions then performs a reasoning step to decide
whether the provided information in user scenarios is sufficient and to identify unsatisfied conditions
otherwise. If the answer is a free-form text span, T-Reasoner additionally uses a generation module
to predict the answer span. T-Reasoner shows excellent reasoning ability on a synthetic dataset
and outperforms the previous state-of-the-art models on two Question Answering (QA) datasets,
ConditionalQA and ShARC (Sun et al., 2021a; Saeidi et al., 2018), improving the state-of-the-art
by 3-10 points on answer and unsatisfied condition prediction tasks.

2 RELATED WORK

The task proposed by Clark et al. (2020b) is commonly referred to as deductive reasoning where
all information required to find a definite answer is provided. Other models have been developed
for deductive reasoning with symbolic rules (Cohen, 2016; Cohen et al., 2020; Sun et al., 2020;
Ren et al., 2020; Ren & Leskovec, 2020). Embedding-based methods (Sun et al., 2020; Ren et al.,
2020; Ren & Leskovec, 2020) first convert symbolic facts and rules to embeddings and then apply
neural network layers on top to softly predict answers. These models differ from our work in that the
symbolic structure of the rules is typically known, whereas in our model it is implicit in a document.

Other recent work in deductive reasoning focused on tasks where rules and facts are expressed in
natural language (Talmor et al., 2020; Saeed et al., 2021; Clark et al., 2020b; Kassner et al., 2020).
Such tasks are more challenging because the model has to first understand the logic described in the
natural language sentences before performing logical reasoning. Many of these models rely on rules
that are produced by templates, or templated rules that have been paraphrased by crowd workers. In
our work, the logical interactions analogous to these rules are implicit in real-world documents.

Different from most reasoning tasks, the task considered in this paper provides a list of conditions that,
if true, would support an answer. Identifying such conditions is usually called abductive reasoning, as
opposed to deductive reasoning. Very limited work has explored abductive reasoning for QA. Previous
work (Gao et al., 2020a;b; Ouyang et al., 2020) on the ShARC (Saeidi et al., 2018) dataset propose
to solve this problem by predicting a special label “inquire” if there was not enough information
to make a definite prediction. Specifically, EMT and DISCERN (Gao et al., 2020a;b) computed
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Figure 1: Examples for the scenario-based QA task. The two examples have the same question but different
scenarios which lead to different answers. Diagrams in the blue blocks show the desired reasoning process. The
conditions in green, red, and yellow are entailed, contradicted, and not mentioned in the scenario. In Scenario
1, the answer “up to $1200” is logically consistent with the scenario. The condition “you didn’t claim other
benefits” is an unsatisfied condition because it is not mentioned but required to be satisfied for the answer. The
other condition “partner did not claim” is also not mentioned but is not an unsatisfied condition because whether
it is satisfied will not affect the answer. In Scenario 2, there’s not an unsatisfied condition because existing
information provided in the scenario is sufficient to predict the answer “up to $800”.

an entailment vector for each condition and performed a weighted sum of those vectors to predict
the final answer. DGM (Ouyang et al., 2020) additionally introduced a GCN-based model to better
represent the entailment vectors. Even though these models were able to predict the answer labels as
“inquire” when there were unsatisfied conditions, none of them predict which conditions needed to be
further satisfied, unlike our model. Our model is also more scalable than these, as it does not require
concatenating a full context and a question.

3 MODEL

3.1 TASK: QA WITH CONDITIONS

The scenario-based QA task requires models to find answers that are logically consistent with the
provided user scenarios which are potentially incomplete. In this paper, we consider this task in the
reading comprehension (RC) setting in which a passage that contains relevant information about the
question is provided. We leave the open-domain setting of this problem for future work. Specifically,
a model takes a question, a scenario, and a passage that contains answers and conditions as input and
predicts logically consistent answers and their unsatisfied conditions. Let’s consider a passage that
contains a set of conditions C = {c1, . . . , cn} and the set of eligible answers for a question under
all possible combinations of conditions A = {a1, . . . , am}. Each answer ai ∈ A is restricted by
a subset of conditions Ci ⊆ C. Conditions in Ci interact with each other under relationship Ri (Ri

is an abstract set which will not be explicitly expressed). A condition group, Gi = (Ci, Ri) is a
pair of Ci and Ri, which describes in what scenario the answer ai is correct. Note that the list of
answers A, sets of conditions Ci’s and their relationship Ri’s are not explicitly provided in training
and testing examples – models have to generate them from the passage.

We say that a condition group Gi is satisfied if its underlying logical statement that consists of Ci

and Ri has been satisfied by the scenario, for example, in Scenario 2 in Figure 1 where the condition
group for “up to $800” has been satisfied. Besides being satisfied, a condition group Gi has two
more possible outcomes: (1) G is partially satisfied if some of the conditions have been satisfied
but there is still some information missing so the answer is not fully supported, e.g. the condition
group of the answer “up to $1200” in Scenario 1 (Figure 1), and (2) Gi is contradicted if one or more
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conditions in the group are contradicted which causes the answer ineligible, e.g. the condition group
of the answer “up to $1200” in Scenario 2 (Figure 1).

An answer ai is logically consistent with the scenario if the underlying condition group Gi is satisfied
or partially satisfied. We denote the set of logically consistent answers Ã ⊆ A. The set Ã contains
zero or more answers – the set Ã is empty if none of the answers in A is logically consistent with the
user scenario. A model should predict an answer from Ã if Ã is not empty, and mark the question as
not answerable, otherwise.2 In addition to predicting logically consistent answers, we also perform
the task of finding unsatisfied conditions C̃i. The set C̃i should be concise, i.e. it should only include
the conditions that are necessary. For example, the condition “have worked for more than 4 years” is
not an unsatisfied condition because whether it has been satisfied or not won’t affect the output of the
condition group.

In summary, we evaluate a model’s prediction of a logically consistent answer ai ∈ Ã and the set
of unsatisfied conditions C̃i for answer ai, i.e. (ai, C̃i). Answers and unsatisfied conditions in the
output are jointly evaluated.3 This task specifically challenges models’ ability in understanding the
relationship between conditions and performing logical reasoning process accordingly. We will
introduce a simple and effective model, T-Reasoner, to tackle this challenging reasoning task.

3.2 MODEL

Figure 2: T-Reasoner Overview. The entailment module
independently encodes each condition ci (along with its con-
textual information si). The entailment module outputs a
condition embedding si that will be input into the reason-
ing module to decide if conditions have been satisfied and
identify unsatisfied conditions. Other computed embeddings
hi,j will be used by the decoding module to generate answer
spans (if the question has a free-form answer).

In this section, we will discuss T-Reasoner
which consists of an entailment module, a
reasoning module, and optionally a decod-
ing module, to perform this challenging QA
task in embedding space.

Input The model, T-Reasoner, takes a ques-
tion q with scenario e and a passage p as
inputs and predicts an answer ai that is log-
ically consistent with the user scenario and
a list of unsatisfied conditions C̃i. Since
the list of all conditions C for the question
are not provided in the example, we chunk
the passage p into pieces and consider each
piece of text as a condition ci. Conditions
obtained this way may be irrelevant to ques-
tions. We rely on the entailment module (see
next) to decide whether a condition ci is rel-
evant and what is its relationship with others.
The chunking strategy may be different for
different datasets. Please see §4.2 and §4.3
for more information. Briefly, passages are
usually chunked into sentences, short pas-
sages with 2-3 sentences, or sub-sentences
(text phrases).

Entailment Module We apply an entailment module to check whether each condition ci ∈ C
have been entailed by the user scenario. Each condition ci is checked independently, as opposed to
concatenating all conditions into a long input and checking them all at once. This strategy significantly
reduce the computation cost compared to checking all conditions at once, especially if context is long,
e.g. legal documents which are tens or hundreds of pages long (see examples in 4.3). Specifically,

2An oracle model should be able to predict all answers from Ã. We consider a slightly simplified setting
in this paper in which a model is only required to predict one of the answers. In our experiments, the ShARC
(Saeidi et al., 2018) dataset only contains questions that have a single answer, i.e. |Ã| = 1. The ConditionalQA
(Sun et al., 2021a) dataset contains questions that have multiple answers, |Ã| > 1, so the performance will be
sacrificed. We leave the task of predicting all logically consistent answers as future work.

3Evaluation metrics are different in different datasets Sun et al. (2021a); Saeidi et al. (2018). Please refer to
§4.3 and 4.2 for more details.
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the computation complexity of our approach is O(|C|) where |C| is the number of total conditions,
compared to a complexity of O(|C|2) otherwise.

This independent checking strategy, however, separates each condition from its context and thus
causes a lost of contextual information for conditions ci and eventually negatively impacts the model’s
performance. Thus, we extend a condition ci by adding tokens from its surroundings. For example,
the condition “the partner of the deceased when they died” is expanded to “... up to $1200 may be
awarded if both: <CDT> the partner of the deceased when they died <\CDT> you didn’t claim ...”,
where <CDT> and <\CDT> are two special tokens that mark the beginning and end of the condition
ci. Apart from making a condition ci more fluent and coherent, the added contextual tokens also
make it easier to understand the relationship between the current condition ci and other conditions
in its neighbours. We may additionally add page titles, section titles, prompts of list items, or table
headings, etc., if applicable to the expanded conditions. Please see §4.3 and 4.2 for more details. We
denote conditions with extended contextual information as si for condition ci.

We learn a Transformer model for the entailment module which takes an expanded condition si
and the question q and scenario e as input, and returns a list of vectors si,hi,1, . . . ,hi,m. The first
vector si is a summarization vector which includes several aspects of information: (1) whether the
underlying condition ci has been satisfied, contradicted, or not mentioned by the user scenario, (2)
whether the condition ci is relevant to the question, and (3) if relevant, what is its relationship with
other conditions in its neighbours. These information will be used for reasoning in the future layers.
Embeddings hi,1, . . . ,hi,m are token embeddings that will used for decoding if needed. Please see
the description of the reasoning module for more information.

si,hi,1, . . . ,hi,m = Entail(si, e, q) (1)

One may consider supervising this entailment module by adding classification layers on si to explicitly
predict the entailment status of condition ci and its relationship with other conditions. However,
obtaining supervision labels for these auxiliary tasks can be challenging as they are often not provided
in the example. Fortunately, we show that our proposed model, T-Reasoner, can be trained end-to-end,
without such intermediate supervision.

Decoding Module The decoding module generates an eligible answer âi which is potentially logically
consistent to the question. The generated answer âi will not be returned until the status of its condition
group Ĝi is verified by the reasoning module (discussed below).

The decoding module is analogous to FiD (Izacard & Grave, 2020), i.e. token embeddings from
different conditions (which are encoded separately) are concatenated for decoding. Different from
Izacard & Grave (2020) which was applied to independently retrieved passages for open-domain
QA, the decoding module in T-Reasoner is used on coherent content, i.e. conditions from the same
passage. The contextual information in the expanded condition si helps connect conditions that are
separately encoded. The decoding module takes token embeddings for all conditions h1,1, . . . ,hn,m

computed from Eq. 1 to generate answer spans. The generation task is trained with teacher forcing.
We do not write out the teacher forcing decoding loss ldecode here. Please refer to the T5 paper (Raffel
et al., 2019) for more information. If questions have multiple logically consistent answers, i.e. Ã > 1,
we randomly select an answer ai ∈ Ã as the label to train the decoding module.

âi = Decode(h(1)
1,1, . . . ,h(n)

kn,m
) (2)

We consider two different types of answers: “Yes”/“No” or free-form answers. In the first case, we
simply let the model generate a special a special token [YESNO] and consider the reasoning result
from the reasoning module (see next) as the answer, i.e. the answer is “Yes” if the condition group is
satisfied (or partially satisfied) or “No” if contradicted. Since some datasets only contain “Yes”/“No”
questions, we can then safely discard the decoding module for these datasets. In the second case, i.e.
answers are free-form text spans, we will return generated spans as answers only if their condition
groups have been verified as satisfied or partially satisfied by the reasoning module. If the condition
group is contradicted, we will mark the question as not answerable.

Reasoning Module The reasoning module combines the local relationship between conditions from
their embeddings s1, . . . , sn and performs a logical reasoning process to decide the reasoning result
for a condition group Gi for the generated answer âi and to identify unsatisfied conditions C̃i.

The input to the reasoning module is a list of vectors, s1, . . . , sn for conditions c1, . . . , cn, that are
output by the entailment module (Eq. 1). We use another Transformer model as our reasoner, because
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Transformers have the self attention mechanism which allows conditions {s1, . . . , sn} to attend to
each other, so the reasoning result of a condition group can be summarized. This is crucial because,
for example, if one of the conditions in a disjunction group is satisfied, the condition group will be
automatically satisfied regardless the status of other conditions in the same group. We prepend a
trainable vector s0 to the list of condition embeddings to summarize the reasoning result.

The output vectors ŝ0, ŝ1, . . . , ŝn will be used to predict the status of the condition group and the
unsatisfied conditions for the generated answer. The first vector ŝ0 will be used to predict the
reasoning result of the condition group. If the condition group is partially satisfied, we use the rest
of vectors, ŝ1, . . . , ŝn, to identify unsatisfied conditions. We compute loss on both reasoning and
unsatisfied condition predictions. Let Ir and Ic be the one-hot labels for the two tasks.

ŝ0, ŝ1, . . . , ŝn = Reason(s0, s1, . . . , sn)

lreason = softmax_cross_entropy(WT
l ŝ0, Ir)

lcond = softmax_cross_entropy(WT
c ŝi, Ic)

As discussed above (§3.1), the reasoning results of condition groups have three possible outcomes:
“satisfied”, “partially satisfied”, and “contradicted”. We merge the first two into one label “satisfied”,
and differentiate them by whether unsatisfied conditions exist, i.e. r ∈ {satisfied, contradicted} and
its one-hot label Ir ∈ {0, 1}2.4

Labels for conditions are “entailed”, “contradicted”, “not mentioned”, “implied”, and “unsatisfied”,
i.e. Ic ∈ {0, 1}5. The first three labels are as they are named. The label “implied” means a condition
is implied by other conditions in the condition group. For example, if one of the conditions in a
disjunction group has been satisfied, the rest of conditions are “implied”. The class “unsatisfied”
means it is an unsatisfied condition which must be returned together with the predicted answer. The
labels may not apply to all datasets, e.g. ConditionalQA (Sun et al., 2021a) only annotates two labels
“unsatisfied” vs. others, we will make changes to the loss function accordingly.

Loss Function We jointly train the entailment module and reasoning module. The final loss function
is the sum of the answer loss lreason and the condition entailment loss lcond. If the answers contain text
spans, we jointly train the decoding module ldecode as well.

l = lreason + lcond

l = lreason + lcond + ldecode

3.3 FINETUNE PRETRAINED CHECKPOINTS

The entailment module and decoding module (if adopted) load pretrained LM checkpoints, e.g. T5
(Raffel et al., 2019) and BART (Lewis et al., 2019). The pretrained parameters are loaded for the
entailment module and then finetuned for downstream tasks. The reasoning module is randomly
initialized and jointly trained with other modules. The number of Transformer layers in the reasoning
module is a hyper-parameter. We choose the number of layers l = 3 or l = 4. Please see §4.1 for
ablation study on the number of Transformer layers for the reasoning task. The decoding module is
also finetuned. If a decoding module is needed, we will initialize the entailment and decoding module
from the same pretrained checkpoint.

4 EXPERIMENTS

We experiment with T-Reasoner on a synthetic dataset, CondNLI, and two benchmark QA datasets,
ConditionalQA (Sun et al., 2021a) and ShARC (Saeidi et al., 2018), for scenario-based QA task.

4.1 CONDNLI

Dataset The synthetic CondNLI dataset is derived from an existing Natural Language Inference
(NLI) dataset, MultiNLI (Williams et al., 2018). An original NLI example contains a premise and
a hypothesis, and a label indicating whether the premise is entailed or contradicted by the hypothesis.
We treat premises in NLI examples as conditions and hypotheses as facts provided in user scenarios.

4Some tasks have an additional class “irrelevant” because some questions in the dataset are not relevant to
the provided passages, i.e. Ir ∈ {0, 1}3.
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Context: If all: [
“Aged 59 1/2 or older”,
“Employed for two years”

] then“Get at least $60 a week”.
If any: [

not “Has two children”,
“Has not applied before.”

] then “Waive the application fees”.

Question: Is “Eligible for $60 a week” correct?
Scenario: [“65 years old”, “Rejected last year”]
Answer: Yes, [“Employed for two years”]

Table 1: An example in CondNLI. The answer is “Yes”
with unsatisfied conditions [“Employed for two years”].

Ans (acc) Conds (F1)

T5 (w/ FiD) 85.6 80.4
ETC 91.4 82.7
T-Reasoner 95.0 91.3

Table 2: Experiment results on the synthetic
CondNLI dataset in answer accuracy (Ans) and con-
ditions F1 (Conds).

6 8 10 15 20

T5 (w/ FiD) 85.6 85.2 85.3 82.2 74.1
T-Reasoner 95.0 94.3 94.5 92.8 91.7

Table 3: Experiment results in generalizing to
more conditions at inference time.

An example is shown in Table 1. The example contains four conditions, among which “Aged 59 1/2 or
older” and “Employed for two years” belong to a condition group under a logical reasoning type “all”,
indicating that both conditions have to be satisfied in order to “Get at least $60 a week”. The answer
statement, e.g. “Get at least $60 a week”, also comes from NLI examples. We treat the premise of
an NLI example as an answer statement and the corresponding hypothesis as the question, e.g. is
“Eligible for $60 a week” correct? In addition to the condition group and the answer statement that
is relevant to the question, we add a few more condition groups as distractors to make the constructed
dataset more challenging. Please see Appendix A for more information in dataset construction.

Baselines Previous work (Clark et al., 2020b) showed that pretrained Transformer-based Language
Models, e.g. RoBERTa (Liu et al., 2019), have the ability to reason over multiple conditions to answer
a reasoning question in the deductive reasoning setting, e.g. “if A and B then C” with facts on both
conditions A and B provided. However, examples in CondNLI are usually longer and won’t fit into
RoBERTa’s memory. Equivalently, we experiment with two other language models, T5 (Raffel et al.,
2019) (with the FiD strategy (Izacard & Grave, 2020) to adapt to longer input) and ETC (Ainslie
et al., 2020), on the CondNLI dataset.5 In ETC, we use the global tokens to predict unsatisfied
conditions. In T5, To simplify the generation task, we assign an id to each condition and let FiD
generate unsatisfied condition ids. We also compare T-Reasoner with T5 on inputs that contains more
conditions to test their generalization ability.

Figure 3: Left: Generalization results of reason-
ing over more conditions. Right: Results on the
ablated model with different numbers of Trans-
former layers in the reasoning module. We report
both label accuracy and F1 of unsatisfied condi-
tions. “any & all” indicates the subset of validation
data in which conditions interact each other under
the relationship of “any” and “all”.

Results The experiment results are shown in Table 2.
We measure both the accuracy of label prediction and
the F1 of unsatisfied conditions. The results show
that T-Reasoner performs significantly better than
pretrained LMs, T5 and ETC, in both predicting cor-
rect answers (Ans) and unsatisfied conditions (Conds)
on CondNLI. We additionally test T-Reasoner’s abil-
ity in generalizing to more conditions. We train T-
Reasoner on templates with 6 conditions or fewer
and test it on the examples with more than 6 condi-
tions. Figure 3 (Left) shows the change of perfor-
mance in both label classification and unsatisfied con-
dition prediction tasks as the number of conditions
increase. We observe some decrease in performance
in both tasks, but it is still reasonable with 20 con-
ditions. Furthermore, we experiment with different
numbers of layers in the reasoning module (Right).
The Transformer-based reasoning module needs at
least 3 layers for the reasoning task, especially for
predicting unsatisfied conditions.

4.2 SHARC
Dataset In the second experiment, we run T-Reasoner on a real scenario-based QA dataset, ShARC
(Saeidi et al., 2018), that has complex passages and many conditions. An example in ShARC contains

5Examples in CondNLI exceeds the limit of 512 tokens in RoBERTa.
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Decision Question
(micro / macro) (BLEU1 / 4)

CM 61.9 / 68.9 54.4 / 34.4
BERTQA 63.6 / 70.8 46.2 / 36.3
UcraNet 65.1 / 71.2 60.5 / 46.1
Bison 66.9 / 71.6 58.8 / 44.3
E3 67.7 / 73.3 54.1 / 38.7
EMT 69.1 / 74.6 63.9 / 49.5
DISCERN 73.2 / 78.3 64.0 / 49.1
DGM 77.4 / 81.2 63.3 / 48.4
T-Reasoner 80.4 / 83.9 71.5 / 58.0

Table 4: Experimental results on the ShARC
dataset. Numbers for the baseline models (Saeidi
et al., 2018; Zhong & Zettlemoyer, 2019; Verma
et al., 2020; Lawrence et al., 2019; Gao et al.,
2020a;b; Ouyang et al., 2020) are borrowed from
Ouyang et al. (2020).

Decision Question Condition
(micro / macro) (BLEU1 / 4) (F1)

T5 63.7 / 68.2 57.3 / 48.2 44.0
DISCERN 74.9 / 79.8 65.7 / 52.4 55.3
DGM 78.6 / 82.2 71.8 / 60.2 57.8
T-Reasoner 79.8 / 83.5 71.7 / 60.4 69.2

Table 5: Results on the ShARC dataset (dev) compared to
the baselines. The Condition (F1) numbers are from open-
sourced codes (Gao et al., 2020b; Ouyang et al., 2020).

# conditions 1 2 3 4

DGM 90.4 70.3 80.0 73.4
T-Reasoner 90.3 72.7 80.6 75.2

diff -0.1 2.4 0.6 1.8

Table 6: Ablated results on ShARC on answer accuracy
vs. number of conditions. Numbers of DGM Ouyang et al.
(2020) are obtained from open-sourced codes.

a passage, a user question, and a user scenario which is expressed in a conversation history between
a user and a machine. A model is expected to find an answer to the user’s question, or raise a
clarification question for the unsatisfied conditions. Answers in this dataset are restricted to one of
the following labels: “yes”, “no”, “inquire”, and “irrelevant”. The first three labels are equivalent
to “satisfied”, “contradicted”, and “partially satisfied”. “irrelvant” is a new label that should be
predicted if the conversation history and the question are irrelevant to the provided passage. This
task of predicting answers is called “Decision Making” in their original ShARC paper (Saeidi et al.,
2018) and evaluated as micro and macro accuracy. In addition to the “Decision Making” task, they
consider another task “Question Generation” which is equivalent to predicting unsatisfied condition in
T-Reasoner,6 evaluated with BLEU 1 and BLEU 4 scores. Compared to CondNLI, where conditions
and their relationship are clearly mentioned in the context, conditions are embedded in the context in
ShARC examples, e.g. Figure 1. Please see Appendix C for more information in data preparation.

Baselines and Results We compare T-Reasoner to several strong baseline models, including the
previous state-of-the-art models, DISCERN (Gao et al., 2020b) and DGM (Ouyang et al., 2020).
Different from the baseline models, which use pipeline systems to separately predict answer labels
and unsatisfied conditions, T-Reasoner performs the two tasks jointly. The results are shown in Table
4. T-Reasoner outperforms the previous baselines by 3 points on the “Decision Making” task and
more than 8 points on the “Question Generation” task. T-Reasoner also significantly outperforms
other baseline models (Saeidi et al., 2018; Zhong & Zettlemoyer, 2019; Verma et al., 2020; Lawrence
et al., 2019; Gao et al., 2020a;b; Ouyang et al., 2020).

Ablation: Condition Accuracy One problem with the ShARC Question Generation task is that
only one of the unsatisfied conditions is annotated, even though multiple unsatisfied conditions exist.
To further evaluate T-Reasoner’s performance in predicting all unsatisfied conditions, we manually
annotate the logical operations in 20 contexts that have more than one condition (857 data total),7
and use the annotated logical operations to find all unsatisfied conditions. We report the F1 of the
predicted unsatisfied conditions (see Table 5). Compared to the baselines (Gao et al., 2020b; Ouyang
et al., 2020), T-Reasoner improves the F1 by 11.4 points.

Ablation: Label Accuracy v.s. Conditions We additionally measure the accuracy versus the
number of conditions in the context. Results in Table 6 show that the improvement in T-Reasoner’s
performance over the previous state-of-the-art model (DGM) mostly comes from questions that have
more than one condition.

4.3 CONDITIONALQA
Dataset In the third experiment, we run T-Reasoner on ConditionalQA (Sun et al., 2021a), which
contains longer context (documents), more conditions and more complex relationship between

6Unsatisfied conditions are then paraphrased into questions, e.g. “Aged 59 1/2 or older” is paraphrased to
“Are you aged 59 1/2 or older?”

7Each context in ShARC has 32.9 data on average.
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Yes / No Extractive Conditional Overall
EM / F1 w/ conds EM / F1 w/ conds EM / F1 w/ conds EM / F1 w/ conds

majority 62.2 / 62.2 42.8 / 42.8 – / – – / – – / – – / – – / – – / –
ETC 63.1 / 63.1 47.5 / 47.5 8.9 / 17.3 6.9 / 14.6 39.4 / 41.8 2.5 / 3.4 35.6 / 39.8 26.9 / 30.8
DocHopper 64.9 / 64.9 49.1 / 49.1 17.8 / 26.7 15.5 / 23.6 42.0 / 46.4 3.1 / 3.8 40.6 / 45.2 31.9 / 36.0
T5 w/ FiD 64.2 / 64.2 48.0 / 48.0 25.2 / 37.8 22.5 / 33.4 45.2 / 49.7 4.7 / 5.8 44.4 / 50.8 35.0 / 40.6
T-Reasoner 73.2 / 73.2 54.7 / 54.7 34.4 / 48.6 30.3 / 43.1 51.6 / 56.0 12.5 / 14.4 57.2 / 63.5 46.1 / 51.9

Table 7: Main results on ConditionalQA. The “EM/F1” columns reports the original EM/F1 metrics which
only evaluate answers. The “w/ conds” is the conditional EM/F1 metric from ConditionalQA. See §4.3.

Answer
(w/ conds)

Conditions
(P / R / F1)

T5 w/ FiD 3.2 / 4.6 98.3 / 2.6 / 2.7
T-Reasoner 10.6 / 12.2 34.4 / 40.4 / 37.8

T5 w/ FiD (conditional only) 6.8 / 7.4 12.8 / 63.0 / 21.3

Table 8: Ablated results on ConditionalQA in predicting unsatisfied conditions.

conditions. Furthermore, the ConditionalQA dataset contains a mixture of “Yes”/“No” questions and
questions with free-form answers. Please see Appendix B for details on data preparation.

Evaluation As introduced in ConditionalQA (Sun et al., 2021a), predictions are evaluated in two
sets of metrics: EM/F1 and conditional EM/F1. EM/F1 are the traditional metrics that measures
the accuracy of predicted answer spans. Conditional EM/F1 is a novel metric introduced by Sun
et al. (2021a), that jointly measures the accuracy of answer spans and unsatisfied conditions. Please
refer to the ConditionalQA paper (Sun et al., 2021a) for more information. Briefly, the conditional
EM/F1 is the product of the original answer EM/F1 and the F1 of the predicted unsatisfied conditions.
The conditional EM/F1 is 1.0 if and only if the predicted answer span is correct and all unsatisfied
conditions are found. If there’s no unsatisfied condition, the model should predict an empty set.

Baselines and Results We compare T-Reasoner with several strong baselines, including ETC (in
a pipeline) (Ainslie et al., 2020), DocHopper (Sun et al., 2021b), and T5 (with FiD) (Izacard &
Grave, 2020). The ETC pipeline first extracts possible answers from the context and then predict
unsatisfied conditions independently. DocHopper is a multi-hop retrieval system that iteratively
retrieves evidence which contains answers and unsatisfied conditions. T5 (w/ FiD) is a encoder-
decoder model. We train T5 (w/ FiD) to generate answers followed by a list of unsatisfied conditions
ids. The experimental results are presented in Table 7. T-Reasoner significantly outperforms the
baselines in predicting answers and jointly predicting answers and unsatisfied conditions – a relative
improvement of 148% (Conditional) and 27.8% (Overall) in conditional F1 (F1 w/ conds).

Ablation: Condition Accuracy Since there’s not a metric that only measures the quality of predicted
conditions, we additionally report the F1 of the predicted unsatisfied conditions (Table 2). The best
baseline models, T5 (w/ FiD), rarely predicts any conditions. Even though we train T5 (w/ FiD) only
on the subset of questions that have conditional answers to force it predict unsatisfied conditions, its
performance slightly improves but is still much lower than T-Reasoner by 16.5 points in condition F1.

5 CONCLUSION

We study the problem of scenario-based QA in which questions are accompanied by incomplete
scenarios and models are asked to find answers that are consistent with the provided user scenario.
Models are further asked to identify unsatisfied conditions that are necessary for the predicted answers.
We propose a system, T-Reasoner, that contains an entailment module to check whether a condition
has been satisfied and a jointly trained reasoning module to verify the status of condition groups
and predict unsatisfied conditions. T-Reasoner shows excellent reasoning ability, and can easily
generalize to more conditions on a synthetic dataset CondNLI. Furthermore, T-Reasoner achieves
state-of-the-art performance on two challenging scenario-based QA datasets ShARC (Saeidi et al.,
2018) and ConditionalQA (Sun et al., 2021a).
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6 ETHICAL STATEMENT

Experiments in this paper are performed on publicly available datasets for academic research purposes.
No real user data is used in the experiments. Even though the proposed model could be applied to
many real world problems to help users answer their questions, the accuracy of the proposed work is
still limited and predictions may be misleading. Please carefully evaluate the performance before
applying it to real problems.

7 REPRODUCIBILITY STATEMENT

Datasets and codes will be released upon the acceptance of this paper, including all scripts for
constructing the proposed synthetic dataset and the preprocessing script for the two benchmark QA
datasets. Models are trained on public available data. All results are reproducible.
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(Template)
Context: If all [A, B], then U.

If any [not C, D], then V.
Facts: a, c, not d.
Question: Is u correct?
Label: Yes, if B

(Variables)
A: Aged 59 1/2 or older. a: Tom is 65 years old.
B: Employed for two years. b: NOT_USED
C: Has two children c: He has two sons.
D: Has not applied before. not d: Rejected last year.
U: Get at least $60 a week u: Eligible for $60 a week.
V: Waive the application fees v: NOT_USED

Table 9: An example of CondNLI. Variables A, B, . . . and U , V , . . . represent the conditions and premises.
Variables a, b, . . . represent the known facts. u is the question. Each pair of variables, e.g. (A, a), is instantiated
with an NLI example.

Michael J. Q. Zhang and Eunsol Choi. Situatedqa: Incorporating extra-linguistic contexts into qa,
2021.

Victor Zhong and Luke Zettlemoyer. E3: Entailment-driven extracting and editing for conversational
machine reading. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 2310–2320, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1223. URL https://aclanthology.org/P19-1223.

A CONDNLI DATASET CONSTRUCTION

We first construct templates for the CondNLI examples and then instantiate the variables in the
template with real NLI examples.

Construct Templates We use capital letter A, B, . . . to represent conditions and lower-cased letters
a, b, . . . to represent the corresponding facts. We use another few letters X , Y , . . . to represent the
statements of conclusion, and lower-cased letters x, y, . . . to represent questions. Conditions are
grouped together under a logical operator that specifies the relationship between conditions. For
example, a logical operator “all” specifies that all conditions in the group must be satisfied in order to
make the condition group satisfied. Here, we consider four types of logical operations to construct
this synthetic dataset:

• “all”: all conditions under this logical type should be satisfied in order to make the answer
true.

• “any”: only requires one of the conditions under the logical type “any” to be satisfied. It
doesn’t matter whether other conditions have been satisfied, contradicted, or not mentioned
in the question.

• “required”: This is a special case of “all” / “any” when there is only one condition. Conditions
with the logical type “required” must be satisfied.

• “optional”: Conditions have the type “optional” if they are not relevant to the question.

We pair a condition group with a conclusion statement and get a logical statement “If all (A, B),
then X”. To challenge models’ ability in identifying relevant conditions from context, we add a few
distracting statement that leads to different conclusions, e.g. “If all (not C, D), then Y ”. An example
of a context template is shown in Table 9.

Facts are constructed by randomly sampling a subset from all possible facts {a, b, . . . }. A question is
sampled from possible questions {x, y, . . . }. We then compute the answer (and unsatisfied conditions
if any) from the context, facts, and the question.

Generate Examples For a templates with variables A, B, X , Y , . . . , a, b, x, y, . . . , we instantiate
the variables with NLI examples to get the real data. We use the premises of original NLI examples
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Answer labels
(yes / no / negated yes / negated no
/ partially satisfied / irrelevant)

100 / 100 / 100 / 100 / 100 / 50

Logical types
(any / all / required / optional) 378 / 380 / 422 / 390

# conditions in scenario
(4 / 5 / 6) 333 / 340 / 471

Table 10: CondNLI statistics. The table shows the statistics of 550 randomly generated examples.
The answer labels “negated yes” and “negated no” mean negation exist in rule templates. We set the
minimum number of conditions in scenarios to 4 to avoid overly simple example. Each example may
contain multiple logical types.

for conditions and conclusions, i.e. capital letter variables, and the hypothesis for question and facts,
i.e. lower-case variables. Note that sampling requires matching the entailment state of conditions, e.g.
“not d” requires sampling from NLI examples that are labeled as “contradict”.

We restrict the number of conditions in the context to 6 and randomly generate 65 distinct templates.8
During training, we randomly pick a template and instantiate it with NLI examples to generate real
training examples. This random generation process enables creating (almost) unlimited amount of
training data. We randomly generate another 5000 examples for development and testing.

Quality Assessment Training and validation data in CondNLI are generated from NLI examples in
the training and validation split of the MNLI dataset, respectively. This ensures that NLI examples
used in validation are not exposed at training time. We control the generation process to ensure that
the automatically generated data are balanced in terms of answer labels, logical types of interacting
conditions, and number of conditions included in scenarios. Results are shown in Table 10. We
additionally require scenarios must have at least 4 conditions to avoid overly simple examples.

We additionally measure the Jaccard distance between premises and hypotheses of the NLI examples
used in constructing the CondNLI dataset. The token-level Jaccard distance is 27.2. Even though
token-level overlap exists, a model still needs to understand the semantic relationship between
premises and hypotheses to predict their entailment status.

B CONDITIONALQA EXPERIMENT DETAILS

An example in the ConditionalQA dataset provides a parsed web page as context. It also provides
a question, and a user scenario that is relevant to the context. We prepend the user scenario to the
question as input to the model.

The context in ConditionalQA is provided as a list of HTML elements. We treat each element at the
leaf of the DOM tree as a condition ci, and prepend all its parents (from its direct parent to the root)
to get an expanded condition si.

Since we need the decoding module to generate answer spans, we initialize the model with T5, i.e.
we use parameters from the encoder to initialize the entailment module, and use decoder to initialize
the decoding module. The reasoning module is randomly initialized.

C SHARC EXPERIMENT DETAILS

Different from ConditionalQA, where each sentence in the context is treated as a condition, conditions
in the ShARC dataset are shorter and are sometimes short phrases (sub-sentence). For example, the
context “If you are a female Vietnam Veteran with a child who has a birth defect, you are eligible
for ...” contains two conditions, “If you are a female Vietnam Veteran” and “with a child who has a
birth defect”.9 In order to handle sub-sentence conditions, we follow the strategy proposed in two

8Restricting the number of conditions is only for the purpose of reducing training complexity. The experiment
in Figure 3 (left) shows the model’s capability of generalizing to more conditions.

9It is arguable that this could be generally treated as one condition, but it is treated as two conditions with the
logical operator “all” in the ShARC dataset.
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of the baseline models, DISCERN Gao et al. (2020b) and DGM Ouyang et al. (2020), that split a
sentence into EDUs (Elementary Discourse Units) using a pretrained discourse segmentation model
Li et al. (2018). The discourse segmentation model returns a list of sub-sentences, each considered as
a condition.

While we could treat each condition independently as we did previously for other datasets, the
segmented EDUs are different in that they are not full sentences and may not retain their semantic
meaning. Thus, we consider using the full context (usually less than 512 tokens) as the contextual
information for condition ci, i.e. the expanded condition si includes the full context, but the condition
ci is highlighted using the special tokens <CDT> and <\CDT>.

We do not need the decoding module for the ShARC dataset, so we can safely discard it. We initialize
the entailment module with ELECTRA (Clark et al., 2020a). The previous state-of-the-art baselines
(Ouyang et al., 2020; Gao et al., 2020b) use ELECTRA to initialize their model. We use the same
pretrained checkpoint to make a fair comparison.

For the question generation task, we use the same input s as in decision making, except that we replace
the prefix “condition:” with “unsatisfied condition:” for “unsatisfied” conditions. We fine-tune a T5
model for question generation.

D DATASET STATISTICS

Dataset statistics are shown in Table 11.

Train Dev Test

ShARC 15581 1622 5866
ConditionalQA 2338 285 804

Table 11: Dataset statistics.
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