
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A POLYNOMIAL TIME GRAPH ISOMORPHISM ALGO-
RITHM VIA SELF-SUPERVISED GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph isomorphism (GI) is a fundamental problem in graph theory. Despite
recent advancements, determining whether two graphs are isomorphic remains
computationally challenging. This paper introduces the Polynomial Time Graph
Isomorphism (PTGI) algorithm, an optimization-based approach leveraging self-
supervision techniques to efficiently tackle the graph isomorphism problem. PTGI
aims to escape local optima caused by graph symmetries and provides high accu-
racy in identifying isomorphic graphs in polynomial time. Experimental results
demonstrate PTGI’s effectiveness across various graph types, making it a valu-
able tool for practical applications.

1 INTRODUCTION

Graph isomorphism (GI) is a fundamental problem in graph theory that deals with determining
whether two graphs are structurally identical, namely “isomorphic”, up to a relabeling of vertices.
Formally, two graphs GA = (VA, EA) and GB = (VB , EB) are said to be isomorphic if and only if
there exists a bijection f : VA → VB such that for any pair of vertices u, v ∈ VA, (u, v) ∈ EA if and
only if (f(u), f(v)) ∈ EB . In other words, the two graphs have the same connectivity pattern, but
the vertices may be labeled differently. Graph isomorphism has numerous applications in various
fields, including chemistry Balaban (1985); Merkys et al. (2023), biomedical sciences Sporns et al.
(2005); Singh et al. (2007), network analysis Cook & Holder (2006), computer vision Christmas
et al. (1995); Zaslavskiy et al. (2008), and pattern recognition Pelillo et al. (1999).

Determining whether two graphs are isomorphic is computationally challenging. It belongs to the
class of NP (nondeterministic polynomial time) problems and is one of the few remaining prob-
lems in NP that is not known to be either P (polynomial time) or NP-complete Fortin (1996). The
main areas of research for graph isomorphism problem are design of fast algorithms and theoret-
ical investigations of its computational complexity, both for the general problem and for special
classes of graphs. While recent breakthroughs have shown that GI is solvable in quasipolynomial
(exp((log n)O(1))) time Babai (2016), the demand for polynomial time algorithms remains, espe-
cially for real-world graphs that can be super large. Many existing polynomial time graph isomor-
phism algorithms only work with specific classes of graphs Hopcroft & Tarjan (1972); Babai et al.
(1980); Luks (1982); Grohe & Marx (2012); Babai et al. (2013); Lokshtanov et al. (2017), bringing
challenges for generalization to real-world graphs.

Due to the computational complexity of exact isomorphism checking, optimization-based graph
isomorphism algorithms have been proposed to efficiently tackle the graph isomorphism problem
Umeyama (1988); Zaslavskiy et al. (2008); Vogelstein et al. (2011); Aflalo et al. (2015). While these
algorithms offer improved efficiency compared to exact methods, they typically provide approximate
solutions rather than exact isomorphism checking. By formulating the problem as an optimization
task and iteratively refining the solution, optimization-based approaches strive to find a mapping
between the vertices of two graphs that maximizes a similarity metric or minimizes a dissimilarity
metric. Despite not guaranteeing exact isomorphism, optimization-based algorithms are valuable
tools for practical applications where efficiency is prioritized over correctness.

While optimization-based graph isomorphism algorithms have demonstrated efficient graph isomor-
phism checking, we found that in practice they often result in local optima when graphs possess
symmetries, even for very simple graphs. In this case, an optimization-based GI algorithm fails

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

identifying isomorphic graphs. A recent study Klus & Gelß (2023) highlighted that graph sym-
metries can lead to repeated eigenvalues that complicates graph isomorphism testing. This is a
significant limitation of existing studies.

To address this limitation, in this paper, we introduce the Polynomial Time Graph Isomorphism
(PTGI) algorithm, an optimization-based approximate graph isomorphism algorithm with a worst-
case polynomial time complexity of O(n4). PTGI incorporates self-supervision techniques to avoid
local optima and demonstrates high accuracy in identifying isomorphic graphs. Experimental results
showcase PTGI’s effectiveness in polynomial time, without constraints on graph types or properties.

The contributions of this paper are summarized as follows:

1. We demonstrate the effectiveness of self-supervision in escaping local optima caused by
graph symmetries in optimization-based graph isomorphism algorithms.

2. We propose the PTGI algorithm, an approximate graph isomorphic algorithm with a worst-
case polynomial time complexity, leveraging self-supervision to avoid local optima.

3. Experimental results validate PTGI’s ability to accurately identify isomorphic graphs in
polynomial time, making it a near-exact graph isomorphism algorithm applicable to various
graph types.

The following content of this paper is organized as follows: In Sec. 2, we introduce some graph
isomorphism algorithms that are closely-related to our proposed algorithm. In Sec. 3, we formulate
the popular paradigm for designing optimization-based graph isomorphism algorithms, and demon-
strate that this paradigm often result in local optima. In Sec. 4, we formally propose the Polynomial
Time Graph Isomorphism (PTGI) algorithm, and analyze its time and space complexity. In Sec. 5,
we present and discuss experimental results for evaluating both the effectiveness and efficiency of
our proposed algorithm. In Sec. 6, we conclude our study. In Sec. 7, we propose several potential
future research directions based on our current work.

2 RELATED WORKS

Graph Isomorphism Algorithms can vary significantly in terms of complexity, efficiency, and appli-
cability. Some algorithms focus on exact isomorphism checks and are suitable for small to medium-
sized graphs, while others employ heuristic or approximation techniques to handle larger graphs
more efficiently. Prominent exact graph isomorphism algorithms include:

• Nauty McKay (2007): A widely-used algorithm developed by Brendan McKay for exact
graph isomorphism testing and graph canonization. The worst-case time complexity of
Nauty is exponential (O(2n)).

• VF2 Cordella et al. (2004): A backtracking-based algorithm proposed by Cordella et al.
which efficiently explores possible mappings between vertices using constraints. VF2 has
a worse-case (O(n!)) factorial time complexity.

• Ullmann’s algorithm Ullmann (1976): It uses backtracking combined with constraint prop-
agation to explore the space of possible mappings between vertices of the two graphs.
Ullmann’s algorithm has a worse-case (O(n!)) factorial time complexity.

Although these exact graph isomorphism algorithms have demonstrated efficient graph isomorphism
checking for many examples of large graphs, their theoretical worst-case complexity remains com-
putationally intractable.

Due to the computational complexity of exact isomorphism checking, optimization-based graph iso-
morphism algorithms leverage optimization techniques to efficiently tackle the graph isomorphism
problem. A commonly used optimization objective is to find a bijective vertex mapping, represented
by a permutation matrix, such that the adjacency disagreement of the two graphs being mapped is
minimized Aflalo et al. (2015). A variaty of existing approaches avoid the combinatory complexity
when searching for permutation matrices by relaxing the domain of permutation matrices to a track-
able convex or near-convex space when optimizing graph adjacency disagreement (denoted in (2)).
A popular approach is to relax the space of permutation matrices to the space of doubly stochastic
matrices then solve the optimization problem in polynomial time using quadratic programming or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

gradient descent Umeyama (1988); Zaslavskiy et al. (2008); Vogelstein et al. (2011); Aflalo et al.
(2015); Fiori & Sapiro (2015). An alternative relaxation technique is to replace permutation matrices
with orthogonal matrices Zavlanos & Pappas (2008); Klus & Sahai (2018). In practice, we found
that such type of optimization approaches often generate local optima for graphs possessing sym-
metries. Consequently, their accuracy on identifying isomorphic graph pairs is not guaranteed. For
example, Aflalo showed that such type of optimization approach only has high accuracy on “friendly
graphs”, namely graphs whose adjacency matrices have simple spectrum (i.e., all of its eigen values
are distinct) Aflalo et al. (2015) . Umeyama’s algorithm Umeyama (1988) requires graphs being
matched to be sufficiently close to each other in terms of eigenvectors. This limitation is significant
from the perspective of generalization since real-world graphs are not neccessarily “friendly”.

3 GRAPH ISOMORPHISM OPTIMIZATION PARADIGM

3.1 THE GRAPH ISOMORPHISM PROBLEM

A graph is defined as G = (V,E) where V is a set of vertices and E is a set of edges. In the context
of this paper, we consider graphs as non-weighted and non-labeled. Two graphs GA = (VA, EA)
and GB = (VB , EB) are said to be isomorphic, denoted as GA ≃ GB , if and only if there exists
a bijection f : VA → VB such that for any pair of vertices u, v ∈ VA, (u, v) ∈ EA if and only if
(f(u), f(v)) ∈ EB . Such a bijection is called an isomorphism of graph GA and GB .

Graph isomorphism can also be equivalently defined using adjacency matrices. Given a graph G =
(V,E) with |V | = n, let A be the adjacency matrix of G, which is a n× n binary matrix defined as
follows:

A = [aij]

{
1 if (vi, vj) ∈ E,

0 if (vi, vj) /∈ E.
(1)

Given two graphs GA = (VA, EA) and GB = (VB , EB) (|VA| = |VB | = n) with adjacency
matrices A and B, GA and GB are isomorphic if and only if there exists a permutation matrix P
such that A = PBP⊺. A permutation matrix is a square binary matrix that has exactly one entry of
1 in each row and each column with all other entries 0. Each permutation matrix P corresponds to
a bijection f : VA → VB .

The computationional problem of determining whether two finite graphs are isomorphic is called
the Graph Isomorphism (GI) Problem. A graph isomorphism algorithm is a computational method
used to determine whether two given graphs are isomorphic.

3.2 A PARADIGM FOR OPTIMIZATION-BASED GRAPH ISOMORPHISM ALGORITHMS

Due to the computational complexity of exact isomorphism checking, optimization-based graph
isomorphism algorithms utilize optimization techniques to tackle the graph isomorphism problem
more efficiently but provide approximate (near-exact) rather than exact isomorphism checking. An
optimization-based graph isomorphism algorithm typically aims to find mapping between the ver-
tices of two graphs that maximizes a similarity metric or minimizes a dissimilarity metric.

A commonly used dissimilarity metric in optimization is the adjacency (or connectivity) disagree-
ment. For two graphs GA and GB , with with adjacency matrices A and B, and a permutation matrix
P, the adjacency disagreement between GA and GB with respect to P is defined as ||A−PBP⊺||2,
where || · || denotes a norms such as the Euclidean norm (used in this paper). Let P(n) denote the
set of n × n permutation matrices P(n) = {P ∈ {0, 1}n×n : P1 = P⊺1 = 1}, where 1 is an
n-dimensional column vector. Then, the graph isomorphism can be formulated as the following
optimization problem:

P∗ = argmin
P∈P(n)

||A−PBP⊺||2. (2)

The two graphs GA and GB are isomorphic if and only if ||A−P∗BP∗⊺||2 = 0.

Equation (2) is a variant of the Quadratic Assignment Problem (QAP), which is NP-hard and there-
fore has no known polynomial time solution yet. This complexity is due to the combinatorial com-
plexity of the constraint P ∈ P(n). Relaxation techniques can reduce this complexity by replacing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the domain of P with a convex continuous set. A popular approach is to relax the space of P(n) to
its convex hull, i.e., the space of doubly stochastic matrices D(n) = {P : P1 = P⊺1 = 1,P ⪰ 0},
where 1 is an n-dimensional column vector and ⪰ indicates an element-wise inequality. Then, the
convex relaxed graph isomorphism can be formulated as the following optimization problem:

P∗ = argmin
P∈D(n)

||A−PBP⊺||2. (3)

A regularization term ||PP⊺ − I||2 can be added to enforce P∗ to be close to a real permutation
matrix. The convex relaxed graph isomorphism with regularization is formulated as:

P∗ = argmin
P∈D(n)

(||A−PBP⊺||2 + α||PP⊺ − I||2). (4)

A local minimum of both (3) and (4) can be efficiently found via gradient descent. Then the doubly
stochastic matrix P∗ ∈ D(n) resulted from either (3) or (4) can be projected to a permutation matrix
P̂ ∈ P(n) by

P̂ = argmin
P∈P(n)

−⟨P,P∗⟩, (5)

where ⟨·, ·⟩ is the Euclidean inner product. Equation (5) can be solved as a Linear Assignment
Problem (LAP) efficiently in polynimial time via the Hungarian AlgorithmKuhn (1955). Then, the
two graphs GA and GB are isomorphic if and only if A = P̂BP̂⊺. The above mentioned steps form
a popular paradigm for a number of existing optimization-based GI algorithms Vogelstein et al.
(2011).

3.3 LIMITATION OF THE PARADIGM

In practice, we found that optimizing (3), (4) or their variants via gradient descent often lead to local
optima when graphs possess symmetries, even for very simple graphs. In this case, the optimization-
based GI algorithm fails identifying isomorphic graphs. This is a significant limitation of existing
approaches. For instance, consider the two isomorphic graphs G and H with four vertices and
two edges each shown in Fig. 1. There exists multiple permutation matrices P ∈ P(4) such that

Figure 1: Two graphs with four vertices each.

A = PBP⊺, such as:

P1 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,P2 =

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

They are both global optima, i.e., isomorphisim of the two graphs. However, optimizing either (3)
or (4) via gradient descent may result in an undesired local optima P∗ as follows:

P∗ =

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

, especially when a flat doubly stochastic matrix, P(0) = 1 · 1⊺/n is used as an initial position of
gradient descent. There is no straightforward approach to convert the above P∗ to a permutation ma-
trix which corresponds to an isomorphism such as P1 or P2 rather than some incorrect permutation
matrix such as:

P3 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

, which can be produced by commonly-used projection techniques such as the Hungarian algorithm.

It is worth to mention that with randomly initialized starting point, gradient descent can still yield
local optima Du et al. (2017). In practice, we also found that optimizing either (3) or (4) with
randomly initialized parameters can also lead to local optima when graphs possess symmetries,
even for very simple graphs. Perturbed Gradient DescentJin et al. (2017) was proposed to escape
local optima by adding random noise into model parameters. For the graph isomorphism problem,
we found that local optima can be escaped by involving self-supervision into the gradient descent
process.

For instance, given the local optima P∗ for Fig. 1, we can see that vertex v1 ∈ VA has an equal prob-
ability to correspond to u1, u2, u3, u4 ∈ VB . This is heuristically true because v1 is mapped to each
u ∈ VB once among all the isomorphisms between the two graphs. Therefore, without any prior
preference, each vertex v ∈ VA is equally likely to correspond to each vertex u ∈ VB in a randomly
chosen isomorphism. However, if we arbitrarily let v1 correspond to u1, v3 correspond to u2, then
(3) or (4) forces v2 correspond to u3, and v4 correspond to u4. It is worth to mention that this type
of arbitrary vertex correspondence selection does not require human labeling but can be performed
in an self-supervised way based on some heuristic rules. This example inspires us that by involv-
ing self-supervision into the gradient descent process for graph isomorphism checking, local optima
might be escaped. Based on this inspiration, we designed a novel Polynomial Time Graph Isomor-
phism (PTGI) algorithm which is an optimization-based approximate graph isomorphic algorithm
via self-supervised gradient descent.

4 PROPOSED METHOD

In this section, we first formulate the proposed Polynomial Time Graph Isomorphism (PTGI) algo-
rithm as follows:

Algorithm 1 Polynomial Time Graph Isomorphism (PTGI)
Require: Number of vertices n, adjacency matrices A,B, gradient descent maximum steps T ,

learning rate η, self-supervision weight α
Ensure: A graph isomorphic indicator ∈ {True, False}

1: S← {0}n×n

2: L← {0}n×n

3: for r = 0 to n do
4: for t = 1 to T do
5: P← Softmax(S)
6: L(S) = ||A−PBPT ||2 + α| − L⊙ logP|
7: S← S− η∇L(S)
8: end for
9: Π← Onehot(P)

10: if A = ΠBΠ⊺ and ΠΠ⊺ = I then
11: Return True
12: end if
13: i, j = argmaxi,j pij , s.t.,

∑n
k=1 lik = 0

14: lij = 1
15: end for
16: Return False

Next, we explain the details of the above algorithm. Firstly, instead of searching for an optimal
doubly stochastic matrix, our PTGI algorithm searches for an optimal vertex similarity matrix S ∈
Rn×n. This makes the optimization problem convex. S is initialized as an all-zero matrix (line 1).

In line 2, we initialize a label matrix L ∈ {0, 1}n×n with all zeros. The label matrix L serves as a
self-supervision signal. Each entry lij means that the i-th vertex in graph GA should correspond to
the j-th vertex in graph GB .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In each iteration of the gradient descent (line 4-8), we first compute the stochastic vertex mapping
matrix P as a standard softmax of S, namely

pij =
exp(sij)∑n
k=1 exp(sik)

. (6)

Then in line 6, we define a loss function L(S) as the sum of the adjacency disagreement ||A −
PBPT ||2 and a self-supervision loss | − L ⊙ logP| multiplied by a self-supervision weight α,
where || · ||, | · | denote the l-1 and l-2 norm. The self-supervision loss is the standard cross-entropy
loss that is used to enforce P close to the pseudo ground-truth label L, namely

| − L⊙ logP| = −
n∑

i=1

n∑
j=1

lij log(pij). (7)

Note that if a row of L has all zeros, it means no self-supervision signal is provided for this row. In
this case, the cross-entropy loss for this particular row is zero, thus not need to be optimized.

After we get a local optimal P via one iteration of gradient descent, we project it to a permutation
matrix Π via standard one-hot encoding (line 9), namely

πij =

{
1 if j = argmaxk pik,

0 if otherwise.
(8)

Then, we test if Π is a correct graph isomorphism, and if so, the PTGI algorithm returns a True
indicating the two graphs are isomorphic (line 10-12).

Next, we discuss how to iteratively update the self-supervision signal L (line 13-14). After the
r-th iteration (0 ≤ r ≤ n) of gradient descent, we select one vertex correspondence pair (i, j)
with the highest probability score in the stochastic vertex mapping matrix P as the self-supervision
signal. We also ensure (i, j) has not been selected in previous iterations by adding a constraint∑n

k=1 lik = 0. Then we add a new self-supervision signal lij = 1.

The self-supervision signal incrementally builds a graph isomorphism by adding one vertex cor-
respondence in each iteration. In the r-th iteration, there exist r vertex correspondence pairs as
self-supervision signals. The self-supervision signal serves as a tie-breaker to escape the local op-
tima.

We illustrate how L and P are updated using the example in Fig. (1).

Iteration 0:

L(0) =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,P(0) =

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

Iteration 1:

L(1) =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,P(1) =

1 0 0 0
0 0 1 0
0 0.5 0 0.5
0 0.5 0 0.5

Iteration 2:

L(2) =

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,P(2) =

1 0 0 0
0 0 1 0
0 0.5 0 0.5
0 0.5 0 0.5

Iteration 3 (solution found):

L(3) =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,P(3) =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Next, we provide a theoretical time complexity analysis of the proposed PTGI algorithm. In each
iteration of gradient descent, the most complex computation is the multiply of three matrices, i.e.,
PBPT (line 6). The time complexity of this step is O(n3). There are at most n+ 1 iterations until
a valid graph isomorphism is found or finally not found. Therefore, the worst-case and average-case
time complexity of PTGI is O(n4). In the best case when the graphs prossess no symmetries, a valid
graph isomorphism might be found in the first iteration. Therefore, the best-case time complexity of
PTGI is O(n3). PTGI has a space complexity of O(n2) to store n×n matrices in computer memory.

It is worth to note that PTGI is an approximate graph isomorphism algorithm because it does not
guarantee that an isomorphism between two isomorphic graphs can be found. It only guarantees
that two non-isomorphic graphs will not be identified as isomorphic because PTGI returns true if
and only if a valid isomorphism is found. Therefore, PTGI can only yield false negatives but no
false positives.

5 EXPERIMENTAL RESULTS

5.1 DATASETS

We evaluate our proposed PTGI algorithm on both synthesized and real-world graphs. The set of
synthesized graphs consists of random Bernoulli graphs. Each pair of vertices in a random Bernoulli
graph has a 50% probability to be connected. Note that in practice we found that this vertex connec-
tion probability has little impact on the performance of our PTGI algorithm. Therefore, we do not
report evaluation results given other vertex connection probabilities.

We also evaluate our algorithm on several real-world graph collections from The Network Repos-
itory Rossi & Ahmed (2015), which is a collection of network datasets covering a wide range of
domains, including social networks, biological networks, transportation networks, and more. Many
datasets in the repository contain graphs with hundreds to thousands of nodes.

• CHEMINFORMATICS: A collection of 646 biological molecules graphs.

• DIMACS: A collection of 78 graphs created by the Center for Discrete Mathematics and
Theoretical Computer Science (DIMACS) used for benchmarking graph algorithms.

• BIOLOGICAL : A collection of 37 biological networks.

Statistics of these graphs are shown in Table 1.

Table 1: Dataset Characteristics
Dataset # Graphs # Nodes # Edges

CHEMINFORMATICS 646 4-60 18-240
DIMACS 78 0.1-4K 2K-4M
BIOLOGICAL 37 1-43K 1K-14M

For each graph, we generate 50 isomorphic graphs by randomly permutate its vertices. Then, the
adjacency matrix of each original graph and one of its isomorphic graph is provided to the PTGI
algorithm as input. PTGI then tries to identify whether they are isomorphic and the overall accuracy
and average runing time for each class of graph are reported. Note that PTGI cannot identify non-
isomorphic graphs as isomorphic because it returns a true value only if it finds an exact isomorphism
mapping. Therefore, it never produces false positive predictions. Consequently, we don’t need to
feed in non-isomorphic graph pairs for evaluation.

5.2 ALGORITHM IMPLEMENTATION AND PEER METHODS

We configure the parameters of the PTGI algorithm in Alg. 1 as follows. Maximum gradient descent
steps T = 100, learning rate η = 0.1, self-supervision weight α = 1. We implement the PTGI

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

algorithm using Python and TensorFlow1. The code is publicly available on Github.2 The PTGI
algorithm is run on a 2023 MacBook with M2 chip for running time evaluation.

We compare some of the state-of-art optimization-based graph isomorphism algorithms based on
convex relaxations.

• UMEY (Umeyama’s algorithm) Umeyama (1988): An eigendecomposition weighted graph
matching algorithm.

• PATH Zaslavskiy et al. (2008): A convex-concave programming approach for the graph
matching problem.

• QAP Vogelstein et al. (2011): An approximate graph matching algorithm via fast quadratic
programming. It is equivalent to a variant of our proposed PTGI algorithm without self-
supervision.

Note that the above-mentioned graph matching algorithms are also suitable for graph isomorphism
problem.

5.3 RESULTS

The accuracy of graph isomorphism (GI) identification for synthesized and real-world graphs are
presented in Tables 2 and 3, respectively.

Table 2: GI Identification Accuracy on Synthesized Graphs
Nodes = 100

Algorithm Accuracy

UMEY 90%
PATH 92%
QAP 95%
PTGI 100%

Nodes = 1K
Algorithm Accuracy

UMEY 88%
PATH 90%
QAP 93%
PTGI 100%

Nodes = 10K
Algorithm Accuracy

UMEY 87%
PATH 89%
QAP 93%
PTGI 100%

For synthesized graphs, the PTGI algorithm achieves perfect accuracy (100%) across all three graph
sizes (100, 1K, and 10K nodes), indicating its robustness and effectiveness in identifying isomor-
phic graphs. The UMEY, PATH, and QAP algorithms also exhibit high accuracy, although slightly
lower than PTGI, especially for larger graphs. In contrast, the accuracy of GI identification for
real-world graphs varies across different domains. In the CHEMINFORMATICS domain, all algo-
rithms achieve relatively high accuracy, with PTGI again demonstrating the highest accuracy among
them. The DIMACS domain shows similar patterns, with slightly lower accuracies across the board
compared to CHEMINFORMATICS. The BIOLOGICAL domain exhibits the highest accuracies

1https://www.tensorflow.org
2https://github.com/yangliuiuk/ML/blob/main/gi.py

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: GI Identification Accuracy on Real-World Graphs
CHEMINFORMATICS
Algorithm Accuracy

UMEY 76%
PATH 86%
QAP 85%
PTGI 90%

DIMACS
Algorithm Accuracy

UMEY 75%
PATH 83%
QAP 87%
PTGI 90%

BIOLOGICAL
Algorithm Accuracy

UMEY 78%
PATH 86%
QAP 85%
PTGI 91%

overall, with all algorithms achieving accuracies above 85%. Once again, PTGI consistently outper-
forms the other algorithms in terms of accuracy across all domains. Overall, these results suggest
that the PTGI algorithm is particularly effective for both synthesized and real-world graphs, consis-
tently achieving high accuracy in GI identification tasks.

Additionally, we provide the running time of the proposed PTGI algorithm on synthesized graphs
in Fig. 2. It’s noteworthy that the running time primarily correlates with the number of nodes.
Consequently, the running time on real-world graphs exhibits a similar pattern.

Figure 2: Running time of PTGI on Synthesized Graphs.

From the figure we can find that the running time of PTGI exhibits a polynomial increase pattern.
PTGI performs quite efficiently on small to medium-sized graphs. For instance it runs less than 5
seconds for graphs with 1000 nodes, which is significantly faster than state-of-the-art peer meth-
ods (e.g. 300 seconds by QAP) . In addition, PTGI still scale up to larger graphs with five to ten
thousands nodes.

Overall, these results highlight the practical utility and efficiency of the PTGI algorithm in graph
isomorphism identification, making it a promising tool for various applications across different do-
mains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this paper, we introduced the Polynomial Time Graph Isomorphism (PTGI) algorithm, an
optimization-based approach leveraging self-supervision techniques to efficiently tackle the graph
isomorphism problem. PTGI aims to escape local optima caused by graph symmetries and provides
high accuracy in identifying isomorphic graphs in polynomial time. Experimental results on both
synthesized and real-world graph datasets demonstrated the effectiveness and efficiency of PTGI
compared to state-of-the-art peer methods. Moreover, the running time analysis revealed that PTGI
exhibits a polynomial increase in running time, running efficiently on small to medium-sized graphs
and scaling well to larger graphs with thousands of nodes. Overall, the results suggest that PTGI is
a promising tool for graph isomorphism identification tasks, offering high accuracy and efficiency
across different graph types and sizes.

7 FUTURE WORKS

While the Polynomial Time Graph Isomorphism (PTGI) algorithm presented in this paper demon-
strates promising performance in terms of accuracy and efficiency, there are several avenues for
future research and improvement:

• Scaling to Larger Graphs: Although PTGI shows efficient performance on graphs with
up to ten thousand nodes, further optimization is needed to handle even larger graphs ef-
ficiently. Exploring parallel processing techniques or distributed computing frameworks
could help improve scalability.

• Extension to Weighted Graphs: The current version of PTGI is designed for unweighted
graphs. Extending the algorithm to handle weighted graphs would broaden its applicability
to a wider range of real-world scenarios.

• Exploring Different Self-Supervision Techniques: While self-supervision has proven ef-
fective in escaping local optima, exploring alternative self-supervision techniques or com-
binations thereof could further enhance the algorithm’s performance.

• Integration with Deep Learning Approaches: Investigating the integration of deep learn-
ing techniques, such as graph neural networks, into the PTGI framework could potentially
improve its ability to capture complex graph structures and enhance its performance on
challenging graph isomorphism tasks.

• Real-World Applications: Conducting extensive evaluations of PTGI on real-world appli-
cations, such as molecular structure analysis, social network analysis, and bioinformatics,
would provide valuable insights into its practical utility and effectiveness in real-world sce-
narios.

Exploring these directions could further advance the field of graph isomorphism and contribute to
the development of more efficient and accurate graph analysis techniques.

REFERENCES

Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. On convex relaxation of graph isomor-
phism. Proceedings of the National Academy of Sciences, 112(10):2942–2947, 2015.

László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684–697, 2016.

László Babai, Paul Erdos, and Stanley M Selkow. Random graph isomorphism. SIaM Journal on
computing, 9(3):628–635, 1980.

László Babai, Xi Chen, Xiaorui Sun, Shang-Hua Teng, and John Wilmes. Faster canonical forms
for strongly regular graphs. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pp. 157–166. IEEE, 2013.

Alexandru T Balaban. Applications of graph theory in chemistry. Journal of chemical information
and computer sciences, 25(3):334–343, 1985.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

William J. Christmas, Josef Kittler, and Maria Petrou. Structural matching in computer vision using
probabilistic relaxation. IEEE Transactions on pattern analysis and machine intelligence, 17(8):
749–764, 1995.

Diane J Cook and Lawrence B Holder. Mining graph data. John Wiley & Sons, 2006.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomorphism
algorithm for matching large graphs. IEEE transactions on pattern analysis and machine intelli-
gence, 26(10):1367–1372, 2004.

Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos. Gradi-
ent descent can take exponential time to escape saddle points. Advances in neural information
processing systems, 30, 2017.

Marcelo Fiori and Guillermo Sapiro. On spectral properties for graph matching and graph isomor-
phism problems. Information and Inference: A Journal of the IMA, 4(1):63–76, 2015.

Scott Fortin. The graph isomorphism problem. 1996.

Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with excluded
topological subgraphs. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pp. 173–192, 2012.

John E Hopcroft and Robert Endre Tarjan. Isomorphism of planar graphs. In Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer Computations,
held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade
Corporation, and the IBM Research Mathematical Sciences Department, pp. 131–152. Springer,
1972.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International conference on machine learning, pp. 1724–1732. PMLR, 2017.

Stefan Klus and Patrick Gelß. Continuous optimization methods for the graph isomorphism problem.
arXiv preprint arXiv:2311.16912, 2023.

Stefan Klus and Tuhin Sahai. A spectral assignment approach for the graph isomorphism problem.
Information and Inference: A Journal of the IMA, 7(4):689–706, 2018.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM Journal
on Computing, 46(1):161–189, 2017.

Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of computer and system sciences, 25(1):42–65, 1982.

Brendan D McKay. Nauty user’s guide (version 2.4). Computer Science Dept., Australian National
University, pp. 225–239, 2007.

Andrius Merkys, Antanas Vaitkus, Algirdas Grybauskas, Aleksandras Konovalovas, Miguel Quirós,
and Saulius Gražulis. Graph isomorphism-based algorithm for cross-checking chemical and crys-
tallographic descriptions. Journal of cheminformatics, 15(1):25, 2023.

Marcello Pelillo, Kaleem Siddiqi, and Steven W Zucker. Matching hierarchical structures using
association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11):
1105–1120, 1999.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rohit Singh, Jinbo Xu, and Bonnie Berger. Pairwise global alignment of protein interaction net-
works by matching neighborhood topology. In Annual international conference on research in
computational molecular biology, pp. 16–31. Springer, 2007.

Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human connectome: a structural description of
the human brain. PLoS computational biology, 1(4):e42, 2005.

Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):
31–42, 1976.

Shinji Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE
transactions on pattern analysis and machine intelligence, 10(5):695–703, 1988.

Joshua T Vogelstein, John M Conroy, Louis J Podrazik, Steven G Kratzer, Eric T Harley, Don-
niell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Large (brain) graph matching via fast
approximate quadratic programming. arXiv preprint arXiv:1112.5507, 2011.

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A path following algorithm for the graph
matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):
2227–2242, 2008.

Michael M Zavlanos and George J Pappas. A dynamical systems approach to weighted graph match-
ing. Automatica, 44(11):2817–2824, 2008.

12

	Introduction
	Related Works
	Graph Isomorphism Optimization Paradigm
	The Graph Isomorphism Problem
	A Paradigm for Optimization-Based Graph Isomorphism Algorithms
	Limitation of the Paradigm

	Proposed Method
	Experimental Results
	Datasets
	Algorithm Implementation and Peer Methods
	Results

	Conclusion
	Future Works

