Under review as a conference paper at ICLR 2025

A POLYNOMIAL TIME GRAPH ISOMORPHISM ALGO-
RITHM VIA SELF-SUPERVISED GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph isomorphism (GI) is a fundamental problem in graph theory. Despite
recent advancements, determining whether two graphs are isomorphic remains
computationally challenging. This paper introduces the Polynomial Time Graph
Isomorphism (PTGI) algorithm, an optimization-based approach leveraging self-
supervision techniques to efficiently tackle the graph isomorphism problem. PTGI
aims to escape local optima caused by graph symmetries and provides high accu-
racy in identifying isomorphic graphs in polynomial time. Experimental results
demonstrate PTGI’s effectiveness across various graph types, making it a valu-
able tool for practical applications.

1 INTRODUCTION

Graph isomorphism (GI) is a fundamental problem in graph theory that deals with determining
whether two graphs are structurally identical, namely “isomorphic”, up to a relabeling of vertices.
Formally, two graphs G4 = (Va, E4) and Gg = (V, E) are said to be isomorphic if and only if
there exists a bijection f : V4 — Vp such that for any pair of vertices u, v € Vy, (u,v) € E4 if and
only if (f(u), f(v)) € Ep. In other words, the two graphs have the same connectivity pattern, but
the vertices may be labeled differently. Graph isomorphism has numerous applications in various
fields, including chemistry Balaban| (1985)); Merkys et al.| (2023), biomedical sciences [Sporns et al.
(2005)); [Singh et al.| (2007), network analysis (Cook & Holder| (2006), computer vision |Christmas
et al.|(1995); |Zaslavskiy et al.| (2008), and pattern recognition Pelillo et al.| (1999).

Determining whether two graphs are isomorphic is computationally challenging. It belongs to the
class of NP (nondeterministic polynomial time) problems and is one of the few remaining prob-
lems in NP that is not known to be either P (polynomial time) or NP-complete |Fortin| (1996). The
main areas of research for graph isomorphism problem are design of fast algorithms and theoret-
ical investigations of its computational complexity, both for the general problem and for special
classes of graphs. While recent breakthroughs have shown that GI is solvable in quasipolynomial
(exp((logn)©™M))) time Babail (2016), the demand for polynomial time algorithms remains, espe-
cially for real-world graphs that can be super large. Many existing polynomial time graph isomor-
phism algorithms only work with specific classes of graphs |Hopcroft & Tarjan|(1972)); Babai et al.
(1980); |[Luks| (1982); |Grohe & Marx| (2012); Babai et al.|(2013)); Lokshtanov et al.|(2017)), bringing
challenges for generalization to real-world graphs.

Due to the computational complexity of exact isomorphism checking, optimization-based graph
isomorphism algorithms have been proposed to efficiently tackle the graph isomorphism problem
Umeyama) (1988)); Zaslavskiy et al.|(2008)); |Vogelstein et al.|(2011); Aflalo et al.[(2015). While these
algorithms offer improved efficiency compared to exact methods, they typically provide approximate
solutions rather than exact isomorphism checking. By formulating the problem as an optimization
task and iteratively refining the solution, optimization-based approaches strive to find a mapping
between the vertices of two graphs that maximizes a similarity metric or minimizes a dissimilarity
metric. Despite not guaranteeing exact isomorphism, optimization-based algorithms are valuable
tools for practical applications where efficiency is prioritized over correctness.

While optimization-based graph isomorphism algorithms have demonstrated efficient graph isomor-
phism checking, we found that in practice they often result in local optima when graphs possess
symmetries, even for very simple graphs. In this case, an optimization-based GI algorithm fails

Under review as a conference paper at ICLR 2025

identifying isomorphic graphs. A recent study |[Klus & Gelf3| (2023)) highlighted that graph sym-
metries can lead to repeated eigenvalues that complicates graph isomorphism testing. This is a
significant limitation of existing studies.

To address this limitation, in this paper, we introduce the Polynomial Time Graph Isomorphism
(PTGI) algorithm, an optimization-based approximate graph isomorphism algorithm with a worst-
case polynomial time complexity of O(n*). PTGI incorporates self-supervision techniques to avoid
local optima and demonstrates high accuracy in identifying isomorphic graphs. Experimental results
showcase PTGI’s effectiveness in polynomial time, without constraints on graph types or properties.

The contributions of this paper are summarized as follows:

1. We demonstrate the effectiveness of self-supervision in escaping local optima caused by
graph symmetries in optimization-based graph isomorphism algorithms.

2. We propose the PTGI algorithm, an approximate graph isomorphic algorithm with a worst-
case polynomial time complexity, leveraging self-supervision to avoid local optima.

3. Experimental results validate PTGI’s ability to accurately identify isomorphic graphs in
polynomial time, making it a near-exact graph isomorphism algorithm applicable to various

graph types.

The following content of this paper is organized as follows: In Sec. 2| we introduce some graph
isomorphism algorithms that are closely-related to our proposed algorithm. In Sec. [3| we formulate
the popular paradigm for designing optimization-based graph isomorphism algorithms, and demon-
strate that this paradigm often result in local optima. In Sec. ff] we formally propose the Polynomial
Time Graph Isomorphism (PTGI) algorithm, and analyze its time and space complexity. In Sec. [5
we present and discuss experimental results for evaluating both the effectiveness and efficiency of
our proposed algorithm. In Sec. [] we conclude our study. In Sec. [7] we propose several potential
future research directions based on our current work.

2 RELATED WORKS

Graph Isomorphism Algorithms can vary significantly in terms of complexity, efficiency, and appli-
cability. Some algorithms focus on exact isomorphism checks and are suitable for small to medium-
sized graphs, while others employ heuristic or approximation techniques to handle larger graphs
more efficiently. Prominent exact graph isomorphism algorithms include:

e Nauty McKay| (2007): A widely-used algorithm developed by Brendan McKay for exact
graph isomorphism testing and graph canonization. The worst-case time complexity of
Nauty is exponential (O(2™)).

* VF2 |Cordella et al.| (2004): A backtracking-based algorithm proposed by Cordella et al.
which efficiently explores possible mappings between vertices using constraints. VF2 has
a worse-case (O(n!)) factorial time complexity.

e Ullmann’s algorithm |Ullmann|(1976): It uses backtracking combined with constraint prop-
agation to explore the space of possible mappings between vertices of the two graphs.
Ullmann’s algorithm has a worse-case (O(n!)) factorial time complexity.

Although these exact graph isomorphism algorithms have demonstrated efficient graph isomorphism
checking for many examples of large graphs, their theoretical worst-case complexity remains com-
putationally intractable.

Due to the computational complexity of exact isomorphism checking, optimization-based graph iso-
morphism algorithms leverage optimization techniques to efficiently tackle the graph isomorphism
problem. A commonly used optimization objective is to find a bijective vertex mapping, represented
by a permutation matrix, such that the adjacency disagreement of the two graphs being mapped is
minimized |Aflalo et al.|(2015)). A variaty of existing approaches avoid the combinatory complexity
when searching for permutation matrices by relaxing the domain of permutation matrices to a track-
able convex or near-convex space when optimizing graph adjacency disagreement (denoted in (2)).
A popular approach is to relax the space of permutation matrices to the space of doubly stochastic
matrices then solve the optimization problem in polynomial time using quadratic programming or

Under review as a conference paper at ICLR 2025

gradient descent [Umeyamal (1988)); [Zaslavskiy et al.| (2008)); [Vogelstein et al.| (2011); |Aflalo et al.
(2015)); [Fior1 & Sapiro|(2015). An alternative relaxation technique is to replace permutation matrices
with orthogonal matrices |Zavlanos & Pappas| (2008); |Klus & Sahai| (2018)). In practice, we found
that such type of optimization approaches often generate local optima for graphs possessing sym-
metries. Consequently, their accuracy on identifying isomorphic graph pairs is not guaranteed. For
example, Aflalo showed that such type of optimization approach only has high accuracy on “friendly
graphs”, namely graphs whose adjacency matrices have simple spectrum (i.e., all of its eigen values
are distinct) |Aflalo et al| (2015) . Umeyama’s algorithm [Umeyamal (1988) requires graphs being
matched to be sufficiently close to each other in terms of eigenvectors. This limitation is significant
from the perspective of generalization since real-world graphs are not neccessarily “friendly”.

3 GRAPH ISOMORPHISM OPTIMIZATION PARADIGM

3.1 THE GRAPH ISOMORPHISM PROBLEM

A graph is defined as G = (V, E) where V is a set of vertices and F is a set of edges. In the context
of this paper, we consider graphs as non-weighted and non-labeled. Two graphs G4 = (Va, Ex)
and Gg = (Vp, Ep) are said to be isomorphic, denoted as G4 ~ Gp, if and only if there exists
a bijection f : V4 — Vg such that for any pair of vertices u,v € Vya, (u,v) € E4 if and only if
(f(u), f(v)) € Ep. Such a bijection is called an isomorphism of graph G4 and Gp.

Graph isomorphism can also be equivalently defined using adjacency matrices. Given a graph G =
(V, E) with |V| = n, let A be the adjacency matrix of GG, which is a n X n binary matrix defined as
follows:

1 if (v,v4) € E,
A=lag]y, oo
0 if (v;,v;) ¢ E.

Given two graphs G4 = (Va,E4) and Gg = (Vg, Eg) ([Va| = |Vs| = n) with adjacency
matrices A and B, G4 and G are isomorphic if and only if there exists a permutation matrix P
such that A = PBPT. A permutation matrix is a square binary matrix that has exactly one entry of
1 in each row and each column with all other entries 0. Each permutation matrix P corresponds to
abijection f : V4 — Vp.

(D

The computationional problem of determining whether two finite graphs are isomorphic is called
the Graph Isomorphism (GI) Problem. A graph isomorphism algorithm is a computational method
used to determine whether two given graphs are isomorphic.

3.2 A PARADIGM FOR OPTIMIZATION-BASED GRAPH ISOMORPHISM ALGORITHMS

Due to the computational complexity of exact isomorphism checking, optimization-based graph
isomorphism algorithms utilize optimization techniques to tackle the graph isomorphism problem
more efficiently but provide approximate (near-exact) rather than exact isomorphism checking. An
optimization-based graph isomorphism algorithm typically aims to find mapping between the ver-
tices of two graphs that maximizes a similarity metric or minimizes a dissimilarity metric.

A commonly used dissimilarity metric in optimization is the adjacency (or connectivity) disagree-
ment. For two graphs G 4 and G g, with with adjacency matrices A and B, and a permutation matrix
P, the adjacency disagreement between G 4 and G with respect to P is defined as || A — PBPT| |2,
where || - || denotes a norms such as the Euclidean norm (used in this paper). Let P(n) denote the
set of n X n permutation matrices P(n) = {P € {0,1}"*" : P1 = P71 = 1}, where 1 is an
n-dimensional column vector. Then, the graph isomorphism can be formulated as the following
optimization problem:

P* = argmin ||A — PBPT|°. 2
PeP(n)
The two graphs G' 4 and G g are isomorphic if and only if ||A — P*BP*T||2 = 0.

Equation (2)) is a variant of the Quadratic Assignment Problem (QAP), which is NP-hard and there-
fore has no known polynomial time solution yet. This complexity is due to the combinatorial com-
plexity of the constraint P € P(n). Relaxation techniques can reduce this complexity by replacing

Under review as a conference paper at ICLR 2025

the domain of P with a convex continuous set. A popular approach is to relax the space of P(n) to
its convex hull, i.e., the space of doubly stochastic matrices D(n) = {P : P1 =PT71 =1,P > 0},
where 1 is an n-dimensional column vector and > indicates an element-wise inequality. Then, the
convex relaxed graph isomorphism can be formulated as the following optimization problem:
P* = argmin||A — PBPT|?. 3)
PeD(n)
A regularization term ||[PPT — I||? can be added to enforce P* to be close to a real permutation
matrix. The convex relaxed graph isomorphism with regularization is formulated as:
P* = argmin(||A — PBPT||? 4 o||PPT —I||?).)
PeD(n)
A local minimum of both (3)) and (@) can be efficiently found via gradient descent. Then the doubly
stochastic matrix P* € D(n) resulted from either (3)) or (4) can be projected to a permutation matrix
P € P(n) by
P = argmin —(P,P*),)]
PecP(n)
where (-,-) is the Euclidean inner product. Equation can be solved as a Linear Assignment
Problem (LAP) efficiently in polynimial time via the Hungarian AlgorithmKuhn|(1955). Then, the
two graphs G 4 and G g are isomorphic if and only if A = PBPT. The above mentioned steps form
a popular paradigm for a number of existing optimization-based GI algorithms |Vogelstein et al.
(2011).

3.3 LIMITATION OF THE PARADIGM

In practice, we found that optimizing (3), @) or their variants via gradient descent often lead to local
optima when graphs possess symmetries, even for very simple graphs. In this case, the optimization-
based GI algorithm fails identifying isomorphic graphs. This is a significant limitation of existing
approaches. For instance, consider the two isomorphic graphs G and H with four vertices and
two edges each shown in Fig. There exists multiple permutation matrices P € P(4) such that

OO @
®

Ga Gg

Figure 1: Two graphs with four vertices each.

A = PBPT, such as:

100 0 01 0 0
001 0 000 1
Pi=1o 10 0/'P2=1|1 0 0 0
000 1 001 0

They are both global optima, i.e., isomorphisim of the two graphs. However, optimizing either (3)
or {@) via gradient descent may result in an undesired local optima P* as follows:

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

P =

, especially when a flat doubly stochastic matrix, P(?) = 1 - 17 /n is used as an initial position of
gradient descent. There is no straightforward approach to convert the above P* to a permutation ma-
trix which corresponds to an isomorphism such as P; or P rather than some incorrect permutation
matrix such as:

0
0
P; = 1
0

_—o OO

0
1
0
0

(el Ne i

Under review as a conference paper at ICLR 2025

, which can be produced by commonly-used projection techniques such as the Hungarian algorithm.

It is worth to mention that with randomly initialized starting point, gradient descent can still yield
local optima [Du et al| (2017). In practice, we also found that optimizing either (3) or () with
randomly initialized parameters can also lead to local optima when graphs possess symmetries,
even for very simple graphs. Perturbed Gradient DescentJin et al. (2017) was proposed to escape
local optima by adding random noise into model parameters. For the graph isomorphism problem,
we found that local optima can be escaped by involving self-supervision into the gradient descent
process.

For instance, given the local optima P* for Fig. [T} we can see that vertex v, € V4 has an equal prob-
ability to correspond to w1, uo, us, u4 € Vp. This is heuristically true because v is mapped to each
u € Vp once among all the isomorphisms between the two graphs. Therefore, without any prior
preference, each vertex v € V4 is equally likely to correspond to each vertex v € Vg in a randomly
chosen isomorphism. However, if we arbitrarily let vy correspond to uy, v3 correspond to usg, then
or (@) forces vy correspond to u3, and v4 correspond to 4. It is worth to mention that this type
of arbitrary vertex correspondence selection does not require human labeling but can be performed
in an self-supervised way based on some heuristic rules. This example inspires us that by involv-
ing self-supervision into the gradient descent process for graph isomorphism checking, local optima
might be escaped. Based on this inspiration, we designed a novel Polynomial Time Graph Isomor-
phism (PTGI) algorithm which is an optimization-based approximate graph isomorphic algorithm
via self-supervised gradient descent.

4 PROPOSED METHOD

In this section, we first formulate the proposed Polynomial Time Graph Isomorphism (PTGI) algo-
rithm as follows:

Algorithm 1 Polynomial Time Graph Isomorphism (PTGI)

Require: Number of vertices n, adjacency matrices A, B, gradient descent maximum steps 7,
learning rate 1), self-supervision weight o
Ensure: A graph isomorphic indicator € {True, False}
1 S« {o}mxm
2: L« {o}m*"
3: forr =0tondo

4 fort =1to T do

5: P + Softmax(S)

6: L(S) = ||A — PBPT|? + a| - L ® log P|
7: S« S—nVL(S)

8 end for

9: II + Onehot(P)
10: if A = IIBIIT and ITIIT = I then

11: Return T'rue

12: end if

13 4,j = argmax; ; Pij, S-tu g lip = 0
14: lij =1

15: end for

16: Return False

Next, we explain the details of the above algorithm. Firstly, instead of searching for an optimal
doubly stochastic matrix, our PTGI algorithm searches for an optimal vertex similarity matrix S €
R™*™, This makes the optimization problem convex. S is initialized as an all-zero matrix (line 1).

In line 2, we initialize a label matrix L € {0, 1}™*™ with all zeros. The label matrix L serves as a
self-supervision signal. Each entry /;; means that the ¢-th vertex in graph G 4 should correspond to
the j-th vertex in graph G .

Under review as a conference paper at ICLR 2025

In each iteration of the gradient descent (line 4-8), we first compute the stochastic vertex mapping
matrix P as a standard softmax of S, namely

exp(si;)
= i) 6
Pij Y e €xp(Sik) ©)

Then in line 6, we define a loss function £(S) as the sum of the adjacency disagreement ||A —
PBPT||? and a self-supervision loss | — L ® log P| multiplied by a self-supervision weight a,
where || - ||, | - | denote the I-1 and {-2 norm. The self-supervision loss is the standard cross-entropy
loss that is used to enforce P close to the pseudo ground-truth label L, namely

n n
|~ LologP| ==Y " "1;log(pi)- (7)
i=1 j=1
Note that if a row of L has all zeros, it means no self-supervision signal is provided for this row. In
this case, the cross-entropy loss for this particular row is zero, thus not need to be optimized.

After we get a local optimal P via one iteration of gradient descent, we project it to a permutation
matrix IT via standard one-hot encoding (line 9), namely

1 if j = arg maxy, pix,
= 8
i {O if otherwise. ®

Then, we test if II is a correct graph isomorphism, and if so, the PTGI algorithm returns a True
indicating the two graphs are isomorphic (line 10-12).

Next, we discuss how to iteratively update the self-supervision signal L (line 13-14). After the
r-th iteration (0 < r < n) of gradient descent, we select one vertex correspondence pair (i, j)
with the highest probability score in the stochastic vertex mapping matrix P as the self-supervision
signal. We also ensure (4,j) has not been selected in previous iterations by adding a constraint
> r_y lir = 0. Then we add a new self-supervision signal [;; = 1.

The self-supervision signal incrementally builds a graph isomorphism by adding one vertex cor-
respondence in each iteration. In the r-th iteration, there exist r vertex correspondence pairs as
self-supervision signals. The self-supervision signal serves as a tie-breaker to escape the local op-
tima.

We illustrate how L and P are updated using the example in Fig. (T).

Iteration O:

00 0 O 0.25 0.25 0.25 0.25
LO — 0 0 0 O pO) _ 0.25 0.25 0.25 0.25
— 10 0 0 0| —10.25 025 0.25 0.25
00 0 O 0.25 0.25 0.25 0.25
Iteration 1:
1 0 0 O] M 0 0 07
1w _10 0 0 0 wm_10 0 1 0
L 0 0 0 O P 0 05 0 05
0 0 0 0 10 05 0 0.5
Iteration 2:
1 0 0 O] T 0 0 07
2_10 0 1 0 2_10 0 1 0
L™= 0 0 0 O P 0 05 0 0.5
0 0 0 0] 10 05 0 0.5
Iteration 3 (solution found):
1 0 0 O 1 0 0 O
@3 _10 0 1 0 @3 _10 0 1 0
L™= 01 0 O P 01 0 O
0 0 0 O 0 0 0 1

Under review as a conference paper at ICLR 2025

Next, we provide a theoretical time complexity analysis of the proposed PTGI algorithm. In each
iteration of gradient descent, the most complex computation is the multiply of three matrices, i.e.,
PBP7 (line 6). The time complexity of this step is O(n?). There are at most n + 1 iterations until
a valid graph isomorphism is found or finally not found. Therefore, the worst-case and average-case
time complexity of PTGl is O(n*). In the best case when the graphs prossess no symmetries, a valid
graph isomorphism might be found in the first iteration. Therefore, the best-case time complexity of
PTGl is O(n?). PTGI has a space complexity of O(n?) to store n X n matrices in computer memory.

It is worth to note that PTGI is an approximate graph isomorphism algorithm because it does not
guarantee that an isomorphism between two isomorphic graphs can be found. It only guarantees
that two non-isomorphic graphs will not be identified as isomorphic because PTGI returns true if
and only if a valid isomorphism is found. Therefore, PTGI can only yield false negatives but no
false positives.

5 EXPERIMENTAL RESULTS

5.1 DATASETS

We evaluate our proposed PTGI algorithm on both synthesized and real-world graphs. The set of
synthesized graphs consists of random Bernoulli graphs. Each pair of vertices in a random Bernoulli
graph has a 50% probability to be connected. Note that in practice we found that this vertex connec-
tion probability has little impact on the performance of our PTGI algorithm. Therefore, we do not
report evaluation results given other vertex connection probabilities.

We also evaluate our algorithm on several real-world graph collections from The Network Repos-
itory Rossi & Ahmed (2015), which is a collection of network datasets covering a wide range of
domains, including social networks, biological networks, transportation networks, and more. Many
datasets in the repository contain graphs with hundreds to thousands of nodes.

* CHEMINFORMATICS: A collection of 646 biological molecules graphs.

* DIMACS: A collection of 78 graphs created by the Center for Discrete Mathematics and
Theoretical Computer Science (DIMACS) used for benchmarking graph algorithms.

* BIOLOGICAL : A collection of 37 biological networks.

Statistics of these graphs are shown in Table[T]

Table 1: Dataset Characteristics

Dataset # Graphs # Nodes # Edges
CHEMINFORMATICS 646 4-60 18-240
DIMACS 78 0.1-4K 2K-4M
BIOLOGICAL 37 1-43K 1K-14M

For each graph, we generate 50 isomorphic graphs by randomly permutate its vertices. Then, the
adjacency matrix of each original graph and one of its isomorphic graph is provided to the PTGI
algorithm as input. PTGI then tries to identify whether they are isomorphic and the overall accuracy
and average runing time for each class of graph are reported. Note that PTGI cannot identify non-
isomorphic graphs as isomorphic because it returns a true value only if it finds an exact isomorphism
mapping. Therefore, it never produces false positive predictions. Consequently, we don’t need to
feed in non-isomorphic graph pairs for evaluation.

5.2 ALGORITHM IMPLEMENTATION AND PEER METHODS

We configure the parameters of the PTGI algorithm in Alg. [T]as follows. Maximum gradient descent
steps 7' = 100, learning rate n = 0.1, self-supervision weight o = 1. We implement the PTGI

Under review as a conference paper at ICLR 2025

algorithm using Python and TensorFlowﬂ The code is publicly available on Githubﬂ The PTGI
algorithm is run on a 2023 MacBook with M2 chip for running time evaluation.

We compare some of the state-of-art optimization-based graph isomorphism algorithms based on
convex relaxations.
* UMEY (Umeyama’s algorithm) Umeyama|(1988)): An eigendecomposition weighted graph
matching algorithm.

» PATH [Zaslavskiy et al.|(2008): A convex-concave programming approach for the graph
matching problem.

* QAP|Vogelstein et al.|(2011): An approximate graph matching algorithm via fast quadratic
programming. It is equivalent to a variant of our proposed PTGI algorithm without self-
supervision.

Note that the above-mentioned graph matching algorithms are also suitable for graph isomorphism
problem.

5.3 RESULTS

The accuracy of graph isomorphism (GI) identification for synthesized and real-world graphs are
presented in Tables [2 and [3] respectively.

Table 2: GI Identification Accuracy on Synthesized Graphs
Nodes = 100

Algorithm Accuracy
UMEY 90%

PATH 92%

QAP 95%

PTGI 100%
Nodes = 1K

Algorithm Accuracy
UMEY 88%

PATH 90%

QAP 93%

PTGI 100%
Nodes = 10K

Algorithm Accuracy
UMEY 87%

PATH 89%
QAP 93%
PTGI 100%

For synthesized graphs, the PTGI algorithm achieves perfect accuracy (100%) across all three graph
sizes (100, 1K, and 10K nodes), indicating its robustness and effectiveness in identifying isomor-
phic graphs. The UMEY, PATH, and QAP algorithms also exhibit high accuracy, although slightly
lower than PTGI, especially for larger graphs. In contrast, the accuracy of GI identification for
real-world graphs varies across different domains. In the CHEMINFORMATICS domain, all algo-
rithms achieve relatively high accuracy, with PTGI again demonstrating the highest accuracy among
them. The DIMACS domain shows similar patterns, with slightly lower accuracies across the board
compared to CHEMINFORMATICS. The BIOLOGICAL domain exhibits the highest accuracies

"https://www.tensorflow.org
Zhttps://github.com/yangliuiuk/ML/blob/main/gi.py

Under review as a conference paper at ICLR 2025

Table 3: GI Identification Accuracy on Real-World Graphs

CHEMINFORMATICS

Algorithm Accuracy
UMEY 76%
PATH 86%
QAP 85%
PTGI 90%
DIMACS

Algorithm Accuracy
UMEY 75%
PATH 83%
QAP 87%
PTGI 90%
BIOLOGICAL

Algorithm Accuracy
UMEY 78%
PATH 86%
QAP 85%
PTGI 91%

overall, with all algorithms achieving accuracies above 85%. Once again, PTGI consistently outper-
forms the other algorithms in terms of accuracy across all domains. Overall, these results suggest
that the PTGI algorithm is particularly effective for both synthesized and real-world graphs, consis-
tently achieving high accuracy in GI identification tasks.

Additionally, we provide the running time of the proposed PTGI algorithm on synthesized graphs
in Fig. It’s noteworthy that the running time primarily correlates with the number of nodes.
Consequently, the running time on real-world graphs exhibits a similar pattern.

Figure 2: Running time of PTGI on Synthesized Graphs.
Running Time of PTGI on Synthesized Graphs

@ 1000

Running Time (s

Number of Nodes

From the figure we can find that the running time of PTGI exhibits a polynomial increase pattern.
PTGI performs quite efficiently on small to medium-sized graphs. For instance it runs less than 5
seconds for graphs with 1000 nodes, which is significantly faster than state-of-the-art peer meth-
ods (e.g. 300 seconds by QAP) . In addition, PTGI still scale up to larger graphs with five to ten
thousands nodes.

Overall, these results highlight the practical utility and efficiency of the PTGI algorithm in graph
isomorphism identification, making it a promising tool for various applications across different do-
mains.

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this paper, we introduced the Polynomial Time Graph Isomorphism (PTGI) algorithm, an
optimization-based approach leveraging self-supervision techniques to efficiently tackle the graph
isomorphism problem. PTGI aims to escape local optima caused by graph symmetries and provides
high accuracy in identifying isomorphic graphs in polynomial time. Experimental results on both
synthesized and real-world graph datasets demonstrated the effectiveness and efficiency of PTGI
compared to state-of-the-art peer methods. Moreover, the running time analysis revealed that PTGI
exhibits a polynomial increase in running time, running efficiently on small to medium-sized graphs
and scaling well to larger graphs with thousands of nodes. Overall, the results suggest that PTGI is
a promising tool for graph isomorphism identification tasks, offering high accuracy and efficiency
across different graph types and sizes.

7 FUTURE WORKS

While the Polynomial Time Graph Isomorphism (PTGI) algorithm presented in this paper demon-
strates promising performance in terms of accuracy and efficiency, there are several avenues for
future research and improvement:

* Scaling to Larger Graphs: Although PTGI shows efficient performance on graphs with
up to ten thousand nodes, further optimization is needed to handle even larger graphs ef-
ficiently. Exploring parallel processing techniques or distributed computing frameworks
could help improve scalability.

» Extension to Weighted Graphs: The current version of PTGI is designed for unweighted
graphs. Extending the algorithm to handle weighted graphs would broaden its applicability
to a wider range of real-world scenarios.

» Exploring Different Self-Supervision Techniques: While self-supervision has proven ef-
fective in escaping local optima, exploring alternative self-supervision techniques or com-
binations thereof could further enhance the algorithm’s performance.

* Integration with Deep Learning Approaches: Investigating the integration of deep learn-
ing techniques, such as graph neural networks, into the PTGI framework could potentially
improve its ability to capture complex graph structures and enhance its performance on
challenging graph isomorphism tasks.

* Real-World Applications: Conducting extensive evaluations of PTGI on real-world appli-
cations, such as molecular structure analysis, social network analysis, and bioinformatics,
would provide valuable insights into its practical utility and effectiveness in real-world sce-
narios.

Exploring these directions could further advance the field of graph isomorphism and contribute to
the development of more efficient and accurate graph analysis techniques.

REFERENCES

Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. On convex relaxation of graph isomor-
phism. Proceedings of the National Academy of Sciences, 112(10):2942-2947, 2015.

Laszl6 Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684697, 2016.

Laszl6 Babai, Paul Erdos, and Stanley M Selkow. Random graph isomorphism. SlaM Journal on
computing, 9(3):628-635, 1980.

Laszl6 Babai, Xi Chen, Xiaorui Sun, Shang-Hua Teng, and John Wilmes. Faster canonical forms
for strongly regular graphs. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pp. 157-166. IEEE, 2013.

Alexandru T Balaban. Applications of graph theory in chemistry. Journal of chemical information
and computer sciences, 25(3):334-343, 1985.

10

Under review as a conference paper at ICLR 2025

William J. Christmas, Josef Kittler, and Maria Petrou. Structural matching in computer vision using
probabilistic relaxation. IEEE Transactions on pattern analysis and machine intelligence, 17(8):
749-764, 1995.

Diane J Cook and Lawrence B Holder. Mining graph data. John Wiley & Sons, 2006.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomorphism
algorithm for matching large graphs. IEEE transactions on pattern analysis and machine intelli-
gence, 26(10):1367-1372, 2004.

Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos. Gradi-
ent descent can take exponential time to escape saddle points. Advances in neural information
processing systems, 30, 2017.

Marcelo Fiori and Guillermo Sapiro. On spectral properties for graph matching and graph isomor-
phism problems. Information and Inference: A Journal of the IMA, 4(1):63-76, 2015.

Scott Fortin. The graph isomorphism problem. 1996.

Martin Grohe and Déniel Marx. Structure theorem and isomorphism test for graphs with excluded
topological subgraphs. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pp. 173-192, 2012.

John E Hopcroft and Robert Endre Tarjan. Isomorphism of planar graphs. In Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade
Corporation, and the IBM Research Mathematical Sciences Department, pp. 131-152. Springer,
1972.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International conference on machine learning, pp. 1724—1732. PMLR, 2017.

Stefan Klus and Patrick Gel3. Continuous optimization methods for the graph isomorphism problem.
arXiv preprint arXiv:2311.16912, 2023.

Stefan Klus and Tuhin Sahai. A spectral assignment approach for the graph isomorphism problem.
Information and Inference: A Journal of the IMA, 7(4):689-706, 2018.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83-97, 1955.

Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM Journal
on Computing, 46(1):161-189, 2017.

Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of computer and system sciences, 25(1):42—65, 1982.

Brendan D McKay. Nauty user’s guide (version 2.4). Computer Science Dept., Australian National
University, pp. 225-239, 2007.

Andrius Merkys, Antanas Vaitkus, Algirdas Grybauskas, Aleksandras Konovalovas, Miguel Quirds,
and Saulius Grazulis. Graph isomorphism-based algorithm for cross-checking chemical and crys-
tallographic descriptions. Journal of cheminformatics, 15(1):25, 2023.

Marcello Pelillo, Kaleem Siddiqi, and Steven W Zucker. Matching hierarchical structures using
association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11):
1105-1120, 1999.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.

11

Under review as a conference paper at ICLR 2025

Rohit Singh, Jinbo Xu, and Bonnie Berger. Pairwise global alignment of protein interaction net-
works by matching neighborhood topology. In Annual international conference on research in
computational molecular biology, pp. 16-31. Springer, 2007.

Olaf Sporns, Giulio Tononi, and Rolf Kétter. The human connectome: a structural description of
the human brain. PLoS computational biology, 1(4):e42, 2005.

Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):
3142, 1976.

Shinji Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE
transactions on pattern analysis and machine intelligence, 10(5):695-703, 1988.

Joshua T Vogelstein, John M Conroy, Louis J Podrazik, Steven G Kratzer, Eric T Harley, Don-
niell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Large (brain) graph matching via fast
approximate quadratic programming. arXiv preprint arXiv:1112.5507, 2011.

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A path following algorithm for the graph
matching problem. [EEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):
2227-2242, 2008.

Michael M Zavlanos and George J Pappas. A dynamical systems approach to weighted graph match-
ing. Automatica, 44(11):2817-2824, 2008.

12

	Introduction
	Related Works
	Graph Isomorphism Optimization Paradigm
	The Graph Isomorphism Problem
	A Paradigm for Optimization-Based Graph Isomorphism Algorithms
	Limitation of the Paradigm

	Proposed Method
	Experimental Results
	Datasets
	Algorithm Implementation and Peer Methods
	Results

	Conclusion
	Future Works

