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Figure 1: Illustrations of the curated MM-WLAuslan dataset. MM-WLAuslan includes three
Kinect-V2 cameras and a RealSense camera arranged hemispherically around the front half of the
signer to capture multi-view and multi-modal data.

Abstract

Isolated Sign Language Recognition (ISLR) focuses on identifying individual sign
language signs. Considering the diversity of sign languages across geographi-
cal regions, developing region-specific ISLR datasets is crucial for supporting
communication and research. Auslan, as a sign language specific to Australia,
still lacks a dedicated large-scale word-level dataset for the ISLR task. To fill
this gap, we curate the first large-scale Multi-view Multi-modal Word-Level Aus-
tralian Sign Language recognition dataset, dubbed MM-WLAuslan. Compared
to other publicly available datasets, MM-WLAuslan exhibits three significant ad-
vantages: (1) the largest amount of data, (2) the most extensive vocabulary, and
(3) the most diverse of multi-modal camera views. Specifically, we record 282K+
sign videos covering 3,215 commonly used Auslan glosses presented by 73 signers
in a studio environment. Moreover, our filming system includes two different types
of cameras, i.e., three Kinect-V2 cameras and a RealSense camera. We position
cameras hemispherically around the front half of the model and simultaneously
record videos using all four cameras. Furthermore, we benchmark results with
state-of-the-art methods for various multi-modal ISLR settings on MM-WLAuslan,
including multi-view, cross-camera, and cross-view. Experiment results indicate
that MM-WLAuslan is a challenging ISLR dataset, and we hope this dataset will
contribute to the development of Auslan and the advancement of sign languages
worldwide. All datasets and benchmarks are available at Q) MM-WLAuslan.
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1 Introduction

Sign language (SL) is the primary mode of communication for many deaf or hard-of-hearing indi-
viduals. Each sign language possesses its own vocabulary and grammatical rules, akin to spoken
languages [} 2, [3]. Notably, even within regions that share a commonly spoken language, such as
the United States, Australia, and the United Kingdom, distinct native sign languages are prevalent.
To facilitate communication between the deaf and hearing communities, Isolated Sign Language
Recognition (ISLR) is highlighted as a fundamental sign language understanding task. ISLR aims
to recognize an individual sign gloss, which is a written representation of signs using words from a
spoken language, into a corresponding word or phrase in spoken languages [4} 5]

With emerging deep learning techniques [[6} (7} |8, 9] and large-scale sign language datasets [4} 10,11}
12, [13]], ISLR achieves promising progress recently [14}4}[15]. As shown in Tablem researchers from
various countries construct word-level sign language datasets and thus promote the development of
ISLR in the respective sign languages, such as American Sign Language (ASL) [4. 16} 17} 18} 19,[10],
British Sign Language (BSL) [20} 21]], Chinese Sign Language (CSL) [22, 23] and German Sign
Language (DGS) [12,124]. Meanwhile, according to the Australian Federal Department of Health and
Aged Care (DHAC as of 14 May 2024, one in six Australians, over 3.6 million people, had hearing
loss affecting them, and the number is expected to reach 7.8 million people by 2060. However, to the
best of our knowledge, there is no publicly available large-scale Auslan dataset for ISLR. Due to the
regional nature of sign languages and the societal commitment to supporting individuals with hearing
impairments, word-level Australian Sign Language (Auslan) datasets are inevitably and urgently
needed in order to investigate automatic recognition.

Moreover, the volume of data, the breadth of data categories, and the diversity of data modalities
are three critical points that influence the fundamental quality of an ISLR dataset. The larger the
volume, the wider the range of categories, and the richer the modalities of data mean the higher
the value of the dataset for scientific research and practical applications, such as sign language
education [25]] and dictionary [26]. Specifically, a large volume of data and an extensive gloss
dictionary within the dataset enhance the robustness and capability of the sign recognition system.
Additionally, the captured multi-view sign data and depth information improve the accuracy of
recognizing complex hand movements and reduce the issues caused by occlusion and single-view
ambiguities. However, most existing publicly available ISLR corpora either contain the limited gloss
videos and vocabulary [5, [16} 27, [12, {13} 24} 28] or are only captured in a single viewpoint without
depth information [4} (10, |19} [1820].

In this work, we record the first word-level Auslan recognition dataset, named MM-WLAuslan,
that contains the largest number of data samples, the most extensive vocabulary, and the most
diverse multi-modal camera views compared to other publicly available datasets, as shown in Table
Specifically, we select 3,215 commonly used glosses that contain a sufficient variety of classes and
training instances for a practical word-level Auslan recognition model. We collect the glosses from
Auslan SignBanlﬂ [29], the most authoritative Auslan dictionary in Australia. We ask Auslan experts
to help select glosses that are widely used throughout Australia, including fingerspelling glosseﬂ
such as “TV” and “NEWS”. The collected glosses correspond to over 7,900 English words or phrases,
covering most of the vocabulary commonly used in daily life. We invite sign language experts, deaf
individuals, and volunteers to participate in the recording process. After 2,500+ hours of preparation
and recording, we capture over 282K+ high-quality isolated Auslan gloss videos with the assistance
of 73 signers. Each video recording is supervised by at least one Auslan expert to ensure the precision
of the sign language expression.

To record multi-view, multi-modal, and high-quality isolated Auslan gloss videos, we set up a
recording studio equipped with a green screen backdrop. We position two different types of RGB-D
cameras, i.e., three Kinect-V2 cameras and a RealSense camera, hemispherically around the front
half of the model. As shown in Figure|l} we place the cameras to the left-front, front, and right-front
of the subject and simultaneously record videos. Unlike the previous dataset [24]] that only provides
depth video from the front view, we record both RGB-D videos from every camera.

*https://www.health.gov.au/topics/ear-health/about
4Auslan SignBank: https://auslan.org.au/dictionary/
English words are signed letter by letter.
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Table 1: Comparison between MM-WLAuslan and existing ISLR datasets.

Dataset Country Signs Signers Videos Ave.Videos/Sign Cross-Cam Depth Source
Purdue RVL-SLLL [I6] USA 39 14 0.5K 14 x v Studio
RWTH-BOSTON 50 [27] USA 50 3 0.5K 9.66 v X Studio
ASLLVD [17] USA 3,000 6 9.8K 3.27 v X Studio
WLASL [4] USA 2,000 119 21.1K 10.54 X X Web
MS-ASL [10] USA 1,000 222 25.5K 25.51 X X Web
ASL Citizen [19] USA 2,731 52 83.9K 30.73 X X Webcam
PopSign ASL v1.0 [18] USA 250 47 214.3K 857.30 X X Smartphone
BSL-1K [20] GBR 1,064 40 273.0K 257 X X Web
DEVISIGN-L [23] CHN 2,000 8 24.0K 12.00 X v Studio
CSL 500 [L1] CHN 500 50 125.0K 250.00 X 4 Studio
DGS Kinect 40 [12] DEU 40 14 2.8K 70.00 X v Studio
SMILE [24] DEU/CHE 100 30 - - 4 v Studio
GSL 982 [30] GRC 982 1 49K 5.00 X X Studio
INCLUDE [31] ISR 263 7 43K 16.30 X X Studio
KL-MV2DSL [28] ISR 200 - 5.0K 25 v X Studio
LSA64 [13] ARG 64 10 3.2K 50.00 X X Studio
LSE-Sign [32] ESP 2,400 2 24K 1.00 v X Studio
LSFB-ISOL [33] FRA/BEL 395 100 47.6K 120.38 X X Studio
BosphorusSign22K [34] TUR 744 6 22.5K 30.30 X v Studio
AUTSL [35] TUR 226 43 38.3K 169.63 X 4 Studio
Auslan-Daily [5] AUS 600 21 3.0K 5.00 X X Web
MM-WLAuslan AUS 3215 73 282.9K 88.00 v v Studio

Furthermore, for an unbiased performance evaluation of ISLR systems, we involve nearly 20 signers
in the test set who are not exposed to the training and validation sets. Concurrently, we split the
test set into four distinct subsets to mimic the various scenarios in the real world. Videos in three
subsets are designed to incorporate diverse backgrounds or potential temporal disturbances. After
obtaining the realistic test sets, we utilize the collected multi-modal, multi-view, and multi-camera
videos to benchmark various multi-modal ISLR settings. Extensive experiments demonstrate the
limitations of current state-of-the-art (SOTA) methods when these methods are applied across various
cameras and views. This manifests the potential of MM-WLAuslan to advance the future research
and development of ISLR systems. Overall, our major contributions are summarized as follows:

¢ We construct the first word-level Australian ISLR dataset, dubbed MM-WLAuslan. MM-
WLAuslan consists of the largest number of gloss videos and the most extensive vocabulary.

* We provide the most diverse multi-modal camera views and enable the investigation of a
variety of multi-modal ISLR settings, including multi-view, cross-camera and cross-view.

* We establish a leaderboard and an evaluation benchmark to promote future Australian ISLR
research and development of applications.

2 Related Work

2.1 Isolated Sign Language Recognition Datasets

As shown in Table[T] several datasets are developed to facilitate research and application development
of ISLR. However, most datasets have limitations in gloss dictionary size, depth information, and
recording perspectives. For example, Purdue RVL-SLLL dataset [[16] exhibits methodological rigor
in a laboratory setting, but its applicability for sign language recognition is limited because it only
covers 39 signs. Furthermore, despite ASLLVD dataset [[17]] including a large lexicon of 3,000
glosses, it is limited by its single perspective and lack of depth information, crucial for capturing the
three-dimensional motion of sign language. WLASL [4] and MS-ASL [10] datasets expand on the
number of signs and signers but still restrict their recordings to single-view videos without depth,
missing critical spatial dynamics essential for accurate sign interpretation. In contrast, datasets like
CSL 500 [11]] and DGS Kinect 40 [12] include depth information but cover only a small number of
glosses, limiting their usefulness for extensive sign language applications.

Different from all of the above datasets, the proposed MM-WLAuslan dataset is a comprehensive
ISLR dataset. It encompasses 3,215 signs from 73 signers, with each sign captured from four distinct
viewpoints along with depth information, significantly enhancing the diversity and utility of the
dataset. Moreover, MM-WLAuslan is currently the largest sign language recognition dataset in
Australia, with extensive lexicon and high-quality data.



2.2 Isolated Sign Language Recognition Methods

ISLR aims to identify the gloss labels of short-term videos.Previous research can be categorized into
three types based on the input modality: pixel-based, pose-based and multi-modal-based approaches.
Pixel-based ISLR: Significant advances in CNN-based action recognition inspire the development
of pixel-based ISLR models. Early efforts [36} 37, 38] utilize convolutional neural networks (CNN)
to extract frame-wise features, which are then temporally encoded using recurrent neural networks to
capture time-series information. Meanwhile, 3D CNNs, such as C3D model [39, 140, 41] and I3D
model [6], are commonly used in ISLR [10} 4} 142} 19} 43} 44].

Pose-based ISLR: Unlike RGB pixel-based methods, pose-based ISLR models are robust against
background clutters, lighting conditions, and occlusions, while explicitly depicting human hand
and limb movements [45] 46) 47, 48]]. ST-GCN [47], the first to apply a spatio-temporal graph
convolutional network for action recognition, encodes motions across the human kinetic chain.
Subsequent studies utilize this spatio-temporal architecture, employing both graph convolutional
networks [4}149] 50, |51] and Transformers [52} 53 (54} 155] to embedding and analyze sign pose data.
Multi-modal-based ISLR: Recent studies show that combining pose, depth, and RGB modalities
significantly improves ISLR. Zuo et al. [[14] use the S3D model to extract RGB and pose heatmap
features, enhancing recognition on the WLASL [4] dataset. Moreover, Jiang et al. [15] integrate depth
information into the model, enabling recognition results to exceed 99% on the AUTSL dataset [35].

2.3 Multi-view and Multi-modal Action Recognition

Previous research [56] argues that Action Recognition (AR) methods can be applied on sign lan-
guage recognition. To build an effective and robust real-world ISLR and AR system, initiating
multi-view and multi-modal learning is essential [28]]. Recent advancements in AR introduce various
approaches for multi-view learning [57], including dictionary learning [58]], neural networks with
adjustable views [39], convolutional neural networks [60]], and attention mechanisms [61]. Addi-
tionally, Zhu et al. [62] adopt vision transformer models as robust solutions for multi-view learning.
Recent approaches [63| 164] develop robust view-invariant representations for downstream tasks,
while DA-Net [65] merges view-specific and independent modules for effective prediction. A feature
factorization approach in [66] and a cascaded residual autoencoder in [67] address challenges in
RGB-D action recognition and incomplete view classification, respectively.

3 Proposed MM-WLAuslan Dataset

In this section, we describe our recording setup and workflow, detail the data processing and augmen-
tation, and provide statistics for the MM-WLAuslaIE] dataset.

3.1 Recording Setup and Workflow

Our recording setup is located in a studio environment surrounded by a green screen. In the studio,
we position Kinect-V2 cameras at the left-front, front, and right-front views, along with a centrly
placed RealSense camera. Both Kinect-V2 and RealSense are capable of recording high-quality
videos with depth information. In the Appendix, we compare the different parameters of these two
types of cameras. Most importantly, the imaging principles of Kinect-V2 and RealSense cameras are
different. The former employs time-of-flight technology to measure depth, while the latter utilizes
stereo vision to capture depth information. Moreover, Kinect-V2 offers high resolution and excellent
depth sensing, while RealSense provides a higher frame rate and portability. We record data using
these two types of RGB-D cameras to investigate the cross-camera robustness of methods.

We recruit signers with diverse experience in Auslan, including Auslan experts, deaf individuals who
use Auslan, and volunteers interested in sign language, to sign glosseﬂ The involvement of Auslan
experts and deaf individuals ensures the precision of a subset of the data, which is crucial for precise
research and applications of sign language. The extensive participation of volunteers enhances the

8Qur dataset follows the copyright Creative Commons BY-NC-SA 4.0 license ©. Please note that we obtain
the consent of the signers before recording them.

"Auslan experts refers to non-deaf individuals who are proficient in Australian Sign Language, while
non-expert deaf signers only refers to deaf individuals who use Auslan.
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Figure 2: Demonstrations of test subsets. “STU”, “ITW”, “SYN”, and “TED” represent the studio
set, in-the-wild set, synthetic background set and temporal disturbance set, respectively.

diversity of the signers, reflecting the natural variability in the deaf community. Moreover, we design
an interactive interface for dataset recording and present the interface in the Appendix. We record
videos of sign language imitated by volunteers. Each sign is supervised and checked by at least one
expert to ensure the precision of the sign language expression.

3.2 Data Processing and Augmentation

After recording all the sign language videos, we notice that a significant portion of the footage consists
of a green screen background. Therefore, we utilize the keypoints estimated by AlphaPose [68],69] [70]
to remove the background that is irrelevant to the sign language. We crop videos based on a fixed-size
box that can cover every signer and align their eyes on the same horizontal level.

To evaluate the performance of ISLR systems under real-world scenarios, we provide a diverse test
set with four distinct subsets, including studio (STU) set, in-the-wild (ITW) set, synthetic background
(SYN) set, and temporal disturbance (TED) set. Each subset encompasses videos for all gloss
vocabulary. The STU set includes consistent scene settings with the training set. In the ITW set,
green screens are removed and replaced with dynamic or static backgrounds to simulate videos
recorded in diverse environments, as shown in Figure We utilize the Background Removelﬂ to
extract signers from videos and synthesize indoor and outdoor backgrounds in the SYN set. The TED
set simulates potential recording time discrepancies in real-world scenarios by randomly adjusting
video segments through removal or altering playback speed.

Overall, each data sample in our dataset includes: (1) RGB-D videos captured by a Kinect-V2 camera
or a RealSense camera; (2) intrinsic and extrinsic parameters for the captured camera; (3) pose
sequences corresponding to the RGB video; (4) gloss identities; (5) spoken English words or phrases
corresponding to the gloss and (6) signer identities. These various views and modalities of sign
language video samples can be further investigated for different word-level Auslan ISLR settings.

3.3 Data Statistics

We select 3,215 commonly used Table 2: Key statistics of MM-WLAuslan dataset splits.
Auslan glosses, corresponding to  “BG” and “TP” represent background and temporal, respec-
over 7,900 English words or tively. “O0S” indicates the signers only occur in the test set.
phrases. As illustrated in Fig-

ure Ekb)’ there are more than 2,000 Split | Train | Val | Test-STU Test-ITW Test-SYN Test-TED
g]osses with mu]tip]e meanings, Num. Videos 154.3k | 25.7k 25.7k 25.7k 25.7k 25.7k
highlighting the contextual vari- '™ Signers 3 33 12 15 62 6
> X s Num. 00S - - 10 2 15 10
ability of sign language similar t0 G merference | % X X v/ v/ X
natural languages. Additionally, TP Disturbance x x x x x v

these terms are finely categorized
into 49 groups, including health, education, and others, as shown in Figure Ekd). The extensive vocab-
ulary and semantic richness of MM-WLAuslan demonstrate its potential to advance sign language
research and applications.

After over 2,500 hours of recording, we capture 282,900 videos by 73 signers. Specifically, for
3,215 commonly used word-level Auslan glosses, we record every gloss 22 times utilizing 4 different
cameras (3215x20x4). Unlike other datasets [4] [10], our dataset maintains a consistent number of
videos per Auslan gloss, thereby establishing a uniform ISLR dataset. We split the samples of a gloss

$https://github.com/nadermx/backgroundremover
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Figure 3: Statistics of signers and glosses. (a) Ethnicity and gender distribution. (b) Frequency of
polysemous glosses. (c) Distribution of Auslan proficiency. (d) Categories of words.

into training, validation, and testing sets following a ratio of 6:1:4. Note that the test set contains 18
signers who do not appear in either the training or validation sets. Additionally, we further divide
the testing set into the STU set, the ITW set, the SYN set, and the TED set in a 1:1:1:1 ratio. The
detailed split statistics are demonstrated in Table 2]

Moreover, as illustrated in Figure3[a), we provide the ethnic and gender distribution of signers in
MM-WLAuslan. The signers are categorized into three primary ethnic groups: Caucasian, African,
and Asian. The male-to-female ratios are relatively balanced across the different ethnic groups. The
near-equitable gender balance within each ethnic group not only enhances the representativeness
of the dataset but also underscores its gender fairness. Meanwhile, we include a broader range
of ethnicities to enhance the inclusivity and representativeness of the dataset further. Thus, this
composition ensures that the ISLR models developed from this dataset mitigate biases and offer
equitable performance across the diverse Australian population. Furthermore, as shown in Figure[3]c),
we demonstrate the distribution of participants involved in recording, segmented by their proficiency
in Auslan. We make concerted efforts to include as many Auslan experts and deaf individuals as
possible for the quality of the recordings. Additionally, we recruit many volunteers to further increase
the diversity of the signers, and thus, enrich the representativeness of the dataset.

4 MM-WLAuslan Benchmark

In this section, we present and analyze benchmark results of various multi-modal ISLR settings on
MM-WLAuslan. More experiments and details are included in the Appendix.

4.1 Isolated Sign Language Recognition Settings

Single-view RGB-based ISLR involves recognizing isolated sign language from video sequences
captured from a single fixed camera. The input consists of RGB frames, denoted as { F, F5, ..., F,,},
where n represents the total number of frames in a video sequence. The single-view RGB setting
utilizes spatial and temporal information from a singular perspective.

Single-view RGB-D-based ISLR aims to enhance the recognition of isolated signs by incorpo-
rating depth information along with RGB data. The input is represented as {(F, D1), (Fa, D2),

, (Fn, Dp)}, where D; indicates the depth information corresponding to the i-th frame. This
approach facilitates a richer interpretation of spatial dynamics.

Multi-view RGB-based ISLR employs multiple cameras to capture the sign language videos. The
input from each camera k is represented as a sequence of RGB frames {Ff', F¥, ... F*}. Multi-view
RGB data helps in mitigating issues related to occlusions and varied angles.



Table 3: The baseline of Single-view RGB-based ISLR on MM-WLAuslan. “STU”, “ITW”,
“SYN”, “TED”, and “AVG.” represent the studio set, in-the-wild set, synthetic background set,
temporal disturbance set and average performance across the four subsets, respectively. Bold
indicates the highest value within the same data type.

Model Data Type STU ITW SYN TED AVG.
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
ResNet2+1D [7]| Pixel 58.71 77.03 13.83 18.37 26.14 39.58 51.14 69.97 3745 51.24
TSN [71] Pixel 51.17 68.60 11.06 23.75 31.01 45.89 40.40 69.10 33.41 51.84
13D [6) Pixel 63.97 84.93 14.18 26.52 36.17 57.22 60.96 80.63 43.82 62.33
S3D 8l Pixel 75.55 94.11 29.41 55.11 44.60 71.34 62.21 85.26 52.94 76.46
SlowFast [9] Pixel 80.68 96.08 3222 64.81 53.17 78.30 66.21 82.18 58.07 80.34
Timesformer [72] Pixel 73.20 81.40 21.14 56.44 41.88 65.83 68.40 79.67 5115 70.84
UMBDR [73] Pixel 80.86 95.88 13.57 28.66 13.99 31.01 82.69 95.67 47.78 62.81
KVNet-V [14] Pixel 84.51 97.57 39.88 68.00 56.56 82.18 70.31 90.86 62.82 84.65
TGCN 4] 2D pose 68.62 86.30 58.01 74.74 63.50 81.38 47.68 68.82 62.11 77.81
SL-GCN [15] 2D pose 71.07 91.21 66.59 89.5 63.20 86.94 69.98 88.99 67.71 89.16
SPOTER [74] 2D pose 72.81 92.69 64.12 86.36 66.81 88.11 69.42 90.94 68.29 89.53
DSTA-SLR [50] 2D pose 82.33 96.31 74.96 93.98 78.10 93.78 66.84 88.99 75.55 93.26
STC-SLR [51] 2D pose 79.92 95.88 74.35 93.92 76.02 93.50 63.11 87.33 73.35 92.65
KVNet-K [14] 2D pose 82.88 96.70 76.29 94.56 79.07 94.07 69.05 89.80 76.82 93.78
SAM-SLR [13] 2D pose + Pixel 83.98 97.12 74.30 91.65 80.73 94.93 71.21 86.56 71.55 83.91
NLA-SLR [14] 2D pose + Pixel 86.32 97.79 79.05 94.91 84.26 96.16 77.98 91.76 81.90 95.16

Table 4: The baseline of Single-view RGB-D-based ISLR on MM-WLAuslan.

Model Data Type STU ITW SYN TED AVG.

P Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
13D [6] Pixel + Depth 65.74 88.57 21.71 41.32 61.06 85.41 47.25 65.71 48.94 70.25
S3D [8] Pixel + Depth 79.70 95.93 64.97 89.16 76.38 92.67 66.11 88.62 71.79 91.60
KVNet-V [14] Pixel + Depth 8222 96.75 38.79 66.11 57.88 82.92 66.94 88.58 61.46 83.59
UMDR (73] Pixel + Depth 91.65 98.81 72.52 90.46 83.77 95.18 88.35 98.07 84.07 95.63
TGCN [4] 3D pose 70.19 89.78 59.52 76.59 66.35 84.06 51.48 71.17 61.88 80.40
SPOTER [74] 3D pose 74.95 95.88 66.75 89.41 70.22 91.23 71.65 92.36 70.89 9222
SL-GCN [15] 3D pose 77.76 96.98 72.26 91.49 74.91 92.57 72.27 94.88 74.30 93.98
NLA-SLR [14] 2D pose + Pixel + Depth 85.65 95.65 80.20 95.58 83.36 94.04 83.34 94.63 83.14 94.98
SAM-SLR [15] 3D pose + Pixel + Depth 87.05 98.93 81.29 96.92 83.03 95.86 85.07 93.53 84.11 96.31

Multi-view RGB-D-based ISLR incorporates depth data in a multi-view setup, the input for each
camera k is represented as {(Ff', D¥), (F§, D%), ..., (F¥, DE)}. This method enhances the model’s
capability to interpret complex gestures from multiple perspectives.

Cross-Camera ISLR aims to test the robustness of the model against variations in camera specifica-
tions and settings. Training and testing data are captured from different cameras. It is challenging for
the model to generalize across hardware-induced discrepancies.

Cross-View ISLR requires the model to recognize signs from views not seen during training. With
training views denoted as Vi, and testing views as Vi, the model must handle the appearance
changes due to different viewing angles, thus testing its view-invariance capabilities.

4.2 Evaluation Metric

Top-k Accuracy is quantitatively defined as the proportion of test instances for which the true label
is among the top k predictions made by the model. It is particularly suitable for ISLR [4] 10} 5] task
with a large set of possible outcomes. The expression is shown by the following equation:

N
1 N
Top-k Accuracy = N Z 1(y; € Y)), (1)
i=1
where N is the total number of instances in the test set, 1 is a binary indicator that returns 1 if the
true label of the i-th instance y; is within the set of the top-k predicted labels Y;* for that instance.

4.3 Benchmark Results

All single-view experiments in this section are conducted on the data captured by front Kinect-V2.



Table 5: The baseline of Multi-view RGB-based ISLR on MM-WLAuslan. “STU”, “ITW”,
“SYN”, “TED”, and “AVG.” represent the studio set, in-the-wild set, synthetic background set,
temporal disturbance set and average performance across the four subsets, respectively. Bold
indicates the highest value within the same data type.

Model Data Type STU ITW SYN TED AVG.

M Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
UMDR (73] Pixel 92.56 99.09 23.78 4422 22.12 42.61 90.13 98.23 57.15 71.04
KVNet-V [14] Pixel 91.57 99.00 62.25 86.19 70.90 90.97 79.78 94.68 76.13 92.71
SPOTER [74] 2D pose 76.92 95.55 67.79 89.98 69.21 92.16 74.34 94.14 72.06 92.96
DSTA-SLR [50] 2D pose 91.68 97.22 87.06 95.86 85.67 96.34 79.15 92.14 85.89 95.39
STC-SLR [15] 2D pose 90.11 96.28 86.82 94.91 86.09 96.29 75.13 90.76 84.53 94.56
KVNet-K [14] 2D pose 90.45 98.56 86.23 97.77 85.73 95.47 77.26 93.93 84.92 96.43
SAM-SLR [13] 2D pose + Pixel 85.85 97.68 77.36 92.88 84.26 95.69 79.92 88.10 81.85 93.59
NLA-SLR [14] 2D pose + Pixel 94.62 99.31 89.75 98.60 88.94 96.98 85.19 96.69 89.63 97.90

Table 6: The baseline of Multi-view RGB-D-based ISLR on MM-WLAuslan.

Model Data Type STU ITW SYN TED AVG.

P Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
UMDR (73] Pixel + Depth 93.25 99.11 74.98 92.19 86.14 96.24 90.42 97.39 86.20 96.36
KVNet-V [14] Pixel + Depth 87.67 98.22 66.01 88.80 83.06 95.27 74.23 92.28 77.74 93.64
SPOTER [74] 3D pose 79.91 96.91 73.44 91.29 76.41 93.58 76.87 94.45 76.66 94.06
ST-GCN [47] 3D pose 81.77 95.07 77.34 93.13 76.38 92.83 79.36 96.73 78.71 94.44

SAM-SLR [15] 3D pose + Pixel + Depth 89.21 98.83 80.51 94.18 83.76 96.67 85.68 93.78 84.79 95.87
NLA-SLR [14] 2D pose + Pixel + Depth 94.43 99.37 88.95 98.49 89.52 97.14 85.13 96.46 89.51 97.87

Single-view RGB-based ISLR: Following previous works [4} [10, [18]], we adopt this setting as a
central focus of ISLR research. We utilize publicly available ISLR models, such as KVNet [14]],
SPOTER [74], DSTA-SLR [50], STC-SLR [51]], SAM-SLR [15] and NLA-SLR [[14]. Meanwhile,
we incorporate models that have demonstrated strong performance in action recognition, including
13D [6], SlowFast [9] and Timesformer [72]]. As indicated by TableE], pixel-based models perform
well in controlled STU. This suggests that pixel models are effective in settings with minimal noise
and well-defined conditions. Conversely, pose-based models are robust in challenging environments,
like ITW and SYN, because they focus on structural rather than textural information. Furthermore,
NLA-SLR [14] is the SOTA model for ISLR. It ensembles the high-performance KVNet-V and
KVNet-K models for pixel and pose data, respectively. The model demonstrates high accuracy across
all test subsets consistently.

Single-view RGB-D-based ISLR: As shown in Table[d] the combination of pixel and depth data
generally improves recognition accuracy on most methods, highlighting the benefits brought by depth
data. However, the performance of the KVNet-V [14] model declines, indicating its insufficient
processing of depth information alongside pixel data. In contrast, the UMDR [73] model, a SOTA
model for RGB-D action recognition, leads to significant performance improvements across various
test subsets. Additionally, pose-based models with 3D pose data as the input also show improved
performance, further supporting the benefits of integrating depth information into pose-based models.

Multi-view RGB-based & RGB-D-based ISLR: In Table [5|and Table[6] we show performances
of several RGB-based and RGB-D-based models on multi-view ISLR. The results highlight that
using multiple views and additional modalities generally improves model performance. Models like
UMDR and SAM-SLR, incorporating depth or 3D pose data, consistently achieve better results. This
suggests these models effectively capture more comprehensive gesture information. However, these
benefits come at the cost of increased model complexity. The introduction of multi-view RGBD data
inevitably raises the training costs of the model. Additionally, information redundancy in the data can
potentially interfere with the model’s learning process. For instance, the recognition accuracy of the
NLA-SLR model, when trained on multi-view RGBD data, is lower compared to when it is trained
solely on RGB data. For future research, we focus on developing more efficient methods to optimize
performance without increasing complexity for multi-view and multi-modal data.

Cross-camera ISLR: As illustrated in Table[/] there is a challenge in cross-camera ISLR on the
MM-WL Auslan dataset. The results show a significant decline in accuracy when models trained
on one type of camera are tested on the other one. Although two models, i.e., KVNet-V [14] and



Table 7: The baseline of Cross-Camera ISLR on MM-WLAuslan. “K”, “RS” and “K+” represent
Front Kinect-v2, Front RealSence and Left-Front + Right-Front Kinect-v2, respectively. “STU”,
“ITW”, “SYN”, “TED”, and “AVG.” represent the studio set, in-the-wild set, synthetic background
set, temporal disturbance set and average performance across the four subsets, respectively.

. STU ITW SYN TED AVG.
Model ‘ Train ‘ Test ‘ Data Type Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
K K Pixel 84.51 97.57 39.88 68.00 56.56 82.18 70.31 90.86 62.82 84.65
KVNet-V RS RS Pixel 66.41 89.58 26.82 52.05 41.70 68.52 56.52 82.35 47.86 73.12
e K RS Pixel 5333 81.06 18.88 41.58 3232 60.09 46.05 71.03 37.65 63.44
RS K Pixel 31.28 553 5.85 15.73 14.35 30.39 25.35 46.55 19.21 36.99
RS K+ Pixel 5.36 14.45 1.97 6.36 1.97 6.39 3.84 11.03 3.28 9.56
K K Pixel + Depth 91.65 98.81 72.52 90.46 83.77 95.18 88.35 98.07 84.07 95.63
UMDR RS RS Pixel + Depth 91.34 98.64 75.66 92.78 84.25 95.83 86.65 97.50 84.47 96.19
31 K RS Pixel + Depth 79.09 94.67 44.00 67.81 0.64 2.33 71.47 90.91 48.80 63.93
RS K Pixel + Depth 71.20 89.87 35.08 59.93 46.11 68.40 61.05 83.88 5336 75.52
RS K+ Pixel + Depth 11.25 26.67 2.45 8.03 3.84 11.37 7.88 19.00 6.36 16.27

Table 8: The baseline of Cross-view ISLR on MM-WLAuslan. “L”, “F” and “R” represent
left-front, front and right-front Kinect-v2, respectively.

. STU ITW SYN TED AVG.
Model ‘ Train Test ‘ Data Type Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
F F Pixel 84.51 97.57 39.88 68.00 56.56 82.18 70.31 90.86 62.82 84.65
L L Pixel 80.59 95.74 45.17 71.29 57.93 82.92 64.73 86.86 62.11 84.20
KVNet-V R R Pixel 80.82 95.68 37.97 65.94 37.62 64.82 62.80 85.85 54.80 78.07
1141 F L+R Pixel 23.60 48.10 8.70 23.28 9.94 26.53 15.90 35.41 14.53 3333
L F+R Pixel 29.18 48.41 12.48 27.28 21.84 40.21 19.58 37.16 20.77 38.26
R F+L Pixel 24.93 44.53 16.93 34.15 20.10 39.26 18.99 36.33 20.24 38.57
F F Pixel + Depth 91.65 98.81 72.52 90.46 83.77 95.18 88.35 98.07 84.07 95.63
L L Pixel + Depth 91.16 98.71 46.90 70.90 79.29 92.93 86.74 97.23 76.02 89.95
UMDR R R Pixel + Depth 90.95 98.56 13.80 28.72 73.92 90.74 85.81 96.87 66.12 78.72
1731 F L+R Pixel + Depth 3227 55.95 10.06 19.83 21.64 41.07 27.32 49.02 22.82 41.47
L F+R Pixel + Depth 40.55 62.42 6.44 14.61 25.58 44.83 32.27 53.74 26.21 43.90
R F+L Pixel + Depth 28.82 47.04 6.62 14.73 19.74 36.03 24.18 37.45 19.84 33.81

UMDR [73]], perform well with data from the same camera, their performance drops across the
cameras. This highlights the substantial differences between the two cameras, emphasizing the
complexity of achieving robust ISLR across varied hardware. The challenge of cross-camera ISLR
underscores the need for developing models that can better generalize on data from various cameras.

Cross-view ISLR: We report the performance of two models, i.e., KVNet-V [14] and UMDR [73]],
training and evaluating on the data from different Kinect-v2 views, as shown in Table E} UMDR,
incorporating depth information alongside pixel data, generally exhibits greater resilience and perfor-
mance compared to KVNet-V. Both models exhibit high accuracy under the single-view setting of
our dataset, yet experience a significant drop in accuracy in the cross-view context. This indicates
that models capable of adapting to diverse visual inputs are necessary to address the challenges posed
by cross-view.

5 Limitation and Future Work

Limited Diversity in Data: As shown in Figure[3[a) of the main paper, we analyze the distribution
of Caucasian, African, and Asian signers within the MM-WLAuslan dataset. We observe that
the proportion of African signers is significantly lower than that of Caucasian and Asian signers.
Consequently, the signers in our recordings do not fully represent the demographic diversity of the
Auslan community. Australia, being a multi-cultural nation, encompasses a wide range of ethnicities,
and the representation of these ethnicities in our dataset is crucial. Therefore, we will continue
recording to achieve a more balanced representation.

Lack of Real-world Scenarios: Although we attempt to simulate real-life environments by altering
backgrounds and capturing some data “in the wild”, these settings still fall short of fully representing
the complexities of real-world scenarios, such as multi-person interactions and intricate backgrounds.
Moving forward, we intend to capture real-world Auslan glosses for a more authentic dataset. This
initiative aims to more accurately reflect the dynamic and diverse contexts in which Auslan is naturally
used, thereby improving the relevance and applicability of the dataset.



Existing Model Limitations: In this work, we utilize publicly available deep learning models, some
of which are not specifically designed for sign language. Consequently, developing more effective
multi-modal fusion and multi-view techniques tailored to the unique characteristics of our dataset is
essential. This approach will enhance the accuracy and applicability of the models, ensuring they are
better suited to address the specific challenges and nuances of isolated sign language recognition.

Investigating Isolated Sign Language Production Task: Sign Language Production is currently
a popular task, involving not only the generation of isolated glosses [[75] but also continuous sign
language [76}[77]. Unlike previous datasets, ours incorporates multi-view and multi-modal capabil-
ities, enabling the creation of more accurate 2D or 3D sign language representations. We plan to
further explore this task using our dataset in future research. This will enhance the precision and
effectiveness of sign language modelling, providing more robust tools for communication within the
deaf and hard-of-hearing community.

6 Conclusion

In this work, we introduce the first large-scale, multi-view, multi-modal word-level dataset for
Australian Sign Language (Auslan), named MM-WLAuslan. The dataset includes 282K+ videos
encompassing 3,215 distinct Auslan glosses performed by 73 signers. To the best of our knowledge,
MM-WLAuslan has the largest amount of data, the most extensive vocabulary, and the most diverse
set of multi-modal camera views. We position four RGB-D cameras, i.e., three Kinect-V2 cameras
and a RealSense camera, hemispherically around the signers. Extensive experiments demonstrate the
validity and challenges of MM-WLAuslan. Thanks to the cross-camera, multi-view, and multi-modal
gloss videos, our dataset can be used for practical applications related with Auslan. Furthermore, the
presented benchmark results can act as strong baselines for future research.
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Broader Impact

The development of the word-level Australian Sign Language (Auslan) dataset has several impacts
on technology, education, and society. Our proposed MM-WLAuslan, recorded using multi-view
RGB-D cameras and focused on isolated Auslan glosses, brings about a wide range of positive effects:

* Improveing Accuracy and Efficiency in ISLR: The high-quality data provided by multi-
view RGB-D cameras enhance the detailed capture of sign language gestures, which is
crucial for developing efficient and accurate ISLR systems.

* Facilitating Social Integration for the Deaf: Improved by our MM-WLAuslan dataset, the
ISLR technology can provide the deaf and hard-of-hearing community with more efficient
communication capabilities.

» Expanding Educational Resources: Our dataset can support Auslan education [25} (78]
By providing multi-view demonstrations, the dataset allows Auslan learners to observe signs
from different views, enhancing their understanding and accuracy in sign language.

¢ Driving Technological Innovation: Our dataset offers valuable resources for research in
computer vision and machine learning, promoting technological development and innovation
in these fields [79, 80, 181} |82]].

* Preserving and Promoting Culture: By recording and utilizing the MM-WLAuslan dataset,
we preserve and disseminate the unique cultural heritage of Australian Sign Language,
enhancing public awareness of its cultural value [83].

These societal impacts demonstrate that the development and application of the Auslan dataset are
not only technically significant but also have profound positive values on social and cultural levels.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Section 5.

(c) Did you discuss any potential negative societal impacts of your work? Our work
does not pose any negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? We do not have
theoretical results.
(b) Did you include complete proofs of all theoretical results? We do not have

theoretical results.
3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] All datasets
and benchmarks are available at ) MM-WLAuslan.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 3}

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Appendix Section C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the papers of
the model.

(b) Did you mention the license of the assets?

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable?

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes]
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