
TurboRAG: Accelerating Retrieval-Augmented Generation with
Precomputed KV Caches for Chunked Text

Anonymous ACL submission

Abstract

Current Retrieval-Augmented Generation001
(RAG) systems concatenate and process002
numerous retrieved document chunks for003
prefill which requires a large volume of online004
computation, therefore leading to significant005
latency in time-to-first-token (TTFT). To006
reduce the computation overhead as well as007
TTFT, we introduce TurboRAG, a hybrid008
offline-online paradigm that (i) pre-computes009
chunk-level key-value (KV) caches, (ii)010
stitches them together at inference time using011
independent-attention and reordered-RoPE012
techniques, and (iii) preserves answer quality013
without changing the model architecture.014
Our approach is applicable to most existing015
large language models and their applications016
without any requirement in modification of017
models and inference systems. Experimental018
results across a suite of RAG benchmarks019
demonstrate that TurboRAG reduces TTFT by020
up to 9.4x compared to the conventional RAG021
systems (on an average of 8.6x), but reserving022
comparable performance to the standard RAG023
systems.024

1 Introduction025

Retrieval–Augmented Generation (RAG) couples a026

large language model (LLM) with a dense retriever027

so that generation can be grounded in external028

knowledge (Lewis et al., 2020; Chen et al., 2024).029

While effective, the conventional concatenate-then-030

prefill paradigm imposes three salient bottlenecks:031

1. Redundant recomputation. Frequently re-032

trieved chunks must be re-encoded on every033

query, duplicating key–value (KV) cache com-034

putation.035

2. Quadratic prefill cost. Concatenating k036

chunks enlarges the input length by O(k);037

self-attention therefore scales quadratically,038

(a) Standard RAG

(b) TurboRAG

Figure 1: Pipeline of Standard RAG and TurboRAG.
TurboRAG precompute the KV cache for each chunk of
text and reuse during RAG inference.

inflating TTFT and overall latency (Borgeaud 039

et al., 2022). 040

3. Restricted batch size. Long concatenated 041

contexts consume disproportionate GPU mem- 042

ory, limiting per-device batch size and thereby 043

throughput. 044

These issues stem from the current prefill 045

paradigm that computes a single KV cache for 046

the entire concatenated document set online. A 047

natural question arises: can we transform prefill 048

into a hybrid offline–online process by precomput- 049

ing chunk-level KV caches once and reusing them 050
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(a) Casual Attention (b) Composite Positions (c) Reordered Positions

Figure 2: The first row presents three distinct setting of attention mask matrices and position IDs. (a) Lower
triangular casual attention, where the entire context is attended to. (b) Independent Attention and Composite
Positions, which use the original position IDs for each chunk. (c) Independent Attention and Reordered
Positions, where each document can only attend to itself and rearrange the position IDs for tokens in chunk to
standard monotone increasing numbers. In the second and third rows, we present an instance of RAG to visualize
and analyze the distribution of the attention matrices under different settings, as well as the distribution of attention
scores from the query to the context chunks. This instance consists of four text chunks and a user query, as detailed
in Appendix A. In the standard setting shown in the first column of second row, it can be observed that the attention
scores between different chunks are quite sparse; each document primarily focuses on its internal information.
Furthermore, in the third row, the distribution of attention scores from the query to the context chunks indicates that
even when the attention between documents is fully masked, the distribution of attention scores from the query to
the documents does not exhibit significant variation, remaining concentrated in the documents that contain relevant
information.

across queries? The main technical obstacle is that051

naively stitching caches produces inconsistent at-052

tention masks and position indices, degrading accu-053

racy. To address them, we start from two empirical054

observations in real-world RAG workloads:055

• Sparse inter-chunk attention. Figure 2a056

shows that cross-chunk attention weights are057

negligible in typical RAG settings. The text058

contents between most documents are actually059

independent.060

• RoPE depends only on relative offsets. For061

rotary position embeddings (RoPE) (Su et al.,062

2024), the absolute token index is irrelevant;063

only pairwise distance matters.064

Building on these insights, we propose065

TurboRAG, a hybrid offline–online RAG frame- 066

work that: 067

1. precomputes and stores KV caches for each 068

passage offline; 069

2. retrieves the relevant caches at inference time 070

and stitches them using the independent mask 071

and reordered positions; 072

3. performs a lightweight supervised fine-tuning 073

so the base LLM can seamlessly consume the 074

new cache layout. 075

Compared to the conventional RAG system, ex- 076

perimental results across the LongBench multi- 077

document QA benchmarks demonstrate that 078

TurboRAG reduces TTFT by up to 9.4× (8.6× on 079
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average), with comparable accuracy to the base-080

line. Simultaneously, during online inference,081

TurboRAG reduces computational resource utiliza-082

tion by 98.5 % compared to standard RAG, which083

significantly increases the maximum supported084

batch size and enhances throughput. Additionally,085

regression experiments indicate that TurboRAG086

does not exhibit any significant degradation in other087

general capabilities compared to standard RAG.088

These gains make the method especially appeal-089

ing in two real-world scenarios: (1) Large-scale090

real-time user support—for example web-based091

customer service assistants with relatively fixed092

documents. Because every passage already has093

a KV cache, user queries achieve a 100 % hit-094

rate, eliminating redundant prefill computation.095

TurboRAG can significantly enhance the user ex-096

perience by optimizing latency and efficiency. (2)097

Resource-constrained on-device assistants—for098

instance, a personal laptop or edge workstation099

equipped with a modest, heavily time-shared GPU.100

Because that accelerator must also serve other local101

workloads (e.g. IDEs, browsers, video rendering),102

compute head-room is scarce. By storing chunk-103

level caches on disk and eliminating prefill FLOPs,104

TurboRAG keeps TTFT well below one second105

even when only a small fraction of the GPU is106

available, delivering smooth interaction without107

relying on cloud resources.108

Contributions109

• We design a novel pipeline that decomposes110

the prefill stage of conventional RAG systems111

into offline and online phases to notably re-112

duce the overhead of KV cache computation.113

• We propose simple yet effective techniques to114

handle attention mask and position IDs so that115

model accuracy is maintained.116

• We achieve a substantial improvement of117

9.4x in TTFT over the state-of-the-art multi-118

document QA benchmarks without compro-119

mising accuracy.120

2 Related Work121

Retrieval-Augmented Generation (RAG) couples a122

dense retriever with a large language model (LLM)123

to ground generation in external knowledge, and124

has become the de-facto solution for knowledge-125

intensive NLP tasks (Lewis et al., 2020). Sub-126

sequent studies confirm its gains across question127

answering, code synthesis and creative writing 128

(Borgeaud et al., 2022; Jiang et al., 2024; Trivedi 129

et al., 2022; Ram et al., 2023). 130

To curb the latency induced by long concate- 131

nated contexts, one strand of work reduces the 132

amount of text delivered to the decoder. Sparse 133

RAG prunes low-utility passages with an auxiliary 134

LLM, achieving faster inference without loss of 135

quality (Zhu et al., 2024). Fusion-in-Decoder (FiD) 136

encodes passages independently before decoder- 137

level fusion, thus avoiding quadratic cross-passage 138

attention (Izacard and Grave, 2020). Parallel Con- 139

text Windows batch sliding windows but rely on 140

heuristic position shifts to maintain coherence (Rat- 141

ner et al., 2022). 142

A second line accelerates decoding itself. Lin- 143

ear or sparse-attention Transformers such as Lin- 144

former (Wang et al., 2020), Reformer (Kitaev et al., 145

2020) and Performer (Choromanski et al., 2020) 146

turn the quadratic cost sub-quadratic, though of- 147

ten at some accuracy penalty on multi-document 148

inputs. Complementary techniques compress the 149

key-value (KV) cache on-the-fly: CacheGen en- 150

codes caches into compact bitstreams (Liu et al., 151

2024), H2O evicts low-utility "Heavy-Hitter" to- 152

kens (Zhang et al., 2024), and ChunkKV keeps only 153

semantically salient sub-chunks (Liu et al., 2025). 154

Most recently, speculative-decoding variants draft 155

responses with a small model and verify them with 156

a larger model—Speculative RAG (Wang et al., 157

2024b) and RASD (Quan et al., 2025)—reducing 158

the computational cost of decoding. These specu- 159

lative methods reduce decoding FLOPs, whereas 160

TurboRAG lowers prefill FLOPs via cache reuse; 161

both directions are orthogonal and could be com- 162

bined. 163

A third branch focuses on cache reuse. RAG- 164

Cache saves query-level KV states but requires 165

an exact context match, leading to low hit rates 166

when passage order changes (Jin et al., 2024). 167

CacheBlend precomputes per-passage caches but 168

must pipeline disk I/O to hide latency (Yao et al., 169

2025). TurboRAG advances this idea by intro- 170

ducing RoPE-consistent position reordering and 171

an independent-attention mask, enabling order- 172

agnostic cache stitching with negligible accuracy 173

loss. 174

Finally, position-handling techniques such as 175

RoPE extrapolation (Su et al., 2024) and position 176

interpolation (Chen et al., 2023) extend context 177

length during training. TurboRAG achieves low- 178

latency, high-quality answers simply by masking 179
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cross-chunk attention and reordering position IDs180

at inference time. Loading the precomputed pas-181

sage caches from storage to GPU is much faster182

than computing long-context prefill. Furthermore,183

a targeted fine-tune can be added to eliminate the184

small accuracy bias introduced by the changed at-185

tention mechanism.186

In summary, prior art either reduces how much187

text is retrieved, how expensively it is decoded, or188

reuses caches under strict ordering. TurboRAG189

contributes a complementary axis—KV caches190

reuse with correct positional semantics—while re-191

maining compatible with retrieval sparsification,192

cache compression, and speculative decoding. To193

be best of our knowledge, this is the first work in194

the literature that attempts to redesign inference195

paradigm of the current RAG system by transform-196

ing the online computation of KV caches for the197

retrieved documents into offline processing. This198

approach significantly reduces the computational199

complexity of the RAG systems and could become200

a powerful enabler for LLM applications that have201

restricted latency constraints.202

3 Methodology203

This section presents TurboRAG, a novel approach204

to improve the performance of conventional RAG205

systems without sacrificing accuracy. We formalize206

the problem in Section 3.1 and discuss the differ-207

ences in the attention mask matrix and position IDs208

between TurboRAG and existing RAG systems in209

Section 3.2. Section 3.3 explains how we trained210

the model to adapt to the new attention mask ma-211

trix and position IDs. We introduce the TurboRAG212

inference pipeline in Section 3.4.213

3.1 Problem Formalization214

Conventionally, given a user query q, we retrieve215

top k document chunks, [c1, . . . , ck], and send them216

to a LLM that sequentially generates the textual217

outputs. We denote the number of tokens in x as218

len(x) and we assume len(ci) = l. In existing219

RAG, we first compute the prefill using q and the220

concatenated c, denoted as a concatenated context221

sequence [c1, . . . , ck, q], to obtain the correspond-222

ing hidden states Xc. At each decoding step t, the223

model computes attention scores based on Xc. Let224

X = [X1,X2, . . . ,Xt] be the hidden states of the225

tokens generated so far, where Xt is the hidden226

state for the current token being generated. The227

model computes the query Qt, key Ki, and value228

Vi matrices for context at position i: 229

Qt = XtWQ,Ki = Xc
iWK ,Vi = Xc

iWV (1) 230

Here, WQ, WK , and WV are the learned weight 231

matrices. The attention score is computed using 232

the dot product of the query and the key, scaled by 233

the square root of the dimension of the key vectors 234

d: 235

Attention_scores =
QtK

T
i√

d
(2) 236

For RoPE, it is necessary to multiply Qt and Ki by 237

their corresponding position embedding separately 238

as shown in Equation 3: 239

Q
′
t =



q0
q1
q2
q3
...

qd−2

qd−1


⊕



cos tθ0
cos tθ0
cos tθ1
cos tθ1

...
cos tθd/2−1

cos tθd/2−1


+



−q1
q0
−q3
q2
...

−qd−1

qd−2


⊕



sin tθ0
sin tθ0
sin tθ1
sin tθ1

...
sin tθd/2−1

sin tθd/2−1


(3) 240

where θm = 10000−2m/d. A benefit of this 241

equation is that the position embedding for Q and 242

K can be computed independently. Furthermore, 243

the final result of the multiplication of the two po- 244

sition embeddings is solely dependent on the po- 245

sitional difference between them. Since this is an 246

autoregressive model, we need to apply a causal 247

mask to ensure that the model does not attend to 248

future tokens. This is typically achieved by multi- 249

plying with a lower triangular masking matrix: 250

Attention_scores = Attention_scores ∗M (4) 251

where M is the masking matrix. K
′

and V are 252

generally referred to as KV cache, which is stored 253

for the subsequent computation of attention scores 254

in the later regressive decoding. The attention 255

scores are then normalized using the softmax func- 256

tion to obtain attention weights. Finally, the output 257

for the current token is computed as a weighted 258

sum of the value vectors. 259

3.2 Position ID Rearrangement 260

This section presents the technique we developed 261

to ensure that the concatenated KV cache com- 262

puted offline for each document is as effective as 263

the KV cache computed using the whole originally 264

retrieved documents. Figure 2 illustrates the differ- 265

ences in the attention mask matrix and position IDs 266

between the two methods. 267
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The online concatenation of the KV cache re-268

quires that there is no cross-attention between mul-269

tiple document chunks during inference, which is270

a significant distinction from the lower triangular271

mask matrix employed by the current RAG system.272

We denote this new attention modality in Figure273

2c as Independent Attention, which effectively274

simulates the scenario of retrieving the KV caches275

and concatenating them. As illustrated in Figure276

2c, cross-attention between documents are all set277

to zero, and when decoding the answer, attention278

scores are computed among query, answer and all279

documents.280

Another issue arising from TurboRAG is the281

computation of position embeddings. The key282

cache computed for each ci are denoted as Kci .283

If the KV caches are simply concatenated, all Kci284

will consist of position IDs ranging from 0 to l.285

Consequently, the finally combined IDs will be rep-286

resented as [0, . . . , l, 0, . . . , l, 0, . . . , l], which we287

refer to as composite positions. This presents a288

problem: when decoding at step t, the positional289

difference between an element in Kci and t does290

not correspond to the actual token index difference.291

For instance, the third element in Xc2 at this point292

has a positional difference of t−3, while the actual293

token index difference should be t− (l + 3).294

To resolve this issue, we rearrange the po-295

sitions of all key cache to obtain [0, . . . , l, l +296

1, . . . , 2l, 2l+1, . . . , k·l]. We refer to this new posi-297

tions arrangement as reordered positions. Session298

2 indicates that RoPE encodes "only the relative299

pair-wise offset" t − i, not the absolute position300

index, so any permutation that preserves those off-301

sets leaves the rotary phase term unchanged. Con-302

sequently, once the per-chunk K,V from Equa-303

tion 1 are saved, we need only re-apply Equation304

3 with the new indices to obtain the concatenated305

K ′; the corresponding Q′ is produced exactly as306

in standard RAG. Implementation details are given307

in Appendix B.308

However, the new attention mask matrix and309

position embedding could lead to a accuracy drop310

in question-answering tasks. To mitigate this issue,311

we need to specifically train the model to make312

the LLM be able to handle this new setting. To313

compare the effects of different positional indices,314

we will conduct experiments on both reordered315

positions and composite positions in Section 4.316

Next, we will introduce the training details.317

3.3 Adapting LLMs for Precomputed Cache 318

Concatenation 319

Standard supervised fine-tuning (SFT) typically 320

employs the attention mask matrix and position 321

embeddings shown in Figure 2a to fine-tune the LM 322

using the data with the above format. However, to 323

make sure that the pretrained LM can accommodate 324

to new patterns exhibited in the mask matrix and 325

position embedding during inference, TurboRAG 326

used the mask matrix and position embedding in 327

Figure 2b and Figure 2c to fine-tune the LM. After 328

the fine-tuning, the LM would be able to see the 329

same context KV cache produced from training 330

while conducting inference. Therefore, it would 331

not experience the accuracy regression in question- 332

answering tasks. 333

3.4 The TurboRAG Pipeline 334

With the fine-tuned LLM, the inference pipeline of 335

TurboRAG is enumerated as follows (Figure 1b): 336

1. Document Encoding (offline): The doc- 337

uments are encoded into embedding vec- 338

tors using a transformer-based model like 339

Bert(Devlin et al., 2019). These document 340

embeddings are stored in a vector index to 341

facilitate efficient similarity search. 342

2. Document Prefill (offline): Use an LLM to 343

perform prefill offline. It computes the KV 344

caches for each document and saves them in 345

the database. 346

3. Query Encoding: The input query is encoded 347

into a vector using the same Bert model. 348

4. Retrieval: The encoded query is used to per- 349

form a similarity search in the vector database 350

to retrieve the most relevant documents. 351

5. Contextual KV cache Formation (online): 352

Retrieve the stored KV cache corresponding 353

to the documents and concatenate them in the 354

way demonstrated in Figure 2. The combined 355

KV cache forms a comprehensive context for 356

the query. 357

6. KV Cache Prefill (online): The LLM pro- 358

cesses prefill using the combined KV caches 359

for the input query. 360

7. Response Generation (online): After the pre- 361

fill phase is accomplished, the LLM starts to 362

generate the response and return to the user. 363
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It is evident that the usage process of TurboRAG364

is fundamentally consistent with that of standard365

RAG, making it highly convenient to use. We will366

be releasing the modified implementation code as367

open source.368

4 Experiments369

This section evaluates performance and accuracy of370

a number of TurboRAG model variants against the371

conventional RAG models. Specifically, we seek372

to answer the questions below in this section:373

• How does TurboRAG perform on document374

question-answering (QA)?375

• What is the overall TTFT performance of376

TurboRAG compared against the Näive RAG377

system on popular benchmarks?378

• How large is the regression in the general ca-379

pabilities of TurboRAG models?380

• How efficient is TurboRAG in scaling infer-381

ence batch sizes?382

4.1 Experiment Setup383

We selected gpt-4o-2024-08-06 as the baseline due384

to its excellence in many benchmark suites. For385

brevity, we refer the conventional RAG system386

as "Naïve RAG". We also fine-tuned two models387

for TurboRAG, namely TurboRAG-composite and388

TurboRAG-reordered corresponding to composite389

positions and reordered positions, respectively.390

All three models are fine-tuned on a dataset com-391

posed of 50% document QA data and 50% general392

tasks (e.g., code, dialogue, reasoning). All data are393

publicly accessible. For a detailed composition of394

the dataset, please refer to Appendix D.395

Training Setup We base our training on Qwen2-396

7B(Yang et al., 2024), performing SFT on the afore-397

mentioned dataset. The fine-tuning was conducted398

on 32 NVIDIA A100 80GB GPUs with a batch size399

of 256 samples, using a learning rate of 1e-5 and400

the AdamW optimizer(Loshchilov, 2017). Both401

Naïve RAG and TurboRAG models were trained402

using the same data proportions to ensure compa-403

rability.404

4.2 Document QA Accuracy405

Let’s first evaluate the accuracy of document QA406

via intensive study on RGB Benchmark(Chen et al.,407

2024), a bilingual benchmark designed to test a408

model’s ability to answer questions on retrieved409

documents. We followed the testing methodology410

provided by the official guidelines and let each 411

query extract five documents during the evaluation. 412

In addition, we also measured the accuracy with 413

varying noise levels from 0.2 to 0.8 (e.g., Noise Ra- 414

tio = 0.6 means 3 out of 5 retrieved documents are 415

irrelevant or noisy). In order reveal the effective- 416

ness of fine-tuning, we gauged accuracy of each 417

TurboRAG configuration with and without fine- 418

tuning. 419

As Table 1 shows, TurboRAG-reordered is ro- 420

bust even without any fine-tuning: its average ac- 421

curacy falls by only 4.2% (92.6 vs 96.8) and never 422

more than 6% even at the highest noise ratio 0.8, so 423

it can be used out-of-the-box in many applications. 424

By contrast, TurboRAG-composite incurs a larger 425

drop (5.8%) and nearly 20% as the task difficulty 426

increases. Because the relative offsets that RoPE re- 427

lies on are no longer preserved with duplicated po- 428

sition IDs. After fine-tuning, TurboRAG-reordered 429

and TurboRAG-composite can effectively maintain 430

the benchmark accuracy gap within 1% compared 431

to the Naïve RAG. They also demonstrated compa- 432

rable performance to GPT-4o across both Chinese 433

and English datasets even under high-noise con- 434

ditions. This highlights the effectiveness of the 435

proposed modifications in preserving high accu- 436

racy when leveraging KV cache in document QA 437

tasks. Additional experimental data on RGB can 438

be found in Table 8, which also includes details on 439

the multi-document integration tasks in the RGB 440

dataset. The results show that even for queries re- 441

quiring information synthesis across multiple doc- 442

uments, TurboRAG-reordered achieves accuracy 443

comparable to that of Näive RAG. These results 444

confirm that (i) the reordered-position scheme is 445

immediately usable, and (ii) a lightweight SFT step 446

suffices to eliminate any residual gap for either 447

masking strategy. 448

To validate that our method proposed techniques 449

are also directly applicable to long text input cases, 450

we inspected TurboRAG’s accuracy on an addi- 451

tional long-text RAG benchmark dataset, Long- 452

Bench(Bai et al., 2023). As shown in Table 2, 453

TurboRAG also exhibits comparable answer ac- 454

curacy to that of Naïve RAG in such use scenarios. 455

In all experiments, the performance of 456

TurboRAG-composite was consistently inferior to 457

that of TurboRAG-reordered, particularly in more 458

challenging contexts such as LongBench. This 459

observation further validates the necessity of main- 460

taining the accuracy of relative positional differ- 461

ences in positional encoding. 462
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Model Chinese English

0.2 0.4 0.6 0.8 Avg. 0.2 0.4 0.6 0.8 Avg.

GPT-4o-2024-08-06 98.3 98.0 96.6 87.7 95.2 99.0 99.3 98.3 96.3 98.2
Naïve RAG 99.0 98.0 96.7 87.3 95.3 99.7 99.3 99.3 94.3 98.2
TurboRAG-composite

w/o fine-tuning
98.3 96.3 93.7 79.0 91.8 98.0 96.3 91.3 75.0 90.2

TurboRAG-reordered
w/o fine-tuning

98.0 96.7 93.3 81.3 92.3 98.0 97.3 90.7 85.7 92.9

TurboRAG-composite 99.0 97.3 96.0 86.7 94.8 99.3 98.0 96.7 92.7 96.7
TurboRAG-reordered 98.7 97.3 96.0 90.7 95.7 99.0 98.3 96.0 93.7 96.8

Table 1: Performance comparison of different models under various noise ratios in English and Chinese in RGB.

To further validate the generality of our ap-463

proach, we conducted identical experiments on464

LLaMA-3.1-8B(Dubey et al., 2024). As shown in465

Appendix F, the results are consistent, confirming466

the effectiveness of our method across RoPE-based467

models.468

4.3 General Capability Regression469

To ensure that the non-standard attention masks470

and position IDs usded in fine-tuning does not neg-471

atively affect the models’ general capabilities, we472

accomplished regression tests using the OpenCom-473

pass1 benchmark on various mainstream tasks. As474

summarized in Table 3, the modifications had min-475

imal impact on the base capabilities of the models.476

TurboRAG-reordered showed strong generalization477

across tasks, with no significant performance degra-478

dation compared to Naïve RAG.479

4.4 TTFT Performance480

Now we assess the impact of TurboRAG on in-481

ference speed. All models are evaluated on the482

LongBench dataset, with specific focus on its multi-483

document QA tasks. The experiments were con-484

ducted on the Huggingface transformers2 using485

FlashAttention2(Dao, 2023) and an NVIDIA A100486

80GB GPU. As shown in Table 2, TurboRAG-487

reordered improves the performance of TTFT by488

8.6x on average, with a peak speedup of 9.4x, com-489

pared to Naïve RAG for long-documents process-490

ing. This reduction substantiates that TurboRAG491

can significantly reduce TTFT, thereby enhancing492

user experience, and consequently enables the ex-493

pansion of RAG applications to cases with stringent494

latency requirement. The main reason of reduction495

1https://github.com/open-compass/opencompass
2https://huggingface.co/

in the TTFT is that the online computation over- 496

head of KV caches for long text is largely alleviated 497

as TurboRAG shifts the KV cache computation for 498

each document to offline processing. Table 7 in Ap- 499

pendix E shows that TurboRAG can still achieve 500

2.42x speedup on short doc (e.g. containing 743 501

tokens). 502

4.5 Batch Scaling 503

Compared to Naïve RAG, TurboRAG requires to 504

transfer KV cache from CPU to GPU, which may 505

introduce extra communication overhead that de- 506

grades performance measured by TTFT. To evalu- 507

ate the magnitude of the communication cost, we 508

carried out experiments under a fixed total recall 509

text length of 8192 and a query length of 128. We 510

gathered a series of TTFT numbers with batch size 511

ranging from 1 to 8 in two settings. One transferred 512

the KV cache from CPU to GPU using PCIE Gen4, 513

while the other assumed that the KV cache was 514

prefetched to the GPU memory thereby excluding 515

the impact of communication. Additionally, we 516

measured the computational load for both Naïve 517

RAG and TurboRAG under different settings. The 518

method for measuring is detailed in Appendix G. 519

From Table 4, it is evident that as the batch size 520

increases, the speedup ratio (decrease in TTFT) 521

also increases without any degradation in perfor- 522

mance. When the batch size is small, the pressure 523

on computational resources is insufficient, result- 524

ing in a TTFT speedup value of only 16.1x between 525

Naïve RAG and TurboRAG. As the batch size in- 526

creases, GPU becomes over-utilized for naive RAG, 527

thus leading to substantially higher latency in TTFT 528

compared to TurboRAG. Table 4 also illustrates 529

that, even in scenarios requiring the transfer of the 530

KV cache from host to device (h2d), TurboRAG 531
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Subcategory
(Metric)

Context
Token

Query
Token

Score TTFT (ms)

Naïve
Turbo

Composite
Turbo

Reordered
Naïve

Turbo
Reordered

Speedup

MuSiQue (F1) 16349 18.8 22.12 23.64 27.37 1610 171 9.4x
2WikimQA (F1) 7553 17.0 35.02 34.28 39.51 709 101 7.0x
DuReader (Rouge-L) 10642 6.0 34.57 33.37 33.03 1007 116 8.7x
HotpotQA (F1) 13453 20.1 40.21 35.78 45.28 1333 147 9.1x

Avg. 11999 15.5 32.99 31.76 36.29 1165 134 8.6x

Table 2: Performance of Naive RAG and TurboRAG on LongBench multi-document QA (subcategories).

Model MMLU TriviaQA GSM-8K MATH

Naïve RAG 69.57 56.90 79.12 39.54
TurboRAG 70.73 56.47 79.45 40.58-reordered

Sub +1.16 -0.43 +0.33 +1.04

Table 3: Regression experiments of Naïve RAG and
TurboRAG. Evaluated by OpenCompass.

still achieves a fourfold speed improvement com-532

pared to Naïve RAG. In addition, we collected the533

TFLOPs consumed by both the näive RAG and534

TurboRAG for each batch size, as shown in the535

Metric column of Table 11. It can be seen that536

TurboRAG achieves astonishingly less TFLOPs,537

i.e. approximately 98.46% reduction compared to538

Naïve RAG. For shorter context lengths, we also539

conducted comparative TTFT tests, and the results540

are recorded in Appendix H. Additionally, if each541

text chunk contains 200 tokens, recalling and con-542

catenating 5 segments results in a total of 1000 to-543

kens. According to the experimental results, even544

with a batch size of 1, a commendable speedup of545

up to two times can be achieved.546

Batch
size Metric Naïve Turbo Speedup Turbo

w/o h2d
Speedup
w/o h2d

1 TTFT (ms) 711 175 4.1x 44 16.1xTFLOPs 136.36 2.09 2.09

2 TTFT (ms) 1408 325 4.3x 56 25.1xTFLOPs 272.72 4.19 4.19

4 TTFT (ms) 2842 666 4.3x 97 29.3xTFLOPs 545.46 8.39 8.39

6 TTFT (ms) 4373 928 4.7x 134 32.6xTFLOPs 818.20 12.58 12.58

8 TTFT (ms) 5812 1429 4.1x 177 32.8xTFLOPs 1090.93 16.78 16.78

Table 4: Generation throughput and latency.

5 Conclusion and Discussion 547

This paper presented a novel approach to train- 548

ing and utilizing RAG that significantly reduces 549

the time required for prefill computations when 550

concatenating retrieved text fragments. Other tech- 551

niques such as KV cache compression are orthog- 552

onal to our method, hence can be directly used 553

to reduce latency and ease storage pressure. Our 554

work raises a interesting question in whether cross- 555

attention between different fragments is truly nec- 556

essary. If three individuals have a piece of infor- 557

mation, and I (Q) interact with each person (K) 558

to obtain their information (V), and then integrate 559

these three pieces into a complete response, would 560

this be sufficient? The three individuals might not 561

need to communicate with each other. Furthermore, 562

in the inference process for long texts, many com- 563

putation of cross-attention might also be redundant. 564

Another intriguing point is the role of positional 565

embedding. In experiments that extend context 566

window of LLM via position interpolation, LLMs 567

initially are pretrained with a short context length 568

and then continued training with a small amount of 569

data using a longer context length. This enables the 570

model to interpolate positions and learn two sets of 571

position embeddings. In our work, we also exposed 572

the model to two different sets of positional embed- 573

dings, demonstrating LLM’s strong adaptability to 574

various positional embeddings. 575
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Limitations576

This section discusses some limitations this paper577

has that we intentionally leave as the future work578

to further improve.579

Limitation 1: Storage overhead. TurboRAG de-580

liberately trades space for latency. Taking Qwen2-581

7B as an example, a 512-token chunk produces a582

FP16 KV cache of 2×2×28×8×128×512=28583

MB, so caching one million chunks needs ∼28 TB584

of disk. Current nearline HDDs cost roughly $10-585

$20 per TB 3, meaning the entire 28 TB repository586

is well under $600—an order of magnitude cheaper587

than the GPUs ordinarily provisioned to meet the588

same sub-second latency target. Moreover, most589

practical deployments cache far fewer passages:590

an internal customer-service knowledge base or a591

personal laptop’s local archive typically contains592

104−105 passages, translating to only 0.3-3 TB (or593

40-400 GB after 8-bit KV quantisation). Only at594

web-scale corpora with tens of billions of passages595

would storage grow beyond a few petabytes and596

call for additional strategies such as tiered object597

storage or aggressive cache compression; for the598

vast majority of latency-sensitive workloads, the599

modest disk budget is amply justified by the multi-600

fold reduction in TTFT. Besides, we have noticed601

an increasing number of works to handle KV cache602

compression (Wang et al., 2024a; Liu et al., 2024;603

Zhang et al., 2024), which can effectively reduce604

the storage requirements and are orthogonal to our605

work. Integrating these KV cache compression606

techniques into TurboRAG will be our next direc-607

tion of work. Beyond disk storage, the process608

of loading the KV cache from disk to memory in609

TurboRAG also puts pressure on memory usage.610

Limitation 2: Model fine-tuning. Another Issue611

is that the current pipeline still requires fine-tuning612

of the model, which limits its applicability and pre-613

vents it from being directly used on newly emerging614

state-of-the-art LLMs. We are currently exploring615

ways to reduce or even eliminate this dependency616

on fine-tuning.617
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A Document Q&A Example748

749
Query When is the premiere of ’Carole King & James Taylor: Just Call Out My Name’?
Document 1 Duke capped off a remarkable season by beating UCF 30-13 on Wednesday in the

Military Bowl - the program’s first bowl win since 2018. With the win, Duke got to
nine wins for the first time since 2014. Mike Elko has done one of the best coaching
jobs in the country in his first season with the Blue Devils. The program was barely
competitive in David Cutcliffe’s final seasons on the job, going a combined 5-18 (1-17
ACC) in his final two years. With Wednesday’s win, Duke finished the season 9-4
overall with a 5-3 mark in ACC play. It was just the third season in school history that
the Blue Devils had finished with a winning conference record and won a bowl game.
Washington: After going 4-8 in 2021, Washington capped off a tremendous turnaround
by beating Texas 27-20 in the Alamo Bowl. With the win, Washington finished the
season with 11 wins - the most it has had in a season since 2016. That’s the year the
Huskies reached the College Football Playoff...

Document 2 Personal Preference is a 1987 board game created by Donal Carlston that involves
guessing the order in which a player prefers foods, activities, people, and other items
compared to one another. The game was published by Broderbund in the United
States, Playtoy Industries in Canada, and Parker Brothers International in Britain. An
updated version by the original creator was launched on Kickstarter on May 1, 2023.
The new version contains updated cultural references and new categories. The game
contains cards in four categories: Food & Drink, Activities, People, and Potpourri
(miscellaneous). Each card has a photo or drawing on each side and text indicating
what that side represents (e.g., chocolate éclairs, climbing a mountain, Harrison Ford,
spy novels). Each round, one player draws four cards from one category, or one from
each category, depending on the player’s position on the board...

Document 3 However, the concert tour took place in honor of the 40th anniversary. The two might
have aged since they first performed together but neither Carole King nor James Taylor
have lost a beat in all these years!The concert film includes the following songs:(You
Make Me Feel Like) A Natural WomanSomething in the Way She MovesSo Far Away-
Carolina in My MindCountry RoadSmackwater JackWhere You Lead (lyrics changed
up as the city they’re playing in replaces New York)Your Smiling FaceBeautifulShower
The PeopleWay Over YonderSweet Baby James (this kicks off the second half of the
film)Up on the RoofIt’s Too LateFire and RainI Feel the Earth MoveYou’ve Got a
FriendHow Sweet It Is (To Be Loved by You)You Can Close Your EyesMexico (end
credits)DIRECTOR: Frank MarshallFEATURING: Carole King, James Taylor, Danny
Kortchmar, Peter Asher, Russ Kunkel, Leland SklarADDITIONAL MUSICIANS:
Andrea Zonn, Arnold McCuller, Kate Markowitz, Robbie KondorCarole King & James
Taylor: Just Call Out My Name premiered January 2, 2022, at 9:00pm ET/PT on
CNN...

Document 4 I was also raised to see the correlation between life and the game of football and how
the process of preparation leads to success in both.” Jason earned a bachelors in history,
government and philosophy at Adams State in 2005, and a masters in criminal justice
administration from the University of Phoenix in 2007. He added a second master’s
in educational methods from the University of Tulsa in 2012. He was a defensive
coordinator at the University of Montana, a co-defensive coordinator at Adams State, a
defensive coordinator at Valdosta State and the Colorado School of Mines, a defensive
advisor at Temple University, served as a defensive assistant at Oklahoma State for two
years - after a two-season stay with fellow FBS program Tulsa as outside linebackers
coach...

750
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B Positional-Encoding Options in751

TurboRAG752

In our paper, we discuss two approaches for han-753

dling positional encodings in TurboRAG: Compos-754

ite Positions and Reordered Positions:755

Composite Positions. This approach applies756

RoPE during the precomputation of each chunk’s757

key-value cache, making it straightforward to im-758

plement.759

Reordered Positions. Here, RoPE is applied760

at inference time instead of during precomputa-761

tion. The additional computational cost is negli-762

gible, as shown in the pseudocode from Qwen-763

2. The only additional step is the single call to764

apply_single_rotary_pos_emb on the stitched765

key_states.766
767

1 # query_states, key_states =768
apply_rotary_pos_emb(query_states,769
key_states, cos, sin, position_ids)770

2 query_states = apply_single_rotary_pos_emb(771
query_states, cos, sin, position_ids)772

3 if past_key_value is not None:773
4 # ...774
5 cache_kwargs = {"sin": sin, "cos": cos} #775

Specific to RoPE models776
6 key_states, value_states = past_key_value.777

update(key_states, value_states, self.778
layer_idx, cache_kwargs)779

7780
8 full_position_ids = torch.arange(781
9 0, past_key_value.seen_tokens, dtype=782

torch.long, device=query_states.783
device784

10 )785
11 full_position_ids = full_position_ids.786

unsqueeze(0)787
12 else:788
13 full_position_ids = position_ids789
14790
15 key_states = apply_single_rotary_pos_emb(791

key_states, cos, sin, full_position_ids)792793

C Data Format794

You are an accurate and reliable AI
assistant capable of answering questions
by referencing external documents. Please
note that the external documents may not
always be related to the question. The
documents are as follows:
<|doc_start|>{chunk_1}<|doc_end|>
<|doc_start|>{chunk_2}<|doc_end|>
<|doc_start|>{chunk_3}<|doc_end|>
...
If the information in the documents contain

795

the correct answer, you will provide an
accurate response. If the documents do
not contain the answer, you will refuse to
answer.

Question: {que}
796

D Data Proportions 797

Data Type Sampling Ratio

Document Q&A 50%
General Dialogue 25%
Reasoning 10%
Code 10%
Others 5%

Table 5: Sampling Ratios of Different Data Types during
Model Fine-tuning

Data Name Language Quantity

glave-rag-v1 English 51,153
MS Marco English 10,000
HotpotQA English 17,796
BaiduSTI Chinese 4,032
DuReader Chinese 30,000
BaiduBaike Chinese 13,615
Wiki Chinese 9,265

Table 6: Specific Data and Quantities of Document
Q&A
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E Supplementary Information for RGB798

Model Context
Tokens

TTFT
(ms) Speedup

Naïve RAG
743

87 2.42x
TurboRAG 36

Table 7: Comparison of TTFT in RGB for Naïve RAG
and TurboRAG.

Chinese

Model 0.2 0.4 0.6 Avg.

Naïve RAG 50 46 29 42
TurboRAG-composite

w/o fine-tuning
35 27 18 27

TurboRAG-reordered
w/o fine-tuning

30 21 20 24

TurboRAG-composite 53 41 32 42
TurboRAG-reordered 56 44 32 44

English

Model 0.2 0.4 0.6 Avg.

Naïve RAG 57 48 36 47
TurboRAG-composite

w/o fine-tuning
40 27 27 31

TurboRAG-reordered
w/o fine-tuning

31 23 19 24

TurboRAG-composite 58 48 34 47
TurboRAG-reordered 57 51 34 47

Table 8: Performance comparison of different models
under various noise ratios in RGB Information Integra-
tion Task.

F LLaMA-3.1-8B Experimental Results799

In this section, we present the experimental results800

on the LLaMA-3.1-8B model, further validating801

the effectiveness of our method across RoPE-based802

models.803

G Computational Load Calculation804

Here, we present the method for calculating the805

FLOPS, while omitting the computation of the806

lm_head (due to its relatively small proportion).807

Let ninput denote the number of input tokens and808

ncontext the context length. For a large language809

model (LLM) employing the Swiglu activation810

Chinese

Model 0.2 0.4 0.6 0.8 Avg.

Naïve RAG 99.7 99.0 98.0 91.7 97.1
TurboRAG
-reordered

99.0 97.7 95.3 88.0 95.0

English

Model 0.2 0.4 0.6 0.8 Avg.

Naïve RAG 99.0 99.0 99.0 96.7 98.4
TurboRAG
-reordered

99.0 97.7 96.7 96.0 97.4

Table 9: Performance comparison of different models
based on LLaMA-3.1-8B under various noise ratios in
English and Chinese in RGB.

Chinese

Model 0.2 0.4 0.6 Avg.

Naïve RAG 61 50 44 51.7
TurboRAG-reordered 56 49 40 48.3

English

Model 0.2 0.4 0.6 Avg.

Naïve RAG 71 64 52 62.3
TurboRAG-reordered 68 66 52 62.0

Table 10: Performance comparison of different models
based on LLaMA-3.1-8B under various noise ratios in
RGB Information Integration Task.

function, the key parameters are: 811

L, H, K, dh, d, dmlp, 812

where 813

• L is the number of layers, 814

• H is the number of attention heads, 815

• K is the number of key-value heads, 816

• dh is the head dimension, 817

• d is the hidden size, and 818

• dmlp is the intermediate (MLP) size. 819

For each token, the per-layer computational costs 820

are defined as follows: 821

1. QKV Transformation: 822
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The cost Cqkv is given by823

Cqkv = 2 d
(
H + 2K

)
dh.824

2. Attention Mechanism:825

The cost Cattn is expressed as826

Cattn = 2H dh ncontext.827

3. Output Projection:828

The cost Co is given by829

Co = 2 d2.830

4. Multilayer Perceptron (MLP):831

The cost Cmlp can be represented as832

Cmlp = 6 d dmlp.833

Therefore, the total computational cost (FLOPS)834

is expressed as:835

FLOPS = ninput L
(
Cqkv + Cattn + Co + Cmlp

)
.836

H Comparative TTFT Analysis for 837

Different Context Lengths 838

Table 11: TTFT (ms) for different context lengths and
batch sizes on an A100 GPU.

Seq
Length

Query
Length

Batch
Size Naïve Turbo

256 128 1 44.00 41.62
256 128 2 68.19 195.96
256 128 4 127.19 165.73
256 128 8 242.31 120.62
512 128 1 59.16 37.16
512 128 2 101.84 47.58
512 128 4 205.61 133.14
512 128 8 398.18 179.94
1024 128 1 97.89 48.79
1024 128 2 186.02 89.08
1024 128 4 359.95 139.70
1024 128 8 711.19 189.81
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