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Abstract— Object reconstruction is relevant for many au-
tonomous robotic tasks that require interaction with the en-
vironment. A key challenge is planning view configurations to
collect informative measurements for reconstructing an initially
unknown object. One-shot view planning enables efficient data
collection by predicting view configurations and planning the
globally shortest path connecting all views at once. However, ge-
ometric priors about the object are required to conduct one-shot
view planning. In this work, we propose a novel one-shot view
planning approach that utilizes the 3D generation capabilities
of diffusion models as priors. By incorporating such geometric
priors into our pipeline, we achieve effective one-shot view
planning starting with only a single RGB image of the object
to be reconstructed. Our planning experiments in simulation
and real-world setups indicate that our approach balances well
between object reconstruction quality and movement cost.

I. INTRODUCTION

Many autonomous robotic applications require 3D models
of objects to perform downstream tasks [1, 33, 34]. When
deployed in initially unknown environments, a robot often
needs to reconstruct the objects before interacting with
them. During this procedure, a challenge is planning a view
sequence to acquire the most informative measurements to be
integrated into the reconstruction system while minimizing
the robot’s travel distance or operation time.

Without any prior knowledge about the environment, a
common strategy is to plan the next-best-view (NBV) itera-
tively based on the current reconstruction state [5, 16, 17, 21,
22, 23, 27, 31, 35]. However, NBV planning only generates
a local path to the subsequent view and cannot effectively
distribute the mission time or movement budget, resulting
in suboptimal view planning performance. An alternative
line of work considers one-shot view planning [4, 24, 26].
Given initial measurements of an object to be reconstructed,
one-shot view planning predicts a set of views at once and
computes the globally shortest path. A robot’s sensor then
follows the planned path to collect measurements, which are
used for object reconstruction. By decoupling data collection
and object reconstruction, these approaches do not rely on
iterative map updates for adaptive view planning online.
To perform one-shot view planning, prior knowledge about
the object is required. Previous works consider planning
priors based on multi-view images or partial point cloud
observations. However, they either only handle a fixed view
configuration [26] or rely on depth sensors [4, 24].

To address these aforementioned limitations, we propose
integrating geometric priors from 3D diffusion models into
one-shot view planning. Recently, 3D diffusion models
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Fig. 1: An example of our RGB-based one-shot view planning by
exploiting priors from 3D diffusion models. Our goal is to plan
a set of views (blue) at once to collect informative RGB images
for object reconstruction. The key component in our approach
is a 3D diffusion model generating the corresponding 3D mesh
of a single RGB image from the initial camera view (red). By
leveraging the mesh as a geometric prior, our approach produces
view configurations specifically associated with the target object and
calculates the globally shortest path. In particular, we plan denser
views to observe more geometrically complex parts (front part of
the object in the example) to improve the reconstruction quality.

emerge as a powerful tool for generating 3D content based on
text prompts or a single image. By training on large datasets,
3D diffusion models learn prior knowledge about objects
commonly seen in real life [11, 14, 15]. However, recovering
a 3D representation from a single RGB image is inherently
an ill-posed problem and corresponds to multiple plausible
solutions. As a result, models generated by 3D diffusion
models do not reflect the exact representation of the object
to be reconstructed. This prohibits their direct application for
3D reconstruction required in robotics tasks.

The main contribution of this work is a novel RGB-based
one-shot view planning approach that exploits the geometric
priors from 3D diffusion models. Our approach enables
view planning with an object-specific view configuration
for object reconstruction as shown in Fig. 1. Given the
generated 3D mesh, we convert the one-shot view planning
into a customized set covering optimization to calculate the
minimum set of views that densely covers the mesh, which
we solve using linear programming. After the data collection,
we train a Neural Radiance Field (NeRF) using all collected
images to acquire the object’s 3D representation.

To the best of our knowledge, our approach is the first to
leverage 3D diffusion models for view planning. We conduct
extensive experiments on publicly available object datasets
and in real world scenarios, demonstrating the applicability
of our approach. Our implementation is open-sourced at:
https://github.com/psc0628/DM-OSVP

https://github.com/psc0628/DM-OSVP


Fig. 2: Overview of our proposed RGB-based one-shot view planning pipeline. Given a single RGB image of the object to be reconstructed,
we leverage a state-of-the-art 3D diffusion model, One-2-3-45++ [10], to generate a 3D mesh due to its accurate mesh generation and
efficient inference compared to other 3D diffusion models [28, 30, 32]. Based on this prior, we construct the one-shot view planning task
as a customized set covering optimization and solve it to obtain a minimum set of views required to densely cover the mesh surfaces.
We plan the globally shortest path connecting all views by solving the shortest Hamiltonian path problem on a graph, which is similar to
the traveling salesman problem [20]. The RGB camera starts at the initial view and follows the generated globally shortest path to collect
RGB images. After data collection, we train a NeRF using Instant-NGP [19] to acquire the final 3D representation of the object.

II. RELATED WORK

View Planning for Object Reconstruction. Without any
prior knowledge, a common approach is to plan the NBV
iteratively based on the current reconstruction state, thus
maximizing the information of the object greedily. In the
context of NBV planning for RGB-based reconstruction, Jin
et al. [6] integrate uncertainty estimation into image-based
neural rendering to guide NBV selection in a mapless way.
Lin et al. [9] and Sünderhauf et al. [31] train an ensemble
of NeRFs to measure uncertainty for NBV planning.

To improve inefficient path generation and map update
of NBV methods, recent works propose the one-shot view
planning paradigm. SCVP [24] trains a neural network in a
supervised way to directly predict the global view config-
uration given initial point cloud observations. Hu et al. [4]
further reduce the required views by incorporating a point
cloud-based implicit surface reconstruction method. In the
domain of RGB-based object reconstruction, Pan et al. [26]
propose a view prediction network to predict the number
of views to reconstruct an object using NeRFs required to
reach its peak performance. However, due to the lack of
geometric representations during the view planning stage,
this work only considers distributing the views following
a fixed pattern. Different from previous works that rely on
depth sensors [4, 24] or fixed view configurations [26], our
novel approach only requires RGB inputs and plans view
configurations specifically associated with the objects.

Diffusion Models for 3D Generation. Diffusion models
are state-of-the-art generative models for producing plausible
high-quality images. Starting from random Gaussian noises,
diffusion models learn to subsequently denoise the input to
finally recover the true images [7, 29].

Inspired by the advances of diffusion models, recent works
investigate using diffusion models for 3D content generation.
They consider fine-tuning pretrained 2D diffusion models for
multi-view synthesis from a single image [12, 13]. One-2-3-
45 [11] produces 3D meshes using images generated from
the multi-view diffusion models. However, its performance
is limited by the inconsistency between multi-view images.
Recent 3D diffusion model One-2-3-45++ [10] mitigates the
inconsistencies by conditioning the multi-view image gen-
eration on each other. The generated multi-view consistent
images are exploited as the guidance for 3D diffusion to
produce high-quality meshes in a short time, i.e., within 60 s.

III. OUR APPROACH

An overview of our approach is shown in Fig. 2. We intro-
duce our one-shot view planner by defining the customized
set covering optimization problem below.

A. One-Shot View Planning as Set Covering Optimization

To facilitate the efficiency of set covering optimization,
sparse surface representations are desired. To this end, we
first sample a set of surface points from the mesh produced
by the 3D diffusion model and subsequently voxelize them
using OctoMap [3] to get a sparse surface point set Psurf ,
with surface point pi ∈ Psurf . We denote v as a candidate
view within a discrete view space V ⊂ R3×SO(3) and Pv as
the set of surface points observable from this view. Each set
Pv is determined via the ray-casting process implemented in
OctoMap. Indicator function I(p, v) is defined to represent
whether a surface point p is observable from view v:

I(p, v) =

{
1 if p ∈ Pv

0 otherwise
. (1)

Given Psurf and each Pv , the vanilla set covering opti-
mization problem aims to find the minimum set of views re-
quired for completely covering the surface points. It requires
that each surface point should be covered by at least one
view. This definition aligns well with object reconstruction
employing depth-sensing modalities [4, 24, 25], as surfaces
can be recovered by direct depth fusion when provided with
a corresponding point cloud observation. However, for RGB-
based object reconstruction using NeRFs, map representation
learning is achieved by minimizing the photometric loss
when reprojecting hypothetical surface points back to 2D
image planes, which requires that a surface point should be
observed from different perspectives to recover its true 3D
representation. This implies that planned views covering all
surface points of the generated mesh once are not sufficient
for object reconstruction using NeRFs.

To this end, we customize the set covering optimization
problem for RGB-based object reconstruction using NeRFs.
Rather than requiring each surface point to be observed by at
least one view, we propose multi-view constraints to enforce
that a given surface point should be covered by a minimum
number α ∈ N+ of views to account for multi-view learning
in NeRFs. Larger α values require denser surface coverage



α Planned Views PSNR ↑ SSIM ↓ Movement Cost (m) ↓ Inference Time (s) ↓
1 6.8 ± 1.5 30.167 ± 0.810 0.9365 ± 0.0121 1.754 ± 0.258 140.4 ± 26.9
2 12.8 ± 1.7 31.436 ± 0.622 0.9530 ± 0.0049 2.629 ± 0.224 145.9 ± 29.3
3 17.8 ± 2.4 31.853 ± 0.615 0.9599 ± 0.0038 2.998 ± 0.225 147.9 ± 31.8
4 22.5 ± 3.8 31.995 ± 0.684 0.9633 ± 0.0035 3.214 ± 0.372 148.2 ± 33.1
5 28.7 ± 3.8 32.120 ± 0.786 0.9663 ± 0.0034 3.725 ± 0.312 150.0 ± 40.6
6 34.1 ± 5.1 ⋆32.243 ± 0.779 ⋆0.9684 ± 0.0042 4.093 ± 0.441 147.6 ± 34.1
7 38.8 ± 3.8 †32.248 ± 0.807 †0.9694 ± 0.0041 4.190 ± 0.247 147.3 ± 38.2

TABLE I: Analysis of multi-view constraints. α denotes the minimum number of views required to observe each surface point. Planned
views indicate the number of optimized views under different α values. PSNR and SSIM are averaged over 100 novel views. Each value
reports the average mean and standard deviation on 10 test objects. The star symbol (⋆) indicates statistically significant results for α = 6
compared to α = 5. Conversely, the dagger symbol (†) indicates non-significant results for α = 7 compared to α = 6. These are based
on the paired t-test with a p-value of 0.05. Results show that our optimizer plans more views with increasing α values and achieves peak
performance at the α = 6. It is worth mentioning that increasing α from 1 to 2 leads to the highest performance gain, indicating that our
formulation of set covering benefits NeRF-based reconstruction.

in our optimization problem, resulting in solutions with more
views required. Note that when α ≥ 2, we exclude points that
are visible from fewer than α views. This mechanism ensures
the optimization problem has a feasible solution. However,
our multi-view covering setup may contain multiple feasible
solutions since most of the surface points can be observed
from a large range of view perspectives. Some of them lead
to views clustered closely together in Euclidean space. These
clustered views exhibit similarity in the collected images,
thus leading to redundant information about the object.

To alleviate this issue, we introduce a parameter β ∈ R≥0

for additional distance constraints to avoid selecting spatially
clustered views. We denote dv

′

v as the Euclidean distance
between views v and v′, while dmin

v is the Euclidean distance
from view v to its nearest neighboring view. We prevent
other views within a specific distance β dmin

v of the view
v from being selected again in the solution. A larger β
leads to more spatially uniform views, while an excessively
large value can render the problem infeasible. For our view
planning, we try to find the maximum β value that still yields
an optimization solution. Given that different objects exhibit
diverse geometries, their respective maximum β values also
vary. Therefore, we run optimization iteratively to find the
maximum β for a specific object in an automatic manner.

Taking all these conditions into account, we formulate our
set covering optimization problem as a constrained integer
linear programming problem defined as follows:

min :
∑
v∈V

xv ,

s.t. : (a) xv ∈ {0, 1} ∀v ∈ V

(b)
∑
v∈V

I(p, v)xv ≥ α ∀p ∈ Psurf

(c) xv + xv′ ≤ 1 ∀dv
′

v ≤ β dmin
v ,

(2)

where the objective function
∑

v∈V xv is designed to min-
imize the total number of selected views, while subject to
three constraints: (a) xv is a binary variable representing
whether a view v is included in the set of selected views
or not; (b) each surface point p ∈ Psurf must be observed
by a minimum of α selected views; and (c) if a view v
is selected, any neighboring view v′, whose distance dv

′

v is
smaller than β dmin

v , must not be selected.

Fig. 3: Ablation study on distance constraints. PSNR and SSIM
averaged over 100 novel views. Each value is reported as the
averaged mean on 10 test objects. We observed statistically signif-
icant results for our method when compared to the version without
distance constraints across all α values, as determined through
paired t-tests with a p-value of 0.05. This suggests that the set
covering optimization with the distance constraints finds better view
configurations, leading to superior NeRF training results.

IV. EXPERIMENTAL RESULTS

In simulation, we consider an object-centric hemispherical
view space with 144 uniformly distributed view candidates.
We set the view space radius to 0.3 m. We test approaches
on 10 geometrically complex 3D object models from the
HomebrewedDB dataset [8]. We normalize all objects to fit
into a bounding sphere with a radius of 0.1 m. All RGB
measurements are at 640 px × 480 px resolution. We adopt
a grid size of 50×50×50 in OctoMap for voxelizing the mesh
surface points. We employ the Gurobi optimizer, a linear
programming solver [2], to compute the solution for the
set covering optimization. To evaluate reconstruction quality,
we report peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) [18]. We evaluate reconstruction
efficiency in terms of inference time for view planning and
accumulated movement cost in Euclidean distance.

A. Analysis on Multi-View and Distance Constraints

We first explore the influence of multi-view constraints
introduced in Sec. III-A. We test our methods across varying
α values from 1 to 7, as detailed in TABLE I. The outcomes
justify our modification of the set covering optimization to
account for RGB-based object reconstruction using NeRFs.

We next investigate the impact of the distance constraints
introduced in Sec. III-A. We adopt binary search in our
implementation to find out the object-specific maximum β
that still yields a feasible optimization solution. The search



Fig. 4: Comparison to baselines on view planning performance under different α values corresponding to the number of optimized views.
PSNR and SSIM are averaged over 100 novel views. Each value reports the mean on 10 test objects. PRV is not associated with α
values and is represented by a dashed line. As can be seen, (1) our method achieves higher PSNR/SSIM values against random and NBV
methods, indicating that leveraging geometric priors from diffusion models leads to more informative views; (2) compared to PRV using
fixed view configuration, our adaptive view configuration is more suitable for object-specific view planning, achieving either a lower
movement cost with an on-par performance (α = 5) or a higher performance with a slightly lower movement cost (α = 6).

step is set to 0.1 for all experiments. Fig. 3 shows the differ-
ences between optimization with and without the proposed
constraints over different α values. The results justify our
design choice of introducing the distance constraints to find
better view configurations.

B. Evaluation of View Planning for Object Reconstruction
Baselines. We compare our novel one-shot view planning

with two one-shot baselines (Random with globally shortest
path and PRV [26]) and two NBV baselines (Ensemb-
leRGB [9] and EnsembleRGBD [31]). As depicted in TA-
BLE I, varying α values lead to different numbers of planned
views. Therefore, to comprehensively assess the performance
of our planner, we evaluate all baselines using an equivalent
number of views corresponding to each α value, excluding
PRV, which predicts its own required number of views.

Comparison to Random Selection. As shown in Fig. 4,
our RGB-based one-shot view planning approach surpasses
the one-shot Random baseline across all α values in terms
of PSNR and SSIM. These findings confirm that leveraging
powerful geometric priors from 3D diffusion models signif-
icantly benefits RGB-based one-shot view planning.

Comparison to NBV Methods. Compared to two NBV
baselines, our method achieves higher PSNR and SSIM
values across all α values with much less movement costs
and inference time, as shown in Fig. 4. We attribute the
significant reductions in movement cost and inference time
to global path planning and the one-shot paradigm, which
avoids iterative map updates and uncertainty computation.

Comparison to PRV. As shown in Fig. 4, our approach
with α = 5 delivers nearly identical quality metrics in PSNR
and SSIM when compared to PRV, yet it benefits from
reduced movement cost. Moreover, when α is adjusted to
6, our method surpasses PRV in terms of PSNR and SSIM
quality while still maintaining a slightly lower movement
cost. The results confirm that our adaptive object-specific
view configuration is superior to fixed view configurations
in PRV for handling varying geometries of objects.

Nevertheless, our method yields longer inference time
compared to the PRV and random methods, primarily due
to the constraints imposed by the generation process of
the diffusion model (approximately 60 s) and the online
optimization process (approximately 80 s).

Fig. 5: Real-world experiment showing the test object. We run
two test trials with different initial views. Due to imperfect camera
poses and noise, the pose optimization functionality implemented
in Instant-NGP is enabled during our NeRF training. PSNR and
SSIM are averaged over 100 novel views. Each value is reported
as the averaged mean and with standard deviation (the error bar) on
two test trials. By adapting views based on the object geometries,
our method achieves a higher PSNR with lower movement costs.

C. Real-World Experiments

We deploy our approach in a real world tabletop environ-
ment using a UR5 robot arm with an Intel Realsense D435
camera mounted on its end-effector (only the RGB optical
camera is activated). The experimental environment and
comparisons are shown in Fig. 5. The demo video can be
accessed at: https://youtu.be/EKZPHb5-UZk. Our
method achieves peak performance at α = 7, which is larger
than the value of 6 determined in Sec. IV-A. This might be
caused by the noise in the camera pose and images, making it
challenging for view planning. Nevertheless, when deployed
in the real world, an estimate of the actual object size is
necessary to scale the diffusion-generated models.

V. CONCLUSIONS

In this paper, we present a novel one-shot view planning
method starting with only a single RGB image of the un-
known object to be reconstructed. Our experiments validate
that utilizing geometric priors from 3D diffusion models
enables effective RGB-based one-shot view planning.

https://youtu.be/EKZPHb5-UZk
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