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Abstract

Do Large Language Models (LLMs) produce001
output that exhibits syntactic productivity sim-002
ilar to human language? Although recent003
work has focused on quantifying the lexical,004
ngram or templatic novelty of LLMs with re-005
spect to their training data, we posit the prob-006
lem is formally equivalent to a major issue007
in child language research where conclusions008
must be drawn about the underlying gram-009
mar solely on the basis of a child’s produc-010
tion data. We apply a mathematically rigorous011
and independently validated measure of Syntac-012
tic Productivity–the combinatorial diversity of013
Determiner-Noun (D×N) pairs used to measure014
young children’s developing grammars–to four015
OpenAI LLMs whose training data is inaccessi-016
ble. We find children, their caretakers and pro-017
fessional writers show the statistical hallmark018
of Syntactic Productivity but LLM-generated019
texts do not (Figure 1).020

1 Introduction021

The success of LLMs has spurred significant re-022

search to characterize their capacity to represent023

linguistic structures in comparison to human lan-024

guage users.025

A prominent approach has focused on the devel-026

opment and use of benchmarks to probe for specific027

linguistic properties in LLMs. These range from028

extracting structures from internal representations029

(e.g., Hewitt and Manning, 2019; Tenney et al.,030

2019; McCoy et al., 2020; Tucker et al., 2021;031

Papadimitriou et al., 2021), to building tasks in-032

spired by psycholinguistic processing studies (e.g.,033

Chowdhury and Zamparelli, 2018; Wilcox et al.,034

2018; Hu et al., 2020), to classic acceptability035

rating tasks that theoretical linguists use to infer036

grammatical knowledge (e.g., Linzen et al., 2016;037

Warstadt et al., 2020; Huebner et al., 2021; Sin-038

clair et al., 2022). The evaluation paradigms typ-039

ically rely on benchmarking LLMs against fixed040

Figure 1: Syntactic productivity measure (overlap; Sec-
tion 2) of human language corpora (children, their care-
takers, and professional writers) and 4 LLM-generated
corpora from the OpenAI API. Each point indicates a
corpus. Human corpora show measures comparable
to the expectations under a fully productive grammar
(Section 3) but LLM corpora show significantly lower
measures of productivity (Section 4). The red reference
line indicates a perfect match between the two.

datasets, which either require the LLM to receive 041

task-specific fine-tuning, or require researchers to 042

carefully engineer prompts that adapt tasks into 043

formats that LLMs can interpret and perform well 044

on (Scao and Rush, 2021). However, this reliance 045

on prompt engineering introduces evaluation chal- 046

lenges, as model performance can be significantly 047

impacted by the choice of problem framing (Mishra 048

et al., 2022), choice and order of in-context exam- 049

ples (Zhao et al., 2021), the token and sentence 050

distribution in the prompt (Min et al., 2022), and 051

whether the model is of large enough size to learn 052

new priors in-context (Wei et al., 2023), among 053

other factors. 054

While the benchmarking approach has provided 055

valuable insights into LLMs’ linguistic capacity, 056

they are by design limited to the specific struc- 057

tural properties identified by the researcher and 058
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may provide an insufficiently representative cover-059

age of linguistic phenomena (McCoy et al., 2019;060

Vázquez Martínez, 2021; Wang et al., 2022; Guest061

and Martin, 2023; Vázquez Martínez et al., 2023).062

The rise of generative AI models necessitates the063

development of evaluation methods for open-ended064

LLM output (Chang et al., 2024).065

Implicit in the open-ended evaluation paradigm066

is the assumption that, if a text exhibits certain lin-067

guistic properties (e.g. subj-verb agreement), then068

its source must have learnt that property. Yet, if069

an LLM simply copies its training data, its output070

does not provide clear evidence for linguistic ab-071

straction (McCoy et al., 2023). Recent work has072

thus attempted to quantify the rate of ngram nov-073

elty (McCoy et al., 2023; Merrill et al., 2024) and074

structural diversity (Shaib et al., 2024) of text gen-075

erated by LLMs relative to their pretraining data.076

But, how can one evaluate closed-source LLMs077

or even open-weight LLMs whose training data is078

undisclosed?079

In this paper, we introduce a novel approach to080

LLM evaluation with specific focus on syntactic081

productivity that is agnostic to the model’s train-082

ing data. Our approach draws inspiration from083

the study of child language, where researchers fre-084

quently need to assess a learner’s underlying gram-085

mar based solely on a corpus of their language pro-086

duction. The Syntactic Productivity evaluation thus087

compares the open-ended output of LLMs to itself088

by calculating an expected productivity threshold089

based on the statistical profile of natural human090

language. We demonstrate how this can be done091

without access to any training data by applying092

the Syntactic Productivity evaluation to four Ope-093

nAI LLMs and compare their performance to how094

children, their caretakers and professional writers095

perform on the same test.096

Our contributions are as follows:097

• We adapt the method of Syntactic Productiv-098

ity drawn from the study of child language099

(Section 3) for application to AI-generated100

text.1101

• We validate our method by applying it to a102

subset of the child and caretaker speech in103

the CHILDES database (MacWhinney, 2000)104

as well as the Brown Corpus (Kučera and105

Francis, 1967). Our implementation repli-106

cates prior findings in the literature (Section107

1We will update this footnote with a link to the GitHub
repository in the deanonymized version.

4): Young children are indeed as syntactically 108

productive (Figure 2a) as their caretakers (Fig- 109

ure 2b) and as professional writers (Figure 110

3). 111

• We generate a large body of continuous nar- 112

rative text using the models available in the 113

OpenAI API as of 14.02.2025. We make 114

our datasets publicly available2 so that further 115

analyses of the LLMs’ outputs do not need to 116

incur similar token-generation expenses. 117

• We find that narrative text generated by LLMs 118

fails to show the statistical properties of pro- 119

ductivity (Figure 4), whereas the humans’ pre- 120

dicted and empirical overlap scores are statisti- 121

cally indistinguishable from each other across 122

all contexts (Figure 1; Section 5). 123

2 Measuring productivity in child 124

language 125

The defining feature of language is its infinite pro- 126

ductivity, as new words and sentences can always 127

be generated. A revealing method for uncovering 128

productivity, as shown in the celebrated Wug test 129

(Berko, 1958), is to provide the language learner 130

with novel input and assess whether appropriate 131

output forms can be generated. However, such 132

experimental approaches have certain task-related 133

complications that limit their applications. For 134

example, while children learn the English past 135

tense suffix (-ed) before age 3 as shown by occa- 136

sional over-regularization errors (e.g., goed; Kuczaj 137

1977), not even first graders consistently produced 138

-ed on the Wug test (Berko, 1958) as children often 139

struggle learning and using a novel word in an artifi- 140

cially induced setting. Comprehension studies also 141

carry extra cognitive demands. Even 4-year-olds 142

fail to completely accurately distinguish the tempo- 143

ral reference of "was" and "is" in an experimental 144

setting (Valian, 2006). 145

Hence, the investigation of early child language 146

has often focused on children’s naturalistic produc- 147

tion, which is least subject to performance con- 148

straints while also providing the most accessible 149

type of acquisition data. In particular, the combi- 150

nation of determiners (D) and nouns (N), or D×N 151

for short, has been a major focus in child language 152

research (Pine and Martindale, 1996; Valian et al., 153

2We will update this footnote with a link to the dataset in
the deanonymized version.
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2009; Pine et al., 2013). This is because determin-154

ers, especially singular determiners the and a,3 are155

highly frequent and thus well represented in child156

language. Despite its simplicity, D×N fully exhibits157

the hallmark of syntactic productivity: Any singu-158

lar noun used with the can also be used with a. A159

simple metric, dubbed overlap (Pine and Lieven,160

1997), has been widely used to quantify productiv-161

ity: the proportion of singular nouns used with both162

the and a out of those used with either (Equation163

1). The overlap value is bounded between 0 and 1:164

A higher value would be stronger evidence for pro-165

ductivity, but as we will see shortly, this intuition166

needs to be qualified.167

empirical =
1

|N |
∑
n∈N

1

[
∀d∈D Cd×n > 0

]
(1)168

Many previous studies of D×N focus on the com-169

parison of overlap values in children and their care-170

taker’s language. However, any corpus of caretaker171

language is only a small sample of a learner’s input172

data. Moreover, adults talk more and have larger173

vocabularies than children, so it has been difficult to174

develop “fair” comparisons across samples. A sta-175

tistical test for syntactic productivity (Yang, 2013;176

Goldin-Meadow and Yang, 2017) sidesteps these177

issues. This test calculates the expected value of178

D×N overlap in a corpus under the assumption that179

D×N is fully productive i.e., statistically indepen-180

dent.181

3 A Statistical Test for Productivity182

The test builds on two key statistical properties of183

language, one universal and the other specific to184

D×N in English. First, the test assumes that the185

frequencies of words, especially open class words186

such as nouns, follow Zipf’s or inverse power law187

distribution (Zipf, 1949; Baroni, 2009). As such, if188

a corpus contains |N | unique nouns in D×N com-189

binations, the noun with rank r has the expected190

probability (pr):191

pr =
1

raHn,a
192

whereHn,a =
n∑

i=1

1

ia
193

Hn,a is the generalized harmonic number with194

a as the exponent of inverse power law. In most195

3The phonological variant an is treated as a as it is an
independent developmental process.

cases a is approximately 1 following Zipf’s original 196

formulation but deviation from 1 can be accommo- 197

dated in the calculation. 198

Second, it is observed that in D×N combinations, 199

nouns tend to have a “favorite” determiner that 200

combines far more frequently with it than the other. 201

For example, bathroom greatly favors the over a 202

but for bath, the reverse is true. This imbalance, 203

referred to as bias (b), is defined as follows: 204

b =

∑
n∈N

max(Cthe×n, Ca×n)∑
n∈N

(Cthe×n + Ca×n)
(2) 205

where Cthe/a×n is the frequency of the/a combined 206

with noun n. The bias value is not part of the 207

grammar per se nor does it require learning: It is 208

unlikely that children track the frequency of bodily 209

functions (“the bathroom”) or hygienic practices 210

(“a bath”). Rather, the bias value is the vagaries of 211

life reflected in language use. As bath and bath- 212

room illustrate, not all nouns have the same favorite 213

determiners. Situational factors may also skew the 214

bias: a pediatrician will have more balanced use 215

for the and a for the noun baby than the parent of 216

a newborn. Nevertheless, as we show in Section 217

4, the bias value in aggregate is remarkably stable 218

across samples of English at b = 0.82. 219

Taken together, these two statistical properties 220

greatly enhance the applicability of the test. For 221

a corpus, one only needs S, the total number of 222

D×N combinations, and N , the number of unique 223

singular nouns. Once the exponent of Zipf’s Law is 224

obtained from frequencies of the N nouns, one can 225

compute the expected overlap value of each noun 226

in the set (Equation 3). 227

Er = 1− (1− pr)
S

− [(b ∗ pr + 1− pr)
S − (1− pr)

S ]

− [(1− b) ∗ pr + 1− pr)
S − (1− pr)

S ]

(3) 228

Taking the mean over all nouns in the sample 229

(Equation 4; the full derivation is given in (Yang, 230

2013, Supporting Information) yields the average 231

expected overlap, which is compared to the empiri- 232

cal value calculated in Equation 1. 233

E[S] =
1

N

N∑
r=1

Er (4) 234

If there are no statistically significant differences 235

between the empirical and expected overlap val- 236

ues, one can conclude that the D×N combinations 237
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are in fact consistent with a fully productive gram-238

mar.239

The syntactic productivity test is not limited to240

determiners and nouns but can be applied to any241

two combinatorial categories, as long as the closed242

class category has only two members and the open243

class category frequency can be approximated by244

Zipf’s Law. Moreover, it can be applied to de-245

tect both the presence and absence of productivity.246

For example, Goldin-Meadow and Yang (2017)247

adapted the test to the combinatorial structure of248

homesign, the gestural system created by deaf chil-249

dren in the absence of sign language input. The test250

finds that homesign combinations are fully produc-251

tive, providing independent evidence for traditional252

behavioral analysis. On the other hand, the test253

has been applied to the ASL sign combinations254

produced by Nim Chimpsky (Yang, 2013). Results255

show that Nim’s sign combinations show consid-256

erably less diversity than would be expected under257

a fully productive system, again supporting con-258

clusions based on frame-by-frame sign analyses259

(Terrace et al., 1979).260

We focus on the measure of D×N overlap specifi-261

cally because it is so well represented in children’s262

speech, and therefore studied in child language ac-263

quisition. D×N combinations enable us to draw264

a robust comparison between young children and265

LLMs, whereas pairs of closed and open class cat-266

egories that are acquired later would immediately267

preclude the children’s speech data from compari-268

son.269

4 Syntactic Productivity in Humans270

The first set of human language analyses is based271

on the Manchester corpus (Theakston et al., 2001).272

There are 12 dyads of typically developing children273

and their caretakers, and the transcripts are based274

on regular recording sessions between age 2 and 3.275

The Manchester Corpus is the largest longitudinal276

record of English language development for this277

age group and has been frequently used in child278

language acquisition research.279

Following previous work (Pine et al., 2013), a280

D×N combination is extracted if D is the or a and281

N is a singular noun that immediately follows D or282

with one non-noun intervening word. Data extrac-283

tion used the spaCy dependency parser (Honnibal284

and Johnson, 2015) which also provides POS tag-285

ging of the transcripts. The statistical conclusions286

of our study remain unchanged if we use the POS287

annotation provided in CHILDES. 288

We found that in the Manchester Corpus, the 289

nouns in both child and caretaker language show 290

excellent fit for the original Zipf’s Law with an av- 291

erage exponent of a = 1.03. Furthermore, as noted 292

earlier, D×N combinations in English are heavily 293

biased toward one of the two determiners. The bias 294

value estimated from the Corpus of Contemporary 295

American English (COCA; Davies, 2009) based on 296

Equation 2 is b = 0.82. Remarkably, the bias value 297

across the 12 dyads of children and caretakers is al- 298

most identical (mean = 0.814, sd = 0.03), and there 299

is no significant difference between the bias value 300

in child language samples and caretaker language 301

samples (paired t-test p = 0.612). Thus in all studies 302

we have used the universal bias value b = 0.82 for 303

expected overlap calculation. These values of a and 304

b were used to calculate the expected overlap value. 305

The results are shown in Figure 2, with Figure 1 306

putting them in context with all other syntactic pro- 307

ductivity samples tested. There is no statistically 308

significant difference between expected and empir- 309

ical values in the Manchester Corpus for children 310

(paired t-test: p = 0.334) nor for caretakers (paired 311

t-test: p = 0.733). 312

The second set of human language analyses is 313

based on the Brown Corpus (Kučera and Fran- 314

cis, 1967), a collection of professional print ma- 315

terials across a wide range of genres. To make 316

suitable comparisons with the Manchester Corpus, 317

we grouped successive files in the Brown Corpus 318

into 12 samples. The D×N combinations were ex- 319

tracted with spaCy following the method used for 320

the Manchester Corpus. The nouns in each sam- 321

ple do not follow the canonical Zipf’s Law with 322

exponent of 1. Rather, the average exponent of 323

the Brown Corpus samples is 0.771. We believe 324

that this is due to the nature of the Brown Corpus, 325

where each file is a relatively short document about 326

a particular topic. Collectively, the most frequent 327

nouns in each sample are much closer to each other 328

in frequency. By contrast, the speakers in the di- 329

alog samples in the Manchester Corpus had more 330

focused and extensive conversations about fewer 331

topic nouns. For the Brown corpus analysis, we 332

used the exponent a = 0.771 along with the univer- 333

sal bias value b = 0.82 to calculate the expected 334

overlap value in comparison to empirical values. 335

Figure 1 summarizes the results with additional 336

details in Figure 3. Once again, the difference be- 337

tween the expected and the empirical overlap 338

values is not statistically significant (paired t-test 339
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Figure 2: Scatter plot of expected and empirical pro-
ductivity measure (D×N overlap) for the 12 children and
their corresponding caretakers from the Manchester Cor-
pus (Theakston et al., 2001). No statistically significant
difference is found (paired t-test p = 0.334 children and
p = 0.771 for caretakers).

p = 0.586).340

Note the Syntactic Productivity test is not limited341

to D×N but is applicable to any rule that combines342

a two-member closed class category with an open343

class category. To further establish the robustness344

of the test, we extracted the Manchester Corpus345

verb lemmas inflected with either -ed or -ing from346

the Manchester corpus: the overlap measures the347

proportion inflected with both. Note that -ed and348

-ing are not fully interchangeable due to irregular349

verbs (e.g. *goed), . Thus, the empirical overlap350

for verb lemmas over -ed and -ing must be lower351

than the expected value, the latter of which is com-352

puted on the assumption of full interchangeability.353

Indeed, across the 24 dyad samples, the empirical354

values are significantly lower than the expected val-355

ues (paired t-test p < 0.001). However, once the356

irregular verbs are removed, the empirical overlap357

value of verb lemmas for -ed and -ing are not signif-358

icantly different from the expected value across the359

24 dyad samples (paired t-test p = 0.852) because360

Figure 3: Scatter plot of expected and empirical pro-
ductivity measured (D×N overlap) for 12 sections of
the Brown corpus (Kučera and Francis, 1967). No sta-
tistically significant difference is found (paired t-test
p = 0.562).

the two suffixes are indeed fully interchangeable 361

for regular verbs. 362

Taken together, the analyses of human language 363

illustrate the robustness of the test for detecting 364

both true positives of productivity such as adult 365

usage in Manchester and Brown as well as true 366

negatives, such as the counterfactual application 367

to verbal inflection. Next, we examine whether 368

LLMs constitute a true positive or a true negative 369

of syntactic productivity. 370

5 LLMs Fail Productivity Test 371

To evaluate the syntactic productivity of LLMs, 372

we need a sample of text from each model whose 373

raw count of D×N pairs (S) and unique nouns (N) 374

is comparable to that of the human data we use 375

as a baseline. While we would most easily ob- 376

tain AI-generated text from previously generated 377

detection tasks, these generally consist of short doc- 378

uments between 200 and 500 tokens (Kim et al., 379

2024a). We therefore generate multiple long-form 380

texts of at least 15K tokens with each of the four 381

most advanced OpenAI models available to us as 382

of 02.15.2025, listed in Table 1. 383

For each model, we compose a set of 15 384

NARRATIVE_TOPICS spanning different genres 385

(e.g., a science fiction story, an academic job talk, 386

an economics survey, among others), each with 387

three more follow up topics that keep the discourse 388

coherent. To prompt the models, we constructed a 389

list of NARRATIVE_TEMPLATES that can be filled in 390

with each of the 15 topics and follow ups. We addi- 391

tionally included a SYSTEM_PROMPT that instructs 392
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Figure 4: Scatter plot of expected and empirical productivity measures (D×N overlap) for 15 samples of narrative
texts generated by OpenAI models. The empirical values of overlap are considerably lower than the expected values
under full productivity (paired t-test, p < 0.001).

model N S

gpt-4o-2024-11-20 353 687
gpt-4o-mini-2024-07-18 608 1982
o1-mini-2024-09-12 407 1200
o1-preview-2024-09-12 563 1408

Table 1: The mean size of the AI-generated narrative
text measured in D×N combinations.

the model to write as coherently and in as much393

detail as possible in order to pass the Turing test.394

This yielded 15 long-form narratives for each of the395

four OpenAI models. We summarize the relevant396

statistics of the generated narratives, mainly S and397

N, in Table 1.398

As in the human analyses, D×N combinations399

are extracted from LLM texts using spaCy. Em-400

pirical analysis shows that on average, the inverse401

power law exponent of the nouns across 60 texts402

is a = 0.745 – analogous to that in the Brown cor-403

pus — which is used in the expected overlap cal-404

culation. We used the human universal bias value405

b = 0.82 to calculate the expected value of D×N406

overlap for the LLMs in comparison to the empir-407

ical values. The results are summarized in Figure408

1 with additional details in Figure 4. The expected409

values are significantly higher than the empirical410

values (paired t-test p < 0.001 for all four models).411

The LLM text showed a higher average bias value412

(0.92) than human texts but b = 0.82 still resulted413

in expected values significantly higher than the em-414

pirical values (p < 0.05 for all four models). We415

thus conclude that unlike human language learners416

and users, LLMs do not generate D×N combina-417

tions in a fully productive way.418

6 Related and Future Work 419

The present work falls in line with current ef- 420

forts to uncover human knowledge of language 421

encoded in LLMs using their textual output as a 422

proxy for their underlying grammars. This includes 423

efforts to quantify novelty in terms of lexical se- 424

quences—how often a model produces n-grams 425

not seen in its training data (McCoy et al., 2023; 426

Merrill et al., 2024)—as well as the syntactic tem- 427

plates in generated text (Shaib et al., 2024). These 428

approaches typically require access to the model’s 429

training corpus or high-quality estimates thereof, 430

limiting their applicability to closed-source sys- 431

tems or models trained on undisclosed data. The 432

Syntactic Productivity method evaluates the gener- 433

alization of closed-class elements across open-class 434

categories without requiring any knowledge of the 435

model’s training data. Training data notwithstand- 436

ing, the method maintains sensitivity to memorized 437

retrieval rather than productive generation. In other 438

words, LLMs that rely more on retrieval from the 439

training data will exhibit lower Syntactic Produc- 440

tivity by our measure. 441

A parallel line of research seeks to character- 442

ize the nature of LLM-generated text as it com- 443

pares to naturalistic human text (e.g., Muñoz-Ortiz 444

et al., 2024; Zanotto and Aroyehun, 2024). Al- 445

though notable progress has been made toward the 446

identification of an “AI-signature”, such as lexi- 447

cal overrepresentation (Juzek and Ward, 2024), or 448

reduced diversity of discourse motifs (Kim et al., 449

2024b), current methods cannot reliably detect it. 450

Automated AI-text detection methods operate at 451

unadvisable False Positive rates, perform poorly on 452

out-of-sample data, and are susceptible to adver- 453

sarial attacks (Dugan et al., 2024, 2025). On the 454

other hand, a high proportion of human participants 455

are also at chance when it comes to identifying 456

6



the source (human or not) of a given text (Jannai457

et al., 2023; Jones and Bergen, 2024; Clark et al.,458

2021). Encouragingly, recent studies also suggest459

that the level of exposure an individual has had to460

AI-generated text significantly improves their abil-461

ity to identify it (Dugan et al., 2023; Russell et al.,462

2025).463

LLMs’ open-ended outputs are thus distinct in464

ways that are characterizable with linguistic meth-465

ods. It follows that understanding the differences466

between LLMs’ and humans’ knowledge of lan-467

guage in a principled manner has scientific implica-468

tions for our understanding of language as a compu-469

tational construct, as well as practical implications470

for its identification in real-world use.471

7 Discussion472

Our results point to a significant difference in syn-473

tactic productivity between humans and LLMs as474

it pertains to D×N combinations, but it is difficult475

to ascertain the nature of such discrepancies. If476

LLMs are relying on memorization and retrieval477

of fixed D×N combinations from the training data,478

it is a mathematical fact that the overlap in D×N479

combinations will always be less than or equal to480

the overlap in the training data. That is because481

there will always be a nonzero probability that,482

when the D×N combinations are fixed, a given N is483

stochastically sampled with one determiner but not484

the other (Yang, 2013). This behavior would be485

reflected in LLMs’ over reliance on the memoriza-486

tion of lexically specific combinations (Juzek and487

Ward, 2025).488

Additional phenomena of syntactic productivity489

can be investigated as the test can be applied to any490

combinatorial process that meets the criterion of491

statistical independence and full interchangeability.492

8 Limitations493

While the productivity test can be applied to many494

combinatorial processes, it has two inherent lim-495

itations. First, the closed class category can only496

have two members (e.g., the and a in D). Adding497

more members (e.g., this and that) makes the math-498

ematical formulation intractable. Second, the test499

assumes that the categories combine in fully inter-500

changeable and thus statistically independent ways.501

While processes such as those studied in the present502

paper can be characterized as such, this is not the503

case for all rules in language, at least not in a way504

than lends readily to the test. For example, not505

all transitive verbs can passivize (“John resembles 506

Bill" cannot be passivized as “*Bill was resembled 507

by John"), not all dative verbs can appear in both 508

the double object construction (tell but not say) and 509

the to-dative construction (tell but not ask). 510

Despite observing a categorical distinction be- 511

tween human and AI-generated text, it would be 512

impractical to apply the Syntactic Productivity test 513

to the AI-text detection task. Firstly, the test of 514

Syntactic Productivity assumes the text under eval- 515

uation comes from some connected discourse. The 516

Zipfian distribution of nouns hinges upon discourse 517

being centered around a particular topic. For ex- 518

ample, if we scrambled all the sentences across the 519

Manchester Corpus and then reran the Syntactic 520

Productivity test, participants’ empirical scores 521

would exceed the predicted D×N overlap. 522

More practically, the volume of the text needed 523

to achieve statistically significant results is modest 524

but not trivial. For each of 60 samples generated by 525

the OpenAI models, we needed roughly 1,000 lines 526

of text after significant efforts to supply coherent 527

prompts and keep the models both on topic and 528

stop them from repeating text they had already 529

generated. In a setting where one may want to 530

find out whether the source of a particular text was 531

AI or human, 1000+ lines of text are rare to come 532

by, unless the text in question were a whole novel. 533

Therefore, the utility of our test as a tool for AI-text 534

detection is currently quite limited. 535

Finally, we acknowledge the limitations of our 536

prompting and text generation methods. We wrote 537

all prompt topics by hand in order to ensure di- 538

versity of theme and genre. More diversity, more 539

prompt topics, or perhaps more followups to the 540

topics could have been collected, with or without 541

the assistance of AI, to ensure more generalizable 542

conclusions. Yet the cost incurred to produce the fi- 543

nal dataset exceeded $500, the total budget allotted 544

to the project. We make our data publicly available 545

in the hopes that it be useful to other researchers 546

who study linguistic phenomena in long-form AI- 547

generated text. 548
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speaker N S bias r empirical predicted

Gail 291 741 0.879892 2.546392 0.182131 0.131964
Gail_mot 775 3012 0.862882 3.886452 0.238710 0.184154
Dominic 115 277 0.895307 2.408696 0.130435 0.130193
Dominic_mot 492 3637 0.814407 7.392276 0.272358 0.382441
Becky_mot 551 3060 0.840523 5.553539 0.323049 0.280750
Becky 354 1281 0.846214 3.618644 0.248588 0.203689
Liz_mot 566 2474 0.871059 4.371025 0.249117 0.203448
Liz 294 1135 0.881057 3.860544 0.255102 0.188859
Carl 398 3425 0.780146 8.605528 0.379397 0.470363
Carl_mot 473 3048 0.823491 6.443975 0.340381 0.338281
Joel_mot 756 2981 0.862798 3.943122 0.191799 0.187063
Joel 323 899 0.904338 2.783282 0.176471 0.121682
Ruth_mot 638 3688 0.818330 5.780564 0.285266 0.305849
Ruth 187 646 0.801858 3.454545 0.203209 0.244713
Aran 364 1499 0.824550 4.118132 0.255495 0.243752
Aran_mot 985 7073 0.823272 7.180711 0.297462 0.340261
Anne 300 1055 0.822749 3.516667 0.273333 0.219962
Anne_mot 673 5265 0.855461 7.823180 0.352155 0.338199
John_mot 674 3269 0.814010 4.850148 0.336795 0.267622
John 324 1479 0.814064 4.564815 0.274691 0.277488
Nicole_mot 753 3735 0.853280 4.960159 0.247012 0.236090
Nicole 189 458 0.879913 2.423280 0.179894 0.133672
Warren 367 2025 0.800000 5.517711 0.305177 0.329656
Warren_mot 747 4858 0.828119 6.503347 0.309237 0.319939

Table A4: Types (N), tokens (S), determiner bias score, token/type ratio (r), predicted and observed (empirical) raw
overlap values for 12 children and their corresponding caretakers in the Manchester Corpus.

N S bias r empirical predicted

0 1774 4743 0.820000 2.673600 0.233400 0.216500
1 1872 5152 0.820000 2.752100 0.212100 0.222200
2 1845 5226 0.820000 2.832500 0.213600 0.228600
3 1715 4195 0.820000 2.446100 0.192400 0.198700
4 1845 4598 0.820000 2.492100 0.209200 0.201800
5 1926 5033 0.820000 2.613200 0.209800 0.211100
6 1991 4948 0.820000 2.485200 0.217500 0.200700
7 2030 5228 0.820000 2.575400 0.217700 0.207700
8 1902 4897 0.820000 2.574700 0.208700 0.208100
9 1479 4347 0.820000 2.939100 0.220400 0.238800
10 1505 5450 0.820000 3.621300 0.268400 0.289100
11 1863 5442 0.820000 2.921100 0.230300 0.235300

Table A4: Types (N), tokens (S), determiner bias score, token/type ratio (r), predicted and observed (empirical) raw
overlap values for 12 sections of the Brown corpus.
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model trial N S bias r empirical predicted

gpt-4o-2024-11-20 1 304 567 0.820000 1.865132 0.095395 0.137723
gpt-4o-2024-11-20 2 407 814 0.820000 2.000000 0.108108 0.153538
gpt-4o-2024-11-20 3 413 975 0.820000 2.360775 0.152542 0.185942
gpt-4o-2024-11-20 4 300 524 0.820000 1.746667 0.086667 0.127352
gpt-4o-2024-11-20 5 345 650 0.820000 1.884058 0.110145 0.160066
gpt-4o-2024-11-20 6 368 781 0.820000 2.122283 0.122283 0.173534
gpt-4o-2024-11-20 7 391 783 0.820000 2.002558 0.112532 0.157004
gpt-4o-2024-11-20 8 347 661 0.820000 1.904899 0.112392 0.156128
gpt-4o-2024-11-20 9 363 718 0.820000 1.977961 0.132231 0.162352
gpt-4o-2024-11-20 10 294 479 0.820000 1.629252 0.091837 0.120483
gpt-4o-2024-11-20 11 297 531 0.820000 1.787879 0.077441 0.136122
gpt-4o-2024-11-20 12 357 688 0.820000 1.927171 0.120448 0.153388
gpt-4o-2024-11-20 13 391 763 0.820000 1.951407 0.094629 0.143709
gpt-4o-2024-11-20 14 366 747 0.820000 2.040984 0.103825 0.151978
gpt-4o-2024-11-20 15 352 618 0.820000 1.755682 0.088068 0.127715

Table A4: Types (N), tokens (S), determiner bias score, token/type ratio (r), predicted and observed (empirical) raw
overlap values for gpt-4o-2024-11-20.

model trial N S bias r empirical predicted

gpt-4o-mini-2024-07-18 1 717 2363 0.820000 3.295676 0.193863 0.245099
gpt-4o-mini-2024-07-18 2 616 1860 0.820000 3.019481 0.180195 0.236519
gpt-4o-mini-2024-07-18 3 589 1804 0.820000 3.062818 0.179966 0.241821
gpt-4o-mini-2024-07-18 4 604 2294 0.820000 3.798013 0.163907 0.262553
gpt-4o-mini-2024-07-18 5 564 1723 0.820000 3.054965 0.177305 0.229549
gpt-4o-mini-2024-07-18 6 537 1688 0.820000 3.143389 0.165736 0.245672
gpt-4o-mini-2024-07-18 7 547 1551 0.820000 2.835466 0.160878 0.223957
gpt-4o-mini-2024-07-18 8 666 2158 0.820000 3.240240 0.193694 0.249588
gpt-4o-mini-2024-07-18 9 691 2375 0.820000 3.437048 0.189580 0.260209
gpt-4o-mini-2024-07-18 10 492 1667 0.820000 3.388211 0.207317 0.255604
gpt-4o-mini-2024-07-18 11 529 1742 0.820000 3.293006 0.156900 0.230636
gpt-4o-mini-2024-07-18 12 705 2430 0.820000 3.446809 0.194326 0.256132
gpt-4o-mini-2024-07-18 13 609 2048 0.820000 3.362890 0.178982 0.255989
gpt-4o-mini-2024-07-18 14 613 1758 0.820000 2.867863 0.153344 0.224515
gpt-4o-mini-2024-07-18 15 610 1954 0.820000 3.203279 0.188525 0.227921

Table A4: Types (N), tokens (S), determiner bias score, token/type ratio (r), predicted and observed (empirical) raw
overlap values for gpt-4o-mini-2024-07-18.
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model trial N S bias r empirical predicted

o1-preview-2024-09-12 1 544 1345 0.820000 2.472426 0.128676 0.203507
o1-preview-2024-09-12 2 725 2313 0.820000 3.190345 0.158621 0.233397
o1-preview-2024-09-12 3 603 1503 0.820000 2.492537 0.116086 0.199715
o1-preview-2024-09-12 4 530 1212 0.820000 2.286792 0.141509 0.202243
o1-preview-2024-09-12 5 586 1575 0.820000 2.687713 0.139932 0.221396
o1-preview-2024-09-12 6 549 1315 0.820000 2.395264 0.136612 0.203304
o1-preview-2024-09-12 7 665 1938 0.820000 2.914286 0.160902 0.232420
o1-preview-2024-09-12 8 554 1165 0.820000 2.102888 0.135379 0.179700
o1-preview-2024-09-12 9 461 935 0.820000 2.028200 0.119306 0.178230
o1-preview-2024-09-12 10 486 1188 0.820000 2.444444 0.148148 0.205791
o1-preview-2024-09-12 11 570 1490 0.820000 2.614035 0.112281 0.211588
o1-preview-2024-09-12 12 640 1645 0.820000 2.570312 0.120313 0.211472
o1-preview-2024-09-12 13 516 1188 0.820000 2.302326 0.129845 0.198295
o1-preview-2024-09-12 14 590 1354 0.820000 2.294915 0.113559 0.188407
o1-preview-2024-09-12 15 420 954 0.820000 2.271429 0.135714 0.195233

Table A4: Types (N), tokens (S), determiner bias score, token/type ratio (r), predicted and observed (empirical) raw
overlap values for o1-preview-2024-09-12.

model trial N S bias r empirical predicted

o1-mini-2024-09-12 1 466 1121 0.820000 2.405579 0.113734 0.202470
o1-mini-2024-09-12 2 381 1011 0.820000 2.653543 0.078740 0.214553
o1-mini-2024-09-12 3 419 1790 0.820000 4.272076 0.155131 0.294557
o1-mini-2024-09-12 4 353 1091 0.820000 3.090652 0.127479 0.250204
o1-mini-2024-09-12 5 415 1313 0.820000 3.163855 0.113253 0.253715
o1-mini-2024-09-12 6 390 1104 0.820000 2.830769 0.110256 0.232185
o1-mini-2024-09-12 7 376 1038 0.820000 2.760638 0.069149 0.248325
o1-mini-2024-09-12 8 411 1220 0.820000 2.968370 0.136253 0.246390
o1-mini-2024-09-12 9 508 1717 0.820000 3.379921 0.127953 0.259590
o1-mini-2024-09-12 10 324 917 0.820000 2.830247 0.064815 0.214257
o1-mini-2024-09-12 11 374 1077 0.820000 2.879679 0.114973 0.238506
o1-mini-2024-09-12 12 421 1108 0.820000 2.631829 0.097387 0.223555
o1-mini-2024-09-12 13 396 1239 0.820000 3.128788 0.093434 0.242729
o1-mini-2024-09-12 14 476 1226 0.820000 2.575630 0.102941 0.216957
o1-mini-2024-09-12 15 393 1027 0.820000 2.613232 0.127226 0.223354

Table A4: Types (N), tokens (S), determiner bias score, token/type ratio (r), predicted and observed (empirical) raw
overlap values for o1-mini-2024-09-12.
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