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Abstract

We propose a new framework for robust nonparametric estimation of optimal
treatment regimes under flexible fairness constraints. Under standard regularity
conditions we show that the resulting estimators possess the double robustness
property. We use this framework to characterize the trade-off between fairness and
the maximum utility that is achievable by the optimal treatment policy.

1 Introduction

In today’s world, an increasing number of decisions that affect people’s lives are automatically made
by machine learning models. Such decision-making systems are implemented in various settings
ranging from financial investment to healthcare policy. Considering the importance of such decisions
at an individual and societal level, it is crucial to ensure that the underlying models are not only
accurate but fair. In this work, by fairness we mean that the models are not biased so that they do
not systematically benefit or harm a specific group of people, such as a minority ethnic group. The
need to address such algorithmic biases has given rise to an explosion of works studying algorithmic
fairness (e.g., see [3] for a review). However, despite the considerable amount of studies in this
area, comparatively little attention has been given to fairness in causal inference. In this work, we
propose a novel framework for estimating optimal treatment assignments or regimes in a fair and
robust manner, leveraging recent developments in counterfactual optimization [20, 21].

1.1 Related Work

Much of the earlier work on estimating optimal treatment regimes involves postulating a parametric
model for the outcome regression function [e.g., 4, 10, 30, 37]. More robust approaches based on the
idea of doubly robust estimation have also been proposed, for example, in [46, 47]. In recent studies
[1, 13, 22], flexible nonparametric approaches are discussed where an optimal policy is deployed
from a pre-specified class that can encode problem-specific constraints. However, they do not provide
means to incorporate general fairness constraints.

In order to mitigate algorithmic biases where model performance varies over sensitive features, a
wide array of fairness criteria have been developed typically by placing restrictions on the joint
distribution of model outcomes and sensitive features. Popular fairness criteria include independence
(or statistical parity) [3] and separation (or equalized odds) [9]. In some cases such as risk assessment
settings [e.g., 7], counterfactual fairness may be of interest where fairness criteria depend on potential
(or counterfactual) outcomes with respect to the sensitive feature [e.g., 23, 31] or a decision variable
[e.g., 7, 28, 29]. Some proposed constraint-based frameworks to flexibly incorporate such fairness
criteria in classification [e.g., 28, 45], but it is not clear how to extend these frameworks to enable the
design of fair optimal treatment regimes. It is also well known that there exists a fairness-accuracy
tradeoff, because in some cases the most accurate models under consideration do not satisfy a chosen
fairness criterion [e.g., 27, 29, 36]. However, the tradeoff between fairness and treatment utility, if
any, has never been formally explored.
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Interestingly, little work has been done at the intersection of these two areas. Most results in
the algorithmic fairness literature are not directly applicable to optimal treatment regimes where
our objective function involves a particular form of counterfactual functionals. A few important
exceptions include [32] which integrates algorithmic fairness and policy learning using tools from
mediation analysis, and [44] which proposes an estimator for the Pareto optimal policy that minimizes
unfairness through a mixed-integer quadratic programming.

1.2 Contribution

Our method builds on a promising literature at the intersection of algorithmic fairness, causal
inference, and stochastic optimization, bridging the gap between algorithmic fairness and optimal
treatment regimes. At this intersection, our contribution is twofold. First, we propose a robust
estimator of optimal treatment regimes under general fairness constraints. We cast our estimator
as a convex quadratic program that can be readily solved with off-the-shelf solvers. We show
that the resulting estimators are doubly robust under standard regularity conditions. Our proposed
approach contributes to [32] in terms of robustness, and to [44] in terms of ease of implementation
and interpretability. Second, by analyzing the regret bound, we characterize the trade-off between the
maximum possible benefit and fairness. This will be useful for understanding, for example, how a
desired level of fairness requires a utility compromise.

2 Setup and Framework

2.1 Optimal Treatment Regimes

Suppose that we have access to an i.i.d. sample (Z1, ..., Zn) of n tuples Z = (Y,A, S,X) ∼ P for
some distribution P, outcome Y ∈ R, binary intervention A ∈ {0, 1}, sensitive feature S ∈ {0, 1},
and additional covariates X ∈ X ⊂ Rdx for some compact subset X . Throughout we assume
larger values of Y are preferred. We let W = (S,X) ∈ W represent the measured pre-intervention
variables and let Y a denote the potential outcome that would have been observed (possibly contrary
to fact) under treatment or intervention A = a. A policy maker has to choose a treatment policy or a
treatment regime1 that is a function g : W → {0, 1} to determine whether individuals with covariates
W will be assigned to the treatment 0 or 1. For an arbitrary treatment regime g, we define the welfare
or utility function for which the treatment regime g ∈ G is applied to the population P by

U(g) = E
{
Y 1g(W ) + Y 0 (1− g(W ))

}
.

Throughout we assume the standard causal assumptions of consistency, no unmeasured confounding,
and positivity [e.g., 11, Chapter 12]. Under these assumptions, it is straightforward to show that the
optimal treatment regime leading to the largest value of U(g) is given by

g∗(W ) = 1 {µ1(W ) > µ0(W )} , (1)

where µa(W ) = E[Y | W,A = a],∀a ∈ {0, 1}; i.e., the optimal regime assigns the treatment that
yields the larger mean outcome conditional on the individual characteristics.2

2.2 Simple Motivating Example

Sometimes, efficient estimation of g∗ in (1) alone can result in unfair treatment policies. Consider the
following simple data-generating process

A ∼ Bernoulli(0.5), X ∼ Unif [−1, 1]

P(S = 1) = expit(7.5X), µa(W ) = AX,

where expit and Unif(l, u) denote the inverse logit function and the uniform distribution over the
interval [l, u]. Then the optimal treatment regime is 1(X > 0). However, when we generate 100
samples, as can be seen in Figure 1, a serious fairness problem is observed; under the optimal
treatment regime only less than 7% of individuals with S = 0 are treated, while more than 95% of
individuals in the untreated group are S = 0.

1In this work, we use the terms "treatment policy" and "treatment regime" interchangeably to refer to any
mapping from the pre-treatment variables to the treatment.

2Here, the strict inequality follows from the convention [see, e.g., 46].
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Figure 1: When the optimal treatment regime is applied, only less than 7% of individuals with S = 0
are treated while more than 95% of individuals in the untreated group are S = 0.

Here, group S = 0 is discriminated by the estimated optimal treatment regime that is designed to
result in the greatest benefit overall in the population. In data-driven decision-making, this kind of
algorithmic bias can lead to critical issues in the real world as illustrated in the following examples.

• Stop-and-Frisk: if A represents the policing practice of stop-and-frisk program, the estab-
lished optimal treatment regime could be used as a recipe for discriminatory practice of
stop-and-frisk toward specific ethnic groups.

• Medical Resource Allocation: if A represents access to medical treatment or health care
resources, many recent studies advocate not only cost-effectiveness but also other ethical
values for rationing limited health resources [e.g., 8, 36].

2.3 Proposed Framework

In this section, we lay out a framework for estimating optimal treatment regimes where we can
minimize algorithmic unfairness below a particular level. Our strategy is to estimate each outcome
regression function µa satisfying desired fairness criteria, and then plug back into the formula (1) so
that the same fairness criteria are also satisfied in the optimal regime.

Specifically, we aim to estimate a functional approximation of µa, defined by a projection onto a
finite-dimensional parametric model subject to fairness constraints. Our target parameter can be
reformulated as the following constrained stochastic optimization problem

minimize
β∈B

LMSE
(
Y a, β⊤b(W ))

)
:= E

{(
Y a − β⊤b(W )

)2}
subject to β ∈ Cfair :=

{
β
∣∣ ∣∣E{gj(Y a,W )β⊤b(W )

}∣∣ ≤ δj , j ∈ J
}
,

β ∈ Clin

(Pµa )

for some δj ≥ 0 and J = {1, ...,m}. δj is a prespecified tolerance for the maximum acceptable
level of unfairness. The solution of the above program corresponds to the coefficients of the
estimated best-fitting function of µa on the finite-dimensional model space spanned by the basis
functions b(W ) = [b1(W ), ..., bk(W )]⊤ subject to m fairness constraints in Cfair. Clin is a set of
other deterministic linear constraints which could be used for penalization or incorporating prior
information. This can be generalized to the nonlinear constraints at the expense of stronger regularity
conditions [20]. Note that we do not assume anything about the true functional relationship between
Y a and W . This form of aggregated estimators are widely used in nonparametric regression [e.g.,
12, 42].

Following [28], we use the canonical form of fairness function gj : W ×Y → R to accommodate a
broad range of fairness measures. For example, the criterion of independence that requires our model
to be independent of the sensitive feature can be applied by letting

gj(Y
a,W ) =

1− S

E(1− S)
− S

E(S)
,
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which leads to
∣∣E{β⊤b(W ) | S = 0

}
− E

{
β⊤b(W ) | S = 1

}∣∣ ≤ δj . We refer to [28, Section 3]
for more examples.

Similar projection approaches have also been used in causal inference [e.g., 19, 34, 39]. There are
several reasons why the above projection approach is preferred in our setting. First, as will be seen
shortly, the coefficients β may be estimated with flexible nonparametric methods while achieving the
property of double robustness and tractable inference, and so does the target parameter g∗. It also
provides interpretability; it allows practitioners to understand and audit the resulting optimal regimes
according to the specified level of unfairness. Further, one may flexibly incorporate not only various
fairness constraints but also other practical constraints into estimation. Finally, the optimal solution
of (Pµa

) can be readily estimated by solving the convex quadratic program that approximates (Pµa
),

which will be described in the following section.
Remark 1. Another notable feature of our framework is that as in [20] we can consider a general
setting where only a subset of covariates V ⊆ W can be used for predicting the counterfactual
outcome Y a. This allows for runtime confounding, where some factors used by decision-makers
are recorded in the training data (used to construct nuisance estimates) but are not available for
prediction (see [6] and references therein).

Notation. Here we briefly introduce some notation used throughout this paper. For any fixed vector
v, we let ∥v∥q denote the Lq-norm. Let Pn denote the empirical measure over (Z1, ..., Zn). Given a
sample operator h (e.g., an estimated function), we let P denote the conditional expectation over a
new independent observation Z, as in P(h) = P{h(Z)} =

∫
h(z)dP(z) 3. Then we use ∥h∥q,P to

denote the Lq(P) norm of h defined by ∥h∥q,P =
[∫

|h(z)|qdP(z)
] 1

q . Lastly, we let ≲ denote less
than or equal to up to a nonnegative constant.

3 Estimation and Inference

(Pµa ) is not directly solvable so we need to find an approximating program of the “true" program
(Pµa ). A complication arises since standard approaches to stochastic programming such as stochastic
approximation (SA) and sample average approximation (SAA) [e.g., 33, 40] are infeasible in our
setting, because i) the relevant sample moments and stochastic (sub)gradients depend on unobserved
counterfactuals, and ii) these approaches cannot incorporate efficient semiparametric estimators with
cross-fitting [5, 35]. We therefore build our estimators on the recent developments by [20, 21] where
counterfactual components are estimated more flexibly.

For convenience, define the following:

πa(X) = P[A = a | X],

φa(Z; η) =
1(A = a)

πa(X)
{Y − µA(X)}+ µa(X).

φa is the uncentered efficient influence function for the parameter E {E[Y | X,A = a]} with a set of
the nuisance components defined by η = {πa(X), µa(X)} [15].

First, we provide influence-function-based semiparametric estimators for each component of (Pµa ).
Following [5, 16, 38, 48], we propose to use sample splitting (or cross fitting) to allow for arbitrarily
complex nuisance estimators η̂. Specifically, we split the data into K disjoint groups, each with
size n/K approximately, by drawing variables (B1, ..., Bn) independent of the data, with Bi = b
indicating that subject i was split into group b ∈ {1, ...,K}. Then the semiparametric estimators for
LMSE and each element in Cfair based on the efficient influence function and sample splitting are given
by

1

K

K∑
b=1

Pb
n

{(
φa(Z; η̂−b)− β⊤b(W )

)2} ≡ Pn

{(
φa(Z; η̂−K)− β⊤b(W )

)2}
,

1

K

K∑
b=1

Pb
n

{
gj(φa(Z; η̂−b),W )β⊤b(W )

}
≡ Pn

{
gj(φa(Z; η̂−K),W )β⊤b(W )

}
,

3When h is a fixed operator, P and E are used interchangeably.
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where we let Pb
n denote empirical averages only over the set of units {i : Bi = b} in group b

and let η̂−BK
denote the nuisance estimator constructed only using those units {i : Bi ̸= b}.

Under weak regularity conditions, these sample-splitting-based semiparametric estimators attain the
efficiency bound with the double robustness property, and thus allow us to employ flexible machine
learning estimation methods while achieving the

√
n-rate of convergence and valid inference [15]4.

Consequently, our approximating program can be found as the following convex quadratic program
(QP)

minimize
β∈B

Pn

{(
φa(Z; η̂−b)− β⊤b(W )

)2}
subject to β ∈ Ĉfair, β ∈ Clin,

(P̂µa
)

where Ĉfair :=
{
β
∣∣ ∣∣Pn

{
gj(φa(Z; η̂−b),W )β⊤b(W )

}∣∣ ≤ δj , j ∈ J
}

. (P̂µa
) can be readily solved

using off-the-shelf QP solvers. Next, we introduce the following assumptions for our counterfactual
component estimators.

(A1) P(π̂a ∈ [ϵ, 1− ϵ]) = 1 for some ϵ > 0

(A2) ∥µ̂a − µa∥2,P = oP(1) or ∥π̂a − πa∥2,P = oP(1)

(A3) ∥π̂a − πa∥2,P∥µ̂a − µa∥2,P = oP(n
− 1

2 )

Assumptions (A1) - (A3) are commonly used in semiparametric estimation in the causal inference
literature [14]. In the following theorem, we provide the large-sample properties of our proposed
estimator.
Theorem 3.1. Let β∗ and β̂ denote the optimal solutions to (Pµa ) and (P̂µa ), respectively. If
Assumptions (A1) and (A2) hold, then

∥β̂ − β∗∥2 = OP

(
∥π̂a − πa∥2,P∥µ̂a − µa∥2,P ∨ n− 1

2

)
.

If we additionally assume (A3), uniqueness of β∗, and that the Linear Independence Constraint
Qualification (LICQ) and Strict Complementarity (SC) hold at β∗, then

√
n(β̂ − β∗) converges in

distribution to a zero-mean normal random variable. Further, β̂ is efficient, meaning that there exist
no other regular asymptotically linear estimators that are asymptotically unbiased and have smaller
variance.

The above result immediately follows by Theorems 3.1 and 3.2 of [21], and gives conditions under
which β̂ is

√
n-consistent and asymptotically normal. Thus, asymptotically valid confidence intervals

and hypothesis tests can be constructed via the bootstrap. LICQ and SC are regularity conditions
commonly found in the optimization literature [e.g., 40, 41]; see Appendix A for the formal definitions.
The uniqueness of β∗ simply requires that our basis functions are never perfectly collinear.

Once we obtain β̂1 and β̂0 through (P̂µa
), our proposed estimator for g∗ is given by

ĝ(W ) = 1

{
β̂⊤
1 b(W ) > β̂⊤

0 b(W )
}
. (2)

Following the convention in the literature, we evaluate the performance of the above estimated
treatment regime ĝ in terms of the utility loss or regret relative to the maximum obtainable utility
U(g∗), i.e., U(g∗)− U(ĝ), as will be analyzed in the following section in detail.

4 Regret Bounds and Fairness-Welfare Tradeoff

Here, we analyze the regret upper bounds and discuss its implication in incorporating fairness
into optimal treatment regimes. To derive the upper bounds we require a margin condition, which
restricts the probability that the two outcome regression functions get too close to each other in the
neighborhood of µ1 = µ0.

4If one is willing to rely on appropriate empirical process conditions (e.g., Donsker-type or low entropy
conditions [43]), then η can be estimated on the same sample without sample splitting. However this would limit
the flexibility of the nuisance estimators.
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Definition 4.1 (Margin Condition). For some α > 0 and for all t, we have that

P(|µ1(W )− µ0(W )| ≤ t) ≲ tα. (3)

The above margin condition is analogous to that used in [17, 22, 25, 26] as well as other problems
involving estimation of non-smooth parameters such as classification [2], clustering [24].

In the next lemma, adapting the comparison lemmas in [2], we give two useful inequalities between
the regrets and the general Lq risks of the corresponding outcome regression estimators proposed in
the previous section under the margin condition.
Lemma 4.1. Assume that the margin condition (3) holds with the margin exponent α > 0, and let
∆ ≡ ∆(W ) = µ1(W )− µ0(W ) and ∆̂ ≡ ∆̂(W ) = β̂⊤

1 b(W )− β̂⊤
0 b(W ). Then we have

U(g∗)− U(ĝ) ≲
∥∥∥∆̂−∆

∥∥∥α+1

∞,P
.

Further, for any 1 ≤ q < ∞, we have

U(g∗)− U(ĝ) ≲
∥∥∥∆̂−∆

∥∥∥ q(1+α)
q+α

q,P
.

Based on the above lemma, the next theorem gives the upper bounds of the utility regret for our
proposed estimator ĝ in (2). Our results are asymptotic in the sample size n.
Theorem 4.1. Assume (A1) and (A2) and that the margin condition (3) holds with the margin
exponent 0 < α < ∞. Also let

β∗
a = argmin

β∈B
E
{(

Y a − β⊤b(W )
)2}

, (4)

and define the remainder terms

R1,n = OP

(
∥π̂(W )− π(W )∥2,P max

a
∥µ̂a(W )− µa(W )∥2,P ∨ n− 1

2

)
,

R2 = O

∑
a,j

λj ∥gj(Y a,W )b(W )∥2,P

 ,

where λj ≥ 0 is the Lagrange multiplier associated with the j-th fairness constraint in (Pµa ). Then
we have

(i) U(g∗)− U(ĝ) ≲ max
a

∥∥∥µa(W )− β̂⊤
a b(W )

∥∥∥1+α

∞,P
+R1+α

1,n +R1+α
2 ,

(ii) Pr {ĝ(W ) ̸= g∗(W )} ≲ max
a

∥∥∥µa(W )− β̂⊤
a b(W )

∥∥∥α
∞,P

+Rα
1,n +Rα

2 ,

(iii) U(g∗)− U(ĝ) ≲ max
a

∥∥∥µa(W )− β̂⊤
a b(W )

∥∥∥ q(1+α)
q+α

q,P
+R

q(1+α)
q+α

1,n +R
q(1+α)
q+α

2 ,∀1 ≤ q < ∞.

A sketch of the proof is given in Appendix C. In (ii), Pr {ĝ(W ) ̸= g∗(W )} indicates a probability
that ĝ differs from the true optimal treatment policy g∗ over a new observation. Theorem 4.1 shows
that the utility regret depends on both the nuisance estimation accuracy and the level of fairness which
we would like to attain.

Specifically, each bound listed in Theorem 4.1 consists of three terms. The first term is an unavoidable
modeling error minimized through least square estimation, which will vanish if µa(·) lies in the
function space spanned by the basis functions b(·). From 4, one may further bound this modeling
error to obtain a more interpretable form by noticing that∣∣∣µa(W )− β∗

a
⊤b(W )

∣∣∣ ≤√min
β

E
[
{Y a − β⊤b(W )}2

∣∣W].
The second term, R1,n, is a doubly robust second-order term that will be small if either π or µa are
estimated accurately. In nonparametric modeling, the condition ∥π̂−π∥2,P∥µ̂a−µa∥2,P = OP(n

− 1
2 )
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substantially lowers the bar for the nuisance estimator convergence rate, which allows much more
flexible methods to be employed while still achieving

√
n rates; for example, it suffices that these

nuisance functions are estimated consistently at n
1
4 rates.

The third term, R2, has particularly important implications. It measures the imbalances in covariate
distributions with respect to the sensitive feature, which is closely related to the level of unfairness in
the optimal treatment policy; the larger the imbalances, the more likely the estimated optimal policies
are unfair. If we use small values of the tolerance level δj so that the optimum β∗ is constrained
by the j-th fairness constraint, then the corresponding Lagrange multiplier, λj , is positive. On the
contrary, if we loosen the standard by using large values of δj so that the j-th fairness constraint does
not constrain β∗, λj is set to zero. Therefore, our attempts toward making optimal treatment policies
more fair may lead to an additional welfare loss (regret) relative to the universally maximum feasible
utility U(g∗). In other words, there is a tradeoff between fairness in the optimal treatment regime and
the maximum utility.

In short, Theorem 4.1 implies that although the proposed approach has considerably reduced the
burden on nuisance estimation, regardless how accurately we estimate the nuisance components there
is a price that comes with imposing fairness constraints for the optimal treatment regime to achieve
the desired fairness level.

5 Discussion

We propose a new framework for fair and robust estimation of optimal treatment regimes. Our method
is easily implementable and allows practitioners to flexibly incorporate various fairness constraints to
meet the desired level of fairness. This affords new opportunities to leverage the recent development
in algorithmic fairness for optimal treatment regimes.

There are two important messages in our regret bound analysis. First, the proposed estimator is robust
against model misspecification and allow to use more flexible nonparametric methods while still
achieving

√
n convergence rates to the maximum utility. Second, there is a tradeoff between fairness

and the maximum utility, which is independent of accuracy of the nuisance estimation.
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APPENDIX

A Formal Definitions of the Regularity Conditions

First, for a feasible point β̄ ∈ Cfair we define the active index set.
Definition A.1 (Active set). For β̄ ∈ Cfair, we define the active index set J0 by

J0(β̄) = {1 ≤ j ≤ m | gj(β̄) = 0}.

In what follows, we define LICQ and SC with respect to (Pµa
).

Definition A.2 (LICQ). Linear independence constraint qualification (LICQ) is satisfied at β̄ ∈ S if
the vectors ∇βgj(β̄), j ∈ J0(β̄) are linearly independent.
Definition A.3 (SC). Let L(β, γ) be the Lagrangian. Strict Complementarity (SC) is satisfied at
β̄ ∈ S if, with multipliers γ̄j ≥ 0, j ∈ J0(β̄), the Karush-Kuhn-Tucker (KKT) condition

∇βL(β̄, γ̄) := ∇βL(β̄) +
∑

j∈J0(β̄)

γ̄j∇βgj(β̄) = 0,

is satisfied such that γ̄j > 0,∀j ∈ J0(β̄).

LICQ is arguably one of the most widely-used constraint qualifications that admit the first-order
necessary conditions. SC means that if the j-th inequality constraint is active then the corresponding
dual variable is strictly positive, so exactly one of them is zero for each 1 ≤ j ≤ m. SC is widely
used in the optimization literature, particularly in the context of parametric optimization [e.g., 40, 41].

B Proof of Lemma 4.1

Proof. The proof mimics the proofs of Lemma 5.1 and Lemma 5.2 in [2]. To show the first inequality,
note that

U(g∗)− U(ĝ) = P
[
∆
(
1 {∆ > 0} − 1

{
∆̂ > 0

})]
≤ P

[
|∆|
(
1

{
|∆| ≤

∣∣∣∆̂−∆
∣∣∣})]

≤
∥∥∥∆̂−∆

∥∥∥
∞,P

P
{
|∆| ≤

∥∥∥∆̂−∆
∥∥∥
∞,P

}
≲
∥∥∥∆̂−∆

∥∥∥α+1

∞,P
,

where the first inequality follows by Lemma 1 of [18] and the last by the margin condition.

Next, for any t > 0 we have

U(g∗)− U(ĝ) ≤ P
[
|∆|
(
1

{
|∆| ≤

∣∣∣∆̂−∆
∣∣∣})1 {|∆| ≤ t}

]
+ P

[
|∆|
(
1

{
|∆| ≤

∣∣∣∆̂−∆
∣∣∣})1 {|∆| > t}

]
≤ P

[∣∣∣∆̂−∆
∣∣∣1 {|∆| ≤ t}

]
+ P

[∣∣∣∆̂−∆
∣∣∣1{∣∣∣∆̂−∆

∣∣∣ > t
}]

≤
∥∥∥∆̂−∆

∥∥∥
q,P

Pr {|∆| ≤ t}
q−1
q +

∥∥∥∆̂−∆
∥∥∥
q,P

(
P|∆̂−∆|q

tq

) q−1
q

≲
∥∥∥∆̂−∆

∥∥∥
q,P

t
q−1
q +

∥∥∥∆̂−∆
∥∥∥q
q,P

tq−1
,

where the third inequality follows by the Hölder and Markov inequalities and the last by the margin

condition. Now, the RHS in the last display is minimized when t = O

(∥∥∥∆̂−∆
∥∥∥ q

q+α

q,P

)
, yielding

U(g∗)− U(ĝ) ≲
∥∥∥∆̂−∆

∥∥∥ q(1+α)
q+α

q,P
.
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C Proof of Theorem 4.1 (Sketchy)

Proof. It suffices to show the results in the part (i). By the first inequality in Lemma 4.1, we have

U(g∗)− U(ĝ) ≲ max
a

∥∥∥µa(W )− β̂⊤
a b(W )

∥∥∥α+1

∞,P

Recall that β∗
a denotes an optimal solution to the following unconstrained optimization problem

β∗
a = minimize

β∈B
E
{(

Y a − β⊤b(W )
)2}

,

and let β̃a be an optimal solution to (Pµa
). Then ∀a, by the triangle and Cauchy–Schwarz inequalities,∣∣∣µa(W )− β̂⊤

a b(W )
∣∣∣ ≤ ∣∣∣µa(W )− β∗

a
⊤b(W )

∣∣∣+ ∥b(W )∥2
{
∥β∗

a − β̃a∥2 + ∥β̃a − β̂a∥2
}
.

Next, one may show that

∥β∗
a − β̃a∥2 ≲

∑
j

λj ∥gj(Y a,W )b(W )∥2,P

by noticing that (4) and (Pµa
) can be viewed as the same form of a parametrized program (after

writing (4) as a Lagrange dual form) and then applying the stability results [41, Chapter 6]. Further,
by Theorem 3.1, it follows that

∥β̃a − β̂a∥2 = OP

(
n− 1

2 ∨ ∥π̂(W )− π(W )∥2,P max
a

∥µ̂a(W )− µa(W )∥2,P
)
.

Since 0 < α < ∞, we obtain the desired result by putting the pieces together due to Minkowski’s
inequality.

Then the part (ii) immediately follows by the fact that

Pr {ĝ(W ) ̸= g∗(W )} = P {|ĝ(W )− g∗(W )|}

≤ P

[
1

{
|µ1(W )− µ0(W )| ≤

∑
a

∣∣∣µa(W )− β̂⊤
a b(W )

∣∣∣}]
≲ max

a

∥∥∥µa(W )− β̂⊤
a b(W )

∥∥∥α
∞,P

.

12


	Introduction
	Related Work
	Contribution

	Setup and Framework
	Optimal Treatment Regimes
	Simple Motivating Example
	Proposed Framework

	Estimation and Inference
	Regret Bounds and Fairness-Welfare Tradeoff
	Discussion
	Formal Definitions of the Regularity Conditions
	Proof of Lemma 4.1
	Proof of Theorem 4.1 (Sketchy)

