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ABSTRACT

Recently, universal waveform generation tasks have been investigated conditioned
on various out-of-distribution scenarios. Although one-step GAN-based methods
have shown their strength in fast waveform generation, they are vulnerable to
train-inference mismatch scenarios such as two-stage text-to-speech. Meanwhile,
diffusion-based models have shown their powerful generative performance in other
domains; however, they stay out of the limelight due to slow inference speed in
waveform generation tasks. Above all, there is no generator architecture that can
explicitly disentangle the natural periodic features of high-resolution waveform
signals. In this paper, we propose PeriodWave, a novel universal waveform gener-
ation model from Mel-spectrogram and neural audio codec. First, we introduce
a period-aware flow matching estimator that effectively captures the periodic fea-
tures of the waveform signal when estimating the vector fields. Additionally, we
utilize a multi-period estimator that avoids overlaps to capture different periodic
features of waveform signals. Although increasing the number of periods can
improve the performance significantly, this requires more computational costs. To
reduce this issue, we also propose a single period-conditional universal estimator
that can feed-forward parallel by period-wise batch inference. Additionally, we
first introduce FreeU to reduce the high-frequency noise for waveform generation.
Furthermore, we demonstrate the effectiveness of the proposed method in neural
audio codec decoding task, and present the streaming generation framework of
non-autoregressive model for speech language models. The experimental results
demonstrated that our model outperforms the previous models in reconstruction
tasks from Mel-spectrogram and discrete token, and text-to-speech tasks. Source
code is available at https://github.com/sh-lee-prml/PeriodWave.

1 INTRODUCTION

Deep generative models have achieved significant success in high-fidelity waveform generation. In
general, the neural waveform generation model which is called ”Neural Vocoder” transforms a
low-resolution acoustic representation such as Mel-spectrogram or linguistic representations into a
high-resolution waveform for regeneration learning (Tan et al., 2024). Conventional neural vocoders
have been investigated for text-to-speech (Oord et al., 2016; Shen et al., 2018; Ren et al., 2019; Kim
et al., 2020; Jiang et al., 2024) and voice conversion (Lee et al., 2021; Choi et al., 2021). Furthermore,
recent universal waveform generation models called ”Universal Vocoder” are getting more attention
due to their various applicability in neural audio codec (Zeghidour et al., 2021; Défossez et al., 2023;
Kumar et al., 2024; Ju et al., 2024; Zhang et al., 2024), audio generation (Kreuk et al., 2023; Roman
et al., 2023; Yang et al., 2023c; Huang et al., 2023; Liu et al., 2023), and zero-shot voice cloning
systems (Lee et al., 2022d; Huang et al., 2022c; Wang et al., 2023; Li et al., 2024; Le et al., 2024;
Kim et al., 2024; Shen et al., 2024) where models can generate high-fidelity waveform from the

∗Equal contribution
†Corresponding author

1

https://github.com/sh-lee-prml/PeriodWave


Published as a conference paper at ICLR 2025

highly compressed representations beyond the traditional acoustic features, Mel-spectrogram. In
addition, universal vocoder requires generalization in various out-of-distribution scenarios including
unseen voice, instruments, and dynamic environments (Lee et al., 2023; Bak et al., 2023).

Previously, generative adversarial networks (GAN) models dominated the waveform generation tasks
by introducing various discriminators that can capture the different characters of waveform signals.
MelGAN (Kumar et al., 2019) used the multi-scale discriminator to capture different features from
the different scales of waveform signal. HiFi-GAN (Kong et al., 2020) introduced the multi-period
discriminator to capture the different periodic patterns of the waveform signal. UnivNet (Jang et al.,
2021) utilized the multi-resolution spectrogram discriminator that can reflect the spectral features
of waveform signal. BigVGAN (Lee et al., 2023) proposed the Snake activation function for the
out-of-distribution modeling and scaled up the neural vocoder for universal waveform generation.
Vocos (Siuzdak, 2024) significantly improved the efficiency of the neural vocoder without upsampling
the time-axis representation. Although GAN-based models can generate the high-fidelity waveform
signal fast, GAN models possess three major limitations: 1) they should utilize a lot of discriminators
to improve the audio quality, which increases training time; 2) this also requires hyper-parameter
tuning to balance multiple loss terms; 3) they are vulnerable to train-inference mismatch scenarios
such as two-state models, which induces metallic sound or hissing noise.

Recently, the multi-band diffusion (MBD) model (Roman et al., 2023) sheds light on the effective-
ness of the diffusion model for high-resolution waveform modeling. Although previous diffusion-
based waveform models (Kong et al., 2021; Chen et al., 2021) existed, they could not model the
high-frequency information so the generated waveform only contains low-frequency information.
Additionally, they still require a lot of iterative steps to generate high-fidelity waveform signals. To
reduce this issue, PriorGrad (Lee et al., 2022b) introduced a data-driven prior and FastDiff (Huang
et al., 2022a) adopted an efficient structure and noise schedule predictor. However, they do not model
the high-frequency information so these models only generate the low-frequency information well.

Above all, there is no generator architecture to reflect the natural periodic features of high-resolution
waveform signals. In this paper, we propose PeriodWave, a novel waveform generation model that
can reflect different implicit periodic representations. We also adopt the powerful generative model,
flow matching that can estimate the vector fields directly using the optimal transport path for fast
sampling. Additionally, we utilize a multi-period estimator by adopting the prime number to avoid
overlaps. We observed that increasing the number of periods can improve the entire performance
consistently. However, this also induces a slow inference speed. To simply reduce this limitation, we
propose a period-conditional universal estimator that can feed-forward parallel by period-wise batch
inference. For high-frequency information modeling, we investigate discrete wavelet transformation
(DWT) (Lee et al., 2022c) and FreeU in waveform generation tasks.

PeriodWave achieves a better performance in objective and subjective metrics than other publicly
available strong baselines on both speech and out-of-distribution samples. Specifically, the experimen-
tal results demonstrated that our methods can significantly improve the pitch-related metrics including
pitch distance, periodicity, and V/UV F1 score with unprecedented performance. Furthermore, we
only train the models for only three days while previous GAN models require over three weeks.

Furthermore, we demonstrate the effectiveness of proposed method in neural audio codec decoding
tasks using state-of-the-art neural audio codec, Mimi (Défossez et al.). Based on the tokens from Mimi,
PeriodWave significantly improve audio quality compared to the original decoder of Mimi. Moreover,
we propose the streaming generation method using PeriodWave trained by parallel generation, and
PeriodWave can successfully decode in a stream manner with a minimal degradation.

The main contributions of this study are as follows:

• We propose PeriodWave, a novel universal waveform generator that can reflect different
implicit periodic information when estimating the vector fields.

• We thoroughly analyze the limitation of high-frequency modeling, and we address this
limitation by DWT and FreeU approach for high-frequency noise reduction.

• PeriodWave outperformed the one-step GAN models in conventional two-stage TTS tasks.
Through iterative refinement, PeriodWave can reduce the train-inference mismatch problem.

• Based on SOTA neural audio codec Mimi, we successfully demonstrate the effectiveness of
PeriodWave in neural audio codec decoding task both in parallel and streaming generation.

2



Published as a conference paper at ICLR 2025

2 RELATED WORKS

Neural Vocoder WaveNet (Oord et al., 2016) has successfully paved the way for high-quality neural
waveform generation tasks. However, these auto-regressive (AR) models suffer from a slow inference
speed. To address this limitation, teacher-student distillation-based inverse AR flow methods (Oord
et al., 2018; Ping et al., 2019) have been investigated for parallel waveform generation. Flow-based
models (Kim et al., 2019; Prenger et al., 2019; Lee et al., 2020) have also been utilized, which can be
trained by simply maximizing the likelihood of the data using invertible transformation.

GAN-based Neural Vocoder MelGAN (Kumar et al., 2019) successfully incorporated generative
adversarial networks (GAN) into the neural vocoder by introducing a multi-scale discriminator to
reflect different features from the different scales of waveform signal and feature matching loss
for stable training. Parallel WaveGAN (Yamamoto et al., 2020) introduces multi-resolution STFT
losses that can improve the perceptual quality and robustness of adversarial training. GAN-TTS
(Bińkowski et al., 2020) utilized an ensemble of random window discriminators that operate on
random segments of waveform signal. GED (Gritsenko et al., 2020) proposed a spectral energy
distance with unconditional GAN for stable and consistent training. HiFi-GAN (Kong et al., 2020)
introduced a novel discriminator, a multi-period discriminator (MPD) that can capture different
periodic features of waveform signal. UnivNet (Jang et al., 2021) employed adversarial feedback
on the multi-resolution spectrogram to capture the spectral representations at different resolutions.
BigVGAN (Lee et al., 2023) adopted periodic activation function and anti-aliased representation
into the generator for generalization on out-of-distribution samples. Vocos (Siuzdak, 2024) proposed
an efficient waveform generation framework using ConvNeXt blocks and iSTFT head without any
temporal domain upsampling. Meanwhile, neural codec models (Zeghidour et al., 2021; Défossez
et al., 2023; Kumar et al., 2024) and applications (Wang et al., 2023; Yang et al., 2023b) such as TTS
and audio generation have been investigated together with the development of neural vocoder.

Diffusion-based Neural Vocoder DiffWave (Kong et al., 2021) and WaveGrad (Chen et al., 2021)
introduced a Mel-conditional diffusion-based neural vocoder that can estimate the gradients of the
data density. PriorGrad (Lee et al., 2022b) improves the efficiency of the conditional diffusion
model by adopting a data-dependent prior distribution for diffusion models instead of a standard
Gaussian distribution. FastDiff (Huang et al., 2022a) proposed a fast conditional diffusion model by
adopting an efficient generator structure and noise schedule predictor. Multi-band Diffusion (Roman
et al., 2023) incorporated multi-band waveform modeling into diffusion models and it significantly
improved the performance by band-wise modeling because previous diffusion methods could not
model high-frequency information, which only generated the low-frequency representations. This
model also focused on raw waveform generation from discrete tokens of neural codec model for
various audio generation applications including speech, music, and environmental sound.

3 PERIODWAVE

The flow matching model (Lipman et al., 2022; Tong et al., 2023) has emerged as an effective strategy
for the swift and simulation-free training of continuous normalizing flows (CNFs), producing optimal
transport (OT) trajectories that are readily incorporable. We are interested in the use of flow matching
models for waveform generation to understand their capability to manage complex transformations
across waveform distributions. Hence, we begin with the essential notation to analyze flow matching
with optimal transport, followed by a detailed introduction to the proposed method.

3.1 PRELIMINARY: FLOW MATCHING WITH OPTIMAL TRANSPORT PATH

In the data space Rd, consider an observation x ∈ Rd sampled from an unknown distribution q(x).
CNFs transform a simple prior p0 into a target distribution p1 ≈ q using a time-dependent vector field
vt. The flow ϕt is defined by the ordinary differential equation:

d

dt
ϕt(x) = vt(ϕt(x); θ), ϕ0(x) = x, x ∼ p0, (1)

The flow matching objective, as introduced by (Lipman et al., 2022), aims to match the vector field
vt(x) to an ideal vector field ut(x) that would generate the desired probability path pt. The flow
matching training objective involves minimizing the loss function LFM(θ), which is defined by
regressing the model’s vector field vθ(t, x) to a target vector field ut(x) as follows:

LFM(θ) = Et∼[0,1],x∼pt(x) ∣∣vθ(t, x) − ut(x)∣∣22 . (2)
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Figure 1: Waveform generation using conditional flow matching and ODE solver
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Figure 2: Overall architecture of PeriodWave

Given the impracticality of accessing ut and pt, conditional flow matching (CFM) is introduced:

LCFM(θ) = Et∼[0,1],x∼pt(x∣z) ∣∣vθ(t, x) − ut(x∣z)∣∣22 . (3)

Generalizing this with the noise condition x0 ∼ N(0, 1), the OT-CFM loss is:

LOT-CFM(θ) = Et,q(x1),p0(x0)∥u
OT
t (ϕOT

t (x0) ∣ x1) − vt(ϕOT
t (x0) ∣ µ; θ)∥2

, (4)

where ϕ
OT
t (x0) = (1 − (1 − σmin)t)x0 + tx1 and u

OT
t (ϕOT

t (x0) ∣ x1) = x1 − (1 − σmin)x0. This
approach efficiently manages data transformation and enhances training speed and efficiency by
integrating optimal transport paths. The detailed formulas are described in Appendix A.

3.2 PERIOD-AWARE FLOW MATCHING ESTIMATOR

In this work, we propose a period-aware flow matching estimator, which can reflect the different
periodic features when estimating the vector field for high-quality waveform generation as illustrated
in Figure 1. First, we utilize a time-conditional UNet-based structure for time-specific vector field
estimation. Unlike previous UNet-based decoders, PeriodWave utilizes a mixture of reshaped input
signals with different periods as illustrated in Figure 2. Similar to (Kong et al., 2020), we reshape
the 1D data sampled from pt(x) of length T into 2D data of height T/p and width p. We will
refer to this process as Periodify. Then, we condition the period embedding to indicate the specific
period of each reshaped sample for period-aware feature extraction in a single estimator. We utilize
different periods of [1,2,3,5,7] that avoid overlaps to capture different periodic features from the
input signal. We utilize 2D convolution of down/upsampling layer and ResNet Blocks with a kernel
size of 3 and dilation of 1, 2 for each UNet block. Specifically, we downsample each signal by
[4,4,4] so the representation of the middle block has height T/(p× 64) and width p. After extracting
the representation for each period, we reshape the 2D representation into the original shape of the
1D signal for each period path. We sum all representations from all period paths. The final block
estimates the vector fields from a mixture of period representations.

For Mel-spectrogram conditional generation, we only add the conditional representation extracted
from Mel-spectrogram to the middle layer representation of UNet for each period path. We utilize
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ConvNeXt V2 based Mel encoder to extract the conditional information for efficient time-frequency
modeling. Previously, Vocos (Siuzdak, 2024) also demonstrated that ConvNeXt-based time-frequency
modeling shows effectiveness on the low resolution features. In this works, we utilize the improved
ConvNeXt V2 (Woo et al., 2023) blocks for Mel encoder, and the output of this block is fed to the
period-aware flow matching estimator. Because we utilize a hop size of 256, the Mel-spectrogram has
a length of T/256. To align the conditional representation, we upsample it by 4× and downsample it
by the different strides as periods of [1,2,3,5,7] to get a shape of T/(p × 64).

To boost the inference speed, we introduce two methods: 1) period-wise batch inference that can
feed-forward parallel for multiple periods by a period-conditional universal estimator; 2) time-shared
conditional representation extracted from Mel-spectrogram, which is utilized for every step.

3.3 FLOW MATCHING FOR WAVEFORM GENERATION

To the best of our knowledge, this is the first work to utilize flow matching for waveform generation.
In this subsection, we describe the problems we encountered and how to reduce these issues. First, we
found that the it is crucial to set the proper noise scale for x0. In general, waveform signal is ranged
with -1 to 1, so standard normal distribution N (0, 1) would be large for optimal path. This results in
high-frequency information distortion, causing the generated sample to contain only low-frequency
information. To reduce this issue, we scale down the x0 by multiplying a small value α. Although
we successfully generate the waveform signal by small α, we observed that the generated sample
sometimes contains a small white noise. We simply solve it by additionally multiplying temperature
τ on the x0 as analyzed in Table 4. Furthermore, we adopt data-dependent prior (Lee et al., 2022b) to
flow matching-based generative models. Specifically, we utilize an energy-based prior which can be
simply extracted by averaging the Mel-spectrogram along the frequency axis. We set N (0,Σ) for
the distribution of p0(x), and multiply Σ by a small value of 0.5. All of them significantly improve
the sample quality and boost the training speed.

3.4 HIGH-FREQUENCY INFORMATION MODELING FOR FLOW MATCHING

Similar to the findings demonstrated by (Roman et al., 2023), we also observed that flow matching-
based waveform generation models could not provide the high-frequency information well. To
address this limitation, we adopt three approaches including multi-band modeling and FreeU (Si
et al., 2024)

Multi-band Flow Matching with Discrete Wavelet Transform Previously, MBD (Roman et al.,
2023) demonstrated that diffusion-based models are vulnerable to high-frequency noise so they
introduce the multi-band diffusion models by disentangling the frequency bands and introducing
specialized denoisers for each band. Additionally, they proposed frequency equalizer (EQ) processor
to reduce the white noise by regularizing the noise energy scale for each band.1. Unlike MBD, we
introduce a discrete wavelet Transform based multi-band modeling method which can disentangle
the signal and reproduce the original signal without losing information2. PeriodWave-MB consists
of multiple vector field estimators for each band [0-3, 3-6, 6-9, 9-12 kHz]. Additionally, we
first generate a lower band, and then concatenate the generated lower bands to the x0 to generate
higher bands. We found that this significantly improve the quality even with small sampling steps.
During training, we utilize a ground-truth discrete wavelet Transform components for a conditional
information. Additionally, we also utilize a band-wise data-dependent prior by averaging Mel-
spectrogram according to the frequency axis including overlapped frequency bands [0-61, 60-81,
80-93, 91-100 bins]. Moreover, we downsample each signal by [1,4,4] by replacing the first down/up-
sampling with DWT/iDWT, and this also significantly reduce the computational cost by reducing
time resolution.

Flow Matching with FreeU FreeU (Si et al., 2024) demonstrated that the features from the skip
connection contain high-frequency information in UNet-based diffusion models, and this could
ignore the backbone semantics during image generation. We revisited this issue in high-resolution

1We entirely acknowledged (Roman et al., 2023) proposed a novel pre-processing method and combined
it with diffusion models well. However, we do not use any pre-processing methods for a fair comparison. We
introduce a novel architecture and method for high-fidelity waveform generation without any pre-processing.

2We observed that using band splitting of MBD without EQ processor results in white noise on the generated
sample in our preliminary study so we introduce discrete wavelet Transform based multi-band modeling.
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waveform generation task. We also found that the skip features of our model contain a large ratio of
high-frequency information. Additionally, this also provided the noisy high-frequency information
to the UBlock at the initial sampling steps. Hence, the accumulated high-frequency noise prevents
modeling the high-frequency information of waveform. To reduce this issue, we adopt FreeU by
scaling down the skip features zskip and scaling up the backbone features x as follows:

x = α ⋅ zskip + β ⋅ x (5)
where we found the optimal hyper-parameters through grid search: α = 0.9 and β = 1.1 at the Table
25, and this significantly improve the high-frequency modeling performance in terms of spectral
distances. We also found that scaling up the backbone features could improve the perceptual quality
by reducing the noisy sound which is included in ground-truth Mel-spectrogram.

4 EXPERIMENT AND RESULT

4.1 EXPERIMENTAL SETUP

Dataset We train the models using LJSpeech (Ito & Johnson, 2017) and LibriTTS (Zen et al.,
2019) datasets. LJSpeech is a high-quality single-speaker dataset with a sampling rate of 22,050 Hz.
LibriTTS is a multi-speaker dataset with a sampling rate of 24,000 Hz. Following (Lee et al., 2023),
we adopt the same configuration for Mel-spectrogram transformation. For the LJSpeech, we use the
Mel-spectrogram of 80 bins. For the LibriTTS, we utilize the Mel-spectrogram of 100 bins.

Training For the LibriTTS dataset, we train PeriodWave using the AdamW optimizer with a
learning rate of 2×10−4, batch size of 128 for 1M steps on four NVIDIA A100 GPUs. Each band
of PeriodWave-MB is trained using the AdamW optimizer with a learning rate of 2×10−4, batch
size of 64 for 1M steps on two NVIDIA A100 GPUs.3 It only takes three days to train the model
while GAN-based models take over three weeks. We do not apply any learning rate schedule. For the
ablation study, we train the model with a batch size of 128 for 0.5M steps on four NVIDIA A100
GPUs.
Sampling For the ODE sampling, we utilize Midpoint methods with sampling steps of 164. Addi-
tionally, we compared the ODE methods including Euler, Midpoint, and RK4 methods according to
different sampling steps in Appendix D. The experimental details are described in Appendix J and K.

Table 1: Objective evaluation results on LJSpeech. We utilized the official checkpoints for all models.
BigVGAN♥ models are trained with LJSpeech, VCTK, and LibriTTS datasets.

Method Training Steps Params (M) M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) UTMOS (↑)

Ground Truth - - - - - - - 4.3804

HiFi-GAN (V1) 2.5M 14.01 1.0341 3.646 0.1064 0.9584 26.839 4.2691
BigVGAN-base♥ 5.0M 14.01 1.0046 3.868 0.1054 0.9597 25.142 4.1986
BigVGAN♥ 5.0M 112.4 0.9369 4.210 0.0782 0.9713 19.019 4.2172

PriorGrad (50 steps) 3.0M 2.61 1.2784 3.918 0.0879 0.9661 17.728 3.6282
FreGrad (50 steps) 1.0M 1.78 1.2913 3.275 0.1302 0.9490 27.317 3.1522

PeriodWave-MB (16 steps) 0.5M 37.08×2 1.1722 4.276 0.0701 0.9730 15.143 4.2940

PeriodWave (16 steps) 1.0M 29.73 1.1464 4.288 0.0744 0.9704 15.042 4.3243
PeriodWave+FreeU (16 steps) 1.0M 29.73 1.1132 4.293 0.0749 0.9701 15.753 4.3578

4.2 LJSPEECH: HIGH-QUALITY SINGLE SPEAKER DATASET WITH 22,050 HZ

We conducted an objective evaluation to compare the performance of the single-speaker dataset. We
utilized the official implementation and checkpoints of HiFi-GAN, PriorGrad, and FreGrad (Nguyen
et al., 2024), which have the same Mel-spectrogram configuration. Table 1 shows that our model
achieved a significantly improved performance in all objective metrics without M-STFT. Additionally,
GAN-based models take much more time to train the model due to the discriminators. Furthermore,
our proposed methods require smaller sampling steps than diffusion-based models. We observed
that diffusion-based model and flow matching-based models could not model the high-frequency
information because their objective function does not guarantee the high-frequency information while
GAN-based models utilize Mel-spectrogram loss and M-STFT-based discriminators. To reduce this
issue, we utilize multi-band modeling and FreeU operation, and the results also show improved
performance in most metrics.

3Due to the limited resources, we only used two GPUs for each band.
4The results in Appendix D show that increasing sampling steps improve the performance consistently.
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Table 2: Objective and subjective evaluation results on LibriTTS. Following BigVGAN (Lee et al.,
2023), objective results are obtained from LibriTTS-dev subsets, and subjective results are obtained
from LibriTTS-test subsets. We included the objective metrics of models† reported by BigVGAN.
For MOS and Pitch, we utilize the official checkpoints of all models without UnivNet. Note that
BigVGAN-base and BigVGAN are trained for 5M steps while our models are trained for 1M steps.

Method Params (M) M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) MOS (↑)

Ground Truth - - - - - - 3.94±0.03

WaveGlow-256† 99.43 1.3099 3.138 0.1485 0.9378 - -
WaveFlow-128† 22.58 1.1120 3.027 0.1416 0.9410 - -
HiFi-GAN (V1)† 14.01 1.0017 2.947 0.1565 0.9300 - -

UnivNet-c32 14.87 0.8947 3.284 0.1305 0.9347 53.021 3.91±0.03
Vocos 13.53 0.8544 3.615 0.1113 0.9470 24.075 3.89±0.03
BigVGAN-base† 14.01 0.8788 3.519 0.1287 0.9459 24.432 3.91±0.03
BigVGAN† 112.4 0.7997 4.027 0.1018 0.9598 25.651 3.92±0.03

PeriodWave-MB (16 steps) 37.08×4 0.9729 4.262 0.0704 0.9678 16.829 3.95±0.03
PeriodWave (16 steps) 29.80 1.2129 4.224 0.0762 0.9652 18.730 3.93±0.03
PeriodWave + FreeU (16 steps) 29.80 1.0269 4.248 0.0765 0.9651 17.398 3.95±0.03

Table 3: Objective evaluation results with different training steps on LibriTTS dataset.
Methods Training Steps M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) UTMOS (↑)

1M 0.9729 4.262 0.0704 0.9678 3.6534
PeriodWave-MB 0.5M 0.9932 4.213 0.0745 0.9653 3.6142
(16 steps) 0.3M 1.0697 4.161 0.0777 0.9640 3.5641

0.15M 1.1003 4.020 0.0842 0.9580 3.4983

4.3 LIBRITTS: MULTI-SPEAKER DATASET WITH 24,000 HZ

We conducted objective and subjective evaluations to compare the performance of the multi-speaker
dataset. We utilized the publicly available checkpoints of UnivNet, BigVGAN, and Vocos, which are
trained with the LibriTTS dataset. Table 24 shows our model significantly improved performance
in all metrics but the M-STFT metric. Although other GAN-based models utilize Mel-spectrogram
distance loss and multi-resolution spectrogram discriminators which can minimize the distance on
the spectral domain, we only trained the model by minimizing the distance of the vector field on the
waveform. However, our model achieved better performance in subjective evaluation. Specifically,
our models have better performance on the periodicity metrics, and this means that our period-aware
structure could improve the performance in terms of pitch and periodicity by significantly reducing
the jitter sound. Both PeriodWave-MB and PeriodWave demonstrated significantly lower pitch error
distances compared to BigVGAN. Specifically, PeriodWave-MB and PeriodWave (FreeU) achieved
a pitch error distance of 16.829 and 18.730 (17.398), respectively, while BigVGAN’s pitch error
distance was 25.651. Table 3 also demonstrated the fast training speed of PeriodWave. The model
trained for 0.15M steps could achieve comparable performance compared to baseline models which
are trained over 1M steps.

Table 4: Objective evaluation results with different temperature τ .
Methods Temperature τ M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) UTMOS (↑)

1.0 0.9363 4.152 0.0721 0.9679 3.5194
PeriodWave-MB 0.667 0.9729 4.262 0.0704 0.9678 3.6534

0.333 1.0915 4.278 0.0729 0.9668 3.5457
0.1 1.3062 3.847 0.0788 0.9634 3.1442

4.4 SAMPLING ROBUSTNESS, DIVERSITY, AND CONTROLLABILITY

We utilize a flow matching model for PeriodWave, allowing it to generate diverse samples with
different Gaussian noise. However, our goal is a conditional generation using the Mel-spectrogram.
We need to decrease the diversity to improve the robustness of the model. To achieve this, we can
multiply the small scale of temperature τ to the Gaussian noise during inference. Table 4 shows that
using τ of 0.667 could improve the performance. We also observed that samples generated with a τ
of 1.0 contain a small amount of white noise, which decreases perceptual quality despite having the
lowest lowest M-STFT metrics. Furthermore, we could control the energy for each band by using
different scales of τ . This approach could be utilized for a neural EQ that can generate the signal by
reflecting the conditioned energy, not merely manipulating the energy of the generated samples.
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Table 5: Objective evaluation results on out-of-distribution samples from MUSDB18-HQ. We
evaluated Periodicity, and V/UV F1 on vocal samples from MUSDB18-HQ.

Method M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑)

UnivNet-c32 1.1377 1.678 0.1588 0.9186
Vocos 1.0203 2.173 0.1305 0.9454
BigVGAN-base 1.0132 2.315 0.1272 0.9307
BigVGAN 0.9062 2.862 0.0959 0.9501

PeriodWave-MB (16 steps) 1.0490 3.120 0.0945 0.9524
PeriodWave (16 steps, Midpoint) 1.2702 2.959 0.1046 0.9475
PeriodWave + FreeU (16 steps, Midpoint) 1.1923 3.062 0.0994 0.9479

Table 6: 5-scale SMOS results on out-of-distribution samples from MUSDB18-HQ.
Method Vocal Drums Bass Others Mixture Average

Ground Truth 3.85±0.11 4.00±0.11 3.83±0.11 4.01±0.11 4.03±0.10 3.94±0.05

UnivNet-c32 3.32±0.15 3.40±0.16 2.89±0.16 2.92±0.18 2.80±0.15 3.06±0.07
Vocos 3.57±0.12 3.64±0.13 2.89±0.16 3.21±0.17 3.16±0.13 3.29±0.06
BigVGAN-base 3.64±0.13 3.68±0.13 3.07±0.14 3.31±0.15 3.51±0.13 3.44±0.06
BigVGAN 3.63±0.12 4.01±0.12 3.13±0.13 3.53±0.15 3.56±0.13 3.56±0.06

PeriodWave (16 steps) 3.70±0.12 3.76±0.14 3.20±0.15 3.38±0.13 3.44±0.13 3.50±0.06
PeriodWave-MB (16 steps) 3.72±0.12 3.71±0.13 3.52±0.13 3.72±0.14 3.51±0.13 3.63±0.06

4.5 MUSDB18-HQ: MULTI-TRACK MUSIC AUDIO DATASET FOR OOD ROBUSTNESS

To evaluate the robustness on the out-of-distribution samples, we measure performance on the
MUSDB18-HQ dataset that consists of multi-track music audio including vocals, drums, bass, others,
and a mixture. We utilize all test samples including 50 songs with 5 tracks, and randomly sample
the 10-second segments for each sample. Table 5 shows our model has better performance on all
metrics without M-STFT. Table 6 shows that PeriodWave-MB outperformed the baseline models by
improving the out-of-distribution robustness. Specifically, we significantly improve the performance
of bass, the frequency range of which is known between 40 to 400 Hz. Additionally, we observed
that our model significantly reduces the jitter sound in the out-of-distribution samples.

Table 7: Ablation study on LibriTTS. All models are trained for 0.5M steps.
Method Period M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) UTMOS (↑)

Ground Truth - - - - - 3.8626

PeriodWave-MB [1,2,3,5,7] 0.9932 4.213 0.0745 0.9653 3.6142
PeriodWave [1,2,3,5,7] 1.1737 4.072 0.0806 0.9627 3.5544
PeriodWave w/o Prior [1,2,3,5,7] 1.3754 3.900 0.0930 0.9562 3.5352
PeriodWave w/o Mel Encoder [1,2,3,5,7] 1.5194 2.511 0.1093 0.9457 2.6737

PeriodWave [1] 1.2588 3.795 0.0885 0.9572 3.4215
[1,1,1,1,1] 1.1337 3.964 0.0888 0.9597 3.4728
[1,1,1,3,3] 1.1234 4.011 0.0818 0.9643 3.4879
[1,1,1,3,9] 1.2736 4.061 0.0830 0.9644 3.5057
[1,2,4,6,8] 1.1481 4.075 0.0782 0.9647 3.5468

[1,2,4,8,16] 1.1463 4.124 0.0787 0.9639 3.5408
[1,2,3,5,7,11,13,17] 1.1617 4.125 0.0792 0.9610 3.5384

4.6 ABLATION STUDY

Different Periods We conduct ablation study for different periods at the same structure. Table 7
shows that the model with a period of 1 shows the lowest performance. Increasing the number of
periods could improve the entire performance in terms of most metrics, consistently. However, this
also improves the computational cost and requires more training steps for optimizing various periods
in a single estimator so we fix the model with the period of [1,2,3,5,7]. Meanwhile, we compared
the model with periods of [1,2,4,6,8] and [1,2,4,8,16] to demonstrate the effectiveness of the prime
number for the period. We observed that using prime number could improve the UTMOS slightly
and the model with periods of [1,2,4,6,8] and [1,2,4,8,16] also have comparable performance, which
can reflect the different period representations of the waveform. We thought that the model with
periods of [1,2,3,5,7,11,13,17] requires more training steps. The model with periods of [1,1,1,1,1]
showed slightly better performance than the model with a periods of [1]. However, it significantly
underperforms compared to other models using different size of periods. The models with periods of
[1,1,1,3,3] and [1,1,1,3,9] have better performance than [1,1,1,1,1], and the results demonstrate that
using different periods could perform better.This also demonstrates that our new waveform generator
structure is suitable for waveform generation.
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Prior PriorGrad demonstrated that data-dependent prior information could improve the performance
and sampling speed for diffusion models. We also utilize the normalized energy which can be
extracted Mel-spectrogram as prior information. We observe that the data-dependent prior could
improve the quality and sampling speed in flow matching based models. Meanwhile, although
we failed to implement the quality reported by SpecGrad (Koizumi et al., 2022), we see that the
spectrogram-based prior could improve the performance rather than the energy-based prior.

Mel Encoder Our Mel encoder significantly improved the performance through efficient time-
frequency modeling. This only requires a small increase in computation cost because we reused the
extracted features which are fed to the period-aware flow matching estimator for each sampling step.

Table 8: Comparison of Diffusion and CFM. All models are trained for 1M steps.
Method Steps M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) UTMOS (↑)

PeriodWave w/ CFM 32 1.072 4.233 0.078 0.964 17.418 3.646
PeriodWave w/ CFM 25 1.159 4.233 0.078 0.964 17.420 3.650
PeriodWave w/ CFM 16 1.212 4.224 0.076 0.965 17.496 3.649
PeriodWave w/ CFM 6 1.379 4.178 0.082 0.959 23.223 3.628

PeriodWave w/ DDPM 50 1.159 4.151 0.084 0.961 23.046 3.377
PeriodWave w/ DDPM 6 1.233 3.541 0.095 0.958 24.351 2.953

CFM vs Diffusion We compared the model trained with diffusion and CFM to demonstrate the
effectiveness of CFM for waveform generation. For a fair comparison, we utilize the same model
architecture. Furthermore, we utilize a prior-based diffusion models following PriorGrad (Lee et al.,
2022b). We utilize the same noise scheduling method of PriorGrad. For time steps of 6, we utilized
noise scheduling of [0.0001, 0.008, 0.010.05, 0.7, 0.9]. Table 8 shows that CFM outperformed
diffusion in terms of all metrics. Furthermore, this indicates that CFM has several advantages in
performance and efficiency where the model with CFM has better performance even with a smaller
sampling steps than the model trained with DDPM. Furthermore, our model was trained with a
continuous time t while DDPM should be trained with discrete time t. We observed that training
the diffusion-based model for continuous time t requires much more training times to optimize the
models. However, while our model was trained with a continuous time t, our models show a faster
convergence speed in that Table 8 indicated the effectiveness of CFM compared to diffusion.

4.7 MULTI SPEAKER TEXT-TO-SPEECH
Table 9: Zero-shot TTS Results. We utilized ARDiT-
TTS trained with LibriTTS as TTS model.

Methods MOS (↑) UTMOS (↑)

BigVSAN 3.99±0.01 3.9732
BigVGAN 4.03±0.01 4.0424

PeriodWave (16 steps) 4.06±0.01 4.2209
PeriodWave + FreeU (16 steps) 4.07±0.01 4.2621

We conduct two-stage multi-speaker TTS
experiments to further demonstrate the ro-
bustness of the proposed models compared
to previous large-scale GAN-based mod-
els including BigVGAN and BigVSAN
(Shibuya et al., 2024). Note that BigVGAN
and BigVSAN were trained for 5M and
10M steps, respectively. We utilize ARDiT-
TTS (Liu et al., 2024b) as zero-shot TTS model which was trained with LibriTTS dataset. We convert
500 samples of generated Mel-spectrogram into waveform signal by each model. The Table 9 shows
that our model has better performance on the objective and subjective metrics in terms of UTMOS
and MOS. Furthermore, Our model with FreeU has much better performance than others. We can
discuss that FreeU could reduce the high-frequency noise resulting in better perceptual quality.

We also discussed the train-inference mismatch problem of two-stage TTS and the effectiveness of
iterative refinement to reduce this problem and added single-speaker TTS results in Appendix G.

4.8 LIMITATION

Although our models could generate the waveform with small sampling steps, Table E shows that our
models have a slow synthesis speed compared to GAN-based models. To overcome this issue, we will
explore distillation methods or adversarial training to reduce the sampling steps for much more fast
inference by using our period-aware structure. Additionally, our models still show a lack of robustness
in terms of high-frequency information because we only train the model by estimating the vector
fields on the waveform resolution. Although multi-band modeling reduced this issue, it requires more
complex model designs. So, we have a plan to add a modified spectral objective function or blocks
that can reflect the spectral representations when estimating vector fields by utilizing short-time
Fourier convolution proposed in (Han & Lee, 2022) for audio super-resolution. Moreover, we see
that classifier-free guidance could be adapted to our model to improve the audio quality.
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Table 10: Objective evaluation results of parallel generation from discrete token.
Method Params (M) CER (↓) WER (↓) M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) UTMOS (↑)

Ground Truth - 0.92 2.94 - - - - - 3.8626

Mimi (Q = 32) 79.30 1.28 3.81 1.1067 3.469 0.0886 0.9541 28.084 3.8005
Mimi (Q = 16) 79.30 1.35 3.81 1.2119 2.911 0.1232 0.9345 34.863 3.7455

Mimi (Q = 8) 79.30 3.07 6.91 1.3509 2.266 0.1651 0.9104 50.679 3.5068
PeriodWave (Q = 8, 2 steps) 35.86 2.50 5.56 1.2651 2.293 0.1413 0.9244 44.889 3.8827
PeriodWave (Q = 8, 4 steps) 35.86 2.40 5.45 1.2432 2.256 0.1424 0.9234 44.691 3.9343

Table 11: Objective evaluation results of streaming generation from discrete token.
Method Params (M) CER (↓) WER (↓) M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) UTMOS (↑)

Mimi (Q = 8) 79.30 3.05 6.93 1.3522 2.266 0.1650 0.9104 50.686 3.5068
PeriodWave (Q = 8, 2 steps) 35.86 2.45 5.53 1.2716 2.233 0.1429 0.9228 40.634 3.8508

5 AUDIO GENERATION FROM DISCRETE TOKEN

We conducted experiments for parallel and streaming generation from discrete tokens. We used Mimi
of Moshi (Défossez et al.), a state-of-the-art neural audio codec that operates at 12.5 Hz. Note that
the number of codebooks in Mimi can be up to 32, but Moshi utilized a Q = 8 quantizer for speech
language models, so we also used the same discrete tokens from the eight quantizer as an input to our
model instead of Mel-spectrogram. Specifically, we used the post-quantized latent representation
as input for PeriodWave. For streaming generation, we introduce a single token delayed generation.
Although the model was trained for parallel generation, the samples with streaming generation show
minimal degradation. The details of streaming generation are described in Appendix I and Figure 4.
We trained the model using segments of 48,000 frames (2s waveform and 25 token embeddings). We
modified the Mel-encoder by adding an additional upsampling layer to upsample a high-compressed
codec at 12.5 Hz to waveform signal with sampling rate of 24,000 Hz. Since energy can not be
extracted from discrete tokens, we remove the energy-based prior. Furthermore, we fine-tuned Period-
Wave by fixing the number of iteration steps to accelerate the inference speed for streaming generation,
and utilized an adversarial training to improve the performance without using reconstruction loss.
We first conducted CER and WER evaluations using Whisper-large-v3-turbo (Radford et al., 2023) to
evaluate the pronunciation and semantic consistency of generated samples from low-bitrate discrete
tokens. Table 10 shows that our model can generate speech with better pronunciation by preserving
semantic information. Also, our models with Q = 8 quantizer have better naturalness than Mimi with
Q = 32 quantizer in terms of UTMOS. PeriodWave can enhance the audio quality by increasing the
iteration steps in parallel generation. Furthermore, Table 11 demonstrates our proposed streaming
generation can synthesize the speech in a streaming manner with a minimal degradation. Additional
experiments of streaming generation are reported in Appendix I and Table 20.
We believe that our model can be used for alternative decoder of neural audio codec models. We see
that our model with parallel generation can facilitate the high-quality dialogue data collection from
speech language models thanks to enhanced audio quality. However, there is room for improvement
of efficiency in streaming audio generation. In future, we have a plan to fine-tune the model with
chucked auto-regressive or masking-infilling for in-context streaming generation.

6 CONCLUSION
In this work, we proposed PeriodWave, a novel universal waveform generation model with conditional
flow matching. Motivated by the multiple periodic characteristics of high-resolution waveform
signals, we introduce the period-aware flow matching estimators which can reflect different implicit
periodic representations when estimating vector fields. Furthermore, we observed that increasing
the number of periods improve the performance, and we introduce a period-conditional universal
estimator for efficient structure. By adopting this, we also implement a period-wise batch inference
for efficient inference. The experimental results demonstrate the superiority of our model in high-
quality waveform generation and OOD robustness. Furthermore, we demonstrate the effectiveness
of proposed model in neural audio codec decoding tasks both in parallel and streaming generation.
GAN-based models still hold great potential and have shown strong performance but require multiple
loss functions, resulting in complex training and long training times. On the other hand, we introduced
a flow matching based approach using a single loss function, which offers notable advantages in both
efficiency and performance.

We released all source code and checkpoints, hoping that our approach will facilitate research in
waveform generation. We believe that its efficiency and flexibility make it an ideal backbone, easily
adaptable to domain-specific or personalized data, and fine-tuning with adversarial training.
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Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ivCd8z8zR2. Featured Certification, Reproducibility
Certification.
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A FLOW MATCHING WITH OPTIMAL TRANSPORT PATH

In the data space Rd, let us consider an observation x ∈ Rd sampled from an unknown distribution
q(x). Continuous Normalizing Flows (CNFs) transform a simple prior p0 into a target distribution
p1 ≈ q using a time-dependent vector field vt ∶ [0, 1] × Rd

→ Rd. The flow ϕt ∶ [0, 1] × Rd
→ Rd

is defined by the ordinary differential equation:

d

dt
ϕt(x) = vt(ϕt(x); θ), ϕ0(x) = x, x ∼ p0, (6)

where ϕt(x) denotes the state of the system at time t, driven by the vector field vt(⋅; θ). The
probability density path pt ∶ [0, 1] × Rd

→ R>0 of this flow can be derived using the change of
variables. Specifically, this system transforms the initial probability density p0 to pt at time t, and the
resulting probability density pt is given by:

pt(y) = p0(ϕ−1
t (y))

»»»»»»»»»
det(∂ϕ

−1
t

∂y
)
»»»»»»»»»
. (7)

Given samples from an unknown data distribution q(x), our objective is to transform a simple initial
distribution p0 (e.g., standard normal) into a target distribution p1 ≈ q. The challenge lies in the fact
that both pt and the corresponding vector field ut that generates pt are generally unknown.

To address this, (Lipman et al., 2022) introduce the flow matching objective, which aims to match
the vector field vt(x) to an ideal vector field ut(x) that would generate the desired probability path
pt. The flow matching training objective involves minimizing the loss function LFM(θ), which is
defined by regressing the model’s vector field vθ(t, x) to a target vector field ut(x) as follows:

LFM(θ) = Et∼[0,1],x∼pt(x) ∣∣vθ(t, x) − ut(x)∣∣22 . (8)

Here, t ∼ U[0, 1], and vt(x; θ) is a neural network with parameters θ. However, direct access to ut

and pt is challenging, prompting the introduction of Conditional Flow Matching (CFM):

LCFM(θ) = Et∼[0,1],x∼pt(x∣z) ∣∣vθ(t, x) − ut(x∣z)∣∣22 . (9)

This expression replaces the impractical marginal probability density and vector field with conditional
probability density and conditional vector field, enabling a feasible approach. Crucially, LCFM(θ)
and LFM(θ) share identical gradients with respect to θ, ensuring equivalent efficacy in model training.
The probability path pt(x) and the associated vector field ut(x) can be expressed conditionally as
follows:

pt(x) = ∫ pt(x∣z)p(z)dz and ut(x) = ∫ pt(x∣z)ut(x∣z)
pt(x)

p(z)dz, (10)

where p(z) is an arbitrary conditional distribution independent of x and t. Assuming the existence
of an optimal vector field ut, the neural network vt(x; θ) can learn this vector field. Furthermore,
(Lipman et al., 2022) indicates that conditional vector field estimation is equivalent to unconditional
vector field estimation:

min
θ

Et,pt(x)∥ut(x) − vt(x; θ)∥2
≡ min

θ
Et,q(x1),pt(x∣x1)∥ut(x ∣ x1) − vt(x; θ)∥2

, (11)

where p0(x ∣ x1) = p0(x) and p1(x ∣ x1) = N(x ∣ x1, σ
2
I) assume sufficiently small σ. Lastly,

generalizing this technique with the noise condition x0 ∼ N(0, 1), we consider the OT-CFM loss as
follows:

LOT-CFM(θ) = Et,q(x1),p0(x0)∥u
OT
t (ϕOT

t (x0) ∣ x1) − vt(ϕOT
t (x0) ∣ µ; θ)∥2

, (12)

where µ is the frame-wise predicted mean of x1, and ϕ
OT
t (x0) = (1 − (1 − σmin)t)x0 + tx1

represents the flow from x0 to x1. The target conditional vector field u
OT
t (ϕOT

t (x0) ∣ x1) =

x1 − (1 − σmin)x0 enhances performance due to its inherent linearity. This approach efficiently
manages data transformation and significantly enhances training speed and efficiency by integrating
optimal transport paths.
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B IMPLEMENTATION DETAILS

For reproducibility, we will release all source code, checkpoints, and generated samples at https://
periodwave.github.io/demo/. We also describe the hyperparameter details of our models
at Table 12.

Table 12: Hyperparameters of PeriodWave.
Module Hyperparameter PeriodWave PeriodWave-MB

Downsampling Ratio [1,4,4,4] [1,4,4,1]
Upsampling Ratio [4,4,4] [4,4,1]]
DBlock Hidden Dim [32,64,128] [32,128,512]
MBlock Hidden Dim 512 512

Period-aware UBlock Hidden Dim [128,64,32] [512,128,32]
FM Estimator ResBlock Kernel Size [3,3] [3,3]

(UNet) ResBlock Dilation Size [1,2] [1,2]]
Period [1,2,3,5,7] [1,2,3,5,7]
Activation SiLU SiLU
Final ResBlock Kernel Size [3,3,3] [3,3,3]
Final ResBlock Dilation Size [1,2,4] [1,2,4]

Time Embedding 256 256
Cond. Layer Period Embedding 256 256

MLP [512, 2048, 512] [512, 2048, 512]

Mel Embedding 512 512
First ConvNext V2 Blocks 8 8
Hidden Dim 1536 1536
Drop Path 0.1 0.1

Mel Encoder Upsampling Ratio 4 4
Upsampling Dim 256 256
Second ConvNext V2 Blocks 4 4
Second Hidden Dim 1024 1024
Downsampling ratio [1,2,3,5,7] [1,2,3,5,7]
Output Dim 512 512

Full-band Energy Max/Min 9.124346/0.031622782 -
First-band Energy Max/Min - 8.756637/0.024698181
First-band Start/End Bin - [0:61]

Energy-based Second-band Energy Max/Min - 4.242267/0.014491379
Prior Second-band Start/End Bin - [60:81]

Third-band Energy Max/Min - 3.1011465/0.011401756
Third-band Start/End Bin - [80:93]
Fourth-band Energy Max/Min - 2.3407087/0.031622782
Fourth-band Start/End Bin - [91:100]

FFT Size 1024 1024
Mel- Hop Size 256 256

spectrogram Window Size 1024 1024
Bins 100 100
F0 Min/Max 0/12000 0/12000

Training Step 1M 1M
Learning Rate 2 × 10

−4
2 × 10

−4

Learning Scheduling - -
Batch Size 128 64

Others GPUs 4 2
Noise Scale α 0.5 0.5
Segment Size 32,768 32,768
Temperature τ 0.667 0.667
ODE Sampling Steps 16 16
sw 0.9 -
bw 1.1 -
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Figure 3: Architecture of PeriodWave

Table 13: Objective evaluation results on LJSpeech. We utilized the official checkpoints for all
models. BigVGAN♥ models are trained with LJSpeech, VCTK, and LibriTTS datasets.

Method Training Steps Params (M) M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) UTMOS (↑)

Ground Truth - - - - - - - 4.3804

HiFi-GAN (V1) 2.50M 14.01 1.0341 3.646 0.1064 0.9584 26.839 4.2691
BigVGAN-base♥ 5.00M 14.01 1.0046 3.868 0.1054 0.9597 25.142 4.1986
BigVGAN♥ 5.00M 112.4 0.9369 4.210 0.0782 0.9713 19.019 4.2172

PriorGrad (50 steps) 3.00M 2.61 1.2784 3.918 0.0879 0.9661 17.728 3.6282
FreGrad (50 steps) 1.00M 1.78 1.2913 3.275 0.1302 0.9490 27.317 3.1522

0.05M 37.08×2 1.2048 3.785 0.0873 0.9641 18.050 4.0662
PeriodWave-MB 0.15M 37.15×2 1.2430 4.141 0.0759 0.9699 16.366 4.2218
(16 steps) 0.30M 37.08×2 1.1574 4.246 0.0722 0.9726 14.426 4.2788

0.50M 37.08×2 1.1722 4.276 0.0701 0.9730 15.143 4.2940

0.05M 29.73 1.2146 3.821 0.0982 0.9594 19.512 3.9935
PeriodWave 0.15M 29.73 1.2112 4.144 0.0865 0.9644 17.056 4.2198
(16 steps) 0.30M 29.73 1.2232 4.211 0.0884 0.9641 18.899 4.2671

0.50M 29.73 1.1574 4.310 0.0782 0.9685 16.104 4.3106

PeriodWave (1 step) 1.00M 29.73 1.5367 2.733 0.1074 0.9524 19.018 3.2725
PeriodWave (2 step) 1.00M 29.73 1.3033 4.050 0.0853 0.9650 15.980 4.1528
PeriodWave (4 step) 1.00M 29.73 1.2529 4.226 0.0782 0.9691 15.736 4.2825
PeriodWave (8 step) 1.00M 29.73 1.2222 4.269 0.0746 0.9704 14.944 4.3229
PeriodWave (16 step) 1.00M 29.73 1.1464 4.288 0.0744 0.9704 15.042 4.3243

PeriodWave+FreeU 1.00M 29.73 1.1132 4.293 0.0749 0.9701 15.753 4.3578

C ADDITIONAL RESULTS ON LJSPEECH

We reported additional results on LJSpeech dataset according to the training steps to demonstrate the
effectiveness of our proposed methods. 13 showed that our models achieved a high performance even
with small training steps. Furthermore, training the model with 0.3M could outperformed the previous
powerful GAN-based neural vocoder in all metrics without M-STFT metrics. It is worth noting that
our models are only optimized with a single loss while GAN-based methods utilize discriminator
loss, feature matching loss, and Mel reconstruction loss to train the model. Furthermore, they require
various discriminators to capture the different features to improve the perceptual quality, and this
increase the burden to optimize the model, which requires hyper-parameter tuning including weights
for each loss, learning rate, and learning rate scheduling methods.
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D ODE METHODS

Table 14: Objective evaluation results with different ODE methods and sampling steps.
Methods ODE steps M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) UTMOS (↑)

1 1.8995 1.437 0.1627 0.9114 1.5102
2 1.3598 3.263 0.0929 0.9556 2.9470
4 1.2365 4.060 0.0801 0.9635 3.4160
8 1.1817 4.207 0.0756 0.9654 3.5664

PeriodWave-MB Euler 16 1.1183 4.256 0.0720 0.9672 3.6209
32 1.0499 4.265 0.0710 0.9674 3.6482
64 1.0004 4.269 0.7035 0.9678 3.6565
128 0.9601 4.266 0.0700 0.9677 3.6587
256 0.9311 4.264 0.0697 0.9678 3.6593

1 1.3342 3.241 0.0954 0.9541 2.9725
2 1.2072 4.132 0.0759 0.9662 3.4662
4 1.0825 4.232 0.0732 0.9670 3.5899
8 1.0457 4.252 0.0703 0.9680 3.6311

PeriodWave-MB Midpoint 16 0.9729 4.262 0.0704 0.9678 3.6534
32 0.9586 4.263 0.0700 0.9678 3.6583
64 0.9291 4.263 0.0694 0.9679 3.6583
128 0.9094 4.270 0.0694 0.9678 3.6577
256 0.9016 4.270 0.0693 0.9680 3.6573

1 3.6066 1.080 0.2749 0.8106 1.2563
2 2.6118 1.482 0.1089 0.9452 1.7786
4 1.9222 2.315 0.0859 0.9591 2.8721
8 1.4860 3.150 0.0783 0.9642 3.2758

PeriodWave-MB RK4 16 1.1990 3.766 0.0753 0.9654 3.4513
32 1.0303 4.084 0.0721 0.9677 3.5204
64 0.9438 4.148 0.0710 0.9683 3.5416
128 0.9238 4.134 0.0712 0.9683 3.5396
256 0.9311 4.123 0.0697 0.9696 3.5350

D.1 ANALYSIS ON DIFFERENT ODE SAMPLING METHODS

We explore the different ODE methods to analyze the sample quality according to the different
sampling steps. We utilize three ODE methods including Euler, Midpoint, and RK4 methods. Table
14 shows that increasing the sampling steps could improve the sample quality in most metrics
consistently. We observed that RK4 methods have the lowest performance, resulting in white noise
on the generated samples. We can discuss it because we predict the vector field directly including
the time point t1 for their last order estimation where it is hard to estimate it at the early time steps,
resulting in white noise. Meanwhile, Midpoint method show better performance than Euler method,
consistently even with half sampling steps which have a similar computational cost with Euler method.
In this regard, we fixed the Midpoint method for our ODE method. Additionally, using a small
sampling step could achieve the comparable performance than previous methods.

Table 15: Synthesis speed for baseline models.
Method HiFi-GAN (V1) BigVGAN-base BigVGAN PriorGrad FreGrad

Syn.Speed 166.70× 105.18× 38.28× 8.42× 10.88×
Average Memory 290MB 368MB 1,057MB 4,834MB 1,234MB

Table 16: Synthesis speed for PeriodWave.
Method PeriodWave PeriodWave PeriodWave PeriodWave-MB PeriodWave-MB PeriodWave-MB

Sampling Steps 2 4 16 2 4 16
Syn.Speed 56.36× 28.91 7.48× 36.55× 19.01× 5.12×
Average Memory 451MB 453MB 462MB 424MB 425MB 432MB

E SYNTHESIS SPEED

We compared the synthesis speed and average memory usages on NVIDIA RTX A6000 GPU for
each model. Table 15 indicated the synthesis speed for baseline models. HiFi-GAN shows the highest
speed with a small memory usage. We reported the synthesis speed of our models according to
sampling steps at Table 16. Although our model with sampling steps of 2 also has a better performance
in objective evaluation than other models, our model required more time to generate higher quality
samples with iterative generation. Period-wise batch inference could boost the inference speed by
about 60%, but this also increases the average memory usage by about two times. For future work,
we will reduce the inference speed by adopting adversarial learning with distillation methods.
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Table 17: Grid Search for FreeU Hyperparameter.
Methods α β M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) UTMOS (↑)

PeriodWave 1.00 1.00 1.2129 4.224 0.0762 0.9652 17.496 3.6495
(16 steps) 0.95 1.05 1.0975 4.253 0.0749 0.9660 17.503 3.7105

0.94 1.06 1.0760 4.256 0.0752 0.9661 17.495 3.7163
0.93 1.07 1.0590 4.255 0.0753 0.9658 17.450 3.7216
0.92 1.08 1.0471 4.258 0.0757 0.9656 17.429 3.7263
0.91 1.09 1.0394 4.254 0.0762 0.9655 17.417 3.7286
0.90 1.10 1.0360 4.245 0.0765 0.9651 17.398 3.7307
0.89 1.11 1.0364 4.240 0.0771 0.9647 17.363 3.7319
0.88 1.12 1.0403 4.230 0.0777 0.9646 17.317 3.7340
0.87 1.13 1.0472 4.213 0.0779 0.9643 17.184 3.7336
0.86 1.14 1.0565 4.195 0.0784 0.9641 17.150 3.7330
0.85 1.15 1.0682 4.173 0.0786 0.9640 17.156 3.7307
0.80 1.20 1.1515 4.033 0.0812 0.9632 17.197 3.7139
0.50 1.50 1.9347 2.572 0.1074 0.9457 25.241 3.3386

0.95 1.00 1.0836 4.206 0.0764 0.9654 17.892 3.6262
0.95 1.05 1.0975 4.253 0.0749 0.9660 17.503 3.7105
0.95 1.10 1.1326 4.243 0.0762 0.9650 17.350 3.7456
0.95 1.15 1.1819 4.164 0.0786 0.9637 17.097 3.7578
0.95 1.20 1.2371 4.045 0.0847 0.9575 25.342 3.7477
0.95 1.25 1.2936 3.872 0.0890 0.9555 25.429 3.7252

0.90 1.00 1.0300 4.140 0.0753 0.9665 17.506 3.5755
0.90 1.05 1.0124 4.234 0.0757 0.9657 17.522 3.6798
0.90 1.10 1.0360 4.245 0.0765 0.9651 17.398 3.7307
0.90 1.15 1.0892 4.183 0.0782 0.9642 17.079 3.7546
0.90 1.20 1.1549 4.070 0.0821 0.9619 17.196 3.7530
0.90 1.25 1.2222 3.906 0.0856 0.9596 19.787 3.7344
0.90 1.30 1.2915 3.700 0.0921 0.9554 22.346 3.6934

0.85 1.00 1.1256 3.930 0.0786 0.9638 20.564 3.4977
0.85 1.05 1.0542 4.136 0.0772 0.9649 17.515 3.6255
0.85 1.10 1.0382 4.196 0.0761 0.9657 17.452 3.6948
0.85 1.15 1.0682 4.173 0.0786 0.9640 17.156 3.7307
0.85 1.20 1.1191 4.079 0.0803 0.9636 17.173 3.7424
0.85 1.25 1.1816 3.927 0.0850 0.9599 19.675 3.7320
0.85 1.30 1.2502 3.728 0.0906 0.9569 19.905 3.7010

0.80 1.00 1.3068 3.514 0.0815 0.9627 20.699 3.3817
0.80 1.05 1.1911 3.885 0.0792 0.9643 17.507 3.5447
0.80 1.10 1.1303 4.044 0.0784 0.9642 17.435 3.6382
0.80 1.15 1.1267 4.086 0.0782 0.9643 17.086 3.6911
0.80 1.20 1.1515 4.033 0.0812 0.9632 17.197 3.7139
0.80 1.25 1.1954 3.911 0.0848 0.9599 19.626 3.7155
0.80 1.30 1.2518 3.732 0.0898 0.9567 19.809 3.6956

0.75 1.00 1.5238 3.000 0.0846 0.9578 26.287 3.2261
0.75 1.05 1.3798 3.447 0.0813 0.9310 17.478 3.4308
0.75 1.10 1.2835 3.738 0.0809 0.9632 17.435 3.5552
0.75 1.15 1.2459 3.874 0.0810 0.9632 17.203 3.6325
0.75 1.20 1.2414 3.902 0.0828 0.9626 17.329 3.6688
0.75 1.25 1.2610 3.831 0.0851 0.9600 17.240 3.6840
0.75 1.30 1.2993 3.690 0.9035 0.9562 19.798 3.6764

0.70 1.00 1.7499 2.559 0.0862 0.9574 26.376 3.0309
0.70 1.05 1.5887 2.949 0.0824 0.9622 17.481 3.2832
0.70 1.10 1.4682 3.293 0.0834 0.9614 17.425 3.4427
0.70 1.15 1.4024 3.524 0.0843 0.9616 17.271 3.5477
0.70 1.20 1.3743 3.653 0.0852 0.9611 17.236 3.6053
0.70 1.25 1.3711 3.662 0.0859 0.9609 17.262 3.6350
0.70 1.30 1.3885 3.581 0.0912 0.9565 19.774 3.6395

F FREEU

We search the hyperparameter of FreeU for a single-band model PeriodWave. We found that using
balanced weights of backbone feature and skip feature could improve the reconstruction performance
and perceptual quality. We utilized α of 0.9 and β of 1.1 for our model. Additionally, we found that
increasing the weight of backbone feature β could further improve the perceptual quality but this
would decrease the reproduction performance.
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G TRAIN-INFERENCE MISMATCH PROBLEM

Current, two-stage Text-to-Speech (TTS) models consists of acoustic models and neural vocoder. Due
to noisy Mel-spectrogram, these two-stage TTS models suffer from train-inference mismatch problem.
Although one-step GAN-based neural vocoder could generate high-quality Mel-spectrogram, these
models might generate the samples with a noisy sound due to train-inference mismatch problem.

To reduce this issue, HiFi-GAN (Kong et al., 2020) proposed the fine-tuning methods with the
generated Mel-spectrogrm by teacher-forcing mode. (Lee et al., 2022a; Jang et al., 2021; Kaneko
et al., 2022; Kim et al., 2020; Łańcucki, 2021) followed this fine-tuning method to improve the
perceptual quality of two-stage TTS model.

Meanwhile, end-to-end TTS models (Kim et al., 2021; Lim et al., 2022) outperformed the performance
compared to two-stage models in terms of audio quality. They have a limitation of model architecture
restriction to align high-resolution waveform signal and text, and they require more training times.
Additionally, recent end-to-end TTS models showed lower zero-shot TTS performance than recent
two-stage TTS models including VoiceBox (Le et al., 2024), P-Flow (Kim et al., 2024), E2-TTS
(Eskimez et al., 2024), ARDiT-TTS (Liu et al., 2024b), and DiTTo-TTS (Lee et al., 2024a).

Although recent TTS models have shown their powerful performance on zero-shot TTS, there are
still train-inference mismatch problem which contains some noise on the generated Mel-spectrogram
resulting noisy sound.

To address this issue, we shift our focus from one-step generation to the iterative sampling based
waveform generation. Following diffusion-based neural vocoder (Koizumi et al., 2023; Jang et al.,
2023; Huang et al., 2022b; Koizumi et al., 2022; Roman et al., 2023), waveform generation with
iterative sampling could refine the waveform signal when the conditioning is flawed or imperfect.
We also adopt the iterative sampling methods by optimizing flow matching objective to reduce the
sampling steps. The results also show that our models have shown better performance even with small
sampling steps. Furthermore, our model has shown the best performance on two-stage text-to-speech
scenarios by iterative sampling.

G.1 SINGLE SPEAKER TEXT-TO-SPEECH

Table 18: Text-to-Speech Results. We utilized Glow-
TTS trained with LJSpeech as TTS model.

Methods MOS (↑) UTMOS (↑)

HiFi-GAN 3.70±0.03 4.1114
BigVGAN-base♥ 3.71±0.03 4.0296
BigVGAN♥ 3.69±0.03 3.9570

PriorGrad (50 steps) 3.53±0.03 3.3807
FreGrad (50 steps) 3.51±0.03 2.8583

PeriodWave (16 steps) 3.72±0.03 4.2560
PeriodWave + FreeU (16 steps) 3.75±0.03 4.3110

We conduct two-stage TTS experiments
to evaluate the robustness of the proposed
models compared to previous GAN-based
and diffusion-based models. We utilized
the official implementation of Glow-TTS
which is trained with the LJSpeech dataset.
Table 18 demonstrated that our model has a
higher performance on the two-stage TTS
in terms of MOS and UTMOS. Although
HiFi-GAN shows a lower performance in
reconstruction metrics, we observed that
HiFi-GAN shows a high perceptual perfor-
mance in terms of UTMOS. BigVGAN-base (14M) has a higher performance than BigVGAN (112M).
We see that BigVGAN could reconstruct the waveform signal from the generated Mel-spectrogram
even with the error that might be in the generated Mel-spectrogram. Although our model has a higher
reconstruction performance, our models could refine this phenomenon through iterative generative
processes. Additionally, we found that the generated Mel-spectrogram contains a larger scale of
energy compared to the ground-truth Mel-spectrogram, so we utilized τ of 0.333 for scaling x0.
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Table 19: Objective evaluation results with different sampling steps for each band.
Method steps M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) UTMOS (↑)

[16,16,16,16] 0.9729 4.262 0.0704 0.9678 3.6534
[16,8,4,4] 1.0473 4.259 0.0701 0.9680 3.6506
[16,4,4,4] 1.0580 4.257 0.0703 0.9678 3.6473

PeriodWave-MB [16,4,2,2] 1.1148 4.255 0.0703 0.9678 3.6482
[16,4,1,1] 1.0883 4.241 0.0703 0.9677 3.6409
[16,2,1,1] 1.1033 4.224 0.0705 0.9677 3.6370
[16,1,1,1] 1.1133 4.200 0.0710 0.9677 3.6253

[8,2,2,2] 1.1428 4.239 0.0721 0.9670 3.6241
PeriodWave-MB [8,2,1,1] 1.1152 4.225 0.0723 0.9669 3.6178

[8,1,1,1] 1.1255 4.193 0.0725 0.9670 3.6073

PeriodWave-MB [4,4,8,16] 1.0609 4.235 0.0732 0.9671 3.5923
[4,4,4,4] 1.0825 4.232 0.0732 0.9670 3.5899

G.2 ANALYSIS ON ADAPTIVE SAMPLING STEPS FOR MULTI-BAND MODELS

We proposed an adaptive sampling for multi-band models. We can efficiently reduce the sampling
steps for high-frequency bands due to the hierarchical band modeling conditioned on the previously
generated DWT components. Table 19 shows that it is important to model the first DWT components.
After sampling the first band, we can significantly reduce the sampling steps for the remaining
bands, maintaining the performance with only a small decrease. The results from the sampling steps
of [4,4,8,16] demonstrated that it is important to model the first band for high-fidelity waveform
generation and accurate high-frequency modeling could improve the M-STFT metrics.

H BROADER IMPACT

Practical Application We first introduce a high-fidelity waveform generation model using flow
matching. We demonstrated the out-of-distribution robustness of our model, and this means that the
conventional neural vocoder can be replaced with our model. Furthermore, we train Codec-based
PeriodWave for audio generation and speech language models. We see that our models can be utilized
for text-to-speech, voice conversion, audio generation, and speech language models for high-quality
waveform decoding.

Social Negative Impact Recently, speech AI technology has shown its practical applicability by
synthesizing much more realistic audio. Unfortunately, this also increases the risk of the potential
social negative impact including malicious use and ethical issues by deceiving people. It is important
to discuss a countermeasure that can address these potential negative impacts such as fake audio
detection, anti-spoofing techniques, and audio watermark generation.
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Figure 4: Neural Audio Codec Decoding. (a) The original PeriodWave is designed for parallel
generation. Increasing the sampling steps can significantly improve the audio quality. (b) We propose
streaming generation methods using a single token delayed streaming generation and 2-step sampling.

Table 20: Streaming audio generation using two steps based on different values of Np and Nd.
Np Nd CER (↓) WER (↓) M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) UTMOS (↑)

2 1 2.41 5.51 1.4386 2.056 0.1574 0.9121 50.098 3.6469
4 1 2.07 5.12 1.3364 2.174 0.1488 0.9182 46.104 3.7675
8 1 2.08 4.80 1.2889 2.211 0.1434 0.9243 47.302 3.8145

25 1 2.45 5.53 1.2716 2.233 0.1429 0.9228 40.634 3.8508

I NEURAL AUDIO CODEC

Recently, neural audio codec models (Défossez et al., 2023; Yang et al., 2023a; Zhang et al., 2024;
Liu et al., 2024a; Ji et al., 2024; Xin et al., 2024; Ye et al., 2024) have been investigated for
practical applications including speech language models, audio generation, and TTS. Recently, Moshi
(Défossez et al.) presented an efficient streaming speech language models and proposed neural audio
codec, Mimi, that operates at 12.5 Hz. We train PeriodWave using tokens of Q = 8 quantizer from
Mimi. We added an additional upsampling layer of Mel-Encoder, and we refer this module as the
Token-Encoder. We utilize the same hyperparameter for the Mel-spectrogram version, excluding the
segment length of 48,000. The model was trained on LibriTTS for 300 epochs (830k steps, 3 days).

Fine-tuning with only adversarial training Following (Lee et al., 2024b), we first fine-tuned
the model with reconstruction loss and adversarial feedback, fixing the iteration steps to either
2 or 4 to accelerate the inference speed. However, we observed that the fine-tuned model using
Mel-spectrogram reconstruction loss generated a noisy sound. We can discuss that Mimi compressed
the waveform signal at 24,000 Hz into 12.5 Hz tokens, which causes a loss of frequency-related
details in speech, resulting in over-smoothed frequency information with reconstruction loss. Moshi
also indicated that removing the reconstruction loss can improve audio quality. Therefore, instead of
Mel-reconstruction loss, we employed multi-scale STFTD with MPD and MS-SB-CQTD (Gu et al.,
2024). With only adversarial training, we fine-tuned the model for 5 epochs (50k steps and 9 hours)
with a batch size of 32 using four H100 GPUs.

Parallel generation We generated the samples using all sequence of tokens in parallel. We designed
the model to enhance the audio quality by increasing the iteration steps. Table 10 indicates that
PeriodWave significantly improves the performance compared to the original decoder of Mimi.
Furthermore, we see that scaling up model size could further improve the audio quality in parallel
generation for high-quality dialogue data collection using speech language models.

Streaming generation We present streaming generation methods for PeriodWave as illustrated in
Figure 4. Although PeriodWave is trained with parallel generation, we found that PeriodWave can
generate samples in a streaming manner. To achieve this, we utilize Np previous tokens for the past
context, and Nd delayed tokens for the future context. We adopt a single frame delayed streaming
generation using Nd = 1 delayed token. We found that using at least one previous and one delayed
token is essential for generating waveform signals in a streaming manner, as our model consists of
non-causal convolutional layer. In our setup, we can use up to Np = 25 previous tokens for real-time
generation. We compared the performance based on different values of Np and Nd in Table 20.
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J BASELINE DETAILS

J.1 LJSPEECH

We compared the model with the public-available models which are trained with LJSpeech dataset.
LJSpeech is a single speaker dataset consisting of 13,100 high-quality audio samples with a sampling
rate of 22,050 Hz. We followed the training and validation lists of HiFi-GAN5.

HiFi-GAN We first utilize the HiF-GAN, which is the most popular GAN-based neural vocoder.
We use the official checkpoint of HiFi-GAN (V1)6 which was trained for 2.5M steps. They utilize
eight number of discriminators including three different scale of multi-scale discriminators and five
different periods of multi-period discriminators.

BigVGAN We utilize BigVGAN-base and BigVGAN which are a novel GAN-based neural vocoder.
We utilize the official checkpoints7 for sampling rate of 22,050 Hz which are trained with a large-scale
dataset including LJSpeech, VCTK, and LibriTTS. We are not sure that they are trained with all
LJSpeech dataset without splitting the training and validation dataset. These models are trained with
5M steps.

PriorGrad We utilize PriorGrad which is the most popular diffusion-based neural vocoder. We use
the official checkpoint of PriorGrad 8 which was trained for 3M steps. We used the same energy-based
prior of this models and the default sampling steps of 50.

FreGrad We utilize FreGrad Nguyen et al. (2024) which is the recent proposed diffusion-based
neural vocoder. They utilize similar approach using discrete wavelet transform so we compare it with
ours. We use the official checkpoint of FreGrad 9 which is trained for 1M steps.

J.2 LIBRITTS

We compared the model with the public-available universal vocoder which are trained with LibriTTS
dataset. LibriTTS dataset consists of 555 hours of 2,311 speakers with sampling rate of 24,000 Hz.
We followed the training processes of BigVGAN including Mel-spectrogram transformation and
inference settings. There are no diffusion-based models and any implementations which are trained
with LibriTTS or other multi-speaker settings. In our preliminary study, diffusion-based models could
not generate high-frequency information resulting in low quality audio generation.

UnivNet We utilize the UnivNet-c32 which is a large model of UnivNet. UnivNet uses LVCNet
which is an efficient generator structure for fast sampling. We use the public-available implementation
of UnivNet10 which is trained with LibriTTS train-clean-360 subset.

Vocos We utilize Vocos wich is a fast time-frequency modeling-based neural vocoder with iSTFT.
We utilize the official implementation of Vocos 11 which is trained with LibriTTS dataset for 1M
steps. This model shows the fastest inference speed and even has a comparable performance with
other baselines.

BigVGAN We utilize BigVGAN-base and BigVGAN which are a novel GAN-based neural vocoder.
We utilize the official checkpoints for sampling rate of 24,000 Hz which are trained with LibriTTS.
These models are trained with 5M steps. Specifically, we also utilize the checkpoints which use a
Snakebeta activation with log-scale parameterization which shows the best quality reported by the
official implementation of BigVGAN.

5https://github.com/jik876/hifi-gan/tree/master/LJSpeech-1.1
6https://github.com/jik876/hifi-gan
7https://github.com/NVIDIA/BigVGAN
8https://github.com/microsoft/NeuralSpeech
9https://github.com/kaistmm/fregrad

10https://github.com/maum-ai/univnet
11https://github.com/gemelo-ai/vocos
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K EVALUATION METRICS

K.1 OBJECTIVE EVALUATION

Following (Lee et al., 2023), we utilized four different metrics including multi-resolution STFT
(M-STFT), perceptual evaluation of speech quality (PESQ), Periodicity error, and F1 score of
voice/unvoice classification (V/UV F1). We additionally conduct UTMOS and Pitch distance.

M-STFT we utilized an open-source implementation of multi-resolution STFT loss of Auraloss
(Steinmetz & Reiss, 2020). The M-STFT loss was proposed in Parallel WaveGAN (Yamamoto et al.,
2020), and we used this distance to measure the difference between the ground-truth and generated
samples at the multiple resolution STFT domains.

PESQ We utilized the wideband version of perceptual evaluation of speech quality12. We down-
sampled the audio by the sampling rate of 16,000 Hz to calculate PESQ.

Periodicity and V/UV F1 CarGAN (Morrison et al., 2022) stated the periodicity artifacts perceptu-
ally degrade the audio. We utilized a Periodicity RMSE to measure the periodicity error.13 We also
conducted the evaluation on Voice/Unvoice F1 score.

UTMOS We utilize the open-source MOS prediction model, UTMOS14 to evaluate the naturalness
of generated samples. The UTMOS reported the consistency results of MOS for neutral English
speech dataset.

K.2 SUBJECTIVE EVALUATION

MOS/SMOS We assessed the perceptual quality of synthesized speech using Mean Opinion Score
(MOS). Specifically, the naturalness of the synthesized speech was measured with MOS, and its
similarity to the ground-truth speech was evaluated using SMOS. We utilized crowdsourcing for this
evaluation. The details are described in the following Appendix L.

12https://github.com/ludlows/PESQ
13https://github.com/descriptinc/cargan
14https://github.com/tarepan/SpeechMOS
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Figure 5: Detailed information on listeners restrictions and task completion interfaces.

L CROWDSOURCING DETAILS

We conducted MOS and SMOS evaluations using a 5-point scale to measure the naturalness and
similarity of the synthesized speech. For this survey, we utilized Amazon Mechanical Turk15 to assess
the perceptual quality of each model. Specifically, 30 listeners evaluated 150 samples per model,
rating them on a scale from 1 to 5. Given that the evaluation data is in English, we specifically targeted
native English speakers residing in the United States. To ensure the reliability of the evaluators, we
implemented strict eligibility criteria: only listeners with an approval rate of 98% or higher for their
previous tasks on MTurk, and with at least 90 approved tasks (HiTs), were allowed to participate in
this evaluation. To further enhance the quality of the evaluation, ground-truth samples were included
as control measures. We excluded evaluations 1) from listeners who gave a score below 3 to the
actual samples and 2) from those who spent less than half the duration of the audio sample on the
overall evaluation from the final results. This procedure was intended to filter out inattentive listeners
and ensure the integrity and accuracy of the evaluation data.

15https://www.mturk.com/

27

https://www.mturk.com/


Published as a conference paper at ICLR 2025

Table 21: Objective evaluation results from EnCodec tokens. We utilize speech dataset from the test
samples provided in RFWave.

Method Params Training M-STFT (↓) PESQ (↑) Period. (↓) V/UV (↑) Pitch (↓) UTMOS (↑) SSL-MOS (↑)

Encodec 15M 300 epochs (8xA100) 1.170 2.643 0.112 0.941 26.605 2.542 3.787
Vocos 7M 2M steps 1.074 3.051 0.086 0.957 20.491 3.100 4.130

MBD 411M 4×2day (4×V100) 1.612 2.645 0.108 0.946 26.720 3.300 4.091
RFWave 18M 10 day (4×A100) 1.280 3.020 0.078 0.957 18.126 2.988 4.169
PeriodWave 31M 1M steps, 4 day (4×A100) 0.929 3.644 0.070 0.968 19.538 3.581 4.352

Table 22: Band-wise Comparison of the reconstruction from EnCodec tokens. We utilize speech
dataset from the test samples provided in RFWave.

Method Params Training Mel-L (↓) Mel-M (↓) Mel-H (↓) Mel-A (↓)

Encodec 15M 300 epochs (8xA100) 0.577 0.517 0.587 0.567
Vocos 7M 2M steps 0.449 0.406 0.451 0.441

MBD 411M 4×2day (4×V100) 0.837 0.994 1.107 0.921
RFWave 18M 10 day (4×A100) 0.603 0.674 0.775 0.651
PeriodWave 31M 1M steps, 4 day (4×A100) 0.386 0.365 0.413 0.387

Table 23: Objective evaluation results from EnCodec tokens. We utilize vocal dataset from the test
samples provided in RFWave.

Method Params Training M-STFT (↓) PESQ (↑) Period. (↓) V/UV (↑) Pitch (↓) Mel-L (↓) Mel-M (↓) Mel-H (↓) Mel-A (↓)

Encodec 15M 300 epochs (8xA100) 1.223 2.416 0.133 0.933 33.237 0.755 0.590 0.556 0.684
Vocos 7M 2M steps 1.131 2.849 0.098 0.954 24.504 0.546 0.457 0.454 0.511

MBD 411M 4×2day (4×V100) 1.554 2.894 0.096 0.957 22.252 0.891 1.024 1.095 0.957
RFWave 18M 10 day (4×A100) 1.345 2.878 0.079 0.962 18.849 0.760 0.690 0.701 0.735
PeriodWave 31M 1M steps, 4 day (4×A100) 0.921 3.681 0.067 0.967 17.531 0.448 0.391 0.415 0.431

Table 24: Objective evaluation results from EnCodec tokens. We utilize sound effect dataset from the
test samples provided in RFWave.

Method Params Training M-STFT (↓) PESQ (↑) Mel-L (↓) Mel-M (↓) Mel-H (↓) Mel-A (↓)

Encodec 15M 300 epochs (8xA100) 1.182 2.409 0.528 0.466 0.456 0.502
Vocos 7M 2M steps 1.294 1.895 0.562 0.474 0.451 0.523

MBD 411M 4×2day (4×V100) 1.714 1.936 0.914 1.080 1.054 0.974
RFWave 18M 10 day (4×A100) 1.592 2.253 0.701 0.640 0.705 0.690
PeriodWave 31M 1M steps, 4 day (4×A100) 1.101 2.699 0.438 0.398 0.395 0.422

M HIGH-FIDELITY WAVEFORM RECONSTRUCTION FROM THE TOKEN OF
ENCODEC

We conducted additional experiments for waveform generation from the token of EncCodec, and
we compared the model with EnCodec, Vocos, MBD and RFWave. Following MBD, we used the
same Encodec settings to obtain the tokens, using a maximum bandwidth of 6.0 kbps (Q=8, 75Hz for
24,000 Hz waveform).

Following MBD, our model was trained and evaluated exclusively on the same dataset. Also, we
utilized the official implementation and official checkpoints of MBD and RFWave, respectively.
Specifically, we utilize the same dataset including Common Voice 7.0, DNSChallenge 4 for speech,
MTG-Jamendo for music, and FSD50K and AudioSet for environmental sounds by resampling them
using Sox resampling to 24,000 Hz. In summary, we utilized the same training dataset and our model
was trained with speech, singing, and sound effects together for a fair comparison with MBD and
RFWave.

We also incorporated the results from the universal test set provided by RFWave16. This testset
consists of speech, vocal, and sound effect samples from several different datasets. Specifically, the
reported results are based on the single-band PeriodWave model trained for 1M steps. For each
model, we follow the recommended inference setup, MBD used 20 steps for each band diffusion,

16https://drive.google.com/file/d/1WjRRfD1yJSjEA3xfC8-635ugpLvnRK0f/view

28

https://drive.google.com/file/d/1WjRRfD1yJSjEA3xfC8-635ugpLvnRK0f/view


Published as a conference paper at ICLR 2025

we used 20 sampling steps for better results of RFWave with CFG of 2. We conducted additional
naturalness evaluation by SSL-MOS. 17

The results demonstrated that the single-band PeriodWave significantly outperforms all baselines
including MBD and RFWave. With large-scale dataset, our model could increase the capacity to
generalize various scenarios including speech, singing, and sound effects.

M.1 BASELINES FOR ENCODEC TOKEN RECONSTRUCTION

EnCodec We utilized the official implementation of EnCodec Défossez et al. (2022), and the
official checkpoint18 to extract the tokens and reconstruct the waveform signal. We extract the tokens
compressed by the bandwidth of 6.0 kbps (Q=8, 75Hz).

Vocos We use the official implementation and checkpoint of Vocos Siuzdak (2024) which was
trained with the tokens of EnCodec.19 Vocos is a powerful GAN-based baseline model. Although
Vocos has a fast inference speed, Vocos was trained with multi-period discriminator and multi-
resolution discriminator for adversarial feedback to optimize the model.

MBD We utilized the official implementation and checkpoint of multi-band diffusion (MBD)
Roman et al. (2023).20 Previous diffusion-based models only provide the low-frequency information,
MBD adopted multi-band modeling for diffusion models to improve the high-frequency modeling.

RFWave We utilize the official implementation of RFWave Anonymous (2024) which has better
performance than MBD. We found that RFWave was submitted to ICLR 202521, and this work also
utilize a flow matching for waveform generation like our proposed methods. While our model adopt
CFM to the waveform-level modeling with multi-period generation, RFWave leverage spectrogram-
based flow matching for efficient iterative waveform generation.

17https://github.com/unilight/sheet
18https://github.com/facebookresearch/encodec
19https://github.com/gemelo-ai/vocos
20https://github.com/facebookresearch/audiocraft/blob/main/docs/MBD.md
21https://openreview.net/forum?id=gRmWtOnTLK
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Figure 6: The spectrogram of the GT sample

Figure 7: The spectrogram of the sample generated by EnCodec

Figure 8: The spectrogram of the sample generated by Vocos

Figure 9: The spectrogram of the sample generated by MBD

Figure 10: The spectrogram of the sample generated by RFWave

Figure 11: The spectrogram of the sample generated by PeriodWave
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N MULTI-BAND PERIODWAVE WITH FREEU

Table 25: Grid Search for FreeU Hyperparameter.
Methods α β M-STFT (↓) PESQ (↑) Periodicity (↓) V/UV F1 (↑) Pitch (↓) UTMOS (↑)

PeriodWave 1.00 1.00 1.2129 4.224 0.0762 0.9652 17.496 3.6495
(16 steps) 0.95 1.05 1.0975 4.253 0.0749 0.9660 17.503 3.7105

0.90 1.10 1.0360 4.245 0.0765 0.9651 17.398 3.7307
0.85 1.15 1.0682 4.173 0.0786 0.9640 17.156 3.7307

PeriodWave-MB 1.00 1.00 0.9729 4.262 0.0704 0.9678 20.496 3.6534
(16 steps) 0.95 1.05 0.9590 4.291 0.0690 0.9689 20.235 3.7089

0.90 1.10 0.9671 4.283 0.0691 0.9687 20.138 3.7237
0.85 1.15 0.9876 4.224 0.0716 0.9673 20.016 3.7155

When we train the model with only a single CFM objective, the tendency of FreeU is almost same
with other settings and dataset.

For validation set, we fixed the alpha and beta values in terms of reconstruction performance. However,
we can decrease the alpha to remove the high-frequency noise, and increase the beta to improve the
sharpness and energy of generated samples. In terms of generative models, controlling the alpha/beta
could improve the diversity of generated samples.

Furthermore, we added the results of PeriodWave-MB with FreeU to demonstrate the consistent
results. The results show a similar result of PeriodWave with FreeU.
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