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ABSTRACT

Offline reinforcement learning (offline RL) learns from an offline dataset with-
out further interactions with the environment. Although such offline training pat-
terns can avoid cost and damage in the real environment, one main challenge is
the distributional shift between the state-action pairs visited by the learned policy
and those in the offline dataset. Prevailed existing model-based offline RL ap-
proaches learn a dynamics model from the dataset and perform pessimistic policy
optimization based on uncertainty estimation. However, the inaccurate quantifica-
tion of model uncertainty may incur the poor generalization and performance of
model-based approaches, especially in the datasets lacking of sample diversity. To
tackle this limitation, we instead design a novel framework for model-based offline
RL, named Conservative Offline Bidirectional Model-based Policy Optimization
(abbr. as COBiMO). First, we learn an ensemble bidirectional model from the of-
fline dataset and construct long bidirectional rollouts by joining two unidirectional
ones, thereby increasing the diversity of the model rollouts. Second, we devise a
conservative rollout method that minimizes the reconstruction loss, further im-
proving the sample accuracy. We theoretically prove that the bound of rollout
error of COBiMO is tighter than the ones using the unidirectional models. Empir-
ical results also show that COBiMO outperforms previous offline RL algorithms
on the widely used benchmark D4RL.

1 INTRODUCTION

In typical reinforcement learning (RL), the objective is to train an agent through real-time inter-
actions with the environment and the consequent reward signals (Sutton & Barto, 2018). In re-
cent years, such trial-and-error learning pattern has exhibited its significant superiority in complex
decision-making tasks, e.g. robotic locomotion skill learning (Mnih et al., 2013; Andrychowicz
et al., 2020), go game (Silver et al., 2017; Schrittwieser et al., 2020), drone racing (Kaufmann et al.,
2023). However, the trial-and-error of typical RL can be impractical in real-world settings. Espe-
cially for those cost-sensitive tasks, the tremendous interactions required for online training may
cause various intricated issues, e.g. crashing cars in autonomous driving (Zhou et al., 2023) and
extremely expensive data collection in healthcare (Yu et al., 2021a; Qayyum et al., 2020).

As a potential alternative to this problem, offline reinforcement learning (offline RL), also known as
batch RL, has attracted great attention (Fujimoto et al., 2019; Lange et al., 2012; Kumar et al., 2019;
Agarwal et al., 2020; Peng et al., 2019; Wu et al., 2019). In an offline setting, one only has access to
a static dataset which is pre-collected based on past experiences, and any further interactions with
the environment are forbidden throughout the entire training process. Therefore, the offline learning
mode can avoid damage and cost in the real environment caused by intermediate policies. Moreover,
even when online interactions are feasible, learning from offline datasets still holds the edge if the
dynamics are sophisticated and hard to generalize (Levine et al., 2020).

However, offline RL algorithms suffer severely from distributional shift caused by the mismatch
between the behavior policy used for generating the dataset and the learned policy (Levine et al.,
2020; Kostrikov et al., 2021). During the training process, the agent may encounter some state-
action pairs that rarely or even never appear in the dataset. In the following policy evaluation stage,
such out-of-distribution (shorted as OOD) actions tend to be overestimated with spurious high Q-
values, leading to poor performance when tested or deployed in the real environment. To handle with
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(a) Bidirectional rollouts (b) Reconstruction error

Figure 1: Conservative bidirectional rollouts in a snapshot

distributional shift, prevailing model-free offline RL approaches tend to conservatively ensure that
the distribution over actions under the learned policy is close to the behavior distribution (Levine
et al., 2020). Such restrictions can be enforced by directly adding a hard policy constraint in the
policy update step (Kumar et al., 2019; Fujimoto et al., 2019; Ghasemipour et al., 2021; Siegel et al.,
2020; Nair et al., 2020), or implicitly incorporating some form of penalty into the Q-value function
towards OOD state-action pairs (Kumar et al., 2020; Kostrikov et al., 2021; Wu et al., 2019; Nachum
et al., 2019). Another branch of model-free algorithms aims to quantify the epistemic uncertainty of
the Q-value functions and then utilizes uncertainty estimates to produce conservative target values
(Lakshminarayanan et al., 2017; Bai et al., 2022; An et al., 2021).

While model-free offline RL directly optimizes the policy with the pre-collected experiences, model-
based offline RL additionally learns a dynamics model from the experiences in the dataset. Main-
streams of existing model-based offline RL approaches incorporate conservatism based on the model
uncertainty, by adding a penalty either on the learned reward function (Yu et al., 2020; Chen et al.,
2021; Kidambi et al., 2020) or on the Q-function during policy optimization (Yu et al., 2021b;
Wang et al., 2021; Yue et al., 2023). By generating and training on the additional imaginary roll-
outs, model-based methods have the ability for higher sample efficiency and broader generalization,
therefore alleviating distributional shifts.

However, a key factor that plagues model-based approaches is the inaccurate quantification of un-
certainty (Yu et al., 2021b; Bai et al., 2022), leading to the low quality of the model rollouts. Also,
model-based methods tend to perform poorly under scenarios that lack sample diversity, e.g. datasets
collected by a single behavior policy (Yu et al., 2020). Obviously, data quality is directly dependent
on the model accuracy and the design of the rollout method. In addition, the rollout length, i.e.
the number of steps to generate a trajectory, affects both the data quality and diversity. Intuitively,
generating long trajectories produces more diverse imaginary data while accumulating error upper
bound since further model rollouts need to build on the previous imaginary transitions.

Motivated by the above intuition, we propose Conservative Offline Bidirectional Model-based Pol-
icy Optimization (abbr. as COBiMO), a novel model-based framework for offline RL. For each
direction, i.e. forward and backward, COBiMO learns a dynamics model along with a rollout policy
based on the offline dataset. As Figure 1a shows, we divide an imaginary trajectory generation into
two parts: the forward rollouts and the backward rollouts. By constructing a long trajectory with
two shorter ones, COBiMO can increase the diversity of the generated samples while maintaining
the data quality. Moreover, for each rollout part, we apply a conservative rollout method that aims
to minimize the summed reconstruction loss (Figure 1b). We provide a theoretical analysis for the
effectiveness of COBiMO in Section 4. COBiMO presents a plug-and-pull data augmentation to
be combined with existing model-free offline RL algorithms. Extensive experiments on the widely
used benchmark D4RL (Fu et al., 2020) demonstrate the superiority of our method.
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2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

Markov Decision Process (MDP) can be described as a tuple (S,A, T, r, γ, µ0) (Sutton & Barto,
2018). Precisely, S and A denote the state and action set respectively; T : S × S × A → R is
the transition distribution function embedded in the real dynamics, where T (s′|s, a) denotes the
probability of transiting to the next state s′ assuming action a is taken in current state s; r(s, a) :
S × A → R is the reward function; γ ∈ (0, 1) is the discount factor that determines the importance
of future rewards compared to immediate ones; µ0(s) : S → [0, 1] is the initial state distribution.

The goal of RL is to seek the optimal policy π(a|s) : S × A which maximizes the expected cumu-
lative discounted returns:

J (π) := Es0∼µ0,at∼π(·|st),st+1∼T (·|st,at)

[ ∞∑
t=0

γtr(st, at)

]
(1)

2.2 MODEL-BASED OFFLINE REINFORCEMENT LEARNING

In the offline RL setting, the agent only has access to a static dataset D = {(s, a, r, s′)} and any
further interactions with the environment are not allowed. The offline dataset can be generated
through one or multi-source behavior policies. We denote the empirical distribution of behavior
policy induced by the dataset as πD. In most existing offline RL works, πD is not accessible.

Model-based RL approaches aim at performing planning or policy search based on a learned model
of the environment. Typically, a forward dynamics model T̂ (s′|s, a) along with the reward model
r̂(s, a) is learned through pre-collected experiences. For the simplicity of notations, we incorporate
the reward model into the dynamics model, denoted by T̂ (s′|s, a) or T̂ (s′, r|s, a). In this paper,
we design a bidirectional framework which contains a forward dynamics model T̂f (s

′|s, a) and a
backward dynamics model T̂b(s|s′, a).

3 METHODOLOGY

In the offline RL setting, we only have access to a pre-collected dataset D. We assume that there
exists a forward transition dynamics Tf and a behavior policy β induced by D. In this section,
we first introduce the components involved in COBiMO and then explain how these modules are
organically combined to conservatively generate bidirectional model rollouts.

3.1 COMPONENTS OF COBIMO

Before stepping into the overall framework of COBiMO , we first introduce the four components
involved: a forward dynamics model T̂f , a backward dynamics model T̂b, a forward rollout policy
π̂f and a backward rollout policy π̂b.

The forward and backward dynamics model. As is done in MBPO (Janner et al., 2019), we
model the forward transition dynamics Tf with a neural network parameterized by θf and ϕf , out-
putting a Gaussian distribution T̂f over the next state and the corresponding reward: T̂f (s

′, r|s, a) =
N (µθf (s, a),Σϕf

(s, a)). In practical implementation, we learn an ensemble of N forward models
{T̂ i

f = N (µθi
f
,Σϕi

f
)}Ni=1 and only use K elite ones. We train the forward model to maximize the

log-likelihood function, i.e. to minimize the forward model loss function Lfm(θf , ϕf ):

Lfm(θf , ϕf ) := E(s,a,s′,r)∼D

[
− log T̂f (s

′, r|s, a)
]

(2)

For the backward model, we employ the same model design as the forward one and aim to ap-
proximate the backward transition dynamics Tb, which is defined by Tb(s, r|s′, a) = Tf (s

′, r|s, a).
Therefore, we train each backward model T̂b(s, r|s′, a) = N (µθb(s

′, a),Σϕb
(s′, a)) to minimize
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the backward model loss function Lbm(θb, ϕb):

Lbm(θb, ϕb) := E(s,a,s′,r)∼D

[
− log T̂b(s, r|s′, a)

]
(3)

The forward and backward rollout policy. With the learned forward and backward models,
COBiMO can generate one-step imaginary transition (s, a, r, s′) given the query (s, a) or (s′, a). To
roll out a multi-step trajectory (s0, a0, ŝ1, â1, . . . , ŝT , âT ), a sequence of imaginary actions {âi}Ti=1
are indispensable. Therefore, we additionally learn a rollout policy for each unidirectional model.

To approximate the behavior policy β induced by the dataset D, we learn a forward rollout policy
πf by behavioral cloning. Following BCQ (Fujimoto et al., 2019), we learn a generative model
Ĝω

f = (Êω1

f , D̂ω2

f ) using a Conditional Variational Auto-encoder (shorted as CVAE) (Sohn et al.,
2015). The encoder Êω1

f (s, a) represents a gaussian distribution given the state-action pair (s, a)
and outputs a latent vector z ∼ Êω1

f (s, a); the decoder D̂ω2

f takes the state s and the latent vector z
as the input and reconstructs the input action ã = D̂ω2

f (s, z).

We train the forward generative model Ĝω
f (s) by minimizing the CVAE loss Lfp,

Lfp(Ĝ
ω
f ) = E(s,a,s′,r)∼D,z∼Ê

ω1
f (s,a)

[
(a− D̂ω2

f (s, z))2 +DKL

(
Êω1

f (s, a)∥N (0, I)
)]

(4)

where the first term inside the expectation is the reconstruction loss and the second term stands for
an additional penalty for the KL-divergence between Êω1

f and the multivariate standard Gaussian
distribution N (0, I).

As for the backward rollout policy, we train another CVAE Ĝξ
b = (Êξ1

b , D̂ξ2
b ) that takes the next

state s′ as the input. Similarly, we train the backward generative model Ĝξ
b by minimizing the loss

function Lbp:

Lbp(Ĝ
ξ
b) = E

(s,a,s′,r)∼D,z∼Ê
ξ1
b (s′,a)

[
(a− D̂ξ2

b (s′, z))2 +DKL

(
Êξ1

b (s′, a)∥N (0, I)
)]

(5)

By drawing the latent vector z ∼ N (0, I) instead, we can generate actions from CVAEs given a fixed
state. For simplicity, we respectively use π̂f and π̂b to represent the policies induced by the model
Ĝω

f and Ĝξ
b . Combining the dynamics models with the rollout policies, we can generate rollouts of

any length and any direction from a given state s0:

Definition 3.1 (Forward model rollouts). We say that τf = {(si, ai, si+1, ri)}N−1
i=0 are forward

model rollouts of length N starting at s0 if the following conditions are satisfied:

ai ∼ π̂f (·|si), (si+1, ri) ∼ T̂f (·|si, ai), i ∈ {0, 1, . . . , N − 1} (6)

Similarly, we can define backward model rollouts τb = {(si, ai, si+1, ri)}−1
i=−N . We defer the

formal definition in the Appendix A.

3.2 FRAMEWORK OF COBIMO

To generate an imaginary trajectory of length k, one straightforward idea is to roll out k steps
from the given state in a fixed direction, iteratively using the rollout policy to pick actions and
the dynamics model to transit to the next states. Apparently, larger trajectory length increases the
diversity of the generated transitions, but the error caused by the inaccuracy of the dynamics model
will accumulate. In this subsection, we will introduce the conservative bidirectional rollout method
that improves the accuracy of the imaginary rollouts even if the trajectories are multi-step.

Conservative bidirectional rollouts. As Figure 1a shows, we divide a trajectory of length k into
two shorter ones: a forward trajectory of length k1 and a backward trajectory of length k2 sat-
isfying k1 + k2 = k. Specifically, given a starting state s0, we use model T̂f and rollout pol-
icy π̂f to generate forward model rollouts of length k1, and use T̂b and π̂b to backtrack k2 steps.
By joining the forward and backward rollouts from the same starting state s0, we get a trajectory
τ = {(si, ai, si+1, ri)}k1−1

i=−k2
of length k = k1 + k2.
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Note that COBiMO learns the forward and backward dynamics models to respectively approximate
T and T−1. Given a forward model rollout, we assume that if we back-construct it with the learned
backward model and rollout policy from the ending state, the discrepancy between the forward
trajectory and the reconstructed backward one should be small, as illustrated in Figure 1b. Following
this intuition, we design a conservative rollout method to reduce the reconstruction error:

Definition 3.2 (Reconstruction error). Given forward rollouts τf = {(si, ai, si+1, ri)}N−1
i=0 starting

at s0 and ending at sN , the reconstruction error using backward model T̂b is defined as follow.

Er(τf ) :=
1

N

N−1∑
i=0

Eŝi∼T̂b(·|si+1,ai)
[∥si − ŝi∥] (7)

Similarly, we can define the reconstruction error for backward rollouts using forward model T̂f ,
which can be found in Appendix A. For each direction, we generate certain number of candidate
rollouts and compute the reconstruction loss for each candidate. Only the one with the least recon-
struction error is selected and added to the model replay buffer B.

Overall framework. To sum up, the framework of COBiMO is shown in Algorithm 1. We first
learn two dynamics models T̂f , T̂b and two rollout policies πf , πb using the experiences from the
dataset D. Unlike the Dyna-style approaches (Sutton & Barto, 2018; Lai et al., 2020), these com-
ponents stay unchanged during the subsequent procedures once the training is finished. Then we
combine these four modules to produce a model replay buffer B by generating conservative bidirec-
tional rollouts. Adding B to the datasetD, we can extend the original dataset and run any model-free
offline RL method on it to learn a target policy. We provide the implementation details along with
pseudo-codes involved in this section in Appendix C.

Algorithm 1 Conservative Offline Bidirectional Model-based Policy Optimization (COBiMO)

Input: Offline dataset D; forward rollout step k1; backward rollout step k2; learning rates
αθ, αϕ, αω, αξ ; the number of iterations Tm, Tp; the size N of model replay buffer B.

1: Randomly initialize model parameters θf , ϕf , θb, ϕb.
2: for Tm epochs do ▷ Learn the forward and backward dynamics model.
3: Compute forward model loss Lfm by Equation 2.
4: Update θf ← θf − αθ∇θfLfm.
5: Update ϕf ← ϕf − αϕ∇ϕf

Lfm.
6: Compute backward model loss Lbm by Equation 3.
7: Update θb ← θb − αθ∇θbLbm.
8: Update ϕb ← ϕb − αϕ∇ϕb

Lbm.
9: end for

10: Randomly initialize rollout policy parameters ω, ξ.
11: for Tp epochs do ▷ Learn the forward and backward rollout policy.
12: Compute forward rollout policy loss Lfp by Equation 4.
13: Update ω ← ω − αω∇ωLfp.
14: Compute backward rollout policy loss Lbp by Equation 5.
15: Update ξ ← ξ − αξ∇ξLbp.
16: end for
17: Initialize the model replay buffer B ← ∅.
18: while |B| < N do ▷ Generate model rollouts.
19: Sample the starting state s0 from D.
20: Generate conservative bidirectional model rollouts τ = {(si, ai, si+1, ri)}k1−1

i=−k2
using dy-

namics models T̂f , T̂b and rollout policies Ĝω
f , Ĝ

ξ
b .

21: Add model rollouts to the model replay buffer B ← B ∪ τ .
22: end while
23: Add model replay buffer to the dataset D ← D ∪ B.
24: Run any model-free offline RL algorithm (e.g. CQL) on D to learn the final policy π.
Output: The learned policy π.
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4 THEORETICAL ANALYSIS

4.1 NOTATIONS

Before stepping into the theoretical analysis of COBiMO , we first introduce the involved notations
briefly. As previously stated, T̂f and T̂b stand for the learned forward and backward dynamics model,
π̂f and π̂b represent the learned rollout policies. ϵfm, ϵbm, ϵfp and ϵbm respectively represent the
error of these 4 learned components. We denote the state marginal of forward model at time t by
T̂ t
f (s) and backward one by T̂−t

b (s). The total variation distance between two distributions p1 and
p2 is denoted by DTV (p1, p2). The definitions for these notations can be found in Appendix A.

4.2 PERFORMANCE GUARANTEE FOR COBIMO

Lemma 4.1 (Recursive error for forward state marginal). Suppose the error for forward dynamics
model is ϵfm and the error for forward rollout policy is ϵfp. Then we can bound the error of state
marginal for forward model at time t+ 1 as follows:

DTV (T̂
t+1
f , T t+1

f ) ≤ DTV (T̂
t
f , T

t
f ) + ϵfm + ϵfp (8)

Along with Lemma B.2, Lemma 4.1 indicates that the state marginal error of model rollouts at each
timestep can be attributed to the one at previous timestep plus the error of model and rollout policy.
Therefore, the error of rollouts will accumulate since further imaginary states depend on the previous
ones, coinciding with the intuition from Figure 1a.

Definition 4.2 (Cumulative error for imaginary rollouts). We define the cumulative error of an imag-
inary trajectory τ = {(si, ai, si+1, ri)}N−1

i=0 based on the total variation distance:

ETV (τ) :=

N−1∑
t=0

τ tDTV (T̂
t(st, at), T

t(st, at)), (9)

where T̂ t(st, at) is the state-action joint distribution at time t that generates (st, at). T t(st, at) is
the true joint distribution.

The above definition provides a reasonable measure that evaluates the quality of an imaginary tra-
jectory by quantifying the cumulative discounted discrepancy between the true joint distribution
and the one that generates the rollouts. We involve the discount factor τ to be consistent with the
definition of cumulative discounted returns J .

As described before, we can either use the unidirectional models to directly generate a long trajectory
or employ the bidirectional model to construct one with two shorter parts. We can derive the upper
bound for the cumulative error of both rollout methods:

Theorem 4.3. Assume that τ = 1, ϵm = ϵfm = ϵbm and ϵp = ϵfp = ϵbp. Suppose that τf and τb
are forward and backward rollouts of length k1 + k2, and τ̂ is the bidirectional rollouts composed
of k1 forward steps and k2 backward steps. Then we have the upper bound for the cumulative error
of each rollouts as follows:

ETV (τf ) ≤
(k1 + k2 + 1)(k1 + k2)

2
(ϵm + ϵp) + (k1 + k2 + 1)ϵp, (10)

ETV (τb) ≤
(k1 + k2 + 1)(k1 + k2)

2
(ϵm + ϵp) + (k1 + k2 + 1)ϵp, (11)

ETV (τ̂) ≤
(k1 + 1)k1 + (k2 + 1)k2

2
(ϵm + ϵp) + (k1 + k2 + 1)ϵp, (12)

Theorem 4.3 provides the upper bounds for the cumulative error of unidirectional model rollouts and
bidirectional ones of the same length. By comparing the two bounds, we can clearly conclude that
COBiMO can obtain a tighter bound of the cumulative error than the unidirectional models when
generating multi-step trajectories. Formal proof for Theorem 4.3 can be found in Appendix B.
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5 EXPERIMENTS

To evaluate our proposed algorithm, we conduct extensive experiments on D4RL (Fu et al., 2020), a
widely-used benchmark for offline RL. We demonstrate the effectiveness of COBiMO by answering
the following questions:

• Q1: How does COBiMO perform on the offline RL benchmark compared to both model-
free and model-based offline RL baselines?

• Q2: How does the proposed conservative bidirectional rollout method affect COBiMO?
• Q3: How does COBiMO perform when plugged into other model-free methods?

We conduct extensive experiments in three environments under the benchmark D4RL, i.e. Maze2D,
AntMaze, and MuJoCo. We provide a snapshot of the environments in Appendix D. Each environ-
ment has various dataset types as follows:

• Maze2D: The Maze2D domain tries to navigate a ball agent along a 2D maze and gains
rewards by reaching a target goal location. There are 3 possible maze layouts (i.e., umaze,
medium, and large).

• AntMaze: In the AntMaze domain, the ball is replaced with an “Ant” quadruped robot.
Therefore, the AntMaze domain is much more challenging than Maze2D since it addition-
ally involves a low-level locomotion problem. Three flavors of datasets are introduced,
(1) fixed: the ant needs to reach a specific goal from a fixed location, (2) play: the ant is
commanded to specific hand-picked locations (which are not necessarily the goal at eval-
uation), starting from a different set of hand-picked start locations, (3) diverse: the start
location and the goal are randomly initialized.

• Gym-MuJoCo: Three locomotion environments are involved in Gym-MuJoCo, i.e. Hopper,
Walker2D and Halfcheetah. In each environment, there are four dataset types,(1) experi-
ences in the random dataset are collected by a random policy, (2) the medium dataset is
generated by an early-stopping SAC policy, (3) the medium-replay dataset is composed of
the medium dataset plus all records in the replay buffer during the early-stopping training
process, (4) the medium-expert dataset is mixed up with equal amounts of optimal experi-
ences and suboptimal ones.

5.1 COMPARISON ANALYSIS

We compare our method with algorithms from three domain:

• Imitation learning: behavior cloning (BC) learned from the dataset;
• Model-free offline RL methods: BCQ (Fujimoto et al., 2019), BEAR (Kumar et al., 2019),

AWR (Peng et al., 2019), CQL (Kumar et al., 2020);
• Model-based offline RL methods: RepB-SDE (Lee et al., 2020), MOPO (Yu et al., 2020),

MAPLE (Chen et al., 2021).

We present the overall results in Table 1. As proposed in (Fu et al., 2020), each number is a nor-
malized score of the policy at the last iteration of training, averaged over 6 random seeds. We
build COBiMO on CQL and conduct five runs on different random seeds to get an average score.
For the sake of reproducibility, a detailed statement about the architectures and hyper-parameters is
presented in Appendix C. We will release our code after anonymous cancellation.

Among the involved model-free and model-based methods, we find that COBiMO achieves the
highest normalized score in 6 out of all 12 tasks. Moreover, COBiMO performs competitively
compared with the best one in 3 out of the 6 remaining datasets (hopper-random, hopper-medium-
expert, halfcheetah-medium-replay), validating the superiority of our method.

COBiMO beats CQL in most datasets, showing that COBiMO is a powerful framework that can
be easily plugged into existing model-free offline RL approaches. COBiMO outperforms other
baselines in all medium datasets. This coincides with our motivation that COBiMO can generalize
well even in the domain of less diversity.
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Table 1: Results of COBiMO and other baselines on Gym-MuJoCo datasets. We take results of
MOPO, MAPLE and RepB-SDE from their original papers; numbers for other model-free algo-
rithms are reported from the D4RL benchmark paper (Fu et al., 2020). The highest scores across all
algorithms are bolded.

Dataset type BC BCQ BEAR AWR CQL RepB-SDE MOPO MAPLE COBiMO

walker2d-random 1.6 4.9 7.3 1.5 7.0 21.1 13.6 21.7 11.8
walker2d-medium 6.6 53.1 59.1 17.4 79.2 72.1 17.8 56.3 80.6
walker2d-medium-replay 11.3 15.0 19.2 15.5 26.7 49.8 39.0 76.7 41.3
walker2d-medium-expert 6.4 57.5 40.1 53.8 111.0 88.8 44.6 73.8 113.5
hopper-random 9.8 10.6 11.4 10.2 10.8 8.6 11.7 10.6 9.4
hopper-medium 29.0 54.5 52.1 35.9 58.0 34.0 28.0 21.1 75.3
hopper-medium-replay 11.8 33.1 33.7 28.4 48.6 62.2 67.5 87.5 54.3
hopper-medium-expert 111.9 110.9 96.3 27.1 98.7 82.6 23.7 42.5 99.3
halfcheetah-random 2.1 2.2 25.1 2.5 35.4 32.9 35.4 38.4 42.9
halfcheetah-medium 36.1 40.7 41.7 37.4 44.4 49.1 42.3 50.4 51.3
halfcheetah-medium-replay 38.4 38.2 38.6 40.3 46.2 57.5 53.1 59.0 55.3
halfcheetah-medium-expert 35.8 64.7 53.4 52.7 62.4 55.4 63.3 63.5 65.4

5.2 ABLATION ANALYSIS

In order to answer Q2, we design three variants of COBiMO as follows.

• BiMO: COBiMO w/o conservative rollout method which minimizes reconstruction error.

• COBiMO-fwd: COBiMO w/o forward model rollouts.

• COBiMO-bwd: COBiMO w/o backward model rollouts.

Comparison of COBiMO and the above three ablation methods can be found in Table 2. BiMO out-
performs two other unidirectional variants by a significant margin, indicating that the bidirectional
builds are likely to be more effective than the conservative rollout method. Also, COBiMO-fwd
performs slightly better than COBiMO-bwd, consistent with Wang et al. (2021) that the backward
model can be trusted just as (or even more than) the traditional forward model.

Generally, the ablation experiments confirm that both the bidirectional setting and the conservative
rollout method are vital to the performance of COBiMO.

Table 2: Results of COBiMO and three ablation methods on Gym-MuJoCo datasets.

Dataset type COBiMO BiMO COBiMO-fwd COBiMO-bwd

walker2d-random 11.8 8.5 6.1 5.2
walker2d-medium 80.6 76.3 68.6 70.1
walker2d-medium-replay 41.3 33.2 37.6 35.9
walker2d-medium-expert 113.5 98.1 77.3 75.2
hopper-random 9.4 8.2 10.2 7.3
hopper-medium 75.3 65.3 50.5 38.4
hopper-medium-replay 54.3 35.5 42.8 32.7
hopper-medium-expert 99.3 87.5 60.2 69.1
halfcheetah-random 42.9 36.1 26.7 31.8
halfcheetah-medium 51.3 30.7 25.9 23.6
halfcheetah-medium-replay 55.3 47.4 35.2 32.4
halfcheetah-medium-expert 65.4 55.2 44.2 47.1
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5.3 ADAPTABILITY ANALYSIS

To demonstrate the adaptability of COBiMO, we apply it to two other model-free offline RL algo-
rithms, BCQ and BEAR. The results are shown in Table 3. We run COBiMO-BCQ and COBiMO-
BEAR on five different random seeds and calculate the average scores. Both COBiMO-BCQ and
COBiMO-BEAR defeat their original algorithms by a significant margin in 10 out of 12 datasets,
suggesting that COBiMO provides robust data augmentation for different model-free RL methods.

Table 3: Normalized scores of COBiMO and the corresponding baselines on Maze2D and AntMaze
datasets. We take results of BCQ and BEAR from the D4RL benchmark paper (Fu et al., 2020). We
bold the higher scores for each pair of original ones and our method.

Dataset type BCQ COBiMO-BCQ BEAR COBiMO-BEAR

maze2d-umaze 12.8 6.1 3.4 7.3
maze2d-medium 8.3 57.5 29 45.9
maze2d-large 6.2 28.9 4.6 10.3
antmaze-umaze-fixed 78.9 32.4 73 59.8
antmaze-umaze-diverse 55 65.7 61 72.9
antmaze-medium-play 0 5.0 0 9.6
antmaze-medium-diverse 0 15.8 8 13.5
antmaze-large-play 6.7 14.3 0 0
antmaze-large-diverse 2.2 11.4 0 7.9

6 RELATED WORK

Model-free offline RL. Most model-free methods try to keep the target policy close to the behavior
policy used to collect the offline dataset. BCQ (Fujimoto et al., 2019) learns the bahavior policy by a
CVAE and applies perturbation on actions for diversity. BEAR (Kumar et al., 2019) restricts actions
outputed by the learned policy within the support set of the training distribution. BRAC (Wu et al.,
2019) provides a powerful framework that allows different behavior policy regularizers. AWR (Peng
et al., 2019) builds on ideas from reward-weighted regression and is able to learn from the offline
dataset. Kumar et al. (2020) proposes a strong algorithm named CQL, which learns a conservative
Q-function such that the expected value of a policy under this Q-function lower-bounds its true
value. Unlike these methods, COBiMO learns from the dataset as well as the model rollouts.

Model-based offline RL. Model-based approaches learn a dynamics model before or along with
the policy optimization. Yu et al. (2020) proposes a framework based on MBPO (Janner et al.,
2019) with reward penalty named MOPO. RepB-SDE (Lee et al., 2020) focuses on learning the
representation for a robust model of the environment under the distributional shift. MAPLE (Chen
et al., 2021) aims to learn a target policy that can adapt its behavior in out-of-support regions when
deployed. COMBO (Yu et al., 2021b) incorporates conservatism by regularizing the value function
on out-of-support state-action tuples generated via model rollouts. ROMI (Wang et al., 2021) learns
a reverse dynamics model and a corresponding rollout policy to generate new transitions. Out of
offline RL settings, Lai et al. (2020) propose BMPO, a bidirectional framework for typical RL.
BMPO follows the Dyna-style algorithm(Wang et al., 2019) and trains the model iteratively together
with the target policy, making it inapplicable to offline RL since ongoing interactions are needs. As
far as we know, COBiMO is the first algorithm that applies bidirectional rollouts into offline RL.

7 CONCLUSION

In this work, we introduce a novel framework for model-based offline RL, namely Conservative
Offline Bidirectional Model-based Policy Optimization (COBiMO). COBiMO adopts a conservative
bidirectional rollout method for more accurate and diverse generalization. We theoretically prove a
tighter bound of the rollout error of COBiMO than unidirectional ones. Empirical results on D4RL
also demonstrates the superiority of our method.
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A NOTATIONS AND DEFINITIONS

Here we provide the missing definitions of the notations involved in the main paper for better under-
standing.

Definition A.1 (Backward model rollout). We say that τb = {(si, ai, si+1, ri)}−1
i=−k is a backward

model rollout of length k starting at s0 if the following conditions are satisfied:

ai ∼ πb(si+1), (si, ri) ∼ T̂b(·|si+1, ai), i ∈ {−1,−2, . . . ,−k} (13)

Definition A.2 (Reconstruction error for backward rollout). Given a backward rollout τb =
{(si, ai, si+1, ri)}−1

i=−N starting at s0 and ending at s−N , the reconstruction error using backward
model T̂f is defined as follow.

E(τb) :=
1

N

−1∑
i=−N

Eŝi+1∼T̂f (·|si,ai)
[∥si+1 − ŝi+1∥] (14)

Definition A.3 (Total variation distance). Given two probability density functions p and q, the total
variation distance DTV is defined as:

DTV (p, q) :=
1

2

∑
x

|p(x)− q(x)| (15)

Definition A.4 (State marginal for forward and backward model). We denote the state marginal at
time t induced by forward model T̂f and rollout policy π̂f as T̂ t

f :

T̂ t
f (s) := Ps0∼D,ai∼π̂f (si),st∼T̂f (·|si,ai)

[st = s|s0] (16)

Likewise, the state marginal for backward model is defined as:

T̂−t
b (s) := Ps0∼D,ai∼π̂b(si+1),st∼T̂b(·|si+1,ai)

[s−t = s|s0] (17)

Definition A.5. We define the upper bound ϵfm and ϵbm for the learned models T̂f and T̂b as:

ϵfm := max
t

E(s,a)∼T̂ t
f

[
DTV (T̂f (·|s, a), Tf (·|s, a))

]
(18)

ϵbm := max
t

E(s′,a)∼T̂ t
b

[
DTV (T̂b(·|s′, a), Tb(·|s′, a))

]
(19)

Definition A.6 (Error for forward and backward rollout policy). We define the upper bound ϵfp and
ϵbp for the learned rollout policies π̂f and π̂b as:

ϵfp := max
s

DTV (π̂f (·|s), β(·|s)) (20)

ϵbp := max
s′

DTV (π̂b(·|s′), βb(·|s′)) (21)

where β is the behavior policy and βb is the backward one.

B PROOF FOR THEOREM 4.3

Lemma B.1 (TVD of joint distributions, (Janner et al., 2019), Lemma B.1). Suppose we have two
joint distributions p1(x, y) = p1(x)p1(y|x) and p2(x, y) = p2(x)p2(y|x) . We can bound the total
variation distance as:

DTV (p1(x, y), p2(x, y)) ≤ DTV (p1(x), p2(x)) + max
x

DTV (p1(y|x), p2(y|x)) (22)

Lemma B.1 provides a bound for the total variation distance between two joint distributions using
their marginal distributions and conditional distributions.

Before we formally prove Theorem 4.3, we first restate Lemma 4.1 of a backward version and
provide theoretical proof. The proof for Lemma 4.1 can be completed almost identically.
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Lemma B.2 (Recursive error for backward state marginal). Suppose the error for the backward
model is ϵbm and the error for the backward rollout policy is ϵbp. Then we can bound the error of
state marginal for the backward model at time −(t+ 1) as follows:

DTV (T̂
−(t+1)
b (s), T

−(t+1)
b (s)) ≤ DTV (T̂

−t
b (s), T−t

b (s)) + ϵbm + ϵbp (23)

Proof. ∣∣∣T̂−(t+1)
b (s)− T

−(t+1)
b (s)

∣∣∣
=

∣∣∣∣∣∣
∑
s′,a

T̂−t
b (s′, a)T̂b(s|s′, a)−

∑
s′,a

T−t
b (s′, a)Tb(s|s′, a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s′,a

[T̂−t
b (s′, a)T̂b(s|s′, a)− T−t

b (s′, a)Tb(s|s′, a)]

∣∣∣∣∣∣
≤
∑
s′,a

∣∣∣T̂−t
b (s′, a)T̂b(s|s′, a)− T−t

b (s′, a)Tb(s|s′, a)
∣∣∣

=
∑
s′,a

∣∣∣T̂−t
b (s′, a)(T̂b(s|s′, a)− Tb(s|s′, a)) + (T̂−t

b (s′, a)− T−t
b (s′, a))Tb(s|s′, a)

∣∣∣
≤
∑
s′,a

T̂−t
b (s′, a)

∣∣∣T̂b(s|s′, a)− Tb(s|s′, a)
∣∣∣+∑

s′,a

∣∣∣T̂−t
b (s′, a)− T−t

b (s′, a)
∣∣∣Tb(s|s′, a)

Sum up the last equation over s and then divide by 2. For the first item, we have

1

2

∑
s

∑
s′,a

T̂−t
b (s′, a)

∣∣∣T̂b(s|s′, a)− Tb(s|s′, a)
∣∣∣

=
∑
s

Es′,a∼T̂−t
b

[
1

2
|T̂b(s|s′, a)− Tb(s|s′, a)|

]
= Es′,a∼T̂−t

b
[DTV (T̂b(·|s′, a), Tb(·|s′, a))]

≤ ϵbm

For the second item, we have

1

2

∑
s

∑
s′,a

∣∣∣T̂−t
b (s′, a)− T−t

b (s′, a)
∣∣∣Tb(s|s′, a)

=
1

2

∑
s′,a

[∣∣∣T̂−t
b (s′, a)− T−t

b (s′, a)
∣∣∣ (∑

s

Tb(s|s′, a))

]

=
1

2

∑
s′,a

∣∣∣T̂−t
b (s′, a)− T−t

b (s′, a)
∣∣∣

=DTV (T̂
−t
b (s′, a), T−t

b (s′, a)) (Lemma B.1)

≤DTV (T̂
−t
b (s′), T−t

b (s′)) + max
s′

DTV (π̂b(·|s′), βb(·|s′))

=DTV (T̂
−t
b (s), T−t

b (s)) + ϵbp

Therefore, we have

DTV (T̂
−(t+1)
b (s), T

−(t+1)
b (s)) ≤ DTV (T̂

−t
b (s), T−t

b (s)) + ϵbm + ϵbp
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Remark. Lemma 4.1 and Lemma B.2 are straightforward to understand: the error for the next state
marginal is composed of the previous one, the error of rollout policy and the error of the dynamic
model, because generating the next state of the rollouts needs to continue on the previous one and
then sample an action from the rollout policy and finally transit by the dynamic model.

Lemma B.3. Suppose the joint distribution of the forward dynamic model T̂ t
f (s, a) starts at t = 0

and the one of the backward dynamic model starts at t = T . We can bound the total variation
distance between the joint distributions between the dynamic model and the true ones as follows:

DTV (T̂
t
f (s, a), T

t
f (s, a)) ≤ t(ϵfm + ϵfp) + ϵfp, t ≥ 0 (24)

DTV (T̂
t
b (s, a), T

t
b (s, a)) ≤ (T − t)(ϵbm + ϵbp) + ϵbp, t ≤ T (25)

Proof. By Lemma 4.1, Lemma B.2 and Lemma B.1, we have:

DTV (T̂
t
f (s, a), T

t
f (s, a)) ≤ DTV (T̂

t
f (s), T

t
f (s)) + max

s
DTV (π̂f (·|s), β(·|s)),

≤ DTV (T̂
t
f (s), T

t
f (s)) + ϵfp

≤ t(ϵfm + ϵfp) + ϵfp

Similarly,

DTV (T̂
t
b (s, a), T

t
b (s, a)) ≤ DTV (T̂

t
b (s), T

t
b (s)) + max

s′
DTV (π̂b(·|s′), βb(·|s′)),

≤ DTV (T̂
t
b (s), T

t
b (s)) + ϵbp

≤ (T − t)(ϵbm + ϵbp) + ϵbp

Now we provide the theoretical proof for Theorem 4.3.

Proof. We first prove the bounds for discounted cumulative error. The undiscounted cumulative
error can be easily derived via discounted ones.

Suppose that τf are forward model rollouts of length k1 + k2 starting at s0, τb are backward model
rollouts of length k1 + k2 starting at sk1+k2 , τ̂ are bidirectional model rollouts composed of k1
forward steps and k2 backward steps starting at sk2 . Therefore, all these three rollouts span from
t = 0 to t = k1 + k2.

By Definition 4.2, the (discounted) cumulative error of these rollouts are as follows:

ETV (τf ) =

k1+k2∑
t=0

τ tDTV (T̂
t
f (st, at), T

t
f (st, at)) (26)

ETV (τb) =

k1+k2∑
t=0

τ tDTV (T̂
t
b (st, at), T

t
b (st, at)) (27)

ETV (τ̂) =

k2∑
t=0

τ tDTV (T̂
t
b (st, at), T

t
b (st, at)) +

k1∑
t=1

τk2+tDTV (T̂
t
f (st, at), T

t
f (st, at)) (28)

Assume that ϵm = ϵfm = ϵbm and ϵp = ϵfp = ϵbp. Applying Lemma B.3 to the above equations,
we have:

ETV (τf ) ≤
k1+k2∑
t=0

τ t[t(ϵm + ϵp) + ϵp] (29)

ETV (τb) ≤
k1+k2∑
t=0

τ t[(k1 + k2 − t)(ϵm + ϵp) + ϵp] (30)

ETV (τ̂) ≤
k2∑
t=0

τ t[(k2 − t)(ϵm + ϵp) + ϵp] +

k1∑
t=1

τk2+t[t(ϵm + ϵp) + ϵp] (31)
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Sum up the series on the RHS of Equation (29)-(31) by simple mathematics:

ETV (τf ) ≤
τ − (k1 + k2 + 1)τk1+k2+1 + (k1 + k2)τ

k1+k2+2

(1− τ)2
(ϵm + ϵp) +

1− τk1+k2+1

1− τ
ϵp

(32)

ETV (τb) ≤
k1 + k2 − (k1 + k2 + 1)τ + τk1+k2+1

(1− τ)2
(ϵm + ϵp) +

1− τk1+k2+1

1− τ
ϵp (33)

ETV (τ̂) ≤
k2 − (k2 + 1)τ + 2τk2+1 − (k1 + 1)τk1+k2+1 + k1τ

k1+k2+2

(1− τ)2
(ϵm + ϵp)

+
1− τk1+k2+1

1− τ
ϵp (34)

So far, we obtain the bounds for discounted cumulative error. To achieve the bounds of Theorem
4.3, simply set τ = 1 and use L’Hôpital’s rule twice:

ETV (τf ) ≤
(k1 + k2 + 1)(k1 + k2)

2
(ϵm + ϵp) + (k1 + k2 + 1)ϵp, (35)

ETV (τb) ≤
(k1 + k2 + 1)(k1 + k2)

2
(ϵm + ϵp) + (k1 + k2 + 1)ϵp, (36)

ETV (τ̂) ≤
(k1 + 1)k1 + (k2 + 1)k2

2
(ϵm + ϵp) + (k1 + k2 + 1)ϵp, (37)

Remark. Divide the above inequalities by k1 + k2, we can easily find the the bound of ETV (τ̂) is
much tighter than the other one, indicating that COBiMO can obtain a tighter bound of the cumula-
tive error than the uni-directional model rollouts.

C IMPLEMENTATION DETAILS

In this section, we provide all pseudo-codes and implementation details involved in Section 3.

C.1 DYNAMIC MODELS

Algorithm 2 Leaning dynamic models.

Input: Offline datasetD; learning rates αθ, αϕ ; the number of iterations Tm; the ensemble number
N ; the elite number K; the holdout ratio h.

1: Randomly divide D into training set Dtrain and holdout set Dholdout by the holdout ratio h.
2: Randomly initialize parameters {θif , ϕi

f , θ
i
b, ϕ

i
b}Ni=1 for each individual model.

3: for Tm epochs do
4: for i = 1, . . . , N do
5: Compute loss Li

fm for forward model i on Dtrain by Equation 2.
6: Update θif ← θif − αθ∇θi

f
Li
fm

7: Update ϕi
f ← ϕi

f − αϕ∇ϕi
f
Li
fm.

8: Compute loss Li
bm for backward model i on Dtrain by Equation 3.

9: Update θib ← θib − αθ∇θi
b
Li
bm

10: Update ϕi
b ← ϕi

b − αϕ∇ϕi
b
Li
bm.

11: end for
12: end for
13: Compute model error for each forward and backward model based on Drollout by Equation 38

and 39. Select K elite ones out of N models with the least model error.
Output: The elite ensemble models {N (µθi

f
,Σϕi

f
)}Ki=1 and {N (µθi

b
,Σϕi

b
)}Ki=1.
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Definition C.1 (Model Error). Given the dataset D and the distribution TD induced by D , the
expected error of the forward dynamic model T̂f is defined as:

ϵD(T̂f ) = E(s,a,s′,r)∼D,ŝ′∼T̂f (·|s,a)
[
∥ŝ′ − s′∥2

]
(38)

Similarly, we can define the expected error of the backward dynamic model T̂b as:

ϵD(T̂b) = E(s,a,s′,r)∼D,ŝ∼T̂b(·|s′,a)
[
∥ŝ− s∥2

]
(39)

The detailed training framework for models can be found in Algorithm 2. Following Yu et al. (2020)
and Wang et al. (2021), we set the ensemble number N = 7 and elite number K = 5. Each model
in the ensemble is represented as a 4-layer feedforward neural network with 200 hidden units. The
holdout ratio is 0.2 as most works do. The learning rates αθ and αϕ are set to 0.001. For model
rollouts, we randomly pick one from the elite models.

C.2 ROLLOUT POLICIES.

Algorithm 3 Learning rollout policies.

Input: Offline dataset D; learning rates αω, ασ ; the number of iterations Tp; batch size NB .
1: Randomly initialize parameters ω, σ for CVAE Ĝω

f , Ĝ
ξ
b .

2: for Tp epochs do
3: Initialize Lfp ← 0, Lbp ← 0.
4: Sample a mini-batch of NB transitions (s, a, s′, r) from D.
5: for NB transitions do
6: Sample (µf , σf ) from Eω1

f (s, a), z from N (µf , σf ) and ã from Dω2

f (s, z).
7: Sum the loss Lfp ← Lfp + (a− ã) +DKL(N (µf , σf )∥N (0, I)).
8: Sample (µb, σb) from Eξ1

b (s′, a), z from N (µb, σb) and ã from Dξ2
b (s′, z)

9: Sum the loss Lfp ← Lfp + (a− ã) +DKL(N (µb, σb)∥N (0, I))
10: end for
11: Update ω ← ω − αω∇ωLfp

12: Update ξ ← ξ − αξ∇ξLbp

13: end for
Output: The rollout policies π̂f = Ĝω

f and π̂b = Ĝξ
b .

The rollout policies are learned as Algorithm 3. As for the involved hyperparameters, we set αω =
αξ = 0.001; batch size NB = 100.

C.3 CONSERVATIVE BIDIRECTIONAL ROLLOUTS

Algorithm 4 Conservative bidirectional rollouts.

Input: offline datasetD; forward rollout step k1; backward rollout step k2; dynamic models T̂f , T̂b;
rollout policies π̂f , π̂b; the candidate number C.

1: Sample the initial state s0 from D.
2: for i = 1, . . . , C do
3: Construct forward rollouts τ if of k1 steps by Definition 3.1.
4: Compute the reconstruction loss of τ if by Equation 7.
5: Construct backward rollouts τ ib of k2 steps by Definition A.1.
6: Compute the reconstruction loss of τ ib by Equation 14.
7: end for
8: Select the best forward rollouts τ∗f and backward rollouts τ∗b with the least reconstruction error.
9: Construct an imaginary trajectory τ∗ by joining τ∗f and τ∗b at the state s0.

Output: Rollouts τ∗.

We show the practical implementation of conservative bidirectional rollouts in Algorithm 4. Since
the rollouts are generated by an ensemble bidirectional model, we set a longer rollout length than
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other model-based offline RL methods (Yu et al., 2020; Wang et al., 2021; Yu et al., 2021b): k1 =
k2 = 1 for walker2d environment and k1 = k2 = 5 for other environments. As for the candidate
number, a larger C provides more candidate rollouts to select but brings more computational costs.
We set C = 5 for our implementation.

D EXPERIMENTAL SETTINGS AND RAW SCORES

D.1 D4RL BENCHMARK

(a) Maze2D (b) AntMaze (c) Hopper (d) Walker2D (e) Halfcheetah

Figure 2: Environments in D4RL

We provide a snapshot of the D4RL environments in Figure 2

D.2 RAW SCORES

As is proposed in (Fu et al., 2020), the experimental results in Section 5 are normalized to roughly
lie between 0 and 100, where a score of 0 corresponds to the average returns of an agent taking
actions uniformly at random across the action space and a score of 100 corresponds to the average
returns of a domain-specific expert. Normalization is defined by the following equation:

Snorm = 100 · Sraw − random score
expert score− random score

where Snorm is the normalized score of the raw score Sraw.

We provide the raw scores of Table 1 and 2 in Table 4. In Gym-MuJoCo datasets, expert scores are
taken from a soft-actor critic agent.

Table 4: The raw, un-normalized scores of COBiMO and other algorithms on Gym-MuJoCo
datasets. Numbers for model-free algorithms are reported from the D4RL benchmark paper (Fu
et al., 2020).

Dataset type SAC BC BCQ BEAR AWR CQL COBiMO BiMO COBiMO-fwd COBiMO-bwd

walker2d-random 4592.3 73.0 228.0 336.3 71.5 322.9 541.5 389.9 279.7 238.3

walker2d-medium 4592.3 304.8 2441.0 2717.0 800.7 2664.2 3701.7 3504.4 3150.9 3219.7

walker2d-medium-replay 4592.3 518.6 688.7 883.8 712.5 1227.3 1896.4 1524.4 1726.5 1648.4

walker2d-medium-expert 4592.3 297.0 2640.3 1842.7 2469.7 5097.3 5211.8 4505.1 3550.6 3454.2

hopper-random 3234.3 299.4 323.9 349.9 312.4 331.2 286.4 247.3 312.4 218.1

hopper-medium 3234.3 923.5 1752.4 1674.5 1149.5 2557.3 2430.4 2104.9 1623.2 1229.4

hopper-medium-replay 3234.3 364.4 1057.8 1076.8 904.0 1227.3 1747.3 1135.6 1373.1 1044.5

hopper-medium-expert 3234.3 3621.2 3588.5 3113.5 862.0 3192.0 3211.5 2827.9 1940.3 2229.7

halfcheetah-random 12135.0 -17.9 -1.3 2831.4 36.3 4114.8 5046.8 4202.7 3035.8 3668.9

halfcheetah-medium 12135.0 4196.4 4767.9 4897.0 4366.1 5232.1 6084.8 3525.5 2929.2 2643.5

halfcheetah-medium-replay 12135.0 4492.1 4463.9 4517.9 4727.4 5455.6 6588.9 5608.8 4095.1 3747.7

halfcheetah-medium-expert 12135.0 4169.4 7750.8 6349.6 6267.3 7466.9 7842.0 6576.5 5211.6 5571.4
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The raw scores of Table 3 are listed in Table 5. For Maze2D, the expert is a hand-designed controller
used to collect data. For AntMaze, the expert score equals 1, which is an estimate of the maximum
score possible.

Table 5: The raw, un-normalized scores of COBiMO and the corresponding baselines on Maze2D
and AntMaze datasets. We take numbers of BCQ and BEAR from the D4RL benchmark paper (Fu
et al., 2020).

Dataset type BCQ COBiMO-BCQ BEAR COBiMO-BEAR

maze2d-umaze 41.5 32.2 28.6 34.0
maze2d-medium 35.0 165.0 89.8 134.4
maze2d-large 23.2 84.0 19.0 34.2
antmaze-umaze-fixed 0.8 0.3 0.7 0.6
antmaze-umaze-diverse 0.6 0.7 0.6 0.73
antmaze-medium-play 0.0 0.1 0.0 0.01
antmaze-medium-diverse 0.0 0.2 0.1 13.5
antmaze-large-play 0.1 0.1 0.0 0.0
antmaze-large-diverse 0.0 0.1 0.0 7.9
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