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ABSTRACT

Residual transformations play a crucial role in enhancing the representational
depth and expressive power of large language models (LLMs). However, static
residual transformation during auto-regressive generation leads to a sub-optimal
balance between inference efficiency and generation fidelity. Existing methods
such as Early Exiting, Mixture of Depths, Skip Decoding focus on token traver-
sal distance across layers to enable dynamic transformation but overlook the ve-
locity of residual evolution, leading to suboptimal inference efficiency. We in-
troduce Mixture of Multi-rate Residuals (M2R2), a framework that dynamically
modulates residual velocities to ensure early alignment of intermediate representa-
tions. M2R2 shows improvements across dynamic computing, speculative decod-
ing, and Mixture-of-Experts (MoE) architectures. In dynamic computing settings,
M2R2 outperforms state-of-the-art distance-based strategies, achieving a superior
trade-off between generation metrics and speedup. In self-speculative decoding,
M2R2 achieves up to 2.8× speedup on MT-Bench and, in MoE models, up to 2.9×
speedup with ahead-of-time expert loading. This positions M2R2 as an effective
strategy for mobile resource-constrained deployment.

1 INTRODUCTION

Large Language Models (LLMs) excel in complex NLP tasks by capturing long-range dependencies
and modeling intricate linguistic patterns through residual transformations, enhancing representa-
tions across layers (Brown et al., 2020; Radford et al., 2019; Vaswani et al., 2017). However, the
static nature of residual transformations fails to account for the inherent variability in token com-
plexity, leading to inefficiencies in dynamic compute scenarios (Shen et al., 2021; Garncarek &
Snaider, 2021). Approaches such as Early Exiting (Schuster et al., 2022; Varshney et al., 2024;
Chen et al., 2023b), Skip Decoding (Del Corro et al., 2023), and Mixture-of-Depth (Raposo et al.,
2024) address this by modulating the depth of residual transformations based on token complexity,
however these strategies focus solely on token traversal distance, neglecting the critical dimension
of residual transformations: residual velocity, the rate at which token representations evolve.

We propose a novel framework, Mixture of Multi-rate Residuals (M2R2), which dynamically adjusts
the velocity of residual transformations to optimize early alignment of token representations. M2R2
enhances efficiency in setups such as dynamic computing, speculative decoding, and Mixture-of-
Experts (MoE) Ahead-of-Time (AoT) expert loading. In speculative decoding (Leviathan et al.,
2023; Chen et al., 2023a), speculative draft sampled from accelerated residuals is validated in par-
allel against base residual streams. In MoE models (Shazeer et al., 2017; Fedus et al., 2022), M2R2
facilitates early expert speculation through accelerated residuals, enabling overlapping computation
and memory transfer, reducing latency in expert switching in resource constrained setups.

This paper makes the following contributions: (1) We introduce Mixture of Multi-rate Residuals,
a framework that achieves significantly better trade-off between generation quality and decoding
speedup than state-of-the-art dynamic computing strategies without requiring costly pre-training.
(2) We demonstrate that M2R2 outperforms state-of-the-art methods in self-speculative decoding,
achieving a 2.8X speedup on MT-Bench. (3) We demonstrate effectiveness of M2R2 for on-device
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MoE models with Ahead-of-Time (AoT) Expert Loading, which reduces latency associated with
on-demand expert loading by overlapping memory transfers with computation, achieving a 2.9X
speedup over traditional expert loading methods (Lepikhin et al., 2020; Fedus et al., 2022).

2 METHOD

Residual connections in transformer architectures play a pivotal role in evolving hidden represen-
tations across layers. Each decoder layer transforms the residual stream hi through multi-head
attention (Ai) and MLP blocks (Mi) from interval Ej to Ej+1, as expressed by:

hEj+1
= hEj

+

Ej+1−1∑
i=Ej

(Ai(hi) +Mi(hi +Ai(hi))) , (1)

where Ai = f(ci, hi) depends on contextual representation ci.1 To examine whether residual trans-
formations can be accelerated across layers, we measured the directional shift in residual states as
1 − C(hi−1, hi), where C denotes normalized cosine similarity. This shift is notably higher in the
initial layers, gradually decreasing in subsequent layers as shown in fig. 8a. While this enables early
exiting methods to accelerate decoding for simpler tokens by approximating full residual transforma-
tion with that of initial-layers, these approaches disregard rate of change in residual states. To gain
deeper insights into the distance versus velocity aspects of residual transformation, we conducted
a comparative study. We compared early exit heads at layer k of the 32-layer Phi3 model with a
smaller k-layer model, keeping other parameters consistent. To accelerate residual transitions, the
smaller model used low-rank adapters and residual state distillation, aligning its layer i state with
that at 4 × i in the full model (Sanh et al., 2019). As shown in fig. 8b, the smaller model achieved
faster residual changes and superior next-token prediction accuracy after k layers, outperforming
the base model’s early exit mechanism (Schuster et al., 2022; Chen et al., 2023b; Varshney et al.,
2024). These results reveal a slow residual transformation bias in dense transformers and prompt
the question: could accelerating residual velocity across layers enable earlier token alignment?

2.1 MULTI-RATE RESIDUAL TRANSFORMATION

To address the slow residual transformation bias in section 2, we introduce accelerated residual
streams operating at rate R relative to the base slow residual stream. We pair the slow residual
stream h with an accelerated residual stream p, intrinsically biased towards earlier alignment. The
accelerated residual transformation from interval Ej to Ej+1 can be formally represented as:

pEj+1 = pEj+

Ej+1−1∑
i=Ej

(
Âi(pi) + M̂i(pi + Âi(pi))

)
where Âi = f̂(ci, pi),M̂i = ĝ(hi), (2)

where Âi and M̂i denote non-linear transformations added by layer i to the previous accelerated
residual pi. Similar to Ai, non-linear transformation Âi attends to the same context ci but uses a
different transformation f̂ for accelerating pEj relative to hEj . We integrate accelerated residual
transformations into the base model using parallel low-rank accelerator adapters with rank Rp ≪ d,
where d is the hidden dimension. This allows the base slow residual stream hEj

to traverse the
base layers while the accelerated stream pEj

utilizes parallel adapters (see fig. 1). Both streams are
processed concurrently via attention masking, introducing negligible additional latency in memory-
bound decoding setups. In compute-bound scenarios, we develop FLOPs optimization methods to
minimize FLOPs overhead as described in appendix A.4. We continue further discussion on KV
cache sharing and attention dynamics in appendix A.1.4.

1Normalization layers are omitted here for brevity.
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Figure 1: Multi-rate Residuals Framework: Slow residual stream of base model is accompanied by
a faster stream that operates at a 2 − (J + 1)× rate relative to the slow stream, undergoing trans-
formations via accelerator adapters as detailed in section 2.1, where J denotes number of early exit
intervals. Colors within the slow and fast residual streams indicate similarity, with matching colors
representing the most closely aligned residual states. At the beginning of the forward pass and at
each exit point, the accelerated residual state is initialized from the corresponding slow residual state
to avoid gradient conflict during training (see appendix A.8). Early exiting decisions are informed
by the Accelerated Residual Latent Attention (ARLA) mechanism, described in appendix A.1.2,
which evaluates residual dynamics across consecutive exit gates.

2.1.1 DYNAMIC COMPUTATION

Early exiting strategies typically approximate the residual transformation between intermediate
layer Ej and the final layer N − 1 using a linear, context-independent mapping, T , such that
HN−1 ≈ T (HEj

) (Varshney et al., 2024). However, this method is limited by two main factors: the
assumption of linearity may not hold uniformly for all tokens, and T neglects context influence. In
contrast, M2R2 addresses these limitations by using context dependent accelerated streams, allow-
ing for faster, more consistent residual shifts and better alignment with final-layer representations
(see fig. 6). Beyond alignment, we also enhance the precision of early exit decisions by capturing
residual transformation dynamics; see the appendix A.1.1 and appendix A.1.2 for further details.

2.1.2 SELF SPECULATIVE DECODING

Another way to leverage early alignment is by using accelerated residual streams for speculative
token sampling. Since accelerated residuals demonstrate higher fidelity to their slower counterparts,
sampling speculative tokens from accelerated stream operating at rate N/k at layer k and verify-
ing them in parallel results in high acceptance rates and enhances the token generation rate. This
approach also eliminates the need for a separate draft model, significantly reducing training and
memory overhead of maintaining both models in memory as observed in (Chen et al., 2023a; Xia
et al., 2023). For more details on self speculative decoding setup, please refer to appendix A.2.

2.1.3 AHEAD-OF-TIME (AOT) EXPERT LOADING

Recent advancements in sparse Mixture-of-Experts (MoE) architectures have enabled token gener-
ation efficiency by dynamically activating only a subset of experts per input (Shazeer et al., 2017;
Fedus et al., 2022). This selective expert activation approach, while improving efficiency, introduces
challenges in pre-loading since expert selection occurs dynamically based on previous layer’s output.
We address this issue by utilizing accelerated residuals, which allow for the prediction of required
experts in advance, mitigating the latency introduced by on-demand expert loading from low band-
width memory as shown in fig. 2. Ahead-of-Time (AoT) expert loading overlaps with attention and
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Figure 2: Ahead-of-Time Expert Loading: M2R2 accelerated residual stream predicts experts re-
quired for future layers, reducing reliance on on-demand lazy loading. Speculative pre-loading is
efficiently overlapped with computation of multi-head attention (MHA) and MLP transformations.
Only incorrectly speculated experts are loaded lazily, resulting in faster inference steps and improved
computational efficiency. Here, H indicates LBM Host while D indicates HBM Device.

MLP layer computations, substantially reducing idle time for accelerators while expert parameters
are being loaded. For more details on the expert loading mechanism, refer to appendix A.3.

2.2 TRAINING

To accelerate residual stream, we train parameters of parallel accelerator adapters. For the dynamic
computation (see section 2.1.1), we define the training objective using the following loss function,
which combines cross-entropy loss at each exit Ej with distillation loss at each layer i. Loss weights
coefficients α0 and α1 are employed to balance contribution of corresponding losses.

Lm2r2 = −α0

J∑
j=1

T∑
t=1

log pθ

(
ŷ
Ej

t | y<t, x
)

︸ ︷︷ ︸
cross-entropy loss

+α1

EJ−1∑
i=1

T∑
t=1

∥pi
t − h

((i−Ej(i))·Ri)+Ej(i))
t ∥2︸ ︷︷ ︸

distillation loss

. (3)

where ŷ
Ej

t denotes the predictions from the accelerated residual stream at layer Ej and time step
t, yt represents the corresponding ground truth tokens, and x indicates previous context tokens.
The distillation loss at each layer i is computed by comparing accelerated residuals at layer i with
base slow residuals at layer (i − Ej(i)) · Ri + Ej(i), where Ri denotes the rate of accelerated
residuals at layer i while Ej(i) represents the most recent gate layer index such that Ej(i) <= i. J
represents the total number of early exit gates (typically set to 4 in dynamic computing setups), N
denotes number of hidden layers and Ej denotes layer index corresponding to gate index j and T
denotes the sequence length. For self-speculative decoding, as described in section 2.1.2, number
of intervals set to J = 1 and the rate of residual transformation set to Ri = N/k, where the first
k layers generate speculative candidate tokens. In case of Ahead-of-Time Expert Loading for MoE
models (see section 2.1.3), we set J = 1 and the rate of residual transformation to Rn = 2.

3 EXPERIMENTS

Experimental Setup We perform a comprehensive evaluation of our method across instruction-
tuning and supervised fine-tuning paradigms, utilizing pre-trained models of varying scales. Our
experiments focus on user-facing, supervised fine-tuning tasks for on-device AI assistants, covering
Structured API Generation, Text Summarization, and Meaning Representation. These tasks are
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evaluated using datasets like TextToSQL (Zhong et al., 2017; Yu et al., 2018), Dialogsum (Chen
et al., 2021), and e2e-nlg (Dušek et al., 2020). Additionally, we assess generalizability by training
on Alpaca (Touvron et al., 2023) dataset and testing across held-out instruction sets such as Self-
Instruct (Wang et al., 2022), Koala (Contributors, 2023), WizardLM (Xu et al., 2023), and MT
Bench (Bai et al., 2024). We evaluate our method on various open-source, dense transformer models,
such as Phi-3-mini-4k-instruct (3.8B) (Abdin et al., 2024) and Gemma (7B) (Mesnard et al., 2024),
as well as the sparse MoE model OlMoE (1B-7B) (Muennighoff et al., 2024). Our baselines include
dynamic compute techniques like LITE (Varshney et al., 2024), CALM (Schuster et al., 2022),
skip decoding (Del Corro et al., 2023), and Mixture of Depths (MoD) (Raposo et al., 2024). For
speculative decoding, we compare our method against draft-target speculative decoding (Chen et al.,
2023a) and single-model baselines like Medusa (Cai et al., 2023), DEED (Tang et al., 2024), and
LookAhead Decoding (Fu et al., 2023). Metrics include trade-offs between wall-time speedups
and generation quality for dynamic compute approaches. For speculative decoding, we focus on
wall-time speedups and acceptance rates. In MoE configurations with Ahead-of-Time (AoT) expert
loading, we report expert speculation hit rate and decoding speedups. Specific task metrics include
Exact Match (EM) for Structured Query, Rouge-LSum for Dialog Summarization (Wolf et al., 2020),
and response quality evaluated using GPT-4 (OpenAI, 2023) on human instruction datasets.
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(f) Koala

Figure 3: Generation Metric vs Speedup trade-off of different dynamic computing approaches with
Phi-3 model on instruction and application specific test sets.

Dynamic Residual Transformation We evaluated LITE (Varshney et al., 2024) and our approach
with various early exiting thresholds, examining generation metrics and speedup trade-offs. For
Mixture of Depths (MoD) (Raposo et al., 2024), we varied layer capacities to assess performance
in relation to speedup. In Skip Decoding (Del Corro et al., 2023), we adapted exit points based on
sequence length to achieve similar trade-offs. As shown in fig. 3, M2R2 outperforms other baselines
and exhibits consistent improvement in a diverse set of instruction tuning and application specific
tasks. Notably approaches that are shown to perform well during pre-training such as Mixture of
Depths (Raposo et al., 2024) and Skip decoding (Del Corro et al., 2023) tend to perform poorly
during instruction-tuning setups. In appendix A.10 we provide some empirical reasoning that may
lead to this suboptimal behavior.

Speculative Decoding Improved early alignment using accelerated residual streams (see fig. 9a)
significantly enhances acceptance rates when used for speculative candidate sampling. As shown
in fig. 4a, we compare acceptance rates by sampling tokens from the first k = 4 layers of Gemma-
7B (Mesnard et al., 2024), employing a residual transformation rate R = N/k as noted in sec-
tion 2.2. While speculative decoding with aligned draft-model (Spector & Re, 2023) achieves high
acceptance rates, it does not yield generation speedups due to latency overhead in speculative can-
didate generation. In contrast, Medusa minimizes speculation overhead but suffers from suboptimal
acceptance rates due to the lack of token dependency (Ankner et al., 2024; Bhendawade et al., 2024).
Our approach improves on both these approaches as well as DEED (Tang et al., 2024) by leveraging
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Figure 4: Effectiveness of M2R2 in Speculative Decoding settings.

accelerated residuals, boosting both acceptance rates and generation speedups, as shown in fig. 4.
For further details on the speculative decoding experiments and results, see Appendix A.6.2.

(a) Expert speculation hit rate of different expert
speculation strategies measured on MT Bench.

(b) Inference latency per decode step using different
expert pre-loading strategies measured on MT Bench.

Figure 5: Effectiveness of M2R2 for speculative expert pre-loading on sparse MoE Transformers

MoE Expert Pre-Loading We evaluate decoding latency of MoE models in resource-constrained
environments with limited high-bandwidth memory (HBM). When experts are selected that are not
stored in HBM, they must be loaded from low-bandwidth memory (LBM), introducing latency. To
simulate this scenario on an A100 GPU, we restrict HBM capacity to 8GB, with experts beyond this
limit being loaded from LBM. We compare five strategies to optimize compute efficiency and reduce
decoding latency: (1) fixed expert caching in HBM, (2) LRU based expert eviction, (3) LRU eviction
with random expert preloading, (4) speculative expert preloading based on residual state of previous
layer and (5) our proposed method leveraging accelerated residual states for expert preloading. As
shown in fig. 5, both our method and approach (4) achieve higher hit rates than other baselines,
however our approach achieves most notable reduction in decoding latency. For further details on
the experimental setup, results, and additional insights, please refer to appendix A.7.

4 CONCLUSION

In this work, we propose the Mixture of Multi-rate Residuals (M2R2) framework, which optimizes
early residual alignment by modulating residual velocities, improving inference efficiency in di-
verse inference setups. M2R2 outperforms state-of-the-art dynamic computation methods offering
better generation metrics to speedup trade-off. Furthermore, it achieves 2.8X speedup in lossless
self-speculative decoding setup and 2.9X speedup over traditional MoE inference with lazy expert
loading. Overall, M2R2 offers an effective solution for optimizing inference in resource-constrained
environments, enhancing both dense transformer and sparse MoE models.
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A APPENDIX

A.1 DYNAMIC COMPUTING

A.1.1 EARLY EXITING ANALYSIS

The traditional early exiting methods (Schuster et al., 2022; Chen et al., 2023b; Varshney et al.,
2024) approximate the residual transformation from layer Ej to N − 1 using a linear mapping T ,
which is expressed as:

hEj +

N−1∑
i=Ej

(Ai(hi) +Mi(hi +Ai(hi))) ∼ T (hEj ) where T ⊥ c. (4)

Here, Ai and Mi represent the contributions from multi-head attention and MLP layers, respec-
tively, and T is independent of the preceding context c. This approximation is constrained by the
linearity assumption and the lack of contextual awareness. In contrast, M2R2 addresses these chal-
lenges by approximating the slow residual transformation using a faster transformation over fewer
layers as follows:

hEj
+

N−1∑
i=Ej

(Ai(hi) +Mi(hi +Ai(hi))) ∼ pEj
+

Ej+1−1∑
i=Ej

(
Âi(pi) + M̂i(pi + Âi(pi))

)
, (5)

where pEj is initialized from the slow residual state hEj using an identity transformation at each
early exit interval. This leads to smoother residual shifts and improved alignment with the final
residual states, as shown in fig. 6b. Moreover, the normalized cosine similarity between accelerated
and final residual states is significantly higher, emphasizing the improved alignment compared to
traditional methods.
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Figure 6: Traditional early exiting approaches approximate the final residual state with context-
independent mapping, T , applied on intermediate hidden state, resulting in discontinuities in trans-
formations and lower similarity with final residual state. In contrast, M2R2 progressively enhances
residual transformation velocity at each layer, enabling more robust and uniform early alignment.

A.1.2 ACCELERATED RESIDUAL LATENT ATTENTION (ARLA)

In the context of residual streams, we observe that the decision to exit at a given layer can be more
effectively informed by analyzing the dynamics of residual stream transformations, instead of solely
relying on a classification head applied at the early exit interval Ej . To capture the subtle dynamics
of residual acceleration, we propose a Accelerated Residual Latent Attention (ARLA) mechanism.
This approach involves making the exit decision at gate Ej by attending to the residuals spanning
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from gate Ej−1 to Ej , rather than considering only the residual at gate Ej . To minimize the compu-
tational overhead associated with exit decision-making, the attention mechanism operates within the
latent domain as depicted in fig. 7a. Formally, for each interval [Ej , Ej+1], the accelerated residuals
are projected into Query (Qs

Ej
, . . . , Qs

Ej+1
), Key (Ks

Ej
, . . . ,Ks

Ej+1
), and Value (V s

Ej
, . . . , V s

Ej+1
)

vectors, with latent dimension ds for Qs, Ks, and V s being significantly smaller than that of p.2
Notably, when the router is allowed to make exit decisions at gate Ej based on residual change
dynamics, we observe that the attention is not confined to the residual state at Ej but is distributed
across residual states from Ej−1 to Ej , This broader focus on residual dynamics significantly re-
duces decision ambiguity in early exits, as demonstrated in Figure 7b, which contrasts routers based
on the last hidden state, and the proposed ARLA router.
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(a) Accelerated Residual Latent Attention (ARLA): Ac-
celerated residuals between early exit gates are projected
into latent domain and attention over residual states within
the interval is computed to capture residual dynamics and
exit decision is made based on residual saturation.
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Figure 7: Effectiveness of ARLA in capturing residual dynamics for early exiting decisions.
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Figure 8: (a) As residual streams propagate through the model, the directional shifts in the residuals
become progressively smaller. (b) A smaller model with k layers achieves faster rate of change
in residual streams and higher alignment (consistency between token predictions from intermediate
layers and the final layer) than base model leveraging early exit mechanisms at layer k. To ensure an
equal number of trainable parameters, we inserted LoRa adapters into the smaller model and trained
only these adapters, whereas, in early exit-based approach, we trained solely the early exit head.

A.1.3 EARLY ALIGNMENT AND ARLA EFFECTIVENESS

To demonstrate effectiveness of M2R2, we begin by analyzing the alignment of tokens exited at
intermediate gates with those exited at the final layer using the Koala instruction set (Contributors,
2023). As shown in fig. 9a, we observe that accelerated residuals achieve significantly higher align-
ment compared to conventional early exit approaches, such as those proposed in (Schuster et al.,

2We use ds = 64 for experiments described in section 3.
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2022; Chen et al., 2023b; Varshney et al., 2024). This difference in alignment is particularly pro-
nounced at lower gates, demonstrating that accelerated residual streams more effectively capture the
features of the final-layer slow residual stream than applying a projection layer on intermediate slow
residuals. Additionally, we find that sharing the KV cache between slow and accelerated residuals
does not significantly impact alignment. Cache sharing allows for substantial reductions in runtime
memory, and in the experiments detailed in section 3, we share the cache between slow and acceler-
ated residual streams. We also compare ROC curves obtained from confidence scores that are used
to make exiting decisions in (Schuster et al., 2022) and our approach. As observed in fig. 7b, ARLA
described in appendix A.1.2, is consistently effective in optimally determining decision boundaries
than classifier-based routers that operate on latest slow residual state at each gate in (Schuster et al.,
2022; Varshney et al., 2024).

(a) Early alignment performance on the Koala test set,
comparing traditional early exiting with M2R2, both
with and without cache sharing between slow and ac-
celerated residuals.

(b) Parameter overhead across different dynamic
compute approaches, highlighting additional train-
able parameters in routers, projection layers, accel-
erator adapters, and ARLA.

Figure 9: Alignment of early exited tokens and trainable parameter overhead associated with differ-
ent dynamic computing approaches.

A.1.4 M2R2 CACHING AND ATTENTION DYNAMICS

To maximize the utility of accelerated residual transformations without introducing dedicated KV
caches, we propose a shared caching mechanism between the slow and accelerated streams. This
approach minimizes memory costs while preserving alignment benefits (fig. 9a). Specifically, the
attention operation for slow residuals, MHA(ht, h≤t, h≤t), is redefined for accelerated residuals as:

Â = MHA(pt, h<t ⊕ pt, h<t ⊕ pt),

where pt reuses the slow residual’s KV cache, facilitating the sharing of contextual information
without additional caching overhead. Here, MHA(q, k, v) represents multi-head attention between
query q, key k, and value v.

A.2 SELF SPECULATIVE DECODING

Speculative decoding enhances autoregressive inference by using a draft model to predict tokens
and then verifying these predictions in parallel, enabling token generation at a faster rate (Leviathan
et al., 2023; Chen et al., 2023a; Xia et al., 2023; Miao et al., 2023). However, it introduces de-
ployment and training complexities due to the need for a draft model trained in alignment with the
target model. The simultaneous maintenance of both models in memory further exacerbates this
inefficiency (Leviathan et al., 2023).

To overcome these issues, DEED (Tang et al., 2024) propose leveraging the initial layers of the target
model itself for speculative token generation using early exiting mechanism. This method reduces
overhead by eliminating the need for an additional model while still enabling rapid token generation.
However, this method suffers from suboptimal acceptance rates due to the poor approximation of
residual transformations (see section 2.1.1, appendix A.1.1) and weak alignment between specula-
tive tokens from intermediate layers and those from the final layer as discussed in appendix A.1.3.
Our solution utilizes accelerated residuals to better approximate the final model’s output, with a
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virtual draft model operating at a rate of N/k, where k is the number of layers used for candidate
speculation and N is total number of layers. This improves speculative token generation and ac-
ceptance rates, offering a more efficient alternative to traditional speculative decoding methods. For
experimental details and further performance analysis, see section 3.

A.3 AHEAD OF TIME EXPERT LOADING

Sparse Mixture-of-Experts (MoE) models, such as those discussed in (Shazeer et al., 2017; Fedus
et al., 2022), are designed to activate only a subset of experts per input, which allows for greater
efficiency compared to dense models. However, this introduces a challenge in expert selection, as
it must occur dynamically based on the output of previous layers. In dense transformer models,
pre-loading the next layer’s parameters can be done in parallel with the current layer’s computa-
tion (Narayanan et al., 2021; Shoeybi et al., 2020). This strategy is not directly applicable to MoE
models due to the sequential nature of expert selection, which leads to inherent latency during de-
coding (Lepikhin et al., 2020; Fedus et al., 2022).

To resolve this, our method leverages accelerated residuals that capture essential characteristics of
base slower residual states and exhibit high similarity to their final counterparts (see fig. 6b). By
employing a 2× accelerated residual, we predict and start pre-loading the necessary experts for lay-
ers 2i + 2 and 2i + 3 while still processing layer i, thus reducing the latency caused by sequential
expert selection fig. 2. In this setup, we utilize a fixed set of accelerator adapters for transforming
accelerated residuals, while base slower residuals are processed via an expert routing mechanism.
Additionally, our strategy incorporates a Least Recently Used (LRU) caching mechanism, which
improves memory efficiency by replacing the least recently used experts with those speculated to
be required in subsequent layers. This combined approach of preemptive expert loading and LRU
caching leads to substantial improvements over traditional methods, enhancing both memory man-
agement and compute efficiency. Evaluation results and detailed compute and memory traces on an
A100 GPU are presented in appendix A.7 and fig. 11.

A.4 FLOPS OPTIMIZATION

Naively implemented, M2R2 incurs a higher FLOP overhead compared to traditional speculative
decoding and early exiting approaches such as (Cai et al., 2023; Schuster et al., 2022; Tang et al.,
2024). However, modern accelerators demonstrate compute bandwidth that exceeds memory access
bandwidth by an order of magnitude or more (Agarwal et al., 2023a; Jouppi et al., 2021), meaning
increased FLOPs do not necessarily translate to increased decoding latency. Nevertheless, to ensure
fair comparison and efficiency in compute bound scenarios, we introduce targeted optimizations.

Attention FLOPs Optimization For medium-to-long context lengths, attention computation dom-
inates FLOPs in the self-attention layer, surpassing the contribution from projection layers. Specif-
ically, matrix multiplications involving queries, cached keys, and cached values scale with lkv ∗ lq
where lkv denotes previous context length and lq denotes current query length. Since M2R2 pairs
accelerated residuals with base slow residuals, a naive implementation results in twice the FLOPs
consumption compared to a standard attention layer. To address this, we limit the attention of ac-
celerated residual stream to selectively attend to the top-k most relevant tokens, identified by the
slow residual stream based on top attention coefficients3. This is possible since slow and accelerated
residual streams are processed in same forward pass and accelerated streams have access to attention
coefficients of slow stream. Note that, the faster residual stream still retains the flexibility to assign
distinct attention coefficients to these tokens. Furthermore, we design the faster residual stream to
employ only 8 attention heads, compared to the 32 heads used in the slow residual stream of the
Phi-3 model, reducing query, key, value, and output projection FLOPs by a factor of 1/4. fig. 12b
indicates effect of using a slicker stream on alignment. As depicted, using n̂h = 8 offers a good
trade-off between alignment and FLOPs overhead.

MLP FLOPs Optimization The accelerator adapters operating on the accelerated residual stream
are intentionally designed with lower rank than their counterparts in the base model. This reduces

3We set to k = 64 and attend to top 64 tokens as identified by the slow residual stream.
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FLOP overhead by a factor proportional to hiddenSize/rank. Additionally, since the faster resid-
ual stream uses only 8 attention heads (compared to 32 in the slow residual stream of Phi-3), the
subsequent MLP layers process a smaller set of activations, further reducing FLOPs by another
factor of 1/4.

These optimizations significantly reduce the FLOP overhead per speculative draft generation, as il-
lustrated in fig. 12a. Notably, while traditional early-exiting speculative approaches such as DEED
require propagating the full slow residual state through the initial layers, incurring substantial com-
putational costs, M2R2 achieves efficient token generation via slimmer residual streams. In contrast,
Medusa introduces considerable FLOP overhead due to per-medusa-head computations scaling with
d2 + dv4, whereas M2R2 employs low-rank layers for both MLP and language modeling heads,
maintaining computational efficiency. All experiments involving the M2R2 approach, as detailed in
section 3, are conducted using these FLOPs optimizations.

A.5 ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide supplementary details about the experimental setup and evaluation
methodology to complement the overview in the main paper.

Dataset Details. For Structured API Generation, we use TextToSQL dataset constructed by com-
bining examples from WikiSQL (Zhong et al., 2017) and SPIDER (Yu et al., 2018), including cases
with multi-turn queries and nested joins. For Text Summarization, we use the Dialogsum (Chen
et al., 2021) dataset containing multi-speaker scenarios and conversational coherence. The e2e-
nlg dataset (Dušek et al., 2020) used for Meaning Representation tasks is contains domain-specific
templates to better evaluate the semantic accuracy of generated responses.

Generalization Studies. While the main paper outlines the use of Alpaca (Touvron et al., 2023)
for training and several held-out instruction sets for testing, we include additional details about
the domain diversity of these instruction sets. For example, Self-Instruct (Wang et al., 2022) cov-
ers open-ended questions, Koala (Contributors, 2023) emphasizes conversational nuances, Wiz-
ardLM (Xu et al., 2023) includes creative problem-solving tasks, and MT Bench (Bai et al., 2024)
tests instruction-following in highly technical domains.

A.6 RESULTS IN DETAIL

A.6.1 PARAMETER OVERHEAD

We measure the trainable parameter overhead of M2R2 associated with routers, projection layers,
and the ARLA mechanism (see appendix A.1.2). As shown in fig. 9b, our approach achieves
significantly lower parameter overhead, as accelerator adapters work effectively with lower ranks
(see fig. 10a), and the ARLA latent dimension is substantially smaller (see appendix A.1.2). Param-
eter overhead in LITE (Varshney et al., 2024) and Skip Decoding (Del Corro et al., 2023) is mainly
due to the projection layer, while MoD (Raposo et al., 2024) is dominated by router parameters,
including linear projections and binary classifiers at each layer.

A.6.2 SPECULATIVE DECODING SPEEDUPS

We conducted self speculative decoding experiments using the first k = 4 layers of Gemma-
7B (Mesnard et al., 2024), employing a residual transformation rate R = N/k, where N denotes the
number of layers of the base model. The baselines compared include draft-model-based specula-
tive decoding (Leviathan et al., 2023; Chen et al., 2023a), where Gemma-2B (Mesnard et al., 2024)
serves as the draft model, and single-model methods such as Medusa (Cai et al., 2023), DEED (Tang
et al., 2024), and LookAhead Decoding (Fu et al., 2023).

While draft-target setup shows high acceptance rates, it does not provide speedup due to latency
associated with candidate generation since draft model generates candidate speculation autoregres-
sively and the speculative overhead outweigh parallel acceptance gains. Medusa minimizes specula-
tive generation overhead by generating candidates in a non-autoregressive manner but suffers from

4Here d denotes hidden state dimension while v denotes vocab size.
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suboptimal acceptance rates as it fails to leverage token dependencies (Ankner et al., 2024; Bhen-
dawade et al., 2024). DEED (Tang et al., 2024) generates candidates using only a subset of model
layers, reducing candidate generation costs, but lacks sufficient alignment for high acceptance rates.

Our method addresses these issues by using accelerated residuals to improve both alignment and
generation speedups as shown in fig. 4a. Furthermore, as shown in fig. 4b, the parameter overhead
of our approach for speculative draft generation is significantly lower than the baselines, making it
well-suited for resource-constrained environments.

A.7 AHEAD-OF-TIME (AOT) MOE EXPERT LOADING

We evaluate efficacy of Ahead-of-Time (AoT) expert loading in resource-constrained environments,
where limited high-bandwidth memory (HBM) restricts the number of experts that can be stored in
fast-access memory. When an MoE gate selects an expert that is not in HBM, it must be loaded from
low-bandwidth memory (LBM), introducing latency. To simulate this scenario on an A100 GPU,
we restrict HBM capacity to 8GB, requiring experts beyond this limit to be loaded from LBM.5.

We compare five strategies to maximize compute efficiency and reduce latency. The first approach
fixes experts in HBM without replacement. In the second strategy, we employ a Least Recently Used
(LRU) eviction policy, where the least accessed experts are dynamically replaced when new ones are
needed. The third method extends the LRU approach by adding speculative caching and randomly
pre-loading experts. The fourth strategy uses speculative loading based on residual states from the
previous layer. Finally, our proposed approach, described in section 2.1.3, leverages accelerated
residual states to more effectively speculate and pre-load experts in advance. Using the OLMoE
model, which has 64 experts per MLP layer, our 8GB HBM capacity allows only 32 experts to be
cached in high-speed memory, while the remaining 32 reside in LBM.

As shown in fig. 5, both our method and the approach of speculating experts based on residual
state of previous layer achieve significantly higher hit rates compared to the fixed and LRU-based
strategies. Our method operates on accelerated residuals at a rate of 2X, initiating speculative pre-
loading of experts at layers 2i + 2 and 2i + 3 while the GPU kernel is engaged in computing the
attention and MLP transformations for layer i. Starting pre-loading earlier proves advantageous, as
we observe that miss rates tend to increase in the final layers when using LRU caching strategies (see
fig. 10b). If speculative pre-loading is initiated only one layer before the current layer, it often results
in insufficient loading time, preventing all the necessary experts for layer i from being fully loaded
during the computation of layer i−1. By pre-loading ahead, our method ensures that most speculated
experts are readily available, thereby reducing latency and improving inference efficiency. While we
demonstrate the effectiveness of operating at a 2X rate for initiating expert pre-loading, the optimal
extent of early pre-loading necessary to maximize inference performance remains an open question.
We leave this exploration for future work.

A.8 GRADIENT CONFLICT RESOLUTION

Traditional early exiting strategies frequently encounter issues related to gradient conflicts (et al.,
2023a;b), where multiple exit points induce conflicting gradients during the training phase. This
phenomenon leads to optimization instability and challenges in convergence, as gradients computed
from divergent branches may not align effectively, and the presence of early exits can perturb the
gradient flow, potentially resulting in the incomplete training of lower early exit heads. To illustrate
this problem, consider a trainable parameter wj situated between gates Ej and Ej+1. For the loss
associated with the early exit at gates Ej+1...n, the parameter update required in wj can be expressed
as:

∆wj = −η

n∑
k=j+1

βk
∂LEk

∂wk
(6)

5In our experimental setup, GPU DRAM is treated as HBM and disk as LBM, though the setup generalizes
to architectures where SRAM serves as HBM and DRAM as LBM, a common design in many accelerators
(Jouppi et al., 2017; Keckler et al., 2011; Lane & Georgiev, 2020)
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where βk is the backward transformation coefficient for the gradient from gate Ek to reach parameter
wj and η is the learning rate. Conversely, since accelerated residuals at gate Ej are initialized
from slow residuals Hj which are trained with base model parameters that are frozen, gradient
propagation is limited to parallel adapter parameters from gate Ej to gate Ej+1 thus ensuring every
parallel adapter parameter is optimized for specific exit as shown in fig. 1. Formally speaking, the
update of accelerator adapter parameter wj within our proposed framework is delineated as:

∆wj =

{
−ηβ̂j+1

∂LEj+1

∂wj
if Ej < wj < Ej+1

0 otherwise
(7)

where β̂j+1 is the backward transformation coefficient for the gradient from gate Ej+1 to reach
parameter wj of accelerator adapter. This formulation mitigates gradient conflicts arising from
gradients associated with top gates, thereby enhancing the stability of the optimization process.6

(a) Alignment of early-exited tokens with those from
the final layer improves as adapter rank increases, but
tends to plateau beyond a rank of 8.
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(b) Expert speculation miss rates increase in later lay-
ers with LRU policy, while initial layers exhibit lower
miss rates. Thus, accurate speculative pre-loading
benefits later layers more. We leverage accelerated
residuals to speculate and pre-load experts for these
layers during the computation of earlier layers.

Figure 10: (a) Adapter Rank Ablation on Dialog Summarization (b) Expert speculation miss Rates

A.9 RELATED WORK

The inference speed of large language models (LLMs) is often constrained by the sequential nature
of auto-regressive decoding, which necessitates a complete forward pass of the network for each to-
ken generated. To mitigate the high inference latency associated with LLMs, various strategies have
been proposed to reduce their memory footprint. Techniques such as model quantization (Frantar
et al., 2022; Yao et al., 2022; Dettmers et al., 2023), knowledge distillation to smaller models (Gu
et al., 2023; Agarwal et al., 2023b), and pruning (Frantar & Alistarh, 2023; Sun et al., 2023) have
emerged as effective solutions. However, these strategies often neglect the variational complexity
inherent in each token, resulting in a reliance on static computation for all tokens. To better address
this issue, several early exiting approaches have been developed to facilitate dynamic computation.
These methods focus on terminating residual transformations early for simpler tokens, achieving
significant speedups in embedding models (Xin et al., 2020; Hou et al., 2020; Varshney & Baral,
2022). In the context of sequence generation models, techniques like Confident Adaptive Language
Modeling (CALM) (Schuster et al., 2022) and Depth-Adaptive Transformers (Elbayad et al., 2020)
have effectively employed early exiting by integrating classifiers into the decoder layers. However,
these approaches are constrained by key-value (KV) cache mismatches that arise between the train-
ing and inference phases, as KV states are not accessible for tokens that are early-exited. To mitigate
these limitations, skip decoding (Del Corro et al., 2023) has been introduced. This method allows for
bypassing a progressively increasing number of layers based on the token’s position in the decoded

6For simplicity, we focus on cross-entropy loss in this discussion; however, the same reasoning extends to
distillation loss as detailed in section 2.2.
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sequence. While this approach effectively circumvents KV mismatches, the pre-defined limitations
on the number of bypassed layers can lead to suboptimal generation quality.

Another promising direction involves conditioning residual transformations at each layer through
the use of a router. For example, CoLT5 (Ainslie et al., 2023) employs conditional routing to deter-
mine whether a token should follow a heavy or light computational pathway for each feedforward
layer in encoder-decoder models. Mixture-of-depths (Raposo et al., 2024) builds upon this idea
by introducing a predictive router at each layer, which enables efficient inference for conditional
computation in decoder-only models. Although conditional routing demonstrates potential during
pre-training, as illustrated in section 3, its effectiveness during supervised fine-tuning and instruc-
tion tuning remains limited. This restricts the applicability of this technique across a wider array of
publicly available pre-trained models.

Speculative decoding (SD) has also emerged as a potent method for accelerating autoregressive
inference. Techniques such as the original SD framework (Leviathan et al., 2023; Chen et al., 2023a)
utilize a smaller draft model to generate token candidates, which are subsequently validated by
the target model, achieving speedups of 2-3x. However, this dual-model approach complicates
deployment, as it necessitates hosting both models in memory, which can be resource-intensive in
constrained environments. Alternatives like Medusa offer single-model solutions but are limited by
their inability to account for token dependencies. In contrast, our approach introduces dependencies
between speculative tokens, resulting in more coherent and efficient speculation, thereby achieving
higher decoding speedups.

The recent proliferation of Mixture-of-Experts (MoE) language models builds on a long-established
concept (Jacobs et al., 1991; Jordan & Jacobs, 1994) of training ensembles of specialized models or
“experts,” and employing a gating function to select the appropriate expert for a given task. Shazeer
et al. (Shazeer et al., 2017) further this idea by developing a sparsely gated Mixture-of-Experts
language model. Numerous studies have since explored the application of MoE architectures in
Transformer-based models for tasks such as machine translation (Lepikhin et al., 2021), masked
language modeling (Fedus et al., 2021), and general-purpose LLMs (Du et al., 2022). Recently,
state-of-the-art sparse Mixture-of-Experts models, such as Mixtral-8x7B (Jiang et al., 2024) and
OLMoE (Muennighoff et al., 2024), have been released, outperforming their open-source dense
transformer counterparts across several benchmarks.

A.10 DISCONTINUITY IN MIXTURE OF DEPTHS AND SKIP DECODING

To get a deeper understanding of discontinuity leading to suboptimal performance of architectures
like MoD and Skip decoding during instruction tuning and fine-tuning phases, we pass a diverse
set of prompts through the models and observe residual stream transformation. Residual streams in
pre-trained dense transformers tend to undergo significant changes in both direction and magnitude
in first few layers than later layers as depicted in fig. 8a. Since Mixture of Depth (MoD) relies on
skipping the residual transformation for some of the tokens determined by router, skipping early
transformations makes it harder to obtain final residual state closer to that obtained from full dense
transformers even when MoD parameters are explicitly trained to alleviate this discontinuity. Skip
decoding on the other hand approximates skipping residual transformation of first few layers with a
linear projection while ignoring non-linearities and context, leading to sub-otpimal performance.

A.11 MOE SPECULATION CONTINUED

In this section, we detail the expert transfer process between High Bandwidth Memory (HBM) and
Low Bandwidth Memory (LBM) on the A100 GPU. We employ CUDA’s multi-stream functionality
(NVIDIA, 2021) to establish distinct compute and memory-loading streams, both of which operate
concurrently during each forward pass. The load stream is scheduled ahead of the compute stream to
ensure efficient memory management: while the compute stream processes layer i, the load stream
transfers the least recently used experts of layer 2i + 2 and 2i + 3 to LBM and loads speculated
experts into HBM. This approach leverages the accelerated residual at layer i, which exhibits strong
similarity to the slow residuals at layers 2i + 2 and 2i + 3, enabling effective expert speculation
as shown in fig. 2. Before executing the MLP experts, we verify whether all required experts are
available on HBM; if not, the load stream initiates prioritized, on-demand loading for the experts
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Figure 11: A100 GPU trace demonstrating overlap of computation and expert transfer between LBM
and HBM.

necessary for MLP computation at layer i. Coordination between the load and compute streams is
managed using CUDA primitives.
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(a) FLOPs overhead of generating speculative draft
for different approaches on Gemma-7B. The op-
timized M2R2 approach incorporates FLOPs opti-
mization techniques described in appendix A.4

(b) Ablation study on attention heads and M2R2
alignment benefits. Using 4 to 8 heads in the accel-
erated residual stream reduces FLOPs with minimal
alignment degradation.

Figure 12: FLOPs overhead of M2R2 and optimization based on Attention head pruning.

Accelerator Adapter Rank Ablation To minimize parameter overhead from accelerator adapters,
we conduct an ablation study on adapter rank to identify the optimal rank that achieves strong align-
ment without substantially increasing parameter load. As illustrated in fig. 10a, a rank of 8 offers an
effective trade-off, with alignment performance showing a steep improvement up to rank 8, beyond
which the benefit curve begins to plateau.
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Prompt for Evaluation of Dynamic Compute Responses

To assess the responses generated by our approach alongside baseline models, we utilize the follow-
ing prompt for GPT-4 oracle. Note that the baseline and target responses are randomly assigned to
either Assistant 1 or Assistant 2 in the template below.

Human: You are a helpful and precise assistant for evaluating the
quality of an answer.

[Question]
{question}
[The Start of Assistant 1’s Answer]
{answer_1}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s Answer]
{answer_2}
[The End of Assistant 2’s Answer]

We request your feedback on the performance of both AI assistants
in response to the user question above. Please rate their
responses based on helpfulness, relevance, accuracy, and level
of detail.

Assign each assistant an overall score on a scale of 1 to 10,
where a higher score reflects better performance.

Please provide a single line output with only two values,
representing the scores for Assistant 1 and Assistant 2,
respectively, separated by a space.

Assistant:

21


	Introduction
	Method
	Multi-Rate Residual Transformation
	Dynamic Computation
	Self Speculative Decoding
	Ahead-of-Time (AoT) Expert Loading

	Training

	Experiments
	conclusion
	Appendix
	Dynamic Computing
	Early Exiting Analysis
	Accelerated Residual Latent Attention (ARLA)
	Early Alignment and ARLA Effectiveness
	M2R2 Caching and Attention Dynamics

	Self Speculative Decoding
	Ahead of Time Expert Loading
	FLOPs Optimization
	Additional Experimental Details
	Results in detail
	Parameter Overhead
	Speculative Decoding Speedups

	Ahead-of-Time (AoT) MoE Expert Loading
	Gradient conflict resolution
	Related Work
	Discontinuity in Mixture of Depths and Skip Decoding
	MoE Speculation Continued


