
SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Sliding Puzzles Gym: A Scalable Benchmark for State
Representation in Visual Reinforcement Learning

Bryan L. M. de Oliveira1,2, Luana G. B. Martins1, Bruno Brandão1,2, Murilo
L. da Luz1,2, Telma W. de L. Soares1,2, Luckeciano C. Melo1,3

bryanlincoln@discente.ufg.br

1Advanced Knowledge Center for Immersive Technologies – AKCIT
2Institute of Informatics, Federal University of Goiás, Brazil
3OATML, University of Oxford

Abstract

While effective visual representation learning is critical for reinforcement learning (RL)
agents to generalize across diverse environments, existing benchmarks cannot evaluate
how different inductive biases affect this capability in isolation. To address this, we in-
troduce the Sliding Puzzles Gym (SPGym), a benchmark that isolates the challenge of
visual representation learning. SPGym transforms the classic sliding puzzle into a vi-
sual RL task where visual complexity can be scaled by adjusting grid sizes and the pool
of images used for tiles, while environment dynamics, observation, and action spaces
remain fixed. Our experiments with model-free and model-based algorithms reveal how
different architectural and algorithmic biases affect an agent’s ability to handle visual
diversity. As the image pool grows, all algorithms exhibit performance degradation both
in- and out-of-distribution, with sophisticated representation techniques often underper-
forming simpler approaches like data augmentation. These findings expose critical gaps
in visual representation learning and establish SPGym as a valuable tool for developing
more robust and generalizable agents.

1 Introduction

The ability to learn meaningful representations from raw sensory inputs like images is crucial for
reinforcement learning (RL) agents to generalize in complex, open-world environments (Bengio
et al., 2013; Lesort et al., 2018). In visual RL, agents must process high-dimensional pixel data to
extract features for decision-making, a process fundamentally shaped by the inductive biases of their
architecture and learning algorithms (Mnih et al., 2015; Yarats et al., 2021a). However, measuring
an agent’s representation learning capabilities independently of other learning tasks, such as policy
optimization or dynamics modeling, remains a key challenge in RL benchmarks.

Traditional RL benchmarks like Atari (Bellemare et al., 2013) and the DeepMind Control
Suite (Tassa et al., 2018) are valuable for assessing overall agent performance, but they conflate rep-
resentation learning with policy optimization and environment dynamics. Even recent benchmarks
designed for visual learning and generalization have limitations. For instance, ProcGen (Cobbe
et al., 2020) varies visual and task difficulty simultaneously, making it hard to isolate the effect of
representation learning. The Distracting Control Suite (Stone et al., 2021) adds visual distractors
that are irrelevant to the task. RL-ViGen (Yuan et al., 2023) tests generalization across different
types of modifications to the Markov decision process but doesn’t fix visual complexity as the con-
trolled variable. As a result, current benchmarks cannot systematically assess how well an agent
learns task-relevant visual representations in isolation.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

Figure 1: Overview of SPGym. The framework extends the 8-tile puzzle by replacing numbered
tiles with image patches. At each training run, SPGym samples a pool of images and, at each
episode, it randomly selects one of those images to form the observations. While we scale visual
diversity by adjusting the pool size, the task and environment dynamics remain fixed.

To address this gap, we introduce the Sliding Puzzles Gym (SPGym)1, an open-source benchmark
for evaluating how agents handle visual diversity. As illustrated in Figure 1, SPGym turns the classic
sliding puzzle into a discrete visual RL task. Its design is guided by three principles: (1) consistent
environment dynamics, so the task itself does not change; (2) precise control over visual complexity
via adjustable grid sizes and image pools; and (3) a clear success metric based on puzzle comple-
tion. SPGym provides a controlled setting to systematically measure how an agent’s performance is
affected by visual diversity, revealing the limits of its representation learning capabilities.

Our experiments show that SPGym effectively distinguishes agents by their out-of-the-box repre-
sentation learning abilities, which strongly correlate with task performance. While pretraining and
data augmentation are beneficial, many advanced methods underperform with standard configura-
tions, suggesting either a need for task-specific tuning or fundamental mismatches with SPGym’s
visual-structural dynamics. More importantly, our generalization analysis reveals a critical gap in
current methods: on SPGym, agents that master the training images fail to transfer to unseen ones,
even when trained on larger and more diverse image pools. In fact, performance often degrades as
visual diversity increases, indicating that current methods struggle to learn truly generalizable rep-
resentations. We further demonstrate SPGym’s extensibility through experiments with procedurally
generated images and larger puzzles, maintaining fixed observation/action spaces while expanding
state space and visual diversity. These findings expose critical gaps in current visual RL methods and
establish SPGym as a valuable tool for advancing robust, generalizable decision-making systems.

Contributions. Our main contributions are: (1) SPGym, a novel benchmark for systematically eval-
uating representation learning by scaling visual complexity while holding environment dynamics
constant; (2) an extensive empirical analysis of state-of-the-art methods that uncovers their limita-
tions in handling visual diversity; and (3) fundamental insights into the challenges of scaling visual
RL that suggest new directions for research.

2 Related Work

Traditional RL benchmarks. Foundational visual RL benchmarks like the Atari Learning Envi-
ronment (Bellemare et al., 2013) and the DeepMind Control Suite (Tassa et al., 2018) spurred the
development of representation learning techniques like pretraining (Higgins et al., 2017; Stooke

1Available at https://github.com/bryanoliveira/sliding-puzzles-gym.

https://github.com/bryanoliveira/sliding-puzzles-gym

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

et al., 2021; Schwarzer et al., 2021), contrastive learning (Laskin et al., 2020a), self-supervised pre-
diction (Schwarzer et al., 2020), and world models (Hafner et al., 2025). However, these benchmarks
assess overall agent performance, intertwining representation learning with policy optimization and
dynamics modeling, which obscures the specific impact of representation learning. SPGym ad-
dresses this by fixing the environment dynamics while varying visual complexity, enabling a focused
evaluation of representation learning.

Specialized benchmarks for visual RL. Recent benchmarks have tried to better assess visual
generalization, but with certain limitations. ProcGen (Cobbe et al., 2020) scales visual and task
difficulty simultaneously, making it hard to disentangle their effects. The Distracting Control
Suite (Stone et al., 2021) adds visual distractors that are irrelevant to the task and can be ignored.
RL-ViGen (Yuan et al., 2023) tests generalization across different MDP modifications but doesn’t
control visual complexity scaling. In contrast, SPGym makes visual understanding essential for
solving the task. By scaling the visual diversity of the puzzle tiles while keeping the task complexity
fixed, SPGym creates a representation learning challenge that is directly tied to task completion.

Puzzle-based benchmarks and solving methods. Puzzle-based environments have proven valu-
able for evaluating neural algorithmic reasoning, primarily with discrete states (Estermann et al.,
2024). While classical approaches to sliding puzzles employ heuristic search algorithms like A*
with Manhattan distance heuristics (Korf, 1985; Burns et al., 2012; Lee & See, 2022), these methods
require access to internal states and can be computationally expensive. Deep RL offers a scalable
alternative that learns strategies without handcrafted heuristics (Agostinelli et al., 2019; Moon &
Cho, 2024; Estermann et al., 2024), though prior work has focused on discrete states rather than
visual inputs (Agostinelli et al., 2019; Moon & Cho, 2024). Similarly motivated by puzzle simplic-
ity and scalability, Wang et al. (2025) proposed Jigsaw-R1 for evaluating multimodal reasoning in
MLLMs, though our focus is on RL representation learning sample efficiency. While Estermann
et al. (2024) demonstrated that agents struggle with even basic pixel-based inputs, their work re-
vealed the potential of puzzles for visual learning and the need for systematic evaluation. SPGym
advances this research direction by incorporating rich visual observations into a controlled puzzle
environment, where agents must learn exclusively from pixel observations without access to inter-
nal states, thereby creating a benchmark for assessing visual representation learning and providing
insight into RL algorithms’ performance on this challenging visual task.

A preliminary version of this work appeared at the Open-World Agents Workshop at NeurIPS
2024 (de Oliveira et al., 2024). The present version includes extended related work and formal-
ization, representation learning methods for SAC, out-of-distribution analysis, solution optimality
analysis, experiments with one-hot encoding, 4x4 grids, linear probing evaluation, and experiments
with an alternative base dataset.

3 The Sliding Puzzles Gym

SPGym is an open-source benchmark that extends the classic sliding puzzle to evaluate visual rep-
resentation learning in RL agents. It supports configurable H × W grids and various observation
modalities, and adheres to the Gym interface (Brockman, 2016). In our experiments, we use a 3× 3
grid where tiles are patches of an image, and the agent observes the composite image of the grid
(Figure 1). SPGym adheres to the Gym (Brockman, 2016) interface, promoting modularity between
environment and agent.

Formalization. SPGym is a partially observable Markov decision process (POMDP) defined by
(S,X ,A,P,R,S0), where S is the state space of tile configurations, X is the image-based observa-
tion space, A is the action space, P is the deterministic transition function, R is the reward function,
and S0 is the initial state distribution.

State space and observations. The agent does not see the underlying state s ∈ S and must learn
a policy π : X → A from observations x ∈ X . For each training run, a pool I of p images is
sampled from a dataset. At the start of an episode, an image i ∈ I is randomly selected, split into

Inductive Biases in Reinforcement Learning Workshop RLC 2025

H ×W patches, and overlaid on the puzzle. The agent’s goal is to reassemble the shuffled image.
This formulation provides two mechanisms for controlling complexity: (1) varying p adjusts the
diversity of the observation space X by changing the pool of available images, and (2) modifying
H and W alters the state space complexity by changing the grid dimensions and number of puzzle
pieces. Both mechanisms operate while keeping the underlying dynamics P , the action space A,
and the reward function R fixed.

Action space and dynamics. The action space A consists of four discrete actions: UP, DOWN,
LEFT, or RIGHT, which move a tile into the adjacent empty space. Once the agent selects a tile to
move, the dynamics P define the next puzzle state in a predictable and deterministic way.

Reward function. We use a dense reward function based on the normalized Manhattan distance of
tiles from their goal positions, a common metric in sliding puzzle solvers (Korf, 1985; Burns et al.,
2012; Lee & See, 2022; Moon & Cho, 2024). The reward at each step is:

rt =


−D, if action is valid
−1, if action is invalid
+1, if puzzle is solved

, with D =

∑H
i=1

∑W
j=1 |ui,j − u∗

i,j |+ |vi,j − v∗i,j |∑H
i=1

∑W
j=1 max(i,H − i) + max(j,W − j)

. (1)

Here, (ui,j , vi,j) is the current tile position and (u∗
i,j , v

∗
i,j) is its target. This provides a learning

signal between [−1,+1] that encourages solving the puzzle in the fewest steps. Invalid moves are
penalized with −1, and don’t alter the puzzle state. For example, in Figure 1, the DOWN and RIGHT
actions would be invalid for the first state. Solving the puzzle yields +1 and ends the episode.

Initial state distribution. To start an episode, we generate a random, solvable puzzle state by
uniformly placing tiles on the grid and ensuring solvability by adjusting the puzzle’s parity if
needed (Johnson & Story, 1879). We also support curriculum learning by starting from a solved
state and applying random moves, but we do not use this method in our experiments due to its
computational cost at larger grid sizes.

Figure 2: Different observation modalities in SPGym.
Each modality presents a unique challenge for representa-
tion learning, while corresponding to the same puzzle state.
We focus our experiments on image-based observations.

Scalability and extensibility. SP-
Gym provides two orthogonal mech-
anisms for scaling task difficulty: vi-
sual diversity and grid size. While
our primary experiments use 3 × 3
image-based puzzles, SPGym sup-
ports larger grids and other observa-
tion modalities, such as one-hot en-
codings (Figure 2), to isolate specific
research questions (see Section 9.1).

The primary mechanism isolates the
challenge of representation learning
by increasing visual diversity while
keeping all other task components fixed. This is achieved by expanding the image pool from which
puzzles are generated (Figure 3). As the pool grows, agents require more samples to solve the task
(Table 1), even though the state space, action space, and transition dynamics remain unchanged. This
increased difficulty stems directly from the representation learning challenge. We confirm this link
through linear probe analysis (Section 9.1.2), which shows a strong correlation between representa-
tion quality and task performance. This controlled scaling provides a stress test for visual learning
that is not possible in settings with fixed visual inputs or state-based observations (see Section 9.1.1).

The secondary mechanism scales the exploration and planning challenge by adjusting grid dimen-
sions. Increasing the grid from 3 × 3 to 4 × 4 expands the state space exponentially, increasing
sample complexity (Table 3). This also makes representation learning harder, as the agent must
correctly position more patches. Crucially, since the observation and action spaces remain identical,

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

this setup isolates the impact of state-space complexity. While this mechanism is useful for test-
ing exploration, our experiments show that the 3 × 3 grid is sufficient to assess the representation
learning capabilities of different agents.

Figure 3: Scalable visual diversity in SPGym.
Each row shows the first observation of 3 different
episodes of the same training run. Crucially, we
keep the grid size fixed, ensuring difficulty comes
solely from handling the larger variety of visual
inputs controlled by the size of the image pool.

By independently controlling these two axes of
difficulty, SPGym creates a controlled exper-
imental setting where performance variations
can be more directly attributed to an agent’s
representation learning capabilities.

4 Methods

We evaluate various RL agents within the SP-
Gym framework to assess their ability to handle
increasing visual diversity.

Experimental setup. We construct visual ob-
servations using images from ImageNet-1k’s
validation split (Russakovsky et al., 2015), re-
sized to 84× 84 pixels. To isolate visual diver-
sity, we fix the puzzle size to 3 × 3 and vary
only the image pool size p. For each training
run, we randomly sample p distinct images to
create a fixed pool, then randomly select one
image per episode to generate puzzle observa-
tions. We cap environment steps at 10M and
limit episodes to 1,000 steps.

Our primary metric is sample efficiency: the number of environment steps required to reach 80%
success rate. We terminate runs early when agents maintain 100% success rate for 100 consecutive
episodes, enabling out-of-distribution evaluation before extreme overfitting. Each experiment uses
5 random seeds, reporting mean ± 95% confidence intervals. We evaluate all agent variants on pools
of 1, 5, and 10 images, with additional scaling experiments up to 100 images for baseline methods.

Algorithms and variants. We explore three algorithmic approaches representing different learning
strategies: Soft Actor-Critic (SAC) (Haarnoja et al., 2018a), Proximal Policy Optimization (PPO)
(Schulman et al., 2017), and DreamerV3 (Hafner et al., 2025). For SAC, we begin with the standard
implementation for discrete action spaces (Christodoulou, 2019) and examine several representation
learning variants: RAD (Laskin et al., 2020b) (data augmentation), CURL (Laskin et al., 2020a)
(contrastive learning), SPR (Schwarzer et al., 2020) (self-supervised prediction), DBC (Zhang et al.,
2021) (state metric learning), SAC-AE and SAC-VAE (Yarats et al., 2021b) (reconstruction-based
learning), and Simple Baseline (SB) (Tomar et al., 2023) (reward and transition prediction). For
PPO, we evaluate three encoder configurations: standard with random initialization, pretrained on
the same image distribution (in-distribution, ID) to provide an upper bound on expected pretraining
performance, and pretrained on a different image distribution (out-of-distribution, OOD) to establish
the potential benefits of generally pretrained encoders. For DreamerV3, we compare the standard
version against a variant without decoder gradients to evaluate the impact of the reconstruction
objective on performance. Detailed descriptions for all agents are provided in Section 8.

Implementation details. We adopt established neural architectures and hyperparameters from vi-
sual discrete control implementations, using three-layer CNN encoders with deconvolutional de-
coders and MLP components. For data augmentation, we apply a two-step pipeline consisting of
grayscale conversion (20% probability) followed by channel shuffling, selected through systematic
augmentation searches. To assess out-of-the-box performance, we use default hyperparameters for
PPO and DreamerV3, with SAC requiring minimal tuning of the temperature parameter (α = 0.05).
Comprehensive details on algorithm implementations, architectural specifications, hyperparameter

Inductive Biases in Reinforcement Learning Workshop RLC 2025

settings, augmentation strategies, and gradient flow patterns are provided in Section 7. Our code 2

extends CleanRL (Huang et al., 2022) and official DreamerV3 implementations.

5 Results

Our analysis reveals three fundamental tensions in visual RL: between method assumptions and
environment structure, sample efficiency and solution optimality, and training diversity versus gen-
eralization capability. We organize findings through six research questions.

Can SPGym distinguish agents on representation learning capabilities?

Table 1: Million steps to reach 80% success rate across
pool sizes. Lower is better. Best performing variant for
each algorithm and pool size is highlighted in bold.

Agent Pool 1 Pool 5 Pool 10

PPO 1.75±0.44 7.80±1.08 9.73±0.36

PPO + PT (ID) 0.95±0.21 5.55±1.22 9.17±1.10

PPO + PT (OOD) 1.34±0.42 7.03±1.07 9.70±0.41

SAC 0.33±0.07 0.91±0.12 2.03±0.38

SAC + RAD 0.24±0.03 0.42±0.06 0.82±0.18

SAC + CURL 0.46±0.10 1.56±0.31 5.24±1.92

SAC + SPR 2.09±0.81 3.68±1.68 10.00±0.00

SAC + DBC 0.99±0.25 1.12±0.22 2.13±0.41

SAC + AE 1.04±0.24 1.02±0.19 2.01±0.38

SAC + VAE 1.13±0.14 5.30±0.68 10.00±0.00

SAC + SB 0.98±0.88 2.08±0.30 10.00±0.00

DreamerV3 0.42±0.06 1.23±0.20 1.44±0.58

DreamerV3w/o dec. 1.13±0.12 1.79±0.61 2.57±0.91

Table 1 demonstrates SPGym’s abil-
ity to differentiate agents based on
the sample efficiency of their repre-
sentation learning variants. For PPO,
in-distribution pretraining (PT (ID))
significantly boosts sample efficiency,
with limited gains from OOD. For
SAC, data augmentation via RAD is
the most effective variant, while many
sophisticated auxiliary methods under-
perform. This result aligns with find-
ings from Tomar et al. (2023) and
Yuan et al. (2023), suggesting that cur-
rent methods may be overfitting to the
benchmarks they were developed on.
DreamerV3 demonstrates strong, sta-
ble performance, with its discrete re-
construction objective proving crucial
for success. These results highlight
SPGym’s diagnostic value in assessing
how different methods handle visual diversity and structured dynamics. For detailed performance
analysis, see Section 9.2.1.

How does visual diversity affect performance and generalization?

Table 2: Success rate of PPO and SAC agents on Easy
OOD across different pool sizes. Higher is better.

Algorithm Pool 1 Pool 5 Pool 10

PPO 0.49±0.13 0.53±0.14 0.34±0.08

PPO + PT (ID) 0.33±0.09 0.53±0.16 0.27±0.07

PPO + PT (OOD) 0.49±0.12 0.52±0.14 0.34±0.08

SAC 0.45±0.12 0.58±0.12 0.46±0.12

SAC + AE 0.78±0.11 0.64±0.16 0.55±0.12

SAC + VAE 0.64±0.15 0.30±0.08 0.12±0.03

SAC + SPR 0.65±0.13 0.21±0.09 0.07±0.04

SAC + DBC 0.44±0.13 0.34±0.13 0.13±0.04

SAC + CURL 0.76±0.09 0.44±0.10 0.37±0.11

SAC + RAD 0.62±0.15 0.42±0.13 0.30±0.11

SAC + SB 0.89±0.08 0.65±0.12 0.06±0.02

Figure 4 reveals that increasing visual
diversity leads to distinct failure modes
across algorithms. PPO degrades sig-
nificantly at pool size 10, SAC at 30,
while DreamerV3 is most robust, show-
ing learning even at pool size 100. These
patterns suggest agents memorize fea-
tures rather than learning generalizable
ones, exhausting network capacity as di-
versity increases. DreamerV3’s world
model appears to foster more compressed
representations, leading to more grace-
ful degradation. Preliminary DreamerV3
experiments with very large image pools
(10,000-20,000 images) support this in-
terpretation: agents failed to learn useful
policies as each observation became vir-

2Available at https://github.com/bryanoliveira/spgym-experiments

https://github.com/bryanoliveira/spgym-experiments

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

2M 4M 6M 8M 10M
0

20

40

60

80

100

2M 4M 6M 8M 10M 2M 4M 6M 8M 10M

Pool Size 1 5 10 20 30 50 100

Steps Steps Steps

Su
cc

es
s

Ra
te

 (%
)

PPO SAC DreamerV3
1 5

10

20

1 5 10 20

30

50

1 5 10 20 30
50

100

Figure 4: Success rate as a function of environment steps. The gradual increase in visual diversity
affects the sample efficiency of standard PPO, SAC, and DreamerV3 agents at different rates. Each
line represents a different pool size, from 1 to 100 images.

tually unique. This suggests that increased dataset scale alone is insufficient when the RL signal is
too sparse for encoder training amidst SPGym’s high visual diversity.

This reliance on memorization is confirmed by out-of-distribution (OOD) evaluation on ‘Easy’ (aug-
mented training images) and ‘Hard’ (unseen images) difficulties. For Hard OOD, agents almost
universally fail, with near-zero success rates. This complete inability to generalize suggests agents
primarily memorize visual patterns. Counter-intuitively, even on Easy OOD (Table 2), performance
often decreases as the training pool size grows, suggesting greater visual diversity hinders, rather
than helps, learning robust invariances. However, we found a strong correlation (Pearson r=-0.81,
p=2.5e-12) between Easy OOD success and in-distribution sample efficiency, suggesting that rep-
resentations robust to simple transformations are tied to faster learning. These findings reveal that
current methods may not learn sufficiently abstract representations, and that, for performance in
SPGym, simply increasing training image diversity is insufficient. Full OOD performance data for
both Easy and Hard settings across all configurations can be found in Section 9.2.

Is representation quality linked with performance?

To measure the quality of learned representations, we performed linear probing on frozen encoders
from trained PPO and SAC agents, using a single-layer MLP to predict one-hot puzzle states. We
find a statistically significant correlation between probe accuracy and sample efficiency (Pearson
r=-0.81, p=1.1e-13), indicating that encoders capturing more task-relevant spatial information are
strongly linked with faster learning. As image pool size increases, both probe accuracy and task per-
formance systematically degrade, with standard SAC maintaining high accuracy (100% at pool size
1, 97.63% at pool size 5) mirroring its strong efficiency, while less efficient methods like SAC+VAE
(78.21% at pool size 5) and SPR (dropping from 94.31% to 75.48% from pool size 5 to 10) show
reduced probe performance. These consistent trends across algorithms demonstrate SPGym’s ability
to identify learning procedures that develop representations better aligned with its spatial reasoning
needs. Full results are provided in Section 9.1.2.

Does performance generalize across image sources?

To validate that our findings generalize beyond ImageNet, we evaluated agents on Diffu-
sionDB (Wang et al., 2023), a dataset of procedurally generated images. Our analysis reveals that
performance scaling patterns on DiffusionDB closely mirror those observed on ImageNet across
PPO, SAC, and DreamerV3 (see Section 7.6 for detailed performance curves). This consistency
across different image sources, comparing real photographs with synthetic generations, demon-
strates that visual diversity rather than semantic content drives the representation learning challenge
in SPGym. The similarity in degradation patterns as pool size increases indicates that our algo-
rithmic insights reflect fundamental properties of the tested methods rather than dataset-specific
artifacts. Procedurally generated images also offer practical advantages for future research, includ-
ing eliminating storage requirements through on-demand generation, enabling fine-grained control
over visual similarity, and providing unlimited training diversity.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

Table 3: Million steps to reach 80% success rate
across grid sizes, with pool size 1. Lower is better.

Grid Size PPO SAC DreamerV3

3×3 1.75±0.44 0.33±0.07 0.42±0.06

4×4 24.46±7.58 8.14±3.64 2.26±0.29

How does puzzle size affect learning
performance? Another direction is in-
creasing puzzle size. As shown in Ta-
ble 3, the complexity increase from 3×3 to
4× 4 grids significantly impacts learning.
On the simpler 3 × 3 puzzle, PPO solved
the puzzle in 1.75M steps, while SAC and
DreamerV3 were more efficient, requiring
0.33M and 0.42M steps, respectively. For the 4 × 4 puzzle, PPO’s sample requirements surged to
24.46M steps, far exceeding the 10M step training budget, while SAC and DreamerV3 still solved
the puzzle within budget at 8.14M and 2.26M steps, respectively. This shows that while larger
state spaces pose a major challenge requiring more exploration and complex visual representations,
sample-efficient algorithms can still scale to such tasks.

How optimal are the learned solutions?

While our primary focus is on sample efficiency for task completion, we also analyze solution qual-
ity by examining the average number of steps agents take to solve puzzles. Our experimental design
uses early termination when agents achieve 100% success rate to enable out-of-distribution evalua-
tion before extreme encoder overfitting and to save computational resources. However, this approach
may prevent agents from discovering more optimal solutions through continued training. To inves-
tigate this trade-off, we trained PPO, SAC, and DreamerV3 on pool size 1 for the full 10M steps
without early termination across 5 seeds. Comparing episode lengths between when these agents
first achieve 100% success rate (where early termination would occur) and after completing the full
training reveals substantial improvements in solution efficiency. For PPO, the first 100 successful
episodes average 214.30 ± 16.52 steps, while the last 100 episodes average 31.35 ± 6.59 steps.
SAC shows improvement from 64.16 ± 9.81 to 57.27 ± 12.29 steps, and DreamerV3 improves from
126.02 ± 17.25 to 23.48 ± 0.71 steps. Notably, DreamerV3 with continued training on pool size 1
approaches the theoretical 22-step optimal solution for the 3x3 puzzle (Reinefeld, 1993), confirm-
ing that early termination may prevent agents from discovering more optimal solutions despite being
needed for our experimental objectives.

6 Conclusion

We introduce the Sliding Puzzles Gym (SPGym), a benchmark that isolates visual complexity from
environment dynamics to evaluate representation learning in discrete RL settings. Our analysis re-
veals three key challenges: (1) sophisticated representation learning techniques often underperform
simpler approaches like data augmentation on SPGym’s combination of visual diversity and spatial
structure; (2) agents trained on smaller image pools show better robustness to simple perturbations,
suggesting they learn more task-specific invariances; and (3) current methods fail on novel visual
contexts, achieving poor or near-zero success rates despite strong in-distribution performance, indi-
cating reliance on memorization rather than genuine visual understanding. These findings highlight
the need for algorithms that better balance sample efficiency with visual generalization.

We identify two main limitations in this work: (1) evaluating methods with minimal tuning may not
reveal their full potential, and (2) computational constraints limited us to 5 runs per configuration,
while more seeds would improve statistical robustness given the stochasticity in image sampling.

SPGym enables systematic investigation of training diversity versus generalization (ID & OOD),
integration with image generation systems for controlled continual learning experiments, and incor-
poration of multiple modalities for studying pretrained model encoders. These directions, along with
the study of stronger inductive biases, could lead to more robust, transferable learning approaches.

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Broader Impact Statement

This work advances understanding of visual representation learning in RL, potentially enabling more
robust systems for real-world applications like robotics and autonomous systems. Our benchmark
exposes current limitations while promoting rigorous evaluation practices. However, risks include
overfitting to specific evaluation criteria, misuse for surveillance, and potential job displacement
through automation. To mitigate these concerns, we have open-sourced our benchmark and proto-
cols, encouraging researchers to consider both performance metrics and societal implications while
implementing safeguards against dual-use applications.

Acknowledgments

The authors gratefully acknowledge the valuable insights and constructive discussions provided by
Professors Marcos R. O. A. Maximo and Flávio H. T. Vieira.

This work has been partially funded by the project Research and Development of Digital Agents
Capable of Planning, Acting, Cooperating and Learning supported by Advanced Knowledge Center
in Immersive Technologies (AKCIT), with financial resources from the PPI IoT/Manufatura 4.0 /
PPI HardwareBR of the MCTI grant number 057/2023, signed with EMBRAPII.

Luckeciano C. Melo acknowledges funding from the Air Force Office of Scientific Research
(AFOSR) European Office of Aerospace Research & Development (EOARD) under grant number
FA8655-21-1-7017.

References

Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s
cube with deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356–363,
2019. DOI: 10.1038/s42256-019-0070-z.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Greg Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Ethan Burns, Matthew Hatem, Michael Leighton, and Wheeler Ruml. Implementing fast heuristic
search code. Proceedings of the International Symposium on Combinatorial Search, 3(1):25–32,
2012.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of
the 37th International Conference on Machine Learning (ICML), volume 119 of Proceedings of
Machine Learning Research, pp. 2048–2056. PMLR, 13–18 Jul 2020.

Bryan L. M. de Oliveira, Bruno Brandão, Murilo L. da Luz, Luana G. B. Martins, Telma W.
de L. Soares, and Luckeciano C. Melo. Sliding puzzles gym: A scalable benchmark for state rep-
resentation in visual reinforcement learning. In NeurIPS 2024 Workshop on Open-World Agents,
2024.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

Benjamin Estermann, Luca A. Lanzendörfer, Yannick Niedermayr, and Roger Wattenhofer. Puzzles:
A benchmark for neural algorithmic reasoning. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. J. Black, and B. Schölkopf. From variational to determin-
istic autoencoders. In 8th International Conference on Learning Representations (ICLR), April
2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In 35th International
Conference on Machine Learning (ICML), pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, Jie Tan, Vikash Ku-
mar, Henry Zhu, Abhishek Gupta, P. Abbeel, and Sergey Levine. Soft actor-critic algorithms and
applications. ArXiv, abs/1812.05905, 2018b.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control
tasks through world models. Nature, 640(8059):647–653, April 2025. ISSN 1476-4687. DOI:
10.1038/s41586-025-08744-2.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot trans-
fer in reinforcement learning. In 34th International Conference on Machine Learning (ICML),
pp. 1480–1490. PMLR, 2017.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Wm. Woolsey Johnson and William E. Story. Notes on the ‘15’ puzzle. American Journal of
Mathematics, 2(4):397–404, 1879. DOI: 10.2307/2369492.

Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial intel-
ligence, 27(1):97–109, 1985.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In 37th International Conference on Machine Learning (ICML),
pp. 5639–5650. PMLR, 2020a.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in Neural Information Processing Systems,
33:19884–19895, 2020b.

Siaw Chong Lee and Tyan Her See. Comparing the hamming and manhattan heuristics in solv-
ing the 8—puzzle by a* algorithm. In Aida Binti Mustapha, Suhadir Shamsuddin, Syed Zuhaib
Haider Rizvi, Saliza Binti Asman, and Siti Suhana Jamaian (eds.), Proceedings of the 7th Interna-
tional Conference on the Applications of Science and Mathematics 2021, pp. 189–195, Singapore,
2022. Springer Nature Singapore. ISBN 978-981-16-8903-1.

Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Filliat. State represen-
tation learning for control: An overview. Neural Networks, 108:379–392, 2018.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-level control through deep reinforcement learn-
ing. Nature, 2015.

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Seong Uk Moon and Youngwan Cho. Improving the training performance of dqn model on 8-puzzle
environment through pre-training. International Journal of Applied Engineering Research, 6(1):
63–67, 2024.

Alexander Reinefeld. Complete solution of the eight-puzzle and the bene t of node ordering in ida*.
In International Joint Conference on Artificial Intelligence, pp. 248–253. Citeseer, 1993.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. DOI: 10.1007/s11263-015-0816-y.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In Interna-
tional Conference on Learning Representations, 2020.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, De-
von Hjelm, Philip Bachman, and Aaron C. Courville. Pretraining representations for data-efficient
reinforcement learning. In Advances in Neural Information Processing Systems, 2021.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting con-
trol suite–a challenging benchmark for reinforcement learning from pixels. arXiv preprint
arXiv:2101.02722, 2021.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine
Learning Research, pp. 9870–9879. PMLR, 18–24 Jul 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Manan Tomar, Utkarsh Aashu Mishra, Amy Zhang, and Matthew E. Taylor. Learning represen-
tations for pixel-based control: What matters and why? Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

Zifu Wang, Junyi Zhu, Bo Tang, Zhiyu Li, Feiyu Xiong, Jiaqian Yu, and Matthew B Blaschko.
Jigsaw-r1: A study of rule-based visual reinforcement learning with jigsaw puzzles. arXiv
preprint arXiv:2505.23590, 2025.

Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and
Duen Horng Chau. DiffusionDB: A large-scale prompt gallery dataset for text-to-image gen-
erative models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 893–911, Toronto, Canada, July 2023. Association for Computational Linguistics.
DOI: 10.18653/v1/2023.acl-long.51.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In 9th International Conference on Learning Represen-
tations (ICLR), 2021a.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. Proceedings of the aaai
conference on artificial intelligence, 35(12):10674–10681, 2021b.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

Zhecheng Yuan, Sizhe Yang, Pu Hua, Can Chang, Kaizhe Hu, and Huazhe Xu. Rl-vigen: A rein-
forcement learning benchmark for visual generalization. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 6720–6747. Curran Associates, Inc., 2023.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learn-
ing invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations, 2021.

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Supplementary Materials
The following content was not necessarily subject to peer review.

7 Experimental Setup and Configuration

7.1 Detailed Experimental Protocol

This section provides comprehensive details on the experimental setup described in Section 4.

Dataset preparation and preprocessing. We sample images from ImageNet-1k’s validation split
(Russakovsky et al., 2015) to construct visual observations, resizing each image to 84 × 84 pixels
and normalizing values to [0, 1]. For each training run, we randomly sample p distinct images to
create a fixed image pool. At episode start, we randomly select one image from this pool to generate
the puzzle observations.

Training configuration. We cap the number of environment steps to 10M and limit episodes to
1,000 steps. Our analysis focuses on sample efficiency, measured by the number of environment
steps required to solve the puzzle (lower is better). We calculate this metric by averaging the steps
needed to reach 80% success rate across all parallel environments in a run, then average this num-
ber across seeds. We terminate training runs early when an agent maintains 100% success rate for
100 consecutive episodes, indicating task completion. This early termination serves two purposes:
it enables out-of-distribution evaluation before extreme encoder overfitting occurs, and it reduces
computational costs for running the comprehensive set of experiments. Each experiment is con-
ducted 5 times with different random seeds, and we report the mean ± 1.96 standard errors (95%
confidence interval).

Evaluation protocol. We evaluate sample efficiency using pools of 1, 5, and 10 images across all
agent variants. For standard agents, we additionally test with progressively larger pools up to 100
images or until the final performance is less than 80% success rate after the full 10M training steps.
This protocol allows us to analyze both the effectiveness and scalability of different algorithms and
representation learning methods.

We also evaluate out-of-distribution (OOD) performance on ‘Hard’ and ‘Easy’ image distributions,
comprised respectively of unseen images and the training images augmented with the methods de-
scribed in Section 7.4. For Easy OOD, we run evaluations for each augmentation type individually
across all 5 seeds for 100 episodes, average the success rate for each augmentation, and then report
the average success rate across all augmentation types.

Algorithm implementation details. We explore three distinct algorithmic approaches: Soft Actor-
Critic (SAC) (Haarnoja et al., 2018a), Proximal Policy Optimization (PPO) (Schulman et al., 2017),
and DreamerV3 (Hafner et al., 2025), each representing different strategies for learning from visual
observations.

For SAC, we begin with the standard implementation for discrete action spaces proposed by
Christodoulou (2019). We then examine several representation learning variants: RAD (Laskin
et al., 2020b), which employs data augmentation; CURL (Laskin et al., 2020a), which uses con-
trastive learning; SPR (Schwarzer et al., 2020), which incorporates self-supervised prediction; DBC
(Zhang et al., 2021), which focuses on state metric learning; SAC-AE and SAC-VAE (Yarats et al.,
2021b), which utilize reconstruction-based learning; and Simple Baseline (SB) (Tomar et al., 2023),
which implements a simplified approach with reward and transition prediction.

For PPO, we evaluate three encoder configurations: the standard version with random initialization,
a variant pretrained on the same image distribution (in-distribution, ID), and a variant pretrained
on a different image distribution (out-of-distribution, OOD). These pretrained variants respectively
provide an upper bound on expected pretraining performance and help establish the potential benefits

Inductive Biases in Reinforcement Learning Workshop RLC 2025

of generally pretrained encoders, though we acknowledge this may make direct sample efficiency
comparisons with other methods less fair.

For DreamerV3, we compare the standard version against a variant without decoder gradients to
evaluate the impact of the reconstruction objective on performance.

Hyperparameter tuning and configuration. RAD, CURL, and SPR require data augmentation.
We apply these augmentations to observations after sampling them from the replay buffer. For
each algorithm, we conducted individual augmentation searches with the objective of maximizing
sample efficiency (detailed in Section 7.5.2). These experiments consistently converged to a simple
two-step pipeline, which we use throughout all evaluations: first converting to grayscale with 20%
probability, then randomly shuffling the color channels.

We evaluate out-of-the-box performance of existing approaches in SPGym by adopting neural ar-
chitectures and hyperparameters from established visual discrete control implementations. Our base
architecture uses three-layer CNN encoders with mirrored deconvolutional decoders, while actor,
critic, and auxiliary components employ multi-layer perceptrons (MLPs).

For SAC-based agents, we follow Yarats et al. (2021b) and Tomar et al. (2023) by blocking actor
gradients through the encoder while allowing critic and auxiliary gradients to prevent representa-
tion collapse. PPO and DreamerV3 maintain their original gradient flow patterns. While PPO and
DreamerV3 worked robustly with default configurations, SAC-based agents required tuning of the
temperature parameter α (Section 7.5.1). We found a fixed value of 0.05 to work best across all SAC
variants, as the automatic tuning from Haarnoja et al. (2018b) proved ineffective here.

Where applicable, we preserve uniform hyperparameters while drawing algorithm-specific configu-
rations from their respective source papers.

7.2 Model Architectures

We base our implementations on CleanRL’s Atari agents for both PPO and SAC, with minor ar-
chitectural modifications including additional normalization layers and increased network depth to
approximate our SAC implementation to the one used by Tomar et al. (2023). The architectures are
detailed below.

For PPO agents:

SharedEncoder(
(encoder): Sequential(

(0): Conv2d(3, 32, kernel_size=(8, 8), stride=(4, 4))
(1): ReLU()
(2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, stats=True)
(3): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
(4): ReLU()
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(8): Flatten(start_dim=1, end_dim=-1)

)
(projection): Sequential(

(0): Linear(in_features=3136, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): Tanh()

)
)
Actor(

(encoder): SharedEncoder
(mlp): Linear(in_features=512, out_features=4, bias=True)

)

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Critic(
(encoder): SharedEncoder
(mlp): Linear(in_features=512, out_features=1, bias=True)

)

For SAC agents:

SharedEncoder(
(encoder): Sequential(

(0): Conv2d(3, 32, kernel_size=(8, 8), stride=(4, 4))
(1): ReLU()
(2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, stats=True)
(3): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
(4): ReLU()
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(8): Flatten(start_dim=1, end_dim=-1)

)
)
Actor(

(encoder): Encoder(
(shared_encoder): SharedEncoder
(projection): Sequential(

(0): Linear(in_features=3136, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): Tanh()

)
)
(mlp): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Linear(in_features=512, out_features=4, bias=True)

)
)
Critic(

(encoder): Encoder(
(shared_encoder): SharedEncoder
(projection): Sequential(

(0): Linear(in_features=3136, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): Tanh()

)
)
(mlp): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Linear(in_features=512, out_features=4, bias=True)

)
(mlp): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Linear(in_features=512, out_features=4, bias=True)

)
)

Inductive Biases in Reinforcement Learning Workshop RLC 2025

For the representation learning methods, we maintain the same base architecture and use a consistent
MLP structure (2 layers with ReLU activation) for the projector, predictor, transition and reward
models. The decoder architecture is as follows:

ImageDecoder(
(decoder): Sequential(

(0): Linear(in_features=512, out_features=512, bias=True)
(1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(2): ReLU()
(3): Linear(in_features=512, out_features=3136, bias=True)
(4): Unflatten(dim=1, unflattened_size=(3, 7, 7))
(5): ConvTranspose2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
(6): ReLU()
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, stats=True)
(8): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2))
(9): ReLU()
(10): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, stats=True)
(11): ConvTranspose2d(32, 3, kernel_size=(8, 8), stride=(4, 4))
(12): Sigmoid()

)
)

For DreamerV3 agents, we use the same base 12M architecture as the one used by Hafner et al.
(2025). Section 7.3 contains the specific hyperparameters used in our experiments.

7.3 Hyperparameters

Table 5, Table 6, and Table 7 list hyperparameters used across all experiments, unless noted oth-
erwise. For DreamerV3, we adopted hyperparameters from (Hafner et al., 2025), modifying only
the decoder loss scale (set to 0) for the version without decoder. Table 8 lists hyperparameters for
representation learning methods and components. We use a separate optimizer for the representa-
tion learning gradient flow, and we adopt a higher learning rate. When using representation learning
methods, we update the target network’s encoder faster, with an EMA τ of 0.025. When using a
crop augmentation, we set the image size to 100 and crop it back to 84.

Table 4: Benchmark settings

Parameter Value

Max steps 10M
Puzzle size 3x3
Action space discrete
Variation image
Render size 100x100 (for crop augmentation)

84x84 (otherwise)
Dataset ImageNet-1k validation split

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Table 5: Hyperparameters for PPO

PPO Parameter Value

Input image size 84x84
Env instances 64
Optimizer Adam
Learning Rate (LR) 2.5e-4
LR annealing yes
Adam ϵ 1e-5
Num. steps 16
Num. epochs 4
Batch size 64
Num. minibatches 4
γ 0.99
GAE λ 0.95
Advantage normalization yes
Clip coef. 0.1
Clip value loss yes
Value function coef. 0.5

Table 6: Hyperparameters for SAC

SAC Parameter Value

Input image size 84x84
Env instances 64
Optimizer Adam
Learning rate 3e-4
Replay buffer capacity 3e5
Batch size 4096
Warmup steps 2e4
γ 0.99
Policy update frequency 2
Fixed α temperature 0.05
Target network update frequency 1
Target Q functions EMA τ 0.005
Target encoder EMA τ 0.005 (standard)

0.025 (otherwise)

Inductive Biases in Reinforcement Learning Workshop RLC 2025

Table 7: Hyperparameters for DreamerV3

DreamerV3 Parameter Value

Input image size 80x80
Env instances 16
Model size 12M
RSSM deterministic size 2048
RSSM hidden size 256
RSSM classes 16
Network depth 16
Network units 256
Replay buffer capacity 5e5
Replay ratio 32
Action repeat 1
Learning rate 4e-5
Batch size 16
Batch length 64
Imagination horizon 15
Discount horizon 333
Decoder loss scale 1 (standard)

0 (no decoder)

Table 8: Hyperparameters for Representation Learning Methods and Components

Method Hyperparameter Value

General Learning rate 1e-3
Loss coefficient 1.0

Transition and reward models
Min sigma 1e-4
Max sigma 10
Probabilistic no

SAC-AE Latent space decay weight 1e-6
Decoder decay weight 1e-7

SAC-VAE Variational KL weight β 1e-7

CURL
Temperature 0.1
Positive samples temporal/augmented
Augmentations crop

RAD
Augmentations crop

channel_shuffle
color_jitter

SPR Horizon H 5
Augmentations crop

7.4 Augmentation Strategies

We evaluated several image augmentations in our preliminary experiments, as described in Sec-
tion 7.5.2. These augmentations are illustrated in Figure 5, and are as follows:

• No augmentation: The image is fed as is to the agent.

• Crop: Randomly crops a portion of the image and resizes it back to the original dimensions. This
helps learn translation invariance by forcing the agent to recognize patterns regardless of their
position in the frame.

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Figure 5: Example of image augmentations. The top left image shows the original observation,
and the subsequent images show the observation after each augmentation procedure is independently
applied.

• Grayscale: Converts the RGB image to grayscale by averaging across color channels. This re-
duces the visual complexity and helps the agent focus on structural features rather than color
information.

• Channel Shuffle: Randomly permutes the RGB color channels. This encourages the agent to be
invariant to color transformations while preserving the image structure.

• Shift: Translates the image by a small random amount in both horizontal and vertical directions.
Similar to crop, this promotes translation invariance in the learned representations.

• Inversion: Inverts the pixel values by subtracting them from the maximum possible value (255
for 8-bit images). This teaches the agent to recognize patterns independent of absolute intensity
values.

• Color Jitter: Applies random color variations to the image, including brightness, contrast, satu-
ration, and hue. This helps the agent to be invariant to color transformations while preserving the
image structure.

After extensive experimentation, we found that the combination of grayscale and channel shuffle
consistently produced the best results. This combination effectively reduces visual complexity while
maintaining important structural information. We adopted this augmentation pair as the standard for
all our agents that use augmentation techniques.

7.5 Preliminary Experiments and Design Rationale

7.5.1 Hyperparameter Selection Process

100k 200k 300k 400k 500k 600k 700k 800k
0

20

40

60

80

100

Autotune LR 1.29e-4 Autotune LR 4.40e-4
Autotune LR 1.71e-3 Autotune LR 2.20e-3
Fixed α=0.05 Fixed α=0.10
Fixed α=0.14 Fixed α=0.28

Steps

Su
cc

es
s

Ra
te

 (%
)

Figure 6: Performance comparison of differ-
ent α values for SAC agents on pool size 1.
Fixed α = 0.05 outperforms automatic tuning ap-
proaches across different learning rates.

For SAC agents, the entropy coefficient α sig-
nificantly impacts performance (Haarnoja et al.,
2018a). While Haarnoja et al. (2018b) pro-
posed automatic tuning (autotune) based on
policy entropy, we found this approach inef-
fective for SPGym, even with various learn-
ing rates (LRs). Through systematic Hyper-
band (Li et al., 2018) sweeps over pools of size
1, we identified α = 0.05 as optimal (Fig-
ure 6). This value provides a good balance
between exploration and exploitation, allowing
the agent to efficiently learn the puzzle mechan-
ics while maintaining enough randomness to
discover new solutions.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

PPO and DreamerV3 agents proved more robust to hyperparameter choices, performing well with
their default configurations. This robustness is particularly valuable in our benchmark setting, as it
suggests these algorithms can adapt to new tasks without extensive tuning. Complete hyperparame-
ter settings are provided in Section 7.3.

7.5.2 Data Augmentation Analysis and Choice

Building on insights from Laskin et al. (2020b) that environment-specific invariances influence opti-
mal augmentation strategies, we systematically evaluated augmentation pipelines for RAD, CURL,
and SPR in SPGym. Our analysis focused on sample efficiency to maintain consistency with our
core experimental objectives. We tested the five augmentation techniques detailed on Section 7.4 on
pools of 5 images, which offered a good balance between task complexity and convergence speed.
For SPR, specifically, we also experimented with shift + color jitter, as suggested by Schwarzer
et al. (2020). Across all algorithms, our experiments consistently converged to a simple two-stage
augmentation process: probabilistic grayscale conversion (with 20% chance) followed by channel
shuffling (Figure 7). This pipeline’s effectiveness likely stems from its ability to simultaneously
reduce visual complexity through grayscale conversion while introducing beneficial stochasticity
via channel shuffling, with both transformations preserving critical structural information while pre-
venting overfitting to specific color patterns. We adopted this augmentation combination for all
subsequent experiments. While our current evaluation focused on sample efficiency, investigating
how different augmentation strategies affect generalization remains an important direction for future
work.

7.6 Dataset Analysis and Choice

Our choice of ImageNet-1k as the primary dataset for SPGym was motivated by several key consid-
erations. First, ImageNet provides a diverse set of real-world images that challenge agents to learn
generalizable visual representations. We hypothesized that real-world images would provide unique
insights related to representation learning that should be applicable to other domains beyond the
puzzle proposed in SPGym, as they contain the complex visual patterns and structures that agents
encounter in practical applications. However, as shown in Figure 8 and in comparison to Figure 4,
the performance scaling patterns we observe on ImageNet closely mirror those on DiffusionDB,
suggesting that our findings are not specific to a particular dataset but rather reflect fundamental
properties of the algorithms being tested.

The similarity in scaling behavior between ImageNet and DiffusionDB is particularly noteworthy
because these datasets differ substantially in their composition and generation process. While Im-
ageNet consists of real photographs, DiffusionDB contains synthetic images generated by text-to-

0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M
0

20

40

60

80

100

0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M

crop shift grayscale inversion channel_shuffle color_jitter grayscale,channel_shuffle shift,color_jitter

Steps Steps Steps

Su
cc

es
s

Ra
te

 (%
)

RAD CURL SPR

Figure 7: Comparative analysis of data augmentation strategies. Results show performance of
SAC with RAD, CURL and SPR on 5-image pools. Grayscale conversion and channel shuffling
emerge as the most effective combination, significantly outperforming other augmentation strate-
gies.

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

2M 4M 6M 8M 10M
0

20

40

60

80

100

0.5M 1M 1.5M 2M 1M 2M 3M 4M

Pool Size 1 5 10

Steps Steps Steps

Su
cc

es
s

Ra
te

 (%
)

PPO SAC DreamerV3
1 5

10

1 510 1 5 10

Figure 8: Performance scaling with DiffusionDB images. Success rates for PPO, SAC, and
DreamerV3 agents across different pool sizes (1, 5, and 10) using DiffusionDB images. The perfor-
mance patterns closely mirror those seen with ImageNet (Figure 4). Shaded regions represent 95%
confidence intervals across 5 independent seeds.

image models. The consistent performance patterns across these datasets suggest that our results
capture fundamental algorithmic behaviors rather than dataset-specific artifacts.

Our demonstration with DiffusionDB reveals promising directions for future work with procedurally
generated datasets. As shown in our analysis, agents perform similarly on ImageNet and Diffu-
sionDB, suggesting that visual diversity rather than semantic content drives difficulty. Procedurally
generated images offer several compelling advantages worth further investigation: they eliminate
the need for large image storage by generating unique images on demand for each episode, enable
fine-grained control over the generalization challenge by gradually increasing visual differences be-
tween generated images, and provide virtually unlimited training data diversity. These capabilities
could enable more systematic studies of visual generalization in reinforcement learning.

This cross-dataset consistency strengthens our confidence in the generalizability of our findings. It
indicates that the relative performance of different representation learning methods is driven more
by their core assumptions and architectural choices than by the specific characteristics of the training
data. This is particularly important for our goal of understanding how different approaches handle
increasing visual diversity, as it suggests our conclusions may extend to other domains beyond the
specific datasets used in our experiments.

7.7 Hardware Setup and Runtime

Our hardware setup consists of an AMD Ryzen 7 3700X CPU, an NVIDIA RTX 3090 GPU, 64GB
of RAM, and 128GB of swap space. Using this configuration, DreamerV3 experiments take approx-
imately 20 hours per run, primarily because of the heavy use of swap space for replay buffers, which
must store hundreds of thousands of images in memory. SAC takes between 2 (e.g. standard, RAD)
to 11 hours (e.g. SPR, SB) depending on the representation learning components used. For SAC,
the longer runtimes are due to the number of sequential inference steps required to train the agent
and auxiliary networks. PPO experiments are significantly faster, with the longest runs completing
in about 1 hour and 30 minutes.

8 Algorithms and Variations

We describe the algorithms and their variations used in this work in detail. Our experiments employ
three main algorithms – PPO, SAC, and DreamerV3 – each with different representation learning
approaches. We focus particularly on how these methods process and learn from visual observations,
as this is crucial for performance in our benchmark.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

8.1 Pretraining and PPO

Drawing inspiration from previous work on pretraining methods in RL (Higgins et al., 2017; Stooke
et al., 2021; Schwarzer et al., 2021), we implement a pretraining approach for PPO that focuses on
learning task-relevant visual representations. The pretraining process involves training a PPO agent
to completion on a single environment instance, then extracting its CNN weights. These pretrained
weights are then used to initialize new PPO agents, while all other network components (policy
and value networks) start from random initialization. We evaluate two scenarios: in-distribution
(ID), where new agents are trained on the same pool of images used during pretraining, and out-of-
distribution (OOD), where a different image pool is sampled. The ID setting represents an upper
bound on what pretraining can achieve with perfect visual alignment, while the OOD setting reflects
the more realistic scenario of deploying pretrained encoders on novel visual inputs, similar to how
general-purpose pretrained models would be used in practice.

8.2 Data Augmentation and RAD

Reinforcement Learning from Augmented Data (RAD) (Laskin et al., 2020b) represents a simple
yet effective approach to visual representation learning in RL. The key insight is that applying data
augmentation to observations can improve sample efficiency by exposing the agent to transformed
versions of experienced states. This creates an implicit regularization effect that helps learn more
robust representations.

In our implementation, we combine RAD with SAC and apply data augmentation consistently during
both policy updates and value function learning. These augmentations are applied to observations
sampled from the replay buffer before being processed by the encoder network. The augmentation
pipeline consists of two key transformations identified through our preliminary experiments (Sec-
tion 7.5.2): grayscale conversion and channel shuffling. Following the SPR approach (Schwarzer
et al., 2020), we apply augmentations independently to each transition after sampling batches from
the replay buffer, meaning that samples from the same episode may be augmented differently. We
detail how each augmentation procedure is implemented in Section 7.4.

8.3 Contrastive Learning and CURL

Contrastive learning methods learn representations by maximizing similarity between different
views of the same observation while minimizing similarity to other observations. In the context
of RL, CURL (Laskin et al., 2020a) applies this principle by using data augmentation to create pos-
itive pairs, enabling agents to learn invariant representations. The method achieves this by applying
random crops to observations and treating differently augmented views of the same observation as
positive pairs.

The contrastive loss for a positive pair of observations (x, x+) and a set of negative examples {x−
i }

is formulated as:

LCURL = − log
exp(fθ(x)

T fθ(x
+)/α)

exp(fθ(x)T fθ(x+)/α) +
∑
i exp(fθ(x)

T fθ(x
−
i)/α)

, (2)

where α is a temperature parameter and fθ is the encoder function.

In our implementation, we combine CURL with SAC and use the same augmentation strategy iden-
tified in Section 7.4 (grayscale conversion and channel shuffling) rather than the random crops from
the original CURL paper. The encoder is trained jointly with the RL objective, allowing the repre-
sentations to adapt to both the contrastive learning task and the control problem. Negative examples
are drawn from other observations within the same batch, providing a computationally efficient way
to obtain contrastive pairs without requiring additional memory storage.

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

8.4 State Metrics and DBC

Deep Bisimulation for Control (DBC) (Zhang et al., 2021) takes a different approach to representa-
tion learning by focusing on behavioral similarity between states rather than visual similarity. The
key idea is to learn an encoder that maps states to a representation space where distances reflect how
similarly states behave in terms of rewards and transitions, rather than how visually similar they
appear.

Given pairs of observations (xi, xj), DBC trains an encoder fθ to minimize:

J(ϕ) =
(
∥ẑi − ẑj∥1 − |ri − rj | − γW2(P̂(·|z̄i, ai), P̂(·|z̄j , aj))

)2

, (3)

where ẑi = fθ(xi) represents the encoded state, z̄i = sg(fθ(xi)) is the stop-gradient version of
the encoding, and P̂ is a probabilistic transition model that predicts the next state distribution. The
W2 term represents the 2-Wasserstein distance between predicted transition distributions, which for
Gaussian distributions has a closed-form solution (Zhang et al., 2021).

In our implementation, we combine DBC with SAC, jointly training the encoder with both the
bisimulation objective and the RL objective. The transition model operates in latent space, predict-
ing Gaussian distributions over next states. This approach helps the agent learn representations that
capture behaviorally meaningful features while ignoring visual distractors that don’t affect the game
dynamics. Unlike methods that rely on data augmentation or reconstruction, DBC’s focus on behav-
ioral similarity makes it particularly suited for environments where visually different states might
require similar actions.

8.5 Reconstruction-Based Methods and SAC-AE/VAE

Reconstruction-based methods learn representations by training an encoder-decoder architecture to
compress and reconstruct observations. We evaluate two variants combined with SAC: SAC-AE us-
ing a deterministic autoencoder and SAC-VAE using a variational autoencoder (Yarats et al., 2021b).

For SAC-AE, given an observation x from the replay buffer, we train an encoder fθ and decoder gϕ
to minimize:

LRAE = Ex∼D
[
∥x− gϕ(fθ(x))∥2 + λz∥fθ(x)∥22 + λϕ∥ϕ∥22

]
, (4)

where λz and λϕ are regularization coefficients that help prevent representation collapse and over-
fitting respectively (Ghosh et al., 2020).

For SAC-VAE, we replace the deterministic encoder with a probabilistic encoder qψ that outputs a
distribution over latent states. The training objective becomes:

LV AE = Eqψ(ẑ|x)[log gϕ(x|ẑ)]− βDKL(qψ(ẑ|x)∥N (0, 1)), (5)

where β controls the trade-off between reconstruction quality and latent space regularization.

In both variants, we train the encoder jointly with the SAC objective, allowing the representations
to adapt to both reconstruction and control tasks. The encoded states are used as inputs to the policy
and value networks. Unlike methods that rely on data augmentation or behavioral similarity, these
approaches learn representations by explicitly modeling the visual structure of observations through
reconstruction.

8.6 World Models and DreamerV3

World models learn to predict future states and outcomes by learning a compact latent represen-
tation of the environment. DreamerV3 (Hafner et al., 2025) represents the state-of-the-art in world
model-based reinforcement learning, employing an online encoder fθ that maps observations xt into
latent states ẑt. A recurrent dynamics model hω operates in this latent space to predict future states
conditioned on actions, while a reward predictor estimates immediate rewards.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

The model is trained using multiple objectives that create a multi-task learning pressure. The en-
coder and a corresponding decoder are trained to reconstruct observations, ensuring the latent space
captures relevant visual features. The dynamics model is trained to predict future latent states that
lead to accurate reconstructions of future observations. This temporal consistency objective forces
the representations to be predictive of future states while supporting reconstruction and control.

DreamerV3 introduces several innovations for stable representation learning, including KL balanc-
ing to maintain informative latent states and symmetric cross-entropy loss for better gradients. Un-
like methods focused solely on visual similarity, world models must learn representations that serve
multiple purposes – capturing visual features, encoding dynamics, and providing a suitable space
for policy learning. We refer readers to Hafner et al. (2025) for implementation details.

8.7 Temporal Consistency Methods

Several methods leverage temporal consistency in the environment to learn better representations.
These approaches are based on the principle that a good representation should not only capture the
current state but also be predictive of future states and outcomes.

8.7.1 Self-Predictive Representations (SPR)

SPR (Schwarzer et al., 2020) represents a non-contrastive approach that learns by predicting future
latent states. Given a sequence of states and actions (xt:t+K , at:t+K) from the replay buffer, where
K is the prediction horizon, SPR employs:

• An online encoder fθ that maps observations to latent states: ẑt = fθ(xt)

• A target encoder fθ′ providing stable training targets, updated via exponential moving average

• An action-conditioned transition model hω that predicts future latent states: ẑt+k+1 =
hω(ẑt+k, at+k)

• Projection networks pξ, pξ′ and prediction head wζ that transform representations for the predic-
tion task

The model generates predictions ŷt+k = wζ(pξ(ẑt+k)) and compares them to target projections
ỹt+k = pξ′(z̃t+k) using a cosine similarity loss:

LSPR = −
K∑
k=1

(
ỹt+k

∥ỹt+k∥2

)T (
ŷt+k

∥ŷt+k∥2

)
(6)

8.7.2 Simple Baseline Method

Tomar et al. (2023) take a minimalist approach to temporal consistency by combining two predictive
objectives: reward prediction and transition prediction. We refer to this approach as the Simple
Baseline (SB) method. While originally intended as a baseline, it demonstrates the effectiveness of
basic temporal prediction for representation learning.

The method augments standard RL algorithms with two predictive components in latent space:

• A transition model hω that predicts the next encoded state

• A reward predictor hreward that estimates immediate rewards

The transition loss Ldyn measures the mean squared error between predicted and actual next encoded
states, while the reward loss Lreward measures the error in reward predictions. These predictive losses
are combined with the standard RL objective:

Ltotal = LRL + Lreward + Ldyn (7)

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

In our implementations, we combine both SPR and SB with SAC. For SPR, we apply the augmenta-
tion strategy identified in Section 7.4 before encoding observations. Both methods operate entirely
in latent space, avoiding the computational cost of pixel-space reconstruction while leveraging tem-
poral structure to learn meaningful representations.

9 Supplementary Analyses and Results

9.1 Representation Learning Analysis

We further evaluate SPGym’s representation learning assessment capabilities through two analyses:
(1) comparing raw pixel vs. ground-truth state learning, and (2) linear probes of learned representa-
tions.

9.1.1 State-based vs. Image-based Observations

To establish a baseline and understand the impact of the visual representation challenge, we trained
PPO, SAC, and DreamerV3 agents using SPGym’s one-hot encoding variation. These one-hot vec-
tors represent the ground-truth puzzle state, identical to the targets used for our linear probes (see
Section 9.1.2). We compared their sample efficiency (steps to 80% success, averaged over 5 seeds)
against their image-based counterparts. For PPO and SAC agents processing one-hot vectors, CNN
encoders were replaced with 2-layer MLPs. DreamerV3 utilized its default non-image encoder, a
3-layer MLP. Hyperparameters were kept consistent with image-based experiments, without specific
tuning for the one-hot setting.

Table 9: Steps to 80% success on one-hot vs. image-based observations. Lower is better. ‘-’
indicates experiments were not run for that specific configuration due to computational constraints.

Algorithm Grid Size One-hot Image (Pool 1) Image (Pool 5)

PPO 3x3 661.69k±81.44k 1.75M±444.81k 7.80M±1.08M
4x4 12.29M±467.84k 24.46M±7.58M -

SAC 3x3 672.51k±63.10k 334.26k±67.47k 907.21k±116.20k
4x4 5.09M±463.14k 8.14M±3.64M -

DreamerV3 3x3 834.86k±61.10k 417.09k±55.03k 1.23M±199.49k
4x4 3.68M±436.97k 2.26M±287.23k 5.81M ± 2.17M

The results in Table 9 offer several insights. For PPO (both grid sizes) and SAC (4x4 grid), learning
directly from ground-truth one-hot states is more sample efficient than learning from images. This
is expected, as the one-hot encoding removes the burden of representation learning from pixels. The
instances where image-based agents (SAC and DreamerV3 on 3x3 grid, pool 1) converged faster
than their one-hot counterparts might be attributed to differences in network architectures (MLP vs.
CNN/Transformer backbones) and the absence of specific tuning for the one-hot setting.

Crucially, the one-hot encoding setting presents a fixed, minimal representation learning challenge.
In contrast, SPGym’s image-based variations allow for a systematic scaling of the visual diversity
challenge by increasing the image pool size (e.g., Pool 1 vs. Pool 5 vs. Pool 10, etc., see Section 9.2).
Across all agents and grid sizes, increasing visual diversity from pool size 1 to pool size 5 (and
beyond) consistently increases sample complexity. This demonstrates SPGym’s ability to isolate
and stress the visual representation learning component, as the underlying task dynamics remain
constant. This controlled evaluation reveals limitations in how effectively different RL agents learn
representations under scalable visual diversity, insights not apparent from the one-hot setting alone.
While perfect disentanglement of representation learning from policy learning is challenging in
end-to-end training, SPGym provides a valuable framework for structured, comparative evaluation
of visual representation learning capabilities in RL.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

9.1.2 Linear Probe Analysis

To directly assess the quality of learned visual representations, we conducted linear probing exper-
iments. For each trained PPO and SAC agent, we froze its encoder and trained a single-layer MLP
classifier on top of the features extracted by it until convergence. The classifier’s task was to predict
the one-hot encoded ground-truth puzzle state corresponding to the input image. This setup allows
us to quantify how much task-relevant spatial information is captured by the agent’s encoder. High
probe accuracy indicates the encoder has learned features that are linearly separable with respect to
the underlying game state.

Our analysis reveals several key insights. First, we find a strong, statistically significant correla-
tion between linear probe accuracy and agent sample efficiency (Pearson r=-0.81, p=1.1e-13), with
higher probe accuracy being highly predictive of fewer environment steps required to reach 80%
success. This suggests that agents whose encoders capture more task-relevant spatial information
tend to learn the task more efficiently.

Second, examining probe accuracies across pool sizes and algorithms further clarifies this relation-
ship. As image pool size increases, both probe accuracy and task performance systematically de-
grade, isolating the effect of visual diversity on representation learning. For example, standard SAC
maintains high probe accuracy (100% at pool size 1, 97.63% at pool size 5), mirroring its strong
sample efficiency. In contrast, methods with lower sample efficiency show reduced probe perfor-
mance: SAC+VAE achieves only 78.21% probe accuracy at pool size 5, while SAC+RAD reaches
98.66%. Other representation learning methods that underperform standard SAC, such as SPR and
DBC, also exhibit declining probe accuracy as pool size increases (e.g., SPR drops from 94.31% at
pool size 5 to 75.48% at pool size 10).

These trends indicate that different algorithms develop representations with varying alignment to
the spatial reasoning demands of the task. The consistent link between probe accuracy and sample
efficiency across diverse methods suggests that SPGym can help identify which learning procedures
lead to representations that better support task performance.

Full linear probe accuracy data for all agents and pool sizes are presented in Table 10 below. Com-
prehensive performance metrics, including the sample efficiency data used in the correlation analy-
sis, can be found in Section 9.2.

9.2 Detailed Performance Analysis

This section provides comprehensive analysis of algorithmic performance in SPGym, examining
how different representation learning approaches handle increasing visual diversity. We present
detailed learning curves showing the training dynamics of each method, along with quantitative
performance metrics across varying pool sizes.

The analysis includes detailed algorithmic variant analysis explaining why certain methods suc-
ceed or fail, and comprehensive performance curves for PPO (Figure 10), SAC (Figure 11), and
DreamerV3 (Figure 12). Tables 11 to 13 provide quantitative metrics per pool size (Pool) including
sample efficiency (Steps), and episode length (Length), across algorithms and variants. Tables 11
and 12 also include in-distribution and out-of-distribution success rates (ID Success, OOD Easy,
OOD Hard), which were not computed for DreamerV3 due to complexities in the original codebase.
The rare non-zero success rates in Hard OOD likely stem from chance encounters with nearly-solved
initial states rather than genuine generalization.

9.2.1 Analysis of Algorithmic Variants

Our preliminary analysis of algorithmic variants suggests how method assumptions may influence
effectiveness in SPGym. PPO with in-distribution pretraining (PT (ID)) significantly boosts sample
efficiency across all pool sizes, though this advantage diminishes at pool size 10. Out-of-distribution
pretraining (PT (OOD)) offers more modest gains that also decrease with larger pools, suggest-

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Table 10: Linear probe accuracy (%) for each agent and pool size. Accuracy of the linear
probe indicates linearly separable features capturing task-relevant spatial information. There is a
statistically significant correlation between probe accuracy and agent sample efficiency (steps to
80% success).

Agent Pool Size Steps (M) Linear Probe Accuracy (%)

PPO

1 1.75±0.44 99.81±0.14
5 7.80±1.08 96.42±1.06
10 9.73±0.36 87.84±1.40
20 10.00±0.00 66.97±5.28

PPO+PT(ID)
1 0.95±0.21 99.81±0.12
5 5.55±1.22 96.83±0.61
10 9.17±1.10 89.54±0.95

PPO+PT(OOD)
1 1.34±0.42 99.59±0.33
5 7.03±1.07 95.68±0.77
10 9.70±0.41 88.90±1.11

SAC

1 0.33±0.07 100.00±0.00
5 0.91±0.12 97.63±0.68
10 1.65±0.31 93.34±0.48
20 4.52±1.43 80.74±6.31
30 9.23±0.96 66.69±8.41
50 10.00±0.00 55.52±0.09

SAC+RAD
1 0.24±0.03 99.99±0.01
5 0.42±0.06 98.66±0.20
10 0.82±0.18 89.74±0.73

SAC+CURL
1 0.46±0.10 99.98±0.03
5 1.56±0.31 97.14±0.17
10 5.24±1.92 89.47±1.23

SAC+SPR
1 2.09±0.81 99.99±0.01
5 3.68±1.68 94.31±0.24
10 10.00±0.00 75.48±1.82

SAC+DBC
1 0.44±0.04 100.00±0.00
5 0.99±0.25 94.26±1.19
10 10.00±0.00 76.59±5.82

SAC+AE
1 0.42±0.09 100.00±0.00
5 1.04±0.24 95.52±4.56
10 2.03±0.38 88.66±1.88

SAC+VAE
1 1.13±0.14 99.66±0.06
5 5.30±0.68 78.21±2.35
10 10.00±0.00 64.76±0.11

SAC+SB
1 0.98±0.88 99.90±0.03
5 2.08±0.30 96.69±1.08
10 10.00±0.00 81.93±6.06

Inductive Biases in Reinforcement Learning Workshop RLC 2025

ing limited transfer from general-purpose pretrained encoders. For SAC, data augmentation via
RAD consistently improves efficiency across all pool sizes, with particularly pronounced benefits
for larger pools. Conversely, many sophisticated auxiliary methods struggle: CURL, SPR, and VAE
variants consistently require more samples than standard SAC, with particularly poor performance
on larger pools. DBC and AE generally underperform or offer marginal improvements. Dream-
erV3 demonstrates particularly strong performance, consistently outperforming both PPO and SAC
variants across all pool sizes with remarkably stable performance. The variant without decoder
gradients shows reduced performance, highlighting the importance of the reconstruction objective
and suggesting that learning a predictive environment model provides an effective foundation for
handling visual diversity. We now provide more detailed hypotheses for these behaviors.

Pretraining. As shown in Figure 10, pretraining provides clear benefits for PPO, especially with
larger pools. While in-distribution pretraining provides strong gains, almost matching the perfor-
mance of PPO with one-hot-based observations (see Section 9.1.1), this represents an optimistic
upper bound since real-world scenarios rarely permit task-specific pretraining. Interestingly, out-of-
distribution pretraining also shows benefits compared to random initialization (90% vs 86% success
at pool size 5), suggesting some transfer of useful visual features from the pretrained encoder. This
indicates that even general-purpose pretrained encoders can provide a helpful initialization for RL
tasks, though not matching the performance of task-specific pretraining.

Data augmentation. RAD succeeds by enforcing spatial invariances through grayscale+channel
shuffling, preserving structural relationships critical for puzzle solving while adding beneficial
stochasticity. Its weak assumptions make it robust across diversity levels, maintaining strong and
consistent performance across pool sizes through this simple augmentation-based approach.

Contrastive learning. CURL underperforms as instance discrimination may prioritize whole-image
features over tile-level details needed for puzzle solving. This suggests contrastive learning’s focus
on global image similarity may not align well with the local spatial reasoning required for puzzle
solving.

State similarity learning. DBC fails possibly because its core assumption – that states with similar
dynamics should have similar representations – breaks down in two ways: identical puzzle states
appear radically distinct between episodes with different sampled images, while different states can
share visual patterns due to being from the same episode or having the same base image.

Temporal consistency. While the environment’s underlying dynamics are deterministic, temporal
consistency methods such as SPR and SB face three key challenges: (1) The visual manifestation
of state transitions varies dramatically between episodes due to different base images, forcing the
encoder to learn position-invariant representations that capture tile relationships rather than visual
content – a difficult disentanglement problem. (2) The assumption of smooth latent space transitions
is violated by the discrete nature of tile movements, where single actions induce significant changes
in both visual appearance and puzzle state. (3) Most crucially, these methods must simultaneously
learn two competing objectives: temporal predictability in latent space (for transition modeling)
and visual discriminability (for representation learning). This creates a conflict where features use-
ful for predicting latent transitions (tile positions) are obscured by visually salient but dynamically
irrelevant image content. SPR’s prediction horizon mechanism exacerbates this by compounding
representation errors through multiple latent transition steps. Similarly, SB’s transition/reward pre-
diction suffers because the latent space conflates visual features with positional information – while
rewards depend solely on tile positions, the visual diversity in observations provides no direct po-
sitional cues. The same absolute position (e.g., top-left corner) shows completely different visual
content each episode, making position-aware latent representations particularly difficult to learn.

Reconstruction-based learning. The success of DreamerV3’s decoder highlights the value of the
discrete reconstruction loss in learning useful representations for SPGym. In contrast, simple au-
toencoders (AE) offer little benefit for SAC, and variational autoencoders (VAE) hurt performance
possibly because their continuous latent space assumptions conflict with SPGym’s discrete state
transitions.

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

1 5 10
0

0.5M

1M

1.5M

2M

2.5M

3M

3.5M

4M
DreamerV3 DreamerV3 w/o reconstruction

Image pool size

Sa
m

pl
es

 to
 s

ol
ve

1 5 10
0

2M

4M

6M

8M

10M

12M
PPO
PPO + pretrained (OOD)
PPO + pretrained (ID)

Image pool size

Sa
m

pl
es

 to
 s

ol
ve

1 5 10
0

2M

4M

6M

8M

10M

12M
SAC SAC + RAD SAC + AE SAC + CURL SAC + DBC SAC + VAE SAC + SPR SAC + SB

Image pool size

Sa
m

pl
es

 to
 s

ol
ve

Figure 9: Sample efficiency of different methods across pool sizes (lower is better). SPGym dif-
ferentiates agents based on their representation learning capabilities. Top left: DreamerV3 variants
demonstrate the value of reconstruction learning. Top right: PPO results show benefits of pre-
training. Bottom: Comprehensive comparison of SAC variants reveals trade-offs between different
representation learning approaches.

These findings align with observations from Tomar et al. (2023), who noted that many representation
learning methods underperform or fail completely when tested outside their original domain. We
note that our evaluation focused on using each algorithm’s suggested hyperparameters for visual RL
with discrete actions, aiming to assess their out-of-the-box performance. The results may not reflect
the best possible performance achievable through extensive hyperparameter tuning.

Inductive Biases in Reinforcement Learning Workshop RLC 2025

1M 2M 3M 4M
0

20

40

60

80

100

2M 4M 6M 8M 2M 4M 6M 8M

PPO PPO + pretrained (OOD) PPO + pretrained (ID)

Steps Steps Steps

Su
cc

es
s

Ra
te

 (%
)

Pool Size 1 Pool Size 5 Pool Size 10

Figure 10: Learning curves for PPO variants. Success rate during training for baseline PPO
and versions with pretrained encoders across different pool sizes. Shaded regions represent 95%
confidence intervals across 5 independent runs.

2M 4M 6M 8M
0

20

40

60

80

100

2M 4M 6M 8M 2M 4M 6M 8M

SAC SAC + RAD SAC + AE SAC + CURL SAC + DBC SAC + VAE SAC + SPR SAC + SB

Steps Steps Steps

Su
cc

es
s

Ra
te

 (%
)

Pool Size 1 Pool Size 5 Pool Size 10

Figure 11: Learning curves for SAC variants. Success rate during training for baseline SAC
and versions with different representation learning components across different pool sizes. Shaded
regions represent 95% confidence intervals across 5 independent runs.

0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M
0

20

40

60

80

100

0.5M 1M 1.5M 2M 2.5M 0.5M 1M 1.5M 2M 2.5M 3M 3.5M

DreamerV3 DreamerV3 w/o reconstruction

Steps Steps Steps

Su
cc

es
s

Ra
te

 (%
)

Pool Size 1 Pool Size 5 Pool Size 10

Figure 12: Learning curves for DreamerV3 variants. Success rate during training for DreamerV3
with and without decoder across different pool sizes. Shaded regions represent 95% confidence
intervals across 5 independent runs.

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Table 11: Performance metrics for PPO agents across image pool sizes. ‘Steps (M)’ indicates the
number of environment steps (in millions) required to reach 80% success rate during training. ‘ID
(%)’ shows the final success rate at the end of 10M training steps when evaluating on the same pool
used during training. ‘OOD-E (%)’ shows the success rate when evaluated on 100 unseen images
from the ‘Easy’ distribution. ‘OOD-H (%)’ shows the success rate when evaluated on 100 unseen
images from the ‘Hard’ distribution. ‘Length’ indicates the average number of steps required to
solve an instance of the puzzle at the last 100 episodes.

Algorithm Pool Steps (M) ID (%) OOD-E (%) OOD-H (%) Length

PPO

1 1.75±0.44 100±0 0.49±0.13 0.0±0.0 72.9±4.4

5 7.80±1.08 86±16 0.53±0.14 0.3±0.3 212.0±19.0

10 9.73±0.36 47±18 0.34±0.08 0.6±0.4 599.6±25.6

20 10.00±0.00 12±7 0.12±0.03 0.0±0.0 903.4±23.9

PPO PT (ID)
1 0.95±0.21 100±0 0.33±0.09 0.1±0.1 76.2±4.8

5 5.55±1.22 100±0 0.53±0.16 0.3±0.4 83.2±7.2

10 9.17±1.10 38±20 0.27±0.07 0.9±0.7 658.4±25.3

PPO PT (OOD)
1 1.34±0.42 100±0 0.49±0.12 0.2±0.3 72.7±4.0

5 7.03±1.07 90±16 0.52±0.14 0.3±0.3 156.0±16.0

10 9.70±0.41 46±19 0.34±0.08 0.8±1.2 572.0±26.0

Inductive Biases in Reinforcement Learning Workshop RLC 2025

Table 12: Performance metrics for SAC agents across image pool sizes. ‘Steps (M)’ indicates the
number of environment steps (in millions) required to reach 80% success rate during training. ‘ID
(%)’ shows the final success rate at the end of 10M training steps when evaluating on the same pool
used during training. ‘OOD-E (%)’ shows the success rate when evaluated on 100 unseen images
from the ‘Easy’ distribution. ‘OOD-H (%)’ shows the success rate when evaluated on 100 unseen
images from the ‘Hard’ distribution. ‘Length’ indicates the average number of steps required to
solve an instance of the puzzle at the last 100 episodes.

Algorithm Pool Steps (M) ID (%) OOD-E (%) OOD-H (%) Length

SAC

1 0.33±0.07 100±0 0.45±0.12 0.0±0.0 86.7±19.5

5 0.91±0.12 100±0 0.58±0.12 0.0±0.0 76.8±16.2

10 1.65±0.31 100±0 0.46±0.12 0.0±0.0 78.7±16.5

20 4.52±1.43 98±2 0.35±0.11 0.0±0.0 63.2±18.4

30 9.23±0.96 47±38 0.19±0.04 0.0±0.0 525.0±63.1

50 10.00±0.00 7±5 0.06±0.02 0.0±0.0 917.0±35.5

SAC RAD
1 0.24±0.03 100±0 0.62±0.15 0.0±0.0 50.9±6.8

5 0.42±0.06 100±0 0.42±0.13 0.0±0.0 76.9±12.0

10 0.82±0.18 100±0 0.30±0.11 0.0±0.0 144.1±25.4

SAC CURL
1 0.46±0.10 100±0 0.76±0.09 0.0±0.0 77.2±13.1

5 1.56±0.31 100±0 0.44±0.10 0.2±0.4 84.9±17.7

10 5.24±1.92 100±0 0.37±0.11 0.0±0.0 88.0±20.3

SAC SPR
1 2.09±0.81 100±0 0.65±0.13 0.6±1.2 206.4±23.8

5 3.68±1.68 69±13 0.21±0.09 0.0±0.0 523.9±55.6

10 10.00±0.00 9±3 0.07±0.04 0.0±0.0 912.1±36.0

SAC DBC
1 0.44±0.04 100±0 0.44±0.13 0.0±0.0 65.1±13.8

5 0.99±0.25 100±0 0.34±0.13 0.0±0.0 111.2±22.7

10 10.00±0.00 2±1 0.13±0.04 0.0±0.0 588.5±63.3

SAC AE
1 0.42±0.09 100±0 0.78±0.11 0.0±0.0 85.4±22.1

5 1.04±0.24 100±0 0.64±0.16 0.0±0.0 102.6±22.6

10 2.03±0.38 100±0 0.55±0.12 1.3±2.6 78.0±17.1

SAC VAE
1 1.13±0.14 100±0 0.64±0.15 0.0±0.0 75.1±15.6

5 5.30±0.68 100±0 0.30±0.08 0.0±0.0 81.2±18.2

10 10.00±0.00 25±17 0.12±0.03 0.4±0.5 834.3±47.5

SAC SB
1 0.98±0.88 100±0 0.89±0.08 0.0±0.0 130.1±25.0

5 2.08±0.30 91±17 0.65±0.12 0.0±0.0 117.8±20.5

10 10.00±0.00 3±2 0.06±0.02 0.2±0.4 980.3±18.0

SPGym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning

Table 13: Performance metrics for DreamerV3 agents across image pool sizes. ‘Steps’ indicates
the number of environment steps (in millions) required to reach 80% success rate during training.
‘ID Success’ shows the final success rate at the end of 10M training steps when evaluating on the
same pool used during training. ‘Length’ indicates the average number of steps required to solve an
instance of the puzzle at the last 100 episodes.

Algorithm Pool Steps (M) ID Success (%) Length

DreamerV3

1 0.42±0.06 100±0 83.5±11.8

5 1.23±0.20 100±0 31.0±3.9

10 1.44±0.58 100±0 32.9±4.0

20 3.96±0.61 100±0 27.8±3.5

30 5.84±0.71 99±1 38.0±6.2

50 6.62±2.67 87±14 177.8±24.8

100 8.18±2.33 29±14 676.1±32.8

DreamerV3 w/o decoder
1 1.13±0.12 100±0 36.0±2.5

5 1.79±0.61 100±0 42.1±3.2

10 2.57±0.91 100±0 46.7±3.9

