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Abstract

Robust partially observable Markov decision processes (robust POMDPs) extend
classical POMDPs to handle additional uncertainty on the transition and observation
probabilities via so-called uncertainty sets. Policies for robust POMDPs must not
only be memory-based to account for partial observability but also robust against
model uncertainty to account for the worst-case instances from the uncertainty
sets. We propose the pessimistic iterative planning (PIP) framework, which finds
such robust memory-based policies for robust POMDPs. PIP alternates between
two main steps: (1) selecting an adversarial (non-robust) POMDP via worst-case
probability instances from the uncertainty sets; and (2) computing a finite-state
controller (FSC) for this adversarial POMDP. We evaluate the performance of this
FSC on the original robust POMDP and use this evaluation in step (1) to select
the next adversarial POMDP. Within PIP, we propose the RFSCNET algorithm.
In each iteration, RFSCNET finds an FSC through a recurrent neural network by
using supervision policies optimized for the adversarial POMDP. The empirical
evaluation in four benchmark environments showcases improved robustness against
several baseline methods and competitive performance compared to a state-of-the-
art robust POMDP solver.

1 Introduction

Partially observable Markov decision processes (POMDPs; Kaelbling et al., 1998) are the standard
model for decision-making under uncertainty. Policies select actions based on limited state informa-
tion towards some objective, e.g., minimizing the expected cost. The standard assumption is that
probabilities are precisely known for the transition and observation functions of a POMDP. This
assumption is unrealistic, for example, when probabilities are derived from historical data or sensors
with limited precision (Thrun et al., 2005), or when the uncertainty is expressed by domain experts.

Robust POMDPs (RPOMDPs; Osogami, 2015) overcome this assumption by introducing uncertainty
sets, i.e., sets of probabilistic transition and observation functions. Robust policies for RPOMDPs
account for this uncertainty by optimizing against the worst-case instances within the uncertainty
sets. Consequently, a robust policy exhibits a lower bound on its actual performance.

Finding optimal policies for (non-robust) POMDPs is an extensively studied problem (Hansen, 1997;
Aberdeen and Baxter, 2002; Poupart and Boutilier, 2003; Smith and Simmons, 2004; Kurniawati
et al., 2008). The policies inherently depend on the sequences of past actions and observations (the
history), i.e., they require memory. Nowadays, recurrent neural networks (RNNs) are a common
formalism to represent such memory-based policies (Ni et al., 2022) thanks to their ability to learn
sufficient statistics of the history (Lambrechts et al., 2022). As such, RNNs have successfully been
used in POMDPs within reinforcement learning (Bakker, 2001; Hausknecht and Stone, 2015; Heess
et al., 2015) and planning settings (Carr et al., 2021).

17th European Workshop on Reinforcement Learning (EWRL 2024).



Alternatively, finite-state controllers (FSCs, Meuleau et al., 1999) offer a more structured way to
represent policies and, given the model, allow for a precise and effective numerical evaluation
of their performance. Finding FSCs often relies on selecting a predetermined memory size and
structure (Junges et al., 2018). An exhaustive search for the optimal size and specific structures may,
in general, be computationally intractable. Therefore, one may decide to cluster any history-based
policy into a finite-memory policy, for instance, by expanding all possible histories and minimizing
the resulting so-called policy tree (Grzes et al., 2015). However, such an approach suffers from the
typical exponential blow-up in the size of the history that is inherent to POMDPs. Instead, Carr et al.
(2021) learn the memory structures for FSCs by training an RNN on data collected from the POMDP.

Challenges in RPOMDPs. Finding robust policies for RPOMDPs has its own set of challenges. As
robust policies must be optimized against the worst-case instance of the uncertainty sets, determining
this worst-case is paramount. Furthermore, a policy’s performance in an RPOMDP cannot be
evaluated through simulations, as it is unclear which instance from the uncertainty sets to sample.
This last challenge is detrimental to the use of RNNs in planning settings where guarantees on a
policy’s worst-case performance are required. FSCs, on the other hand, can be evaluated exactly in
RPOMDPs through robust dynamic programming (Iyengar, 2005), which finds and uses the exact
worst-case instance to evaluate the FSC’s performance. Finding robust policies represented as FSCs,
however, suffers from the same problems as in POMDPs, e.g., selecting a predetermined memory
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Figure 1: Overview of the PIP framework. The steps
on the left-hand side are specific to RFSCNET.

size and structure, as done in sequen-
tial convex programming (SCP, Cubuktepe
et al., 2021). As our empirical evaluation
shows, wrongly or over-specifying the re-
quired memory may lead to worse results
for SCP in RPOMDPs.

Contributions. Observing how RNNs
and FSCs complement each other for
RPOMDPs, we combine the representa-
tional power of RNNs and the exact robust
evaluation of FSCs, allowing for the best
of both worlds by leveraging prior work to
derive an FSC representation of an RNN policy (Koul et al., 2019). Figure 1 outlines our iterative
pessimistic planning framework as the main contribution.

Pessimistic iterative planning for RPOMDPs (Section 4). We propose the pessimistic iterative
planning (PIP) framework to find a robust policy by iterating over and (approximately) solving
POMDPs within the uncertainty set of the RPOMDP that are adversarial instances to the current
policy, i.e., a worst-case instance given the current policy. We implement PIP in our RNN-based
algorithm, which we name RFSCNET, consisting of the following two main parts:

(1) Supervised learning of robust FSCs (Section 5). We train an RNN based on data collected
from supervision policies that we compute on the adversarial POMDPs. We explicitly
construct the RNN to enable the extraction of FSCs. At each iteration, the FSC serves in the
robust evaluation and adversarial POMDP selection. The adversarial instances are employed
to further train the RNN by refining the collected histories and associated supervision policy,
guiding the RNN towards a better-performing, robust policy.

(2) Adversarial POMDP selection (Section 6). First, we compute the worst-case performance
of the FSC on the RPOMDP via robust dynamic programming, thereby producing an exact
guarantee. Then, we introduce a linear program that efficiently finds a POMDP instance
within the uncertainty sets that is adversarial, i.e., a worst-case instance, to the current FSC.

In our experimental evaluation on four benchmarks, we (1) showcase that the FSCs found by our
method are competitive with and outperform the state-of-the-art FSC-based solver for RPOMDPs by
Cubuktepe et al. (2021), and, (2) conduct an ablation study to show the impact of our contributions
on robustness, namely iteratively finding and re-training on adversarial POMDPs, as opposed to
baselines that train on either fixed or random POMDPs within the uncertainty set of the RPOMDP.
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2 Preliminaries

The set of all distributions over X is denoted by ∆(X). A probability distribution µ ∈ ∆(X) is
called Dirac if µ(x) = 1 for precisely one x ∈ X and zero otherwise. The number of elements in a
set X is denoted by |X|. Iverson brackets return [P ] = 1 if P is true and 0 otherwise. Finally, the set
of probability intervals with lower bounds strictly greater than zero is I = {[i, j] | 0 < i ≤ j ≤ 1}.
Definition 1 (POMDP). A partially observable Markov decision process is a tuple M =
⟨S,A, T, Z,O,C⟩, where S,A,Z are finite sets of states, actions, and observations, T : S × A→
∆(S) is the probabilistic transition function, O : S → Z is the deterministic state-based observation
function, and C : S ×A→ R≥0 is the cost (or reward) function.

For simplicity and without loss of generality, we consider POMDPs with deterministic observations,
where the observation function maps only to Dirac distributions. This assumption is non-restrictive
as every POMDP can be transformed into one with deterministic observations (Chatterjee et al.,
2015, Remark 1). A trajectory in a POMDP is a finite sequence of states and actions: ωt =
s1a1s2 . . . st ∈ (S × A)t−1 × S, such that T (si+1 | si, ai) > 0 for 1 ≤ i < t. Due to partial
observability, states are not observable to the agent. A history is the observable part of a trajectory:
ht = O(s1)a1O(s2) . . . O(st) = z1a1z2 . . . zt ∈ (Z ×A)t−1 ×Z. The set of all (finite) trajectories
and associated histories are Ω and H, respectively. Histories can be compressed into sufficient
statistics known as beliefs, that is, probability distributions over states (Kaelbling et al., 1998). The
set of all belief states in a POMDP is B ⊆ ∆(S). The initial state distribution (belief) is b0 ∈ B. A
belief b ∈ B can be computed from a history h ∈ H using Bayes’ rule (Spaan, 2012). A Markov
decision process (MDP) is a POMDP where each state is fully observable, and a Markov chain (MC)
is an MDP with a single action (which can be omitted).

2.1 Policies and Expected Costs

A policy resolves the action choices in a POMDP and is a function π : H → ∆(A) mapping histories
to distributions over actions. Correspondingly, policies may also be belief-based π : B → ∆(A). The
set of all history-based policies is Π. We seek to find a policy π ∈ Π that minimizes the expected cost
of reaching goal states G ⊆ S, also known as the stochastic shortest path (SSP) problem (Bertsekas,
2005). For any trajectory ω, the cumulative cost ρ♢G : Ω→ R≥0 ∪ {+∞} is (Forejt et al., 2011):

ρ♢G(ω) =

{
∞ ∀t ∈ N, st ̸∈ G,∑min{t | st∈G}−1

t=0 C(st, at) otherwise.
(1)

The SSP objective is to find an optimal policy π ∈ Π that minimizes the expected cumulative cost Jπ
T

of the trajectories generated by playing π under the transition function T :

π∗ ∈ arginf
π∈Π

Jπ
T , Jπ

T = Eπ,T

[
ρ♢G | s0 ∼ b0

]
. (2)

In the fully observable setting of MDPs, dynamic programming can compute an optimal policy and
the associated cost for the SSP problem. For POMDPs, finding optimal policies for the SSP problem
is undecidable (Madani et al., 2003). Therefore, we approximate optimal policies with finite memory.

Finite-state controllers. A policy has finite-memory if it can be represented by a finite-state controller.
Definition 2 (FSC). An FSC is a tuple πf = ⟨N,n0, δ, η⟩ where N is a finite set of memory nodes and
n0 ∈ N the initial node, δ : N × Z → ∆(A) is the stochastic action function, and η : N × Z → N
is the deterministic memory update. When |N | = k, the FSC is also called a k-FSC.

The performance of an FSC πf on a POMDP M can be evaluated by computing the state-values
V πf : S ×N → R on the product Markov chain (Meuleau et al., 1999) via dynamic programming.

Recurrent neural networks. RNNs are (infinite) state machines parameterized by differential
functions, which we use to learn information about the history in Ĥ ⊆ Rd. The hidden size d defines
the length of the latent history vector. Analogously to an FSC, the RNN consists of a parameterized
internal memory update η̂ϕ : Ĥ × Z → Ĥ that recurrently computes the new latent memory vector
ĥ ∈ Ĥ from the observations in a history h ∈ H. Thus, the RNN represents a function RNN : H → Ĥ.
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When we append a fully connected layer with a softmax activation function σϕ : Ĥ → ∆(A) to the
RNN, it yields an RNN policy network πϕ : H → ∆(A) from histories to distributions over actions.

3 Robust Markov Models

A robust MDP (RMDP) is an MDP where the transition probabilities are not precisely given but
belong to a predefined set of distributions known as the uncertainty set (Nilim and Ghaoui, 2005).
We fix a specific type of RMDP where the transition function maps to a probability interval or zero.
Definition 3 (RMDP). An RMDP with interval uncertainty is a tuple U = ⟨S,A, T , C⟩, where
T : S ×A→ (S → I ∪ {0}) is the uncertain transition function that maps each transition to either
a probability interval in I, or probability 0 whenever the transition does not exist.

The uncertainty is resolved in a game-like manner where the agent (choosing the actions) and nature
(choosing a probability distribution from the uncertainty set) alternate turns (Iyengar, 2005). We
assume independence between all state-action pairs, an assumption known as (s, a)-rectangularity,
which means that nature’s choices are not restricted by any previous choice (Iyengar, 2005; Wiese-
mann et al., 2013). Thus, the uncertainty set T is convex and factorizes over state-action pairs:

T =
⊗

(s,a)∈S×A

T (s, a), T (s, a) =
{
T (s, a) ∈ ∆(S)

∣∣ ∀s′∈S : T (s
′ | s, a) ∈ I ∪ {0}

}
. (3)

Furthermore, we assume that nature’s resolution of uncertainty is static. This means that, if the model
contains a cyclic structure, nature’s choice does not change when state-action pairs are revisited.

RMDPs have two optimal value functions and associated optimal policies: one where the agent and
nature play adversarially, and one where they play cooperatively. The former is known as the robust
setting, and the latter as optimistic. For ease of presentation, we focus on the robust setting for the
remainder of the paper. Optimal robust Q and V values can be computed by extending dynamic
programming to robust dynamic programming (Iyengar, 2005; Nilim and Ghaoui, 2005). The optimal
robust V and Q values are the least fixed points V∗ and Q∗ of the following recursive equations*:

Vn(s) = min
a∈A
Qn(s, a), Qn+1(s, a) = C(s, a) + sup

T (s,a)∈T (s,a)

{∑
s′∈S

T (s′ | s, a)Vn(s
′)

}
. (4)

Under (s, a)-rectangularity and the interval uncertainty model, the inner optimization problem can
be efficiently solved via a bisection algorithm (Nilim and Ghaoui, 2005, Section 7.2). The robust
state-values V and optimal policy, which is memoryless deterministic under (s, a)-rectangularity, can
be derived from the robust action values Q∗ in the same way as for standard MDPs (Iyengar, 2005)

Robust POMDPs (RPOMDPs; Osogami, 2015) extend POMDPs in a similar way that RMDPs
extend MDPs by accounting for uncertainty in the transition and observation functions. Without
loss of generality, we consider only uncertainty in the transition function, as any RPOMDP with an
uncertain observation function can be transformed into an equivalent RPOMDP with deterministic
observations (Bovy et al., 2024, Appendix B). Again, we focus on uncertainty given by intervals.
Definition 4 (RPOMDP). An RPOMDP with interval uncertainty is a tupleM = ⟨S,A, T , C, Z,O⟩,
where S,A,Z,O, and C are the sets of states, actions, and observations, observation function
and the cost function from standard POMDPs, respectively. The uncertain transition function
T : S ×A→ (S → I ∪ {0}) is the same as in RMDPs.

Again, we assume (s, a)-rectangularity and static uncertainty resolution. An instance of an
RPOMDP M is a POMDP M such that every transition probability of T lies within its respec-
tive interval in T . We also write T ∈ T and M ∈ M in that case. In RPOMDPs, the trajectories
generated by the policy π ∈ Π depend on the transition function T ∈ T . Hence, the robust SSP
objective becomes:

π∗ ∈ arginf
π∈Π

J π
T , J π

T = sup
T∈T

Jπ
T . (5)

Goal. Given an RPOMDPM = ⟨S,A, T , C, Z,O⟩ with a set of goal states G ⊆ S, compute a
policy π ∈ Π in the form of a finite-state controller πf to minimize the worst-case expected cost J π

T .

*To compute optimistic policies and values V and Q, we only need to replace the inner supremum with an
infimum. All our following results automatically extend to the optimistic case by substituting the sup for an inf .
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4 Pessimistic Iterative Planning

We now present our main contributions. We outline the two main parts of the pessimistic iterative
planning (PIP) framework and, subsequently, give an overview of our implementation of PIP, named
RFSCNET, to compute robust policies for RPOMDPs.

The framework. Analogously to a two-player game, PIP consists of iteratively executing two parts:

(1) Compute an FSC policy πf for a given POMDP M ∈M.
(2) Select an adversarial POMDP M ′ ∈M with respect to this FSC policy πf .

The adversarial POMDP M ′ then is used as the next input POMDP in part (1). These steps are
repeated until we reach a termination criterion.

The implementation. Next, we detail the steps of our algorithm RFSCNET, which implements the
two parts of PIP. Note that, unlike our implementation of the first part, the implementation of part
two applies to any implementation of PIP and is not specific to RFSCNET.

Part one corresponds with Section 5 and the left-hand side in Figure 1. In this part, we compute FSCs
for adversarial POMDPs M ∈M through the use of an RNN, which is specific to RFSCNET:

i. Compute a supervision policy πM for the POMDP M (Section 5.1) and simulate πM on M
to collect the histories and the action distributions of πM into a data set D (Section 5.2).

ii. Train the RNN policy πϕ on the data D (Section 5.3) and extract an FSC πf (Section 5.4).

Part two corresponds to Section 6 and the right-hand side of Figure 1. Here, we implement the robust
evaluation of a computed FSC and, subsequently, the selection of the adversarial POMDP:

iii. Evaluate the FSC πf exactly through robust dynamic programming (Section 6.1).
iv. Compute the adversarial POMDP M ′ ∈M based on the FSC πf (Section 6.2).

After step (iv.), if we have not hit the termination criteria, we start a new iteration at step (i.). We
determine to stop the algorithm at step (iii.) based on the FSC’s evaluation when the worst-case
expected cost of the FSC satisfies a target threshold, or we may set a maximum number of iterations.

5 Supervised Learning of Robust FSCs

We present our methods of collecting a data set to train the RNN, the policies used to gather this data,
and how to extract a finite-memory policy from an RNN. We initialize with an arbitrary POMDP
instance M ∈M as input, which adapts at each iteration to be adversarial towards the current policy.

5.1 Supervision Policies

Recall from Section 2 that computing an optimal policy in POMDPs for our objective is undecidable.
Furthermore, our iterative procedure relies on computing several policies for different POMDPs.
Thus, computational efficiency is a concern, and fast approximate methods are preferred. Therefore,
we compute a supervision policy πM : B → ∆(A) that approximates the optimal policy π∗ for the
POMDP M . Thus, we compute an approximation Q̂M of the belief-based values QM : B ×A→ R
for M ∈M. The supervision policy is then derived by taking the minimizing action, i.e., πM (b) =

argmina∈A Q̂M (b, a). For training, we interpret these deterministic policies as stochastic by taking
Dirac distributions. We consider the algorithms QMDP (Littman et al., 1995) and the fast-informed
bound (FIB; Hauskrecht, 2000) to compute the approximations QMDP and QFIB respectively.

QMDP may compute sub-optimal policies as it assumes full state observability after a single step,
neglecting information-gathering (Littman et al., 1995). The values QFIB are tighter than the one
given by QMDP since it factors in the observation of the next state. Although QFIB is computationally
more expensive than QMDP, QFIB updates are still of polynomial complexity, allowing us to compute
it for each M ∈M efficiently, see Appendix B for more details.

Alternatives. We opt for QMDP and QFIB because of their computational efficiency. Nonetheless,
other POMDP solution methods may also be used, such as Monte Carlo planning (Silver and Veness,
2010) or variants of heuristic-search value iteration (Smith and Simmons, 2004; Horák et al., 2018).

5



5.2 Data Generation

To train the RNN, we generate a data set D by simulating the supervision policy πM on the current
(adversarial) POMDP M ∈M. We aggregate a batch of I ∈ N finite-horizon histories and associated
action distributions of the supervision policy πM up to length H ∈ N.

During simulation for i = 1, . . . , I , we compute the beliefs b(i)t from history h
(i)
t derived from the

probabilities of M at each time step 1 ≤ t < H , with b0 fromM. Then, µ(i)
t =πM (b

(i)
t ) represents

the action distributions of the supervision policy during the simulation, and a
(i)
t ∼ µ

(i)
t is the action

played in simulation i at time t. Then, D = {{h(i)
t , µ

(i)
t }Ht=1}Ii=1 consists of I simulations of H

histories and their associated action distributions. In the next step, we employ D to train the RNN.

5.3 RNN Policy Training

We train the RNN policy πϕ on the data set D collected from M ∈ M. The training objective Φ
of the RNN is to minimize the distance between the distributions of the RNN policy πϕ and the
distributions µ of the supervision policy πM : Φ = minϕ

1
|D|H

∑|D|
i=0

∑H
t=0 DKL

(
πϕ(h

(i)
t ) ∥ µ(i)

t

)
,

where DKL is the Kullback-Leibler divergence, the histories h are inputs to the RNN, and the action
distributions µ are labels. We optimize the parameters ϕ for this objective by calculating the gradient
via backpropagation through time.

We opt for a model-based approach, using approximate solvers to compute the supervision policy πM

for M ∈M and train the RNN to imitate πM in a supervised manner. Thus, we know we can stop
training once the loss for Φ is sufficiently low. Alternatively, one could employ a model-free objective
such as recurrent policy gradients (Wierstra et al., 2007). However, the latter neglects the available
information from the model and, thus, requires a large number of samples to converge (Peters and
Schaal, 2006; Moerland et al., 2020). Furthermore, it is unclear when training should be stopped.

Recall that in our approach, we change the POMDP at each iteration to be adversarial against the
current policy. To find the new adversarial POMDP M ′ ∈ M, we need to find a finite-memory
representation of the policy, which we outline in the next subsection.

5.4 Extracting an FSC from an RNN

We cluster the hidden memory states of the RNN (Zeng et al., 1993; Omlin and Giles, 1996) to find a
finite-memory policy in the form of an FSC. There are multiple ways to achieve such a clustering.
Prior work (Carr et al., 2021) uses a quantized bottleneck network (QBN; Koul et al., 2019) to
reduce the possible memory states to a finite set. They train the QBN post hoc by minimizing
the mean-squared error on the hidden states generated by the RNN. Alternatively, it can be trained
end-to-end by updating the parameters with the gradient calculated with Φ, which we name QRNN for
quantized RNN. Moreover, similar to post hoc training of the QBN, we can run a clustering algorithm
such as k-means++ (Arthur and Vassilvitskii, 2007) to minimize the in-cluster variance of the hidden
states. For post hoc training, we employ the histories in D to generate the RNN hidden states. We
consider all three methods in this paper. For more details on the QBN, we refer to Appendix D.1.

Instead of through simulations, as done in Koul et al. (2019), we utilize the model to construct
the FSC. The clustering determines a finite set N from the RNN’s hidden states inH. We find the
FSC’s memory update η by executing a forward pass of the RNN’s memory update η̂ϕ for each
reconstruction of n ∈ N , which produces the next memory nodes n′ ∈ N and RNN hidden state
ĥ ∈ H for each z ∈ Z by exploiting the batch dimension. Then, the action mapping δ for n and z is
given by the distribution of the RNN policy network σϕ(ĥ) for the next memory state. The initial
node n0 is determined by the RNN’s initial state and we prune any unreachable nodes from the FSC.

6 Robust Policy Evaluation and Adversarial Selection of POMDPs

For the FSCs found by the approach explained in the previous section, we present our methods
for robust policy evaluation of the FSC and, subsequently, for selecting the worst-case adversarial
POMDP M ′ ∈M from the uncertainty set.
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6.1 Robust Policy Evaluation

The performance of a finite-memory policy represented by πf = ⟨N,n0, η, δ⟩ in an (s, a)-rectangular
RPOMDP, such as we have, is given by the following robust Bellman equation, for all ⟨s, n⟩ ∈ S×N :

Vπf
⋆ (⟨s, n⟩) =

∑
a∈A

(
δ(a |n,O(s))C(s, a)

+ sup
T (s,a)∈T (s,a)

{∑
s′∈S

∑
n′∈N

T (s′ | s, a)δ(a | n,O(s))[n′ = η(n,O(s))]Vπf
⋆ (⟨s′, n′⟩)

})
. (6)

The inner optimization problem is convex under (s, a)-rectangular and convex uncertainty sets, but
solving it at each dynamic programming iteration requires |S||A| linear programs. For computational
tractability, we instead opt to evaluate the FSC on the RPOMDP via a product construction of a robust
Markov chain, similar to the one used for evaluating FSCs in POMDPs (Meuleau et al., 1999).
Definition 5 (Robust policy evaluation). Given an RPOMDPM = ⟨S,A, T , C, Z,O⟩ with initial
belief b0 and an FSC πf = ⟨N,n0, η, δ⟩, the robust state-values ofM under F are given by the
state-values in the robust Markov chain ⟨S ×N, b

πf

0 , T πf , Cπf ⟩ where the state-space is the product
of RPOMDP states S and FSC memory nodes N , the initial state distribution is b

πf

0 (⟨s, n⟩) =
b0(s)[n = n0], and the robust transition and cost functions are:

T πf (⟨s′, n′⟩ | ⟨s, n⟩) =
∑
a∈A

T (s, a)(s′)δ(a |n,O(s))[n′ = η(n,O(s))],

Cπf (⟨s, n⟩) =
∑
a∈A

δ(a |n,O(s))C(s, a),

where addition and multiplication over intervals follow the standard rules for interval arith-
metic (Hickey et al., 2001). The robust value function Vπf : S×N → R≥0 ∪{+∞}, follows directly
from robust dynamic programming on this robust Markov chain with the bisection algorithm, see Equa-
tion (4). Then, the robust value in the RPOMDP is given by

∑
⟨s,n⟩∈S×N b

πf

0 (⟨s, n⟩)Vπf (⟨s, n⟩).

We again assume full (s, a)-rectangularity on this product state-space, effectively leading to
(⟨s, n⟩ , a)-rectangularity. That is, nature’s choices are independent of the agent’s current mem-
ory, yielding a value Vπf that is a conservative bound compared to the value Vπf

⋆ where nature’s
choices must be consistent with the agent’s memory. Appendix A contains the formal statement and
proof. Using Definition 5, we compute the performance of any FSC extracted from the RNN and
store the best FSC over the iterations based on its performance. Furthermore, the robust state-values
Vπf enable us to find the new associated adversarial POMDP M ′ ∈M for the next iteration of PIP.

6.2 Finding Adversarial POMDP Instances

We now construct a heuristic to find a new POMDP instance M ′ ∈ M that constitutes the local
worst-case instance for the current policy under (s, a)-rectangularity of the RPOMDP. Let πf =
⟨N,n0, δ, η⟩ be the current FSC. Given the robust value function Vπf computed at the previous step,
we aim to find a POMDP M ′ ∈ M that is adversarial to the FSC πf and, therefore, induces its
worst-case value. We compute the following transition probability under the additional constraint
that probabilities are dependent on the memory nodes n ∈ N , i.e., under (s, a)-rectangularity:

∀(s, a) ∈ S×A : T (s, a) = argsup
T (s,a)∈T (s,a)

∑
n∈N

∑
s′∈S

∑
n′∈N

T πf (⟨s′, n′⟩ | ⟨s, n⟩)Vπf (⟨s′, n′⟩). (7)

We construct a linear program (LP) that precisely encodes our requirements. Let T̂s,a,s′ be the
optimization variables representing the transition function probabilities Pr(· | s, a) for each state-
action pair (s, a) ∈ S ×A. The LP is then given by:

∀(s, a) ∈ S ×A : max
T̂s,a,s′

∑
n∈N

∑
s′∈S

∑
n′∈N

[n′ = η(n,O(s))] δ(a |n,O(s))T̂s,a,s′ Vπf (⟨s′, n′⟩)

s.t.
∑
s′∈S

T̂s,a,s′ = 1, and, ∀s′ ∈ S : T̂s,a,s′ ∈ T (s, a)(s′). (8)
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Figure 2: Boxplots depicting the minimum (i.e., best) robust value of the extracted FSC policies for
both RFSCNET and the baselines across 20 seeds, all configured with QMDP and k-means++.

Solving this LP yields assignments for the variables T̂s,a,s′ that determine the adversarial transition
function T̂ : S × A → ∆(S) that satisfies T̂ (s′ | s, a) ∈ T (s, a)(s′) for all (s, a) ∈ S × A. By
construction, the assignments are valid probability distributions inside each respective interval and
yield a heuristic for the worst possible value for the given FSC under (s, a)-rectangularity. Thus,
the variables T̂s,a,s′ constitute the probabilities of the transition function T̂ for the adversarial
POMDP M ′ = ⟨S,A, T̂ , C, Z,O⟩. In this step, by computing M ′, we have closed the loop. With
this adversarial POMDP instance M ′ ∈M, we resume execution from the first step in Section 5 of
our framework until the FSC satisfies a target value or we reach the maximum number of iterations.

7 Experimental Evaluation

We empirically assess different aspects of RFSCNET to address the following questions:

(Q1) Robustness and baseline comparison. Does RFSCNET provide robustness against model
uncertainty? How does it compare to various baselines not utilizing the PIP framework?

(Q2) Comparison with the state-of-the-art. How does RFSCNET’s performance compare to
SCP (Cubuktepe et al., 2021), a state-of-the-art method to compute policies for RPOMDPs?

(Q3) Memory size sensitivity. How does the FSC size affect RFSCNET and SCP’s performance?

(Q4) Configuration sensitivity. How do different configurations of supervision policies and
clustering methods affect the performance of RFSCNET?

Environments. We extend four POMDP environments to RPOMDPs: an Aircraft collision avoidance
problem (Kochenderfer et al., 2015; Cubuktepe et al., 2021), and three grid-worlds with adver-
saries (Junges et al., 2021) named Avoid, Evade, and Intercept. On Aircraft, the agent is tasked to
avoid a collision with an intruder aircraft but has to account for uncertainty in the probabilities of the
pilot’s responsiveness and of the intruder changing direction, both mapping to a [0.6, 0.8] interval.
The grid-world environments model the probability of taking multiple steps instead of a single one for
each possible moving action, given by the interval [0.1, 0.4]. We provide environment descriptions
and dimensions, run times, and tools and hyperparameters in Appendices C, E and G, respectively.

Baselines. We consider baselines to evaluate the impact of the adversarial selection of POMDPs of
the PIP framework on robust performance. The baselines train either on a fixed POMDP throughout
the iteration, initialized randomly or by the lower/upper bound of the uncertainty set, or on random
POMDPs at each iteration, resembling the practice of domain randomization (Tobin et al., 2017).

Metrics. For performance, we compare the robust values of the computed FSCs, as in Definition 5.
For RFSCNET and the baselines, we consider the best robust value found across the iterations. As
these methods exhibit randomness due to sampling and initialization, we report statistics of the robust
value across 20 seeds. SCP is not dependent on randomness, and we only report a single value.

7.1 Analysis

Figure 2 compares the performance of RFSCNET to the aforementioned baselines. Figure 3 shows
RFSCNET’s median and minimum performance when configured with a maximal memory size
of k = 9, compared to the SCP method with two different sizes k ∈ {3, 9}, see Definition 2.
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Figure 3: The robust values (lower is better) as computed by RFSCNET when compared to SCP.
Right: heatmaps comparing the median value of RFSCNET to SCP under various memory sizes.
Left: median (med.) and minimum (min.) of the best values found across 20 seeds compared to
SCP. The lower bound (LB) is the optimal robust valueQ∗ of the underlying RMDP, ignoring partial
observability. We highlight the best value between SCP’s value and the median value of RFSCNET.

Additionally, the heatmaps showcase the effect of various memory sizes k on the performance of
both RFSCNET and SCP in Aircraft and Evade. Appendix F provides the complete set of results. In
particular, we include confidence estimates in the memory comparison in Appendix F.2, Figure 4 in
Appendix F.1 provides results under various additional configurations, and Figure 6 in Appendix F.3
compares the training performance of RFSCNET to a baseline trained on a fixed POMDP.

(Q1) Comparison to baselines. As seen in Figure 2, on Aircraft and Intercept, RFSCNET out-
performs all baselines, reaching a median value across the seeds lower than the first quartile of all
baselines. Therefore, on average, RFSCNET incurs lower expected costs than the baselines. On
Evade, the results are more ambiguous, and the baselines can perform better, demonstrating that
in this environment, it can suffice to ignore the model uncertainty. However, we still observe that
RFSCNET achieves at least the same robust performance as the baselines.

On Avoid, RFSCNET performs slightly worse than the baseline that is trained on the upper bound of
the uncertainty set, while the remaining baselines clearly perform very poorly. By coincidence, the
upper bounds appear to result in a good approximation of the worst-case probabilities. RFSCNET,
without this lucky initialization, still achieves comparable performance to this baseline. Good
performance of the baselines is not guaranteed, and the baselines may find much worse policies, as
evidenced by the results obtained when trained on the lower bound or through domain randomization.
Therefore, we conclude that the baselines are unreliable as they are sensitive to the POMDPs used
throughout training. In contrast, RFSCNET performs reliably across environments.

(Q2) Comparison with the state-of-the-art. As seen in Figure 3, in comparison to RFSCNET, SCP
performs comparably on Evade and best on Intercept when k = 3. RFSCNET outperforms SCP
on Aircraft, Avoid, and Evade by both the median and minimum performance across the 20 seeds.
When the memory size in SCP is set to k = 9, which is also the memory size we set for RFSCNET
in these results, RFSCNET outperforms SCP across all benchmarks, both in median and minimum
performance. Therefore, we can conclude that RFSCNET improves over the state-of-the-art.

(Q3) Memory size sensitivity. Figure 3 with SCP’s results across k ∈ {3, 9} indicates that SCP
performs worse with more memory, especially on Avoid and Intercept. The heatmaps of Figure 3
show that SCP also performs much worse on Aircraft and Evade when more memory is specified, as
indicated by the high values. In contrast, RFSCNET is not sensitive to memory over-specification,
exhibiting consistent performance across the memory sizes. These results demonstrate the benefit of
learning the memory structure instead of specifying it beforehand, as done in SCP.

(Q4) Configuration sensitivity. In Appendix F.1, Figure 4 depicts the performance of RFSCNET
across various configurations. From our results, we did not observe a major difference between using
QMDP and QFIB as supervision policies. Training the QBN end-to-end proves less stable than post
hoc, and k-means++ produces the best results. The results demonstrate that, while the configuration
does impact performance, RFSCNET performs consistently across configurations.
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7.2 Discussion

The results show that RFSCNET finds better robust policies than both SCP and the baseline methods,
positively answering research questions (1) and (2). To RFSCNET’s merit, our results also show that a
learning-based approach through the RNN has the advantage of flexibility in determining the memory
structure and sizes of the FSCs, positively answering research question (3). Lastly, while RFSCNET
allows for various configurations, it performs consistently, positively answering question (4).

The performance of RFSCNET is dependent on a few factors. In Appendix F.3, Figure 6 shows
evidence that training on adversarial POMDPs, instead of a single fixed POMDP, is a more difficult
learning target. Even though this makes the training task more challenging, RFSCNET still performs
well. Secondly, the performance of the FSCs is impacted by the quality of discretization of the hidden
states of the RNN, and faulty extraction of the FSC from the RNN leads to finding a worst-case that
is not informative. How to optimally extract finite-state representations of RNNs is still an open
problem. In this paper, we tested multiple options based on clustering. Ultimately, the PIP framework
is modular and allows for other methods that compute FSCs for POMDPs to be used instead.

Lastly, we note that the performance of RFSCNET is limited by the quality of the supervision policies
we compute during training. For instance, this limitation could explain why RFSCNET performs
worst on Intercept, as this benchmark relies on information gathering, an aspect on which QMDP is
known to perform poorly. Nonetheless, RFSCNET’s modularity allows for any POMDP policy to
be applied as a supervision policy in the RNN’s training procedure, allowing for trade-offs between
quality and computational efficiency, depending on the task at hand.

8 Related Work

Computing optimal robust policies for RMDPs has been studied extensively (Nilim and Ghaoui, 2005;
Iyengar, 2005; Wiesemann et al., 2013). RMDPs are also used in model-based (robust) reinforcement
learning (RL) to explicitly account for model uncertainty and enable efficient exploration (Jaksch
et al., 2010; Petrik and Subramanian, 2014; Suilen et al., 2022; Moos et al., 2022).

For RPOMDPs, early works extend value iteration and point-based methods to account for the
additional uncertainty (Itoh and Nakamura, 2007; Ni and Liu, 2013; Osogami, 2015), or use sampling
over the uncertainty sets (Burns and Brock, 2007). Ni and Liu (2008) introduce a policy iteration
algorithm for optimistic policies. Chamie and Mostafa (2018) consider robustifying a given POMDP
policy to combat sensor imprecision. Nakao et al. (2021) extend value iteration for distributionally
robust POMDPs, where the agent receives side information after a decision period, which is a less
conservative setting. Extensions to value iteration for RPOMDPs typically do not scale well to
the large state spaces (up to 13000+) we consider in this paper. More recent methods compute
FSCs for RPOMDPs via quadratic (Suilen et al., 2020) or sequential (Cubuktepe et al., 2021)
convex programming. In contrast to our work, the convex optimization methods compute FSCs of a
predefined size and structure. Additionally, they cannot compute FSCs in the optimistic case.

In RL, policy gradient algorithms incorporate memory using RNNs (Wierstra et al., 2007). Thereafter,
RNNs serve as the baseline neural architecture for reinforcement learning in POMDPs (Ni et al.,
2022). Recently, Wang et al. (2023) learned a stochastic recurrent memory representation for (non-
robust) POMDPs using information from the model during training. RNNs have also successfully
been used in a planning setting to compute FSCs for POMDPs (Carr et al., 2019, 2020, 2021).

9 Conclusion

We presented PIP, a novel planning framework for robust POMDPs. Our framework implementation,
RFSCNET, utilizes RNNs to compute FSCs for the adversarial POMDPs selected by PIP, allowing
for the memory structure to be learned from data. Our experiments show that our approach yields
more robust policies than the baseline approaches. Additionally, RFSCNET is less sensitive to
over-parameterization of memory size than SCP, and outperforms the state-of-the-art SCP solver
in three of the four benchmarks considered in this paper. Future work may investigate alleviating
the limitation of the supervision policies by optimizing the RNN with a more complicated training
objective or by considering more advanced supervision policies.
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Appendix

A Robust Policy Evaluation

In this appendix, we show that robust policy evaluation (Definition 6) indeed provides a conservative
upper bound to the actual robust Bellman equation Equation (6):

Vπf
⋆ (⟨s, n⟩) =

∑
a∈A

(
δ(a |n,O(s))C(s, a)

+ sup
T (s,a)∈T (s,a)

{∑
s′∈S

∑
n′∈N

T (s′ | s, a)δ(a | n,O(s))[n′ = η(n,O(s))]Vπf
⋆ (⟨s′, n′⟩)

})
.

Definition 6 (Robust policy evaluation (extended)). Given an RPOMDPM = ⟨S,A, T , C, Z,O⟩
with initial state distribution (belief) b0 and an FSC πf = ⟨N,n0, η, δ⟩, the robust state-values
of M under F , V πf : S × N → R, are given by the state-values in the robust Markov chain
⟨S ×N, T πf , Cπf ⟩ where the states are the product of RPOMDP states S and FSC memory nodes N ,
and the robust transition and cost functions are:

T πf (⟨s′, n′⟩ | ⟨s, n⟩ , a) = T (s′ | s, a)δ(a |n,O(s))[n′ = η(n,O(s))]

T πf (⟨s′, n′⟩ | ⟨s, n⟩) =
∑
a∈A

T πf (⟨s′, n′⟩ | ⟨s, n⟩ , a)

Cπf (⟨s, n⟩) =
∑
a∈A

δ(a |n,O(s))C(s, a),

where addition and multiplication over intervals follow the standard rules for interval arith-
metic (Hickey et al., 2001). Then, the robust state-values are defined as:

Vπf (⟨s, n⟩) = Cπf (⟨s, n⟩) + sup
Tπf (⟨s,n⟩)∈T πf (⟨s,n⟩)

∑
s′∈S

∑
n′∈N

Tπf (⟨s′, n′⟩ | ⟨s, n⟩)Vπf (⟨s′, n′⟩).

(9)

For an initial belief b0 and initial memory node n0, both state-based value functions can be extended
to the value in the initial belief:

Vπf
⋆ (⟨b0, n0⟩) =

∑
s∈S

b0(s)V
πf
⋆ (⟨s, n0⟩),

Vπf (⟨b0, n0⟩) =
∑
s∈S

b0(s)Vπf (⟨s, n0⟩).

Theorem 1. Given the FSC πf , the robust state-values Vπf of the robust Markov chain
⟨S ×N, b

πf

0 , Tπf , Cπf ⟩ provide a (conservative) upper bound on the value Vπf
⋆ of F under (s, a)-

rectangularity in the RPOMDP with initial belief b0. That is, Vπf
⋆ (⟨s, n⟩) ≤ Vπf (⟨s, n⟩), and

consequently Vπf
⋆ (⟨b0, n0⟩) ≤ Vπf (⟨b0, n0⟩).

Proof. We show that Vπf (⟨s, n⟩) ≥ Vπf
⋆ (⟨s, n⟩) for all (⟨s, n⟩) ∈ S × N . Recall Equation (9).

Omitting the constant Cπf (⟨s, n⟩), we rewrite the supremum as follows:

sup
Tπf (⟨s,n⟩)∈T πf (⟨s,n⟩)

∑
s′∈S

∑
n′∈N

Tπf (⟨s′, n′⟩ | ⟨s, n⟩)Vπf (⟨s′, n′⟩)

= sup
Tπf (⟨s,n⟩)∈T πf (⟨s,n⟩)

∑
s′∈S

∑
n′∈N

∑
a∈A

Tπf (⟨s′, n′⟩ | ⟨s, n⟩ , a)Vπf (⟨s′, n′⟩)

= sup
Tπf (⟨s,n⟩)∈T πf (⟨s,n⟩)

∑
s′∈S

∑
n′∈N

∑
a∈A

T (s′ | s, a)δ(a |n,O(s))[n′ = η(n,O(s))]Vπf (⟨s′, n′⟩)

= sup
Tπf (⟨s,n⟩)∈T πf (⟨s,n⟩)

∑
a∈A

∑
s′∈S

∑
n′∈N

T (s′ | s, a)δ(a |n,O(s))[n′ = η(n,O(s))]Vπf (⟨s′, n′⟩).
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Under (s, a)-rectangularity of the RPOMDP, we can continue rewriting this supremum as:

sup
Tπf (⟨s,n⟩)∈T πf (⟨s,n⟩)

∑
a∈A

∑
s′∈S

∑
n′∈N

T (s′ | s, a)δ(a |n,O(s))[n′ = η(n,O(s))]Vπf (⟨s′, n′⟩)

=
∑
a

sup
Tπf (⟨s,n⟩,a)∈T πf (⟨s,n⟩,a)

∑
s′∈S

∑
n′∈N

T (s′ | s, a)δ(a |n,O(s))[n′ = η(n,O(s))]Vπf (⟨s′, n′⟩)

≥

(∑
a

sup
T (s,a)∈T (s,a)

∑
s′∈S

∑
n′∈N

T (s′ | s, a)δ(a |n,O(s))[n′ = η(n,O(s))]Vπf (⟨s′, n′⟩

)
.

Inserting the constant Cπf (⟨s, n⟩) again, we derive:

∑
a

(
δ(a | n,O(s))C(s, a) +

sup
T (s,a)∈T (s,a)

∑
s′∈S

∑
n′∈N

T (s′ | s, a)δ(a |n,O(s))[n′ = η(n,O(s))]Vπf (⟨s′, n′⟩

)
= Vπf

⋆ (⟨s, n⟩).

Since the inequality holds for each state-memory node pair, we also have for some initial belief b0
and initial memory node n0 that Vπf

⋆ (⟨b0, n0⟩) ≤ Vπf (⟨b0, n0⟩).

Intuitively, the robust Markov chain, and thus its value function Vπf , operates under (⟨s, n⟩ , a)-
rectangularity, meaning nature may choose a probability distribution for each state s ∈ S, memory
node n ∈ N , and action a ∈ A independently. In the RPOMDP, and thus the associated value
function Vπf

⋆ , nature operates under (s, a)-rectangularity, meaning it chooses probability distributions
independently of the state s and action a but is restricted to choose the same probability distribution
for each memory node n. The latter is more restrictive to nature, hence nature has fewer options to
adversarially play against the agent. As a result, the agent’s cost may be lower than when nature’s
choices depend on the agent’s memory.

This difference in semantics may also be explicitly encoded in a partially observable stochastic game
by making the agent’s memory either observable or unobservable to nature (Bovy et al., 2024).

B Supervision Policies

This section elaborates on the POMDP approximations used for computing the supervision policies.

QMDP. The QMDP algorithm (Littman et al., 1995) is an effective method to transform an optimal
MDP policy to a POMDP policy by weighting the (optimal) action values Q∗ of the MDP to the
current belief b ∈ B in the POMDP M ∈M:

QMDP(b, a) =
∑
s∈S

b(s)Q∗(s, a) =
∑
s∈S

b(s)

(
C(s, a) +

∑
s′∈S

T (s′ | s, a)V ∗
MDP(s

′)

)
,

where V ∗
MDP is the optimal value of the MDP underlying the POMDP M .

Fast-informed bound. The fast-informed bound (FIB; Hauskrecht, 2000) is an approximation of
the optimal value of the POMDP. It is tighter than the one given by QMDP since it includes a sum over
the observation of the next state. The Q values of FIB are defined as:

QFIB(b, a) =
∑
s∈S

b(s)αa(s) =
∑
s∈S

b(s)

(
C(s, a) +

∑
z∈Z

min
a′∈A

∑
s′∈S

T (s′ | s, a)[z = O(s′)]αa′
(s′)

)
,

where αa : S → R for each a ∈ A is a linear function, or alpha-vector, updated via:

αa
i+1(s) = C(s, a) +

∑
z∈Z

max
a′

∑
s∈S

T (s′ | s, a)[z = O(s′)]αa′

i (s′).
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C Tools and Hyperparameters

We use the tools Storm Hensel et al. (2022) for parsing the models and PRISM Kwiatkowska et al.
(2011) to compute the RMDP values for the lower bounds in Figure 3 and for robust policy evaluation.
We build and train the RNN and the QBN using TensorFlow Abadi et al. (2016). The RNN cell is a
gated recurrent unit (GRU, Cho et al., 2014). Unless specified otherwise, we initialize with a concrete
POMDP instance M ∈M, where the intervals of the uncertainty sets are resolved to a value in the
middle of the interval [i, j] given by i+j/2, taking into account that transitions must sum to 1. For
all the experiments, the simulation batch size is set to I = 256, the maximum simulation length
is set to H = 200, and we run for a maximum of 50 iterations. The RNN and QBN use an Adam
optimizer (Kingma and Ba, 2015) with a learning rate of 1 · 10−3. The hidden size of the RNNs
was set to d = 16. The experiments ran inside a Docker container on a Debian 12 machine. Our
infrastructure includes an AMD Ryzen Threadripper PRO 5965WX machine with 512 GB of RAM.
We train the neural networks on the CPU. The different seeds for the RNN-based methods were
executed in parallel, each running on a single core. Multi-threading in the Gurobi LP solver (Gurobi
Optimization, LLC, 2023) used by SCP was enabled. In our initial tests, we considered hidden sizes
d ∈ {3, 16, 64}, batch sizes I ∈ {128, 256, 512}, learning rates in the range of [1 · 10−2, 1 · 10−4],
and different number of iterations before arriving at our final values. We used the same infrastructure
and experimental setup across methods.

D Network Architectures

In this section, we provide more details on the neural network architectures. Our post hoc QBN
approach largely follows Koul et al. (2019) and Carr et al. (2021), apart from differences mentioned
in Section 5.4. We used a batch size of 32 for both networks during stochastic gradient descent.

D.1 QBN

Similar to prior work (Carr et al., 2021), we employ a quantized bottleneck network (QBN; Koul
et al., 2019). It consists of an encoder E : Ĥ → [−1, 1]l that maps the output of the RNN to a latent
encoding with tanh activation, where l is the latent encoding dimension. The latent encoding is then
quantized by a function q : [−1, 1]l → βBh , where β is the finite set of possible discrete values, for
instance, β = {−1, 0, 1} for three-level quantization. The bottleneck dimension Bh is the number
of quantized neurons. Lastly, there is a decoder D : βBh → Ĥ to reconstruct the input given the
quantized encoding. The QBN represents a function Q : Ĥ → Ĥ where Q(ĥ) = D(q(E(ĥ))) for all
ĥ ∈ Ĥ. We train the QBN to minimize the reconstruction loss, i.e., mean-squared error, on the RNN’s
memory representations derived from the histories in D. The finite set of memory nodes extracted
is formed by the Cartesian product N = ×Bh

β, and n = q(E(ĥ)) ∈ N is the discrete memory
representation. Therefore, the extracted FSC’s memory size |N | = |β|Bh is directly controlled by Bh

and the quantization level, i.e., size of the set β. Note that the quantization level can be changed to be
2-level, i.e., with B = {−1, 1} using the sign function as q, resulting in different controller sizes.

To ensure the encoder E maps to [−1, 1] we use tanh activation. The gradient of this activation
function is close to one around the zero input. Thus, for the 3-level quantization, we use a version
tanhflat of the tanh function in the encoder that is flatter around the zero input to allow for easier
learning of quantization level 0, given by (Koul et al., 2019):

tanhflat(x) = 1.5 tanh(x) + 0.5 tanh(−3x).
To allow the gradient to pass through the quantization layer, we employ a simple straight-trough
estimator that treats the quantization as an identity function during back-propagation (Li and Liu,
2016). The quantization activation function was provided by the Larq library (Geiger and Team,
2020). The encoder and decoder use a symmetrical architecture with tanh activation. The networks
were quite small. The input and output sizes of the encoder and decoder were set to the hidden size d
of the RNN, with intermediate layers of sizes 8 ·Bh and 4 ·Bh.

D.2 RNN

We use a Gated Recurrent Unit (GRU, Cho et al. (2014)) as the RNN architecture. Although there
is no clear consensus between the Long Short-Term Memory (LSTM, Hochreiter and Schmidhuber
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Table 1: Dimensions of each benchmark environment.
Instances Aircraft Avoid Evade Intercept

|S| 13552 10225 4261 4802

|Z| 37 6968 2202 2062

|A| 5 4 5 4

(1997)) architecture and the GRU, the latter has fewer parameters than the LSTM but does have
the ability to learn long-term dependencies due to the forget gate. The forget gate is known to
combat vanishing gradients that occur through the variant of stochastic gradient descent employed
for sequential models, known as backpropagation through time. The inputs to the RNN were put
through a learnable embedding layer. We trained the RNN policy using the method in section 5.3
with a categorical cross-entropy loss implemented in TensorFlow. To prevent exploding gradients in
the RNN, we use a norm-clipped gradient and orthogonal weight initialization (Saxe et al., 2014) in
the recurrent layer of the GRU, as recommended by Ni et al. (2022).

E Benchmark Descriptions

In this section of the Appendix, we describe the benchmarks studied in the paper. All environments
are adapted with uncertain transition functions. The grid-world environments model the probability
of taking multiple steps instead of a single one for each possible moving action, to which we
assign the interval [0.1, 0.4]. In Aircraft, we have two uncertainties: the probabilities of the pilot’s
responsiveness and of the adversary changing direction, both mapping to the same [0.6, 0.8] interval.
The dimensions of the benchmarks are given in Table 1. We specify the dimensions of the grid-worlds
to the same sizes as set in Carr et al. (2023).

E.1 Aircraft Collision Avoidance

We consider a discretized and model-uncertain version of the aircraft collision avoidance prob-
lem (Kochenderfer et al., 2015) as introduced in Cubuktepe et al. (2021).

Aircraft. We follow the discretization procedure exactly and base our model on Cubuktepe et al.
(2021), but slightly adapt it for our expected cost formulation. The objective is to minimize the
expected cost, which models avoiding a collision with an intruder aircraft while taking into account
partial observability (sensor errors) and uncertainty with respect to future paths. Crashes incur an
additional cost of 100 over the usual cost incurred of 1 for each action. Furthermore, the only sink
states are the goal states G ⊆ S.

E.2 Grid-worlds

We consider the grid-worlds introduced by Junges et al. (2021) but reformulate them as an expected
cost (SSP) objective. All actions incur a cost of c = 1, with an additional penalty of c = 100 when in
a bad state. Once again, the only sink states of the RPOMDP are the goal states G ⊆ S.

Avoid. The Avoid benchmark models a scenario where a moving agent must keep a distance
from patrolling adversaries that move with uncertain speed. Additionally, its sensor yields partial
information about the position of the patrolling adversaries. The agent may exploit knowledge over
the predefined routes of the patrolling adversaries.

Evade. Evade is a scenario where a robot needs to reach a destination and evade a faster adversary.
The agent has a limited range of vision but may scan the whole grid instead of moving, incurring the
same cost as moving. A certain safe area is only accessible by the agent.

Intercept. Intercept is the opposite of Evade because the agent aims to meet another robot before it
leaves the grid via one of two available exits. Once the target robot has exited, the agent incurs an
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RFSCNET baseline

Clustering QRNN k-means++ QBN QBN QBN QBN
Supervision QMDP QMDP QMDP QFIB QMDP QFIB

Aircraft med × 103.30 102.95 103.41 105.91 105.83
min × 102.03 101.91 101.88 104.66 104.60

Avoid med 19.90 18.51 20.19 19.43 18.83 18.70
min 18.62 18.16 18.57 18.53 18.39 18.35

Evade med × 37.61 37.96 38.20 36.64 36.67
min × 36.65 36.98 37.07 36.06 36.11

Intercept med 66.00 56.20 79.71 79.51 110.47 109.36
min 42.92 34.95 45.37 48.16 82.30 81.66

Table 2: Evaluation across multiple configurations for RFSCNET and a baseline trained on the
(nominal) POMDP that resides in the middle of the uncertainty set. The values represent median
(med.) and minimum (min.) robust values from the best FSCs computed of each run across 20 seeds.
QRNN represents training the QBN end-to-end, see Section 5.4. × indicates a run failed. Bold
indicates the best (med/min) performance for each environment, i.e., across the rows.

additional penalty of c = 100 for each step before reaching a goal state. On top of the view radius,
the agent observes a corridor in the center of the grid.

F Extended Experimental Evaluation

Below, the is trained in the middle of the uncertainty set, as specified in Appendix C.

F.1 Configuration Study

Due to its modularity, RFSCNET allows for different configurations that may have an effect on its
performance. In Table 2, we collect median and minimum results across different configurations
of RFSCNET. The combination of QMDP and k-means++ proves best, which is what is shown in
the table of Figure 3 in the paper. QRNN, the method that uses a QBN trained end-to-end, did
not perform successfully on all environments. This is due to instability during training, caused by
updating the QBN’s parameters with the gradients calculated from training the RNN, see Section 5.3.
However, by directly encoding the clustering of the QBN into the RNN architecture during training,
we observe an improvement in the median and minimum performance on the two successful runs,
Avoid and Intercept, over training the QBN post hoc. We also show results for the baseline when
trained with the two different supervision policies.

The full results in the form of boxplots are depicted in Figure 4.

F.2 Extended Analysis on Various Memory Sizes

In this subsection, we study the memory comparison between RFSCNET and SCP in more detail.
We chose Aircraft and Evade, as SCP appeared most consistent on these benchmarks. In this study,
RFSCNET ran with a post hoc QBN and QMDP as supervision policy. We run for the maximal
memory settings that we can restrict RFSCNET to when using the QBN, namely the values in the set
k ∈ {3, 4, 8, 9, 16}, which is the size of the sets that can be found through binary k ≤ 2Bh or ternary
quantization k ≤ 3Bh , see also Appendix D.1. Figure 5 extends the right-side plot in Figure 3 with
statistical details. Namely, we plot the standard deviation around the median values in the heatmap
and show the global min and max of each method. We observe very stable performance for our
method across the various memory sizes. Both on Aircraft and Evade, SCP shows relatively stable
performance across memory sizes up to k = 9. However, also on these benchmarks the performance
drops when the required memory is set to a high level. Evidently, RFSCNET does not suffer from
the same phenomenon. Furthermore, RFSCNET outperforms Aircraft on all memory settings and
performs similarly or better than SCP on Evade.
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Figure 4: Comparison of the robust values between RFSCNET and a baseline trained across configu-
rations. For Avoid, we plot without the run with QRNN, as it produces large outliers.
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Figure 5: Comparison of the robust values between RFSCNET and SCP. For RFSCNET, the error
bars depict the standard deviation, and the dotted line shows for each method the global minimum
and global maximum.
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Figure 6: Comparison of RNN and QBN losses between RFSCNET and a baseline over the iterations.
The line shows the mean over 20 seeds, and we plot the standard deviation around the mean for the
RNN loss. On Aircraft and Evade, there is only a slight difference between the losses of the baseline
and RFSCNET. On the right, on Avoid, a big difference is visible.

F.3 Loss Comparison

Figure 6 shows the RNN and QBN losses of the baseline and RFSCNET on Aircraft and Avoid. Both
runs employ a QBN and use FIB as the supervision policy. The QBN is trained individually from the
RNN, i.e., post hoc. The results show that as the RNN loss decreases, the QBN reconstruction loss
increases. This tells us that it gets increasingly hard to compress the hidden states of the RNN as they
get more refined. An intuition is that the RNN learns to use a larger part of Ĥ to represent the hidden
states as training progresses, therefore making it harder to cluster the hidden states. Alternatively, one
could train the QBN end-to-end. However, as we elaborate in Appendix F.1, this approach suffers
from instability during training and, therefore, did not successfully run on all environments.

G Run Times

For completeness, we report the run times of each procedure for every environment in Table 3. We
report the run times using a QBN trained post hoc and FIB, which is the most expensive configuration
in terms of computations. The RNN-based run times are averaged over the 20 seeds. We would like
to note that the times given for SCP are user time and do not account for the total CPU time incurred
by multi-threading. For the RNN-based approach, we see that the baseline is slightly faster in every
environment except for Avoid, as it does not execute Step 4 of our method from Section 6.2, and
does not need to recompute the supervision policies as the POMDP is fixed. The run times naturally
increase for larger FSCs because the Markov chain used for robust policy evaluation grows larger
when the FSC has more memory nodes. Our method spends the majority of its time in its robust
evaluation, executed by robust value iteration (robust dynamic programming) in PRISM. Additionally,
extraction from the QBN can take longer, as |N | forward passes of the RNN are required. Typically,
the worse the policies found, the longer it takes to perform robust dynamic programming. By
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Algorithm 1 PIP algorithmic set-up
1: repeat
2: Compute πf for POMDP M .
3: Compute Vπf and find M ′, through Equation (10), and set M ←M ′.
4: until convergence

comparing the run times of the baseline to our robust method, we see that the heuristic for finding
worst-case instances does increase execution time. Finally, we would like to point out that the run
times for SCP could be summed for a fair comparison, as running SCP for only k = 9 yields much
worse results than for k = 3.

Table 3: Average run times in seconds across 20 runs for RFSCNET and the baseline, and the user
time of the SCP method on each environment. Thus, both run-times represent a form of user time.

Robust (k ≤ 9) Baseline (k ≤ 9) SCP (k = 3) SCP (k = 9)

Aircraft 10562.51± 156.03 2518.39± 158.76 1133.8 2169.3
Avoid 9987.82± 1209.82 12778.36± 1164.16 2167.9 6217.9
Evade 5157.85± 131.58 1281.85± 58.73 872.7 3674.1
Intercept 2501.95± 16.00 1624.33± 12.49 1884.9 3243.5

H Convergence of PIP (WIP)

Definition 7 (Adversarial POMDP). Given an FSC policy πf , the adversarial POMDP M ′ ∈M is
the POMDP M ′ = ⟨S,A, T , C, Z,O⟩ with the worst-case transition function T ∈ T with respect to
the robust value function Vπf :

T ∈ argmax
T∈T

T πfVπf (10)

inf
πf∈Π

sup
T∈T

Jπ
T

= inf
πf∈Π

sup
T∈T

Eπ,T

[
ρ♢G

]
= min

πf∈Π
max
T∈T

[
Cπf + TπfV

πf

T

]
≤ min

πf∈Π

[
Cπf + max

Tπf ∈T πf

{
TπfV

πf

T

}]
Then, the left-hand side of PIP computes a new FSC π′

f for the given adversarial POMDP M ′ ∈M.
Therefore, under our objective of minimizing the worst-case expected costs, we are interested to
know that there is a (monotonic) improvement between Vπf and Vπ′

f , e.g., that π′
f is a better robust

policy than πf . That is, that Vπf ⪰ Vπ′
f , where ⪰ denotes the entry-wise comparison operator for

all states and memory nodes, such that ∀⟨s, n⟩ ∈ S ×N : Vπf (⟨s, n⟩) ≥ Vπ′
f (⟨s, n⟩). From this, it

would follow that
∑

s∈S b0(s)Vπf (⟨s, n0⟩) ≥
∑

s∈S b0(s)Vπ′
f (⟨s, n0⟩).

Policy improvement with respect to T will improve
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Algorithm 2 RFSCNET’s algorithmic set-up

1: Input: Robust POMDPM, stopping criterion c
2: repeat
3: Simulate πM using Section 5.1 on M and store histories and action distributions in D.
4: Train πϕ on D to match πM via BPTT.
5: Discretize πϕ into πf .
6: Compute Vπ

f through Definition 5.
7: Solve LP from Equation (8) to find T ∈ T adversarial to Vπ

f and instantiate a new M ′ ∈M.
8: until c is satisfied
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