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Abstract

Character-based representations have important001
advantages over subword-based ones, includ-002
ing increased robustness to noisy input and re-003
moving the need of tokenization preprocessing.004
However, they also have a crucial disadvan-005
tage: they notably increase the length of text se-006
quences. The GBST method from Charformer007
groups (aka downsamples) characters to solve008
this, but allows information to leak when ap-009
plied to a Transformer decoder. We introduce010
novel methodology to solve this information011
leak issue, which opens up the possibility of us-012
ing character grouping in the decoder. We show013
that Charformer downsampling has no apparent014
benefits in NMT over previous downsampling015
methods.016

1 Introduction017

Most state-of-the-art neural machine translation018

(NMT) systems operate on the subword level, typ-019

ically using a preprocessing technique like Byte-020

Pair Encoding (BPE) (Sennrich et al., 2016) for021

combining characters into subwords. However, us-022

ing a subword representation can often mask im-023

portant information given by characters, from the024

syntactic relatedness of words (e.g., “bake” and025

“bakes” may be assigned each their own unique026

token) to literary devices such as rhyme and allit-027

eration. Although a byte-level pretrained language028

model, ByT5 (Xue et al., 2021), demonstrated that029

it was more robust to misspellings than its subword030

counterpart, T5 (Raffel et al., 2019), results on031

common benchmarks such as GLUE did not reflect032

this inherent advantage. Similarly, in NMT, we033

have not seen any advantage from character-level034

models reflected by their BLEU, chrF, or COMET035

scores to date (Libovickỳ et al., 2021).036

The major inhibitor for character-level models037

is inefficiency, which is due to the increased length038

of the input and output sequences. For example,039

the average number of characters per subword for040

English is around 4 (Xue et al., 2021), so the in- 041

put sequence to a character-level model is effec- 042

tively 4 times longer. With a Transformer model, 043

the problem is compounded by the complexity of 044

self-attention. To address this, models such as the 045

Charformer (Tay et al., 2021) introduce a down- 046

sampling method prior to the Transformer, which 047

combines characters into pseudo-words, reducing 048

the length of the sequence. The downsampling 049

method used in the Charformer, GBST, was orig- 050

inally intended only for use in the encoder, and 051

recent works attempting to apply the GBST layer 052

to the decoder have failed (Libovickỳ et al., 2021).1 053

Our contributions include: 054

1. We show that there is an information leak in 055

the GBST layer which breaks the typical NMT 056

training scheme of a Transformer model. 057

2. We resolve the information leak issue, allow- 058

ing it to be used in a Transformer decoder. 059

3. We provide a simple test to check for informa- 060

tion leaks in any task which exhibits causality. 061

4. We show that despite Charformer’s current 062

popularity, the GBST layer does not perform 063

as well as earlier methods such as Lee et al. 064

(2017) for NMT. 065

We first discuss the information leak issue, in- 066

cluding our test to confirm the problem and our 067

potential solutions in Section 2. Details of our ex- 068

periments are in Section 3, results and discussion 069

thereof in Section 4, and concluding remarks in 070

Section 5. 071

2 Patching Information Leaks 072

The Charformer modifies ByT5 with the addition of 073

the gradient-based subword tokenization (GBST) 074

1In consultation with the authors, we determined that their
reported results using GBST in the decoder were in fact using
a different downsampling method.
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Figure 1: Example of the mean mixing in the GBST
layer, with alternating block colors assigned accord-
ing to what information is accessible via mean mixing.
Numbers indicate the range of positions accessible to
each n-gram. The striped n-grams indicate a source of
information leak.

layer. This layer mixes character representations075

(which are also informed of their relative positions076

via a convolution) using a simple mean computed077

over character n-grams up to length 4.2 The model078

then selects a weighted average of these represen-079

tations before a downsampling via a block-wise080

mean pooling. The result is a sequence of pseudo-081

word-level embeddings that is fed in directly to082

the Transformer (in contrast with the standard se-083

quence of subword embeddings).084

The GBST layer can be applied directly to a085

Transformer encoder without issue, but it cannot086

be applied to a Transformer decoder for generative087

tasks. This is due to an information leak, where088

information about characters in future blocks can089

end up in prior blocks. This occurs for 2 reasons:090

the convolution used to inform position, and the091

character n-gram means, both of which can overlap092

with the block-wise separations.093

Concerning the convolution, each character is094

informed by its neighboring characters, which is095

necessary for the convolution to serve as a posi-096

tional embedding. However, this creates the issue097

that characters on the right side of a block will be098

informed by characters to the left in a future block.099

The character n-gram averaging similarly can100

obtain information from future blocks. As seen in101

Figure 1, with a downsampling factor of 4, the issue102

occurs with trigrams, where the 4th position is aver-103

aged with the 5th and 6th, despite being in separate104

blocks. Therefore, when the Transformer must pre-105

dict the block containing the 5th and 6th characters,106

it has already received information about them, and107

thus can learn to simply copy the characters.108

2.1 A Simple Test for Information Leaks109

To confirm that there is indeed a leak in the GBST110

layer, we set up a simple model consisting of a111

GBST layer, followed by an upsampling layer,112

2For decoding, we include n-grams up to the length of the
downsampling factor.

Figure 2: Our third proposed solution to preventing
information leak.

which is simply a linear layer that takes the down- 113

sampled block representation and upsamples it 114

back to characters. We then train the model to pre- 115

dict a sequence of random characters, conditioned 116

on the prior characters in the sequence, using a 117

left-padding of BOS tokens equal to the downsam- 118

pling factor. (e.g., ‘[BOS] [BOS] [BOS] a b c’ is 119

used to predict ‘a b c d e f’). We expect that, if 120

there is no information leak, the model will have 121

a near-random accuracy, and conversely if the ac- 122

curacy is significantly higher than random, there is 123

an information leak. 124

In Table 1, we show the specific positions in a 125

sequence affected by the leaks. Details of these ex- 126

periments can be found in Appendix A. We use 127

a vocabulary of size 100, so the accuracy of a 128

perfectly random classifier should be around 1%, 129

however we see in several cases that the models 130

achieve significantly better. In the worst case, with 131

a downsampling factor of 4 and using the convo- 132

lutional positional embeddings, 75% of the tokens 133

are leaked. 134

To resolve this issue, we considered three poten- 135

tial solutions: adding more padding, removing any 136

n-grams causing a leak, or applying a mask to these 137

n-grams. 138

Approach 1: Additional Padding 139

The simplest potential solution is to pad the se- 140

quences enough so that there is no possibility of 141

leaking. Preliminary experiments indicated that 142

padding with 2 times the downsampling factor pre- 143

vented any leak. This approach however introduces 144

the issue that the predictions are no longer condi- 145

tioned on the block 1 step back, but rather the block 146

2 steps back. 147

Approach 2: Remove Overlapping N-Grams 148

Our second approach instead addresses the sources 149

of information leak. First, the convolution used as 150

a positional embedding is replaced with a static si- 151

nusoidal positional embedding, as used in Vaswani 152

et al. (2017). Second, the means for n-grams where 153

there is overlap are removed. For example, for a 154
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δ Conv? 1 2 3 4 5 6 7 8 9 10 11 12

2 No 0.0103 0.0109 0.0103 0.0122 0.0106 0.0113 0.0141 0.0122 0.0147 0.0116 0.0113 0.0075
Yes 1.0000 0.0116 0.9941 0.0097 0.9947 0.0100 0.9959 0.0113 0.9966 0.0097 0.9962 0.0113

3 No 0.1356 0.0078 0.0109 0.0100 0.0078 0.0103 0.0241 0.0106 0.0088 0.0091 0.0103 0.0081
Yes 1.0000 1.0000 0.0072 0.9987 0.9981 0.0106 0.9772 0.9619 0.0131 0.9966 0.9981 0.0081

4 No 0.1347 0.0338 0.0137 0.0113 0.0262 0.0106 0.0122 0.0100 0.0113 0.0097 0.0063 0.0072
Yes 1.0000 0.9994 1.0000 0.0119 0.9775 0.9744 0.9781 0.0137 0.9966 0.9900 0.9950 0.0122

Table 1: Accuracies obtained by the simple model for each position in a target sequence of 12 random tokens,
with varying downsampling factor (δ) and either convolutional or sinusoidal positional embeddings. Blue denotes
accuracies within random chance (p > 1e − 3), while red denotes accuracies that are significantly higher than
random chance (p < 1e− 10), showing an information leak.

downsampling factor of 4, the means for all tri-155

grams are removed. These 2 alterations remove156

the possibility for information leak, however it is157

possible that the removal of trigrams or other n-158

grams will substantially worsen the model’s ability159

to learn contextual character embeddings before160

downsampling into blocks.161

Approach 3: Apply Causal Mask162

Our third approach builds on our second approach163

by keeping the sinusoidal positional embeddings164

and, rather than removing problematic n-grams,165

applies a causal mask when computing the mean.166

This can be seen in Figure 2, where overlapping167

n-grams are split by block, with the right side being168

informed by the left, but the left side being unin-169

formed by the right. This approach allows n-gram170

information such as trigram information to remain171

when it is not overlapping, however the informa-172

tion present in the blocks is not always consistent.173

This inconsistency might be difficult for the model174

to discern.175

3 Experimental Setup176

Our experiments use the IWSLT2017 data3 for177

English–German and English–Arabic, using the178

test sets from 2010 and 2015 for validation and test-179

ing, respectively. We remove sentence pairs where180

the English sentence is longer than 256 characters181

from the training data. To keep our vocabulary182

size consistent across all languages, we tokenize183

according to UTF-8 bytes rather than using a char-184

acter vocabulary.4 We also include subword-level185

models, with vocabularies generated with Senten-186

cePiece (Kudo and Richardson, 2018). We chose187

a vocabulary size of 16 thousand, as that roughly188

corresponds to a downsampling factor of 4.189

3https://sites.google.com/site/
iwsltevaluation2017/TED-tasks

4Operating on the byte-level also follows Tay et al. (2021),
despite the name “Charformer” perhaps suggesting otherwise.

We use the Transformer model with the same 190

parameters as Transformer Base (Vaswani et al., 191

2017). Our choice of hyperparameters can be found 192

in Appendix B. All of our models are trained on a 193

single Nvidia V100 (32GB) GPU. 194

For decoding with Lee et al.’s and the Char- 195

former downsampling methods, we apply the two- 196

step decoder of Libovickỳ et al. (2021), which adds 197

an LSTM layer to the head of the Transformer, re- 198

ceiving its hidden states in addition to character em- 199

beddings of the so-far generated output sequence, 200

and outputting the next characters. The parameters 201

used for Lee et al.’s method also follow Libovickỳ 202

et al. (2021). 203

For evaluation we use BLEU (Papineni et al., 204

2002) and COMET (Rei et al., 2020). For COMET 205

we use the reference-based wmt20-comet-da 206

model. Our code is made freely available.5 207

4 Results 208

We compare the performance of our modified 209

GBST layers in Table 2. First, we observe the 210

GBST with additional padding, like the non-causal 211

GBST, fails to learn any form of translation. This 212

indicates that predicting two blocks into the future 213

is too difficult a task for the model to make any 214

meaningful progress in learning to translate. 215

δ Non-Causal Padding Removal Masking

2 0.00 0.04 25.49 24.59
3 0.00 1.35 24.90 22.16
4 0.00 0.62 22.07 17.47

Table 2: BLEU scores of our 3 approaches on
German→English.

We can also see that the simpler approach of 216

dropping overlapping n-grams works better than 217

applying a causal mask. We suspect this is due to 218

a lack of consistency within the masked n-gram 219

5Link to code will be added here.
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representations, as some are simply duplicates of220

the lower order n-gram representations.221

The downsampling factor also plays no role in222

the difference between the methods. Although the223

average length of a subword in English and German224

is close to 4 characters, making a downsampling225

factor of 4 an intuitive choice, a higher downsam-226

pling factor leads to worse performance.227

Method δ de-en en-de ar-en en-ar avg

Subword 1 27.23 24.08 25.59 11.22 22.03

Char 1 27.37 24.32 26.34 8.73 21.69

r-GBST 2 25.49 22.17 24.21 7.81 19.75
4 22.07 20.25 22.24 8.32 18.22

Lee 2 27.10 23.27 25.05 9.94 21.34
4 24.32 21.06 22.63 9.24 19.31

Method δ de-en en-de ar-en en-ar avg

Subword 1 0.2034 0.0730 0.0628 0.1203 0.1149

Char 1 0.2215 0.0396 0.1417 -0.0079 0.0987

r-GBST 2 0.1097 -0.1010 0.0349 -0.1149 -0.0178
4 -0.1230 -0.3519 -0.1354 -0.1380 -0.1871

Lee 2 0.2153 -0.0187 0.0737 0.0439 0.0786
4 0.0191 -0.2374 -0.0726 -0.0440 -0.0837

Table 3: BLEU (top) and COMET (bottom) scores.

Despite the modified GBST with n-grams re-228

moved (henceforth r-GBST) being the best per-229

forming modification, Table 3 shows us that it is230

still outperformed by the downsampling method231

from Lee et al. (2017). The mode of operation be-232

tween Lee et al.’s method and the GBST method233

is similar: both achieve a mixture of characters,234

focusing only on neighboring characters to reduce235

computational complexity. While GBST achieves236

this with averaging across unigrams to 4-grams,237

Lee et al. uses convolutions with differing kernel238

sizes. The mixing via convolution is more uniform239

in nature; for example, the convolution with kernel240

size 3 is analogous to the tri-gram mixing, however241

the convolution does not have a hard boundary after242

every 3rd character. This may be the reason for Lee243

et al.’s method’s superior performance.244

Regardless to the reason for its superior perfor-245

mance in NMT, these results raise the question of246

the significance of the performance of the Char-247

former for any NLP task. If Lee et al.’s method248

was used in the same pretraining setup used in Tay249

et al. (2021), would we perhaps see superior per-250

formance?251

Both downsampling methods also perform worse252

than using no downsampling method, however253

there is a trade-off in training time. In Table 4,254

Method Decoding δ Epoch Completion Eval

Subword Normal 1 5:34 3:52:31 1:33
2-Step 1 5:47 5:15:57 1:40

Char Normal 1 14:37 14:52:21 5:15
2-Step 1 16:45 17:02:35 5:19

r-GBST 2-Step 2 10:38 10:15:02 3:19
4 8:08 8:16:32 2:03

Lee 2-Step 2 13:09 13:22:48 5:45
4 10:07 11:55:09 2:43

Table 4: Average time to train for 1 epoch and to com-
pletion, and to evaluate on the German→English dataset
(hours + minutes + seconds). Times for other language
pairs are proportionally similar.

we show the time it takes to train and evaluate on 255

the test set post-training. We include character and 256

subword-level models where we use the two-step 257

decoding method, in order to separate the effect 258

of downsampling from the decoding method.6 We 259

can see that our downsampling methods are faster 260

for both training and generation than the character 261

model. However the subword model is still the 262

fastest, all while achieving the best performance. 263

5 Conclusion 264

Character-level or byte-level models are intuitive 265

for a variety of reasons but currently suffer from 266

a lack of efficiency due to the longer sequences. 267

Downsampling methods such as the GBST layer in 268

the Charformer looked promising, however it is not 269

usable for generative tasks without modification 270

due to a leak of information flowing from future 271

blocks. With modification, the GBST layer does 272

not perform as well as older methods such as that 273

of Lee et al. (2017). 274

Despite the intuitiveness of downsampling from 275

characters to pseudo-words, we see a clear trade- 276

off of performance versus time, with performance 277

decreasing by several BLEU points, but the training 278

and generation time being reduced to up to 50% of 279

the non-downsampled model. 280

Although both downsampling methods tested do 281

not reach the performance of the standard character- 282

level model, subword-level models show that short- 283

ening the sequence length can lead to appreciably 284

faster models without any sacrifice in performance. 285

Thus some form of downsampling is likely benefi- 286

cial, and our method for checking for information 287

leaks can serve as a useful debugging tool for future 288

research. 289

6The performance of the 2-step character and subword
models are similar to their normal counterparts.
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A Test for Information Leaks 351

Our approach for testing for information leaks in a 352

downsampling method trains for 5000 iterations 353

in batches of 32. We use the Adam optimizer 354

(Kingma and Ba, 2014), with a learning rate of 355

1e-4. These numbers were determined empirically, 356

based on the degree of separation seen from the ac- 357

curacies of the leaking versus non-leaking tokens. 358

The accuracies in Table 1 are obtained over 100 359

batches, or 3200 samples. 360

B Main Experiments Hyperparameters 361

We train our models using AdamW (Loshchilov 362

and Hutter, 2017) with a learning rate of 2e-4, a 363

linear warmup of 4000 steps, a batch size of 128, 364

and label smoothing factor of 0.1. The learning 365

rate was chosen from a grid search, the batch size 366

chosen empirically, and the warmup steps and label 367

smoothing factor were based on Libovickỳ et al. 368

(2021). We use an early stopping criterion of no 369

improvement on the validation set with a patience 370

of 10. 371
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