
Exact Count of Boundary Pieces of ReLU Classifiers:
Towards the Proper Complexity Measure for Classification

Paweł Piwek1 Adam Klukowski2 Tianyang Hu2

1University of Oxford, pawel.piwek@maths.ox.ac.uk
2Huawei Noah’s Ark Lab, hutianyang1@huawei.com

Abstract

Classic learning theory suggests that proper regu-
larization is the key to good generalization and ro-
bustness. In classification, current training schemes
only target the complexity of the classifier itself,
which can be misleading and ineffective. Instead,
we advocate directly measuring the complexity of
the decision boundary. Existing literature is lim-
ited in this area with few well-established defini-
tions of boundary complexity. As a proof of con-
cept, we start by analyzing ReLU neural networks,
whose boundary complexity can be conveniently
characterized by the number of affine pieces. With
the help of tropical geometry, we develop a novel
method that can explicitly count the exact num-
ber of boundary pieces, and as a by-product, the
exact number of total affine pieces. Numerical ex-
periments are conducted and distinctive properties
of our boundary complexity are uncovered. First,
the boundary piece count appears largely indepen-
dent of other measures, e.g., total piece count, and
l2 norm of weights, during the training process.
Second, the boundary piece count is negatively
correlated with robustness, where popular robust
training techniques, e.g., adversarial training or
random noise injection, are found to reduce the
number of boundary pieces.

1 BACKGROUND

Despite deep learning’s huge success in image classification,
naturally trained deep classifiers are found to be adversari-
ally vulnerable [Goodfellow et al., 2014, 2016]. By adding
a small perturbation (adversarial attack) to an image, which
is almost imperceptible to humans, the neural network’s pre-
dicted class can be arbitrarily manipulated. The prevalence
of adversarial examples for state-of-the-art deep classifiers,

even on small datasets such as CIFAR [Krizhevsky, 2009],
suggests overfitting, where decision boundaries of trained
deep neural networks (DNNs) are overly complicated and
within a small distance to almost all the training instances.
Ideally, we want our model to generalize well on unseen
data and be robust against small input perturbations, i.e., the
prediction doesn’t change much in case of small random
noises. For regression, the requirement loosely translates
to the smoothness of the predictor function. However, it
becomes drastically different for classification, due to the
discrete nature of class labels.

The goal of classification is to recover the Bayes optimal
decision boundary with the lowest misclassification rate (0-1
loss). Decision boundary corresponds to certain level sets
of the classifiers, which is more difficult to control than the
classifier itself. As is often the case, especially in image clas-
sification, the classes can be thought of as separable with
positive margins, i.e., the class labels have no randomness
and images in different classes reside in non-overlapping
regions with positive pairwise distances. In this case, there
are infinitely many possible decision boundaries with zero
misclassification error, but only some of them are robust
with good generalization properties. Current training meth-
ods offer little control over the selection process and the
resulting decision boundaries often turn out to be unsatisfac-
tory. For natural data, it is commonly believed that an ideal
decision boundary (e.g., human’s), which offers both good
accuracy and robustness, should not be too complicated. In
practice, how to effectively find such decision boundaries
can be a real challenge.

Let F denote some function space. In learning theory, the
model complexity (how large is F) is of critical importance,
especially for model generalization and robustness [Vapnik,
1999, Bousquet and Elisseeff, 2002, James et al., 2013].
Certain types of regularization are necessary to prevent over-
complication and overfitting of the training data. The same
is also true in deep learning, where modern networks are
usually overparametrized. Various regularization techniques
have been developed for training DNNs, e.g., weight de-

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<hutianyang.up@outlook.com>?Subject=Your UAI 2023 paper

cay, dropout [Srivastava et al., 2014], batch normalization
[Ioffe and Szegedy, 2015], early stopping [Prechelt, 1998],
etc. Though their regularization effects are largely implicit,
a variety of implicit biases have been recently identified
[Woodworth et al., 2019, Chizat and Bach, 2020, Razin
and Cohen, 2020, Hu et al., 2021b, Ding et al., 2023]. Nev-
ertheless, without exception, all aforementioned types of
regularization are on the functional level, i.e., regularizing
F with respect to some complexity measurement. However,
as we will point out in the next section, the complexity of
F itself is not of the most interest in classification. Instead,
what matters the most are the level sets of F .

2 PROPER REGULARIZATION FOR
CLASSIFICATION

For a function f : Rd → R, let ∥f∥∞ = supx∈Rd |f(x)|.
Let P be a probability measure on Rd and denote
d△(G1, G2) = P(G1△G2) = P ((G1\G2) ∪ (G2\G1))
as the measure of the symmetric difference of sets in Rd.

Consider the binary classification setting where x ∈ Rd,
y ∈ {−1, 1}. Let the conditional probability η(x) = P(y =
1|x). Given η(x), the Bayes optimal decision rule is to as-
sign label 1 if η(x) ≥ 1/2 and label −1 if η(x) < 1/2.
If the two classes are separated (the supports of two class
distributions are disjoint), η is a piecewise constant func-
tion taking values only from {0, 1}. The 0-1 loss is not
friendly for optimization [Bartlett et al., 2006]. Thus, var-
ious surrogate losses are employed in practice, e.g., cross-
entropy, hinge loss, etc. In statistics literature, there are two
types of assumptions for classification [Audibert and Tsy-
bakov, 2007], one on the conditional probability and the
other on the decision boundary. Classification by estimating
the conditional probability is usually referred to as "plug-in"
classifiers and it’s worth noting that it essentially reduces
classification to regression. In comparison, estimating the
decision boundary is more fundamental [Hastie et al., 2009].
Hence, characterizing the decision boundary is of critical
importance.

2.1 FROM FUNCTION SPACE TO LEVEL SET

The goal of classification is to recover the Bayes optimal
decision boundary, which divides the input space into non-
overlapping regions with respect to labels. Therefore, classi-
fication is better to be thought of as estimation of sets in Rd,
rather than estimation of functions on Rd. This is because
the set difference reflects the 0-1 loss much more directly
than functional norms on F . To be more specific, if f ∈ F
approximates η so well that ∥f(x)− η(x)∥∞ ≤ 2ϵ, there
is still no guarantee of matching the sign of η(x) − 1/2
close to the decision boundary. Consider a noisy scenario,
where the label we observe is flipped relative to the true
label with probability

(
1
2 − ϵ

)
. Then the misclassification

Figure 1: Illustration of a difficult classification task in
[−1, 1]2 using ReLU classifiers. Two classes (blue and red)
are separated. Among all the points, only 300 in each class
are training samples, marked with thickened outline. The
left figure is from regular training, achieving 99.65% test
accuracy; the right figure is from adversarial training, achiev-
ing 100% test accuracy. The decision boundary on the right
is more robust and noticeably less complicated.

rate of f could be arbitrarily bad. In contrast, if we have a
good estimation of the set G∗ = {x ∈ Rd : η(x) ≥ 1/2}
such that d△(Ĝ,G∗) ≤ ϵ, the misclassification probability
can be directly bounded by ϵ.

In practice, the deep classifier is parametrized by a neural
network f ∈ F and the decision boundary is its level set,
Gf := {x ∈ Rd : f(x) = 0}, which is modeled implicitly.
Let G = {Gf : f ∈ F}. Notice that regularizing f may
have no effect on Gf since the level set is invariant to scal-
ing of f . To be more specific, f(x) and λ · f(x) have the
same level set, and as λ → 0, the majority of commonly
used function norms ∥f(x)∥ will tend to zero. Hence, the
complexity of F and the complexity of G may not be closely
connected.

When explicit regularization is absent in training deep clas-
sifiers, one may hope the decision boundary complexity is
implicitly regularized, either from the model architecture or
the training techniques. Unfortunately, this is not supported
by empirical evidence in robust transfer learning [Shafahi
et al., 2019]. Given an adversarially robust teacher model,
e.g., from adversarial training, only by vanilla knowledge
distillation [Hinton et al., 2015] and fitting the input-output
relationship, the resulting student model, no matter the size,
does not retain robustness. To achieve comparable robust-
ness, data augmentation on the input space such as mixup
samples [Muhammad et al., 2021], or matching intermedi-
ate features [Goldblum et al., 2020] seems indispensable.
While matching the classifiers cannot transfer robustness,
matching the decision boundary from teacher to student
obviously can. From this perspective, various data augmen-
tations can be viewed as regularization of the input space,
on the decision boundary.

Adversarial training, noise injection, and margin maximiza-
tion can all be viewed as means of boundary regularization,
pushing decision boundaries away from training samples.

We show empirically that these methods lead to a significant
reduction in boundary complexity, even though their design
motivation was different. Adversarial training can be also
viewed as a special form of gradient regularization [Lyu
et al., 2015], or data-dependent operator norm regulariza-
tion [Roth et al., 2019]. Among others, Chan et al. [2019]
proposed to directly regularize the saliency of the classifier’s
Jacobian to improve robustness. Adversarial robustness is
also shown to improve by replacing the ReLU activation
with smooth functions [Xie et al., 2020], and modifying the
loss function [Pang et al., 2019, Bao et al., 2020, Hu et al.,
2021a]. Although the classifier gradient is more related to
boundary complexity, these types of regularization methods
inspired by adversarial training are not directly targeting the
decision boundary.

In this work, we advocate that for classification, the proper
complexity to regularize is the boundary complexity of G,
rather than the functional complexity of F . A complexity
measurement directly targeting the decision boundary will
better reflect classification properties and may be largely
independent of known metrics on the function space.

2.2 MEASURING BOUNDARY COMPLEXITY

Now that we have established boundary complexity as
the proper, yet missing regularization in classification, the
next question is how to measure it. Compared to func-
tions, boundary complexity measurement is far less ex-
plored. In statistics literature, classification has been an-
alyzed as a nonparametric estimation of sets problem where
the convergence rate critically depends on the complex-
ity of the hypothesis class and the estimator class [Mam-
men and Tsybakov, 1999]. However, the typical complexity
measurements, e.g., bracketing entropy, covering number,
Rademacher complexity, etc. are on the group level and can-
not evaluate a single set (decision boundary). For general
classifiers, how to properly quantify the boundary complex-
ity remains an open problem. Chen et al. [2019] utilized
persistent homology to measure the topological complex-
ity of decision boundaries. Lei et al. [2022] characterized
boundary complexity by their variability with respect to
data and algorithm randomness. Yang et al. [2020] proposed
the concept of boundary thickness and demonstrated its
relationship to classification robustness. However, the afore-
mentioned characterizations of boundary complexity are
highly abstract and not explicitly calculable.

To this end, we consider specifically classifiers with Recti-
fied Linear unit (ReLU) activation, whose decision bound-
ary is piecewise linear, and the boundary complexity can be
conveniently characterized by the number of affine pieces,
which is intuitive and visually accessible. In Figure 1, the
left decision boundary has 491 affine pieces while the right
one has only 254. As can be seen in the figure, the less
complicated boundary generalizes better and is more robust.

Remark 1 (Boundary pieces). The count of boundary
pieces of ReLU networks might be overly simplified for
classification problems, since it does not take the length
of each piece and their overall structure into consideration.
However, it does offer unique benefits. Besides being intu-
itive and visually accessible, it also bridges the complexity
of the ReLU network itself. It would be interesting to see
the relationship between the count of boundary pieces and
the total number of linear pieces during training. Other
boundary complexities, e.g., boundary thickness, have no
counterpart in the function space.

For ReLU neural networks, the structure of the affine pieces
and, in particular, the number of distinct pieces have been
objects of interest. Sharp bounds (exponential with depth)
on the maximum number of affine regions have been inves-
tigated [Montufar et al., 2014], demonstrating the benefit
of deeper networks. Hanin and Rolnick [2019] provided
a framework to count the number of linear regions of a
piecewise linear network. A method for upper-bounding
the number of affine regions locally in a ball around a data
point was developed in Zhu et al. [2020]. Interestingly, both
experiments of Zhu et al. [2020] on local number of affine
regions and ours on global count of boundary pieces indicate
a two-stage behaviour during training.

In classification, we are interested in the boundary pieces
(level set) more than in affine regions, and existing literature
there is scarce. For counting, previous works only compute
a superset of the decision boundary and therefore give only
upper bounds on the exact number (see Proposition 6.1. in
Zhang et al. [2018] and Alfarra et al. [2020]). For linking the
count to classification, to the best of the authors’ knowledge,
the only relevant work is Hu et al. [2020], where a teacher-
student classification setting is considered and upper bounds
on boundary pieces (bracketing entropy) in ReLU classifiers
are utilized to bound the generalization error. Interestingly,
Hu et al. [2020] showed that when the student network is
larger than the teacher, if the boundary complexity is not
regularized, the 0-1 loss excess risk convergence rate will
not be rate-optimal.

As we illustrated before, a ReLU network and its level
set may share little connection. Calculating the number of
boundary pieces is a new and technically challenging prob-
lem. Although there might be other ways to characterize
the boundary complexity, the boundary piece count does
provide a valid starting point for this problem.

2.3 CONTRIBUTIONS

In this work, we study the boundary complexity of ReLU
classifiers and investigate the number of affine pieces in the
decision boundary. The contributions are

• With the help of tropical geometry, we provide a novel

explicit algorithm for counting the exact number of
boundary pieces and affine regions of ReLU networks.
In contrast to Zhang et al. [2018] and Alfarra et al.
[2020], we do not require the weights to be integer-
valued. Unlike the algorithm of Zhu et al. [2020],
which discards some information at each layer, our
approach preserves a complete representation of a neu-
ral network’s functional form.

• We empirically investigate our proposed boundary com-
plexity during training and interesting properties are
revealed. First, the boundary piece count is largely
independent of other measures during training. They
(e.g., boundary count, total piece count, and l2 norm of
weights) share little similarity during the training pro-
cess. Second, the boundary piece count is negatively
correlated with robustness. Adversarial training and
noise injection are found to have significant regulariz-
ing effects on boundary complexity.

3 BOUNDARY COMPLEXITY OF RELU
NETWORKS

A few works Alfarra et al. [2020], Charisopoulos and Mara-
gos [2018], Hertrich et al. [2021], Maragos et al. [2021],
Montúfar et al. [2021], Trimmel et al. [2020], Zhang et al.
[2018] on this topic used the ideas of tropical geometry -
an area of algebraic geometry studying surfaces over the
max-plus semi-ring Maclagan and Sturmfels [2009]. The
connection to ReLU networks comes from them being com-
positions of affine transformations and the rectified linear
unit σ(x) = max{0, x}. This enables us to write the net-
work as a difference between two convex piece-wise affine
functions. These, in turn, can be interpreted in a useful way
in a dual space, where affine functions are points and maxi-
mum functions correspond to upper convex hulls. This in-
terpretation allowed Zhang et al. to reprove the best bounds
for the largest possible number of affine regions a ReLU
network with a given architecture may have.

This section expands on the tropical geometry perspective
of ReLU networks. Our main theoretical result is a way
to explicitly compute the zero set of a difference of two
convex piecewise-affine functions—and therefore compute
the exact count of boundary pieces of a ReLU network. To
improve the readability, we include necessary preliminary
results and rephrase them into consistent technical language.
The proofs are mostly omitted and can be found in the
appendix.

Let’s start with a proposition taken from Magnani and Boyd
[2009].

Proposition 2. A function of the form

f(x) = max
i=1,...,n

{Aix+ bi}

is convex and piecewise-affine. Also, every convex
piecewise-affine function with a finite number of linear
pieces is of this form.

We will proceed to abbreviate “convex piecewise-affine” to
CPA and “difference of convex piecewise-affine” to DCPA.
To be precise, by a ReLU network we mean a neural network
where every activation function is the rectified linear unit.

Proposition 3. Given any ReLU network, the function de-
fined by it can be written as a DCPA function.

Conversely, Ovchinnikov [2002] proved that any piecewise-
affine function with a finite number of linear regions is a
min-max polynomial in its component affine functions. This
implies that it can be written as a DCPA function and so –
represented by a ReLU network.

3.1 TROPICAL GEOMETRY

In this section, we introduce the aforementioned interpre-
tation of CPAs in the dual space D. It may resemble a
projective involution, which makes it even more surprising
that notions such as convex hull turn out useful. We make
no distinction between affine functions f : x 7→ a⊺x + b
and their graphs {(x, y) ∈ Rd+1 | y = f(x)}. Thus, we
identify affine functions Rd → R with hyperplanes in Rd+1

containing no vertical lines ({x0} × R ⊆ Rd+1 for some
x0 ∈ Rd); this ambient Rd+1 will be called the real space
and denoted R.

We make effort to distinguish between R and D as both are
copies of Rd+1 which may cause confusion.

Definition 4. We say that (x, y) lies above (the graph of) f
when y > f(x). We denote it by (x, y) ≻ f .

Definition 5. For an affine function f : Rd → R given by
f(x) = a⊺x + b, we define its dual R−1(f) as the point
(a, b) ∈ Rd+1 =: D. Accordingly, this Rd+1 will be called
the dual space and denoted D. Conversely, for a dual point
c = (a, b) ∈ D, we define R(c) to be the affine function
x 7→ a⊺x+ b (i.e. a hyperplane in R).

As we will see from Proposition 7, R turns out to inter-
change the relations of collinearity and concurrence, extend
to planes of any dimensionalities, preserve orthogonality
and sides of hyperplanes. For consistency, we set:

Definition 6. To a real point z = (x, y) ∈ R, we associate
as its dual the following hyperplane in D

R−1(z) = (a 7→ (−x)⊺a+ y).

Conversely, to a dual hyperplane H = (a 7→ x⊺a+y) ⊂ D,
we associate the real point

R(H) = (−x, y) ∈ R.

Note that the correspondence between dual hyperplanes and
real points has an extra sign not present in the pairing of
dual points with real planes.

Proposition 7. The duality R has the following properties:

1. A dual point c ∈ D lies on a dual hyperplane
H ⊂ D if and only if the corresponding real hyper-
plane R(c) ⊂ R contains the point R(H) ∈ R. I.e.

c ∈ H ⇔ R(c) ∋ R(H).

2. Points of a dual k-dimensional plane F are precisely
the duals of real hyperplanes containing some (d− k)-
dimensional real plane. We denote this common real
(d− k)-dimensional hyperplane as R(F).

3. Duality is containment-reversing, i.e.,

F ⊆ G ⇔ R(F) ⊇ R(G)

for dual planes F,G, and analogously for R−1.

4. For any real hyperplane f , the projection p(R−1(f))
of its dual R−1(f) onto the first d coordinates is nor-
mal to its isolines {x | f(x) = const.}.

5. Dual point c ∈ D lies above the graph of H ⊂ D if
and only if the real point R(H) ∈ R lies below the
graph of R(c) ⊂ R. In symbols

c ≻ H ⇔ R(c) ≻ R(H).

6. Points c, c′ that differ only in the (d + 1)-th coordi-
nate (lie exactly above/below each other) correspond
precisely to parallel planes (both under R and R−1).

The next proposition shows another property of the duality,
crucial to our framework.

Definition 8. Let S ⊂ Rd+1 be a finite set of points. The
convex hull of S will be denoted C(S). Furthermore, we
will call the set of points

{(x, y) ∈ C(S) | (x, y + ϵ) ̸∈ C(S) for any ϵ > 0}

the upper hull of S and denote it U(S). Finally, the set of
vertices of U(S) will be denoted U∗(S).

Proposition 9. Let S ⊂ D be a finite set of points. Then,
for every point x ∈ D lying below U(S), we have (in R)

R(x) ≤ max{R(s) | s ∈ U(S)},

i.e. the affine function in R dual to x lies fully below the
maximum of the affine functions whose duals lie on U(S).

Example 10 gives us a useful correspondence—each CPA
function can be represented uniquely as an upper-convex
hull in the dual space. This allows us to implicitly simplify
the notation as well, as illustrated in Example 10.

Figure 2: Real and dual diagrams in Example 10.

Example 10. Let us consider the function

f(x) = max
{
− x+ 3, − 1

2x+ 2, 1
2x, x− 2, 0

}
.

Figure 2 draws it in both the real and dual space.

We can see that the points (− 1
2 , 2), (0, 0) ∈ D correspond-

ing to the functions y = − 1
2x+2 and y = 0 lie respectively

on and under the upper hull of the other points. This means
that the functions y = − 1

2x + 2, y = 0 never exceed the
maximum of −x+3, 1

2x, x− 2, but y = − 1
2x+2 matches

it at some point.

In particular, we can write the maximum using just three of
the functions.

max
{
− x+ 3, − 1

2x+ 2, 1
2x, x− 2, 0

}
= max

{
− x+ 3, 1

2x, x− 2
}

3.2 RELU NETWORKS IN THE CONTEXT OF
TROPICAL GEOMETRY

This section shows precisely how to generate the dual dia-
gram of a function defined by a neural network.

Let us denote by Fl : Rd → Rwl the function defined by
the network taking the input to the post-activation values on
the l-th layer (here wl is the width of the l-th layer). This
means that

Fl(x) = σ(AlFl−1(x)).

Let us assume that Fl−1 = R(Pl−1) −R(Nl−1) for Pl−1

and Nl−1 being vectors (ordered tuples) of sets of points.
We want to write Fl = R(Pl) − R(Nl) for Pl and Nl

computed in terms of Pl−1 and Nl−1. For this, we need to
introduce some notation.

Definition 11. Given sets of points X,Y ⊂ D ∼= Rd+1, we
define

• X⊕Y = {x+y | x ∈ X,y ∈ Y } to be the Minkowski
sum of X and Y ;

• X ∪ Y to be the standard union of X and Y as sets.

We also define these operations on vectors of sets of points
to be the coordinate-wise operations. These have important
interpretations in our correspondence.

In the following, for a finite set X ⊂ D we identify R(X)
with the function max{R(x) | x ∈ X} being a maximum
of hyperplanes in R.

Proposition 12. For any sets of points X,Y ⊂ D, we have

• R(X ∪ Y) = max{R(X),R(Y)};

• R(X ⊕ Y) = R(X) +R(Y).

Proof. The first one is clear from the definition. For the
second one, we have

max{x1, . . . , xn}+max{y1, . . . , ym}
= max{x1 + y1, x1 + y2, . . . , xn + ym}.

Now, we need to define matrix multiplication for vectors of
sets of points.

Definition 13. Given S ⊂ D, we define the scalar multipli-
cation λ · S in the usual way. For a vector X = (Xi)1≤i≤n

of sets of points in the dual space and for an n×m matrix A
we define the Minkowski matrix product of X by A through

(A⊗X)i =

n⊕
j=1

Aij ·Xj .

Notice that we could run into problems with just using the
Minkowski operations, since as long as S has at least 2
points, we will have 2 · S ̸= S ⊕ S. However, if we restrict
ourselves to the vertices of upper convex hulls and non-
negative matrices the operations are ‘well-behaved’.

Proposition 14. For matrices A,B with non-negative val-
ues and vectors of points X,Y1, Y2, the following hold.

• U∗((A+B)⊗X
)
= U∗((A⊗X)⊕ (B ⊗X)

)
;

• A⊗ (Y1 ⊕ Y2) = (A⊗ Y1)⊕ (A⊗ Y2);

• AB ⊗X = A⊗ (B ⊗X);

• X ⊕ (Y1 ∪ Y2) = X ⊕ Y1 ∪X ⊕ Y2.

This seems useful, but quite restrictive, since we need to
operate with non-negative matrices. However, every matrix
A can be written as a difference between its positive part
and its negative part A = A+ − A−, where both A+ and
A− are non-negative.

We also have an interpretation for the matrix multiplication,
similar to Proposition 12. Here, when passing a vector of
sets of points to the operator R, we apply it coordinate-wise
getting a vector of maximums of affine functions.

Proposition 15. Given a vector X of sets of points in D
and a non-negative matrix A, we have

AR(X) = R(A⊗X).

Proof.

[AR(X)]i =
⊕
j

Aij [R(X)]j =
⊕
j

[R(AijXj)]

= R(⊕jAijXj) = R([A⊗X]i) = [R(A⊗X)]i

We can now characterise the function Fl = R(Pl)−R(Nl)
in terms of vectors of points Pl−1 and Nl−1.

Proposition 16. Let’s assume that Fl = σ(Al Fl−1)
and Fl−1 = R(Pl−1) − R(Nl−1). Then, after writing
Al = A+

l −A−
l , we get Fl = R(Pl)−R(Nl) for

Nl = (A−
l ⊗ Pl−1)⊕ (A+

l ⊗Nl−1)

and Pl = (A+
l ⊗ Pl−1)⊕ (A−

l ⊗Nl−1) ∪ Nl.

Proposition 16 is the key to our counting algorithm. Given a
neural network, we apply it to all the layers successively, and
in the end we obtain a representation of the NN as a DCPA
function. Having a DCPA form, we can use proposition 20
and 21 to count the number of boundary and affine pieces.

3.3 TROPICAL HYPERSURFACES

In this section, we explore the regions into which a CPA
function partitions the plane, which is called the tessellation
of a CPA. We define it formally below.

Definition 17. Given a CPA

F (x) = max{f1(x), . . . , fn(x)}

where fi are affine functions, an affine region of F is{
x ∈ Rd

∣∣∣fi(x) = fi′(x) > fj(x) for all i, i′ ∈ I, j ∈ J
}
,

where I, J are disjoint sets whose union is {1, . . . , n}. Its
dimension is the smallest dimension of an affine subspace
of Rd containing it. The set of all regions of dimension k
(k-cells) will be denoted as Tk(F), and T (F) =

⋃
k Tk(F).

For a set of points S in the dual space we will denote by
T (S) the tessellation of R(S). For example, T0 is the set
of all vertices of T (S), T1 is the set of all its lines, rays and
segments.

Proposition 18. k-cells of T (S) are in one-to-one corre-
spondence with (d − k)-cells of U(S). Each k-cell σ of
T (S) is of the form

p(R(dual planes tangent to U(S) containing σ′)),

where σ′ is a (d− k)-cell of U(S), and p : Rd × R → Rd

is the projection onto first d coordinates.

By H being tangent we mean that the whole of U(S) lies
under or on H and that H ∩ U(S) ̸= ∅.

3.4 DECISION BOUNDARY

Let F = R(P) and G = R(N) be CPA functions Rd → R.
We are interested in being able to describe the zero set D of
a DCPA function F − G. The proposition below expands
on the idea of Proposition 6.1 in [Zhang et al., 2018].

Proposition 19. Let us assume that no points of P lie on
U(N) and vice versa. The set D is a union of precisely these
(d− 1)-dimensional cells of T (P ∪N) which correspond
to the edges of U(P ∪N) with one end in P and the other
end in N .

This means that to draw the decision boundary, all we have
to do is draw the hypersurface T (P ∪N) and identify which
cells come from the intersection of the graphs of R(P) and
R(N).

Proposition 19 deals with the case most likely to happen
in general situations, but it is possible that some points of
P lie on U(N) or vice versa. Proposition 20 describes this
more difficult case too. We compute the boundary count of a
neural network by applying 20 to the DCPA representation
of a NN (from proposition 16).

Proposition 20. Let F = R(P), G = R(N) be CPA func-
tions. Then the zero set D = {x ∈ Rd | F (x) = G(x)}
consists precisely of this cells of T (P ∪N), which corre-
spond to the cells of U(P ∪N) containing points from both
P and N .

3.5 AFFINE PIECES

Our formalism also allows us to count the exact total number
of affine pieces. To do this for a neural network, we apply the
corollary 21 to the DCPA form obtained from proposition
16.

Corollary 21. The number of affine pieces (d-cells) of a
DCPA function R(P) − R(N) is equal to the number of
vertices of U(P ⊕N).

Corollary 21 is a special case of a more general result stated
below.

Proposition 22. Each k-cell σ of R(P)−R(N) is of the
form

σ=p(R(hyperplanes tangent to U(P⊕N) containing σ′))

where σ′ is a (d−k)-cell of U(P⊕N). The correspondence
σ ↔ σ′ is bijective.

To the best of the authors’ knowledge, this explicit formula
for counting the total number of affine pieces has not been
spelled out in existing literature, where the scaling of the
count with respect to neural network structures is usually
the focus.

Remark 23. In ReLU neural networks it is possible to have
a degenerate situation, where on two regions the network
computes the same affine function, but these regions differ
in activation patterns. Our approach will see such regions as
separate. We do not know of any literature where this would
be treated differently.

4 NUMERICAL EXPERIMENTS

In this section, as a proof of concept, we conduct numerical
experiments on 2D synthetic data. The aim of this section
is two-fold. Firstly, we compare the proposed boundary
complexity (#Boundary) to various other complexity mea-
surements, e.g., the total number of affine pieces (#Total),
the sum of weights squared (F-norm), and evaluate their
trends during training. The results show that our boundary
complexity is quite unique, with distinctive features. Sec-
ondly, we demonstrate a negative correlation between the
number of boundary pieces and classification robustness,
where popular robust training methods, specifically noise
injection and adversarial training, can both diminish the
number of boundary pieces.

We choose ReLU neural networks with 2 hidden layers of
different widths across all our simulations. Three training
schemes are considered: regular training with cross-entropy
(CE), CE with Gaussian noise injection (Noisy), and CE
with l∞-adversarial training by fast gradient sign attacks
[Goodfellow et al., 2014] (Adv). Two synthetic datasets are
constructed in 2-dimensional space, one is 3-by-3 Gaussian
mixture (Figure 3) and the other is spiral-shaped (Figure
1). The Gaussian case provides a baseline while the spiral
case is much more challenging and may better reflect com-
plicated data structures in practice. To measure robustness,
we choose Gaussian distributed random noise injection with
standard deviation σ. 2000 test points are used to approxi-
mate the expectation and this empirical robustness measure
is denoted (in percentile) by R(σ).

The quantities at initialization are shown in Table 1 and
Table 2. We can see that the initial #Boundary is usually
much smaller, with larger variations. This is to be expected
as the boundary is only a level set of the initialized classifier,

Figure 3: Decision boundaries in the 3×3 Gaussian mix-
ture case in [−2, 2]2. From left to right are instances of CE
(#Boundary=46), Noisy (#Boundary=41), Adv (#Bound-
ary=40), respectively.

which can be very sensitive to constant shifts. The initial
#Total is usually larger. This is interesting and indicates that
the initial classifier is more random in terms of linear region
arrangement. Like #Boundary, the F-norm at initialization
is much smaller, but with much smaller variations. This is
to be expected as the F-norm is directly linked to initialized
weights.

4.1 TRENDS DURING TRAINING

For different tasks, we can observe the overall trend for
#Boundary to be: first increase, then decrease and finally
stabilize. Similar behaviors can also be observed for #To-
tal and F-norm during training, but their movements are
not synchronized. Among the training methods, the overall
trends share more similarities than differences, except for
with or without weight decay. Typical instances are shown
in Figure 4 and 5.

Figure 4: Training trends of #Boundary (red), #Total (green),
F-norm (red) vs. iteration in the 2D spiral case. Left: CE
with weight decay; Right: CE without weight decay.

Figure 5: Training trends of #Boundary (red), #Total (green),
F-norm (red) vs. iteration in the 2D spiral case. Left: Noisy
with weight decay; Right: Adv with weight decay.

Table 1: Comparison of boundary piece counts in the Gaus-
sian mixture case for ReLU network with layer widths 2-10-
10-1. The reported number is an average (standard deviation)
of 10 repetitions.

#Boundary #Total F-norm Acc% R(0.2)
Initial 29 (17) 290 (29) 6.8 (0.61) 50.1 (1.1) -
CE 43 (5.3) 190 (24) 57 (3.6) 100 96.4
Noisy 41 (3.1) 216 (26) 67 (2.6) 100 97.0
Adv 36 (4.6) 172 73 (2.1) 100 97.2

Table 2: Comparison of boundary piece counts in the 2D
spiral case for ReLU network with layer widths 2-30-30-1.
The reported number is an average (standard deviation) of
10 repetitions.

#Boundary #Total F-norm Acc% R(0.02)
Initial 90 (61) 2432 (179) 20 (0.71) 50.2 (1.2) -
CE 377 (31) 1915 (207) 283 (11) 93.60 (1.8) 94.3 (2.2)
Noisy 272 (33) 1493 (114) 322 (17) 99.15 (0.56) 98.1 (0.51)
Adv 259 (21) 1241 (135) 356 (19) 99.35 (0.38) 98.9 (0.36)

#Boundary vs others. The left figure in Figure 4 shows
the typical trends in the Noisy case with weight decay, where
we can clearly see that #Boundary lags behind the others.
When the training starts, #F-norm and #Total peak much ear-
lier than #Boundary. In most cases, we observe that F-norm
peaks first, then #Total, and lastly #Boundary. When ro-
bust training is applied (Noisy, Adv), the gaps among them
widen. In the later stage, F-norm stabilizes much faster than
the others, while we can consistently observe that #Bound-
ary flattens slower than #Total. Overall, #Boundary appears
to change much slower than the others, taking more time to
peak, and more time to plateau.

Role of weight decay. The right figure in Figure 4 shows
a typical trend in the CE case without weight decay, which
demonstrates drastically different behaviors. #Boundary and
#Total plateau much earlier and do not change much once
the classifier has overfit the training data. In comparison, F-
norms keep getting larger, which is to be expected due to the
use of cross-entropy loss. Weight decay is found to play an
important role in the forming of ReLU networks’ geometric
structures. This is surprising as naively shrinking a ReLU
network does not change its affine piece arrangement.

4.2 CLASSIFICATION ROBUSTNESS

In this section, we aim to investigate the relationship be-
tween robustness and #Boundary. However, in the absence
of practical algorithms to regularize the boundary complex-
ity, we turn to popular robust training methods and evaluate
whether they can significantly reduce #Boundary. Results
for the Gaussian mixture and spiral case are reported in
Table 1 and Table 2, respectively.

In the simpler Gaussian mixture case, the strength for Noisy
and Adv are both set at 0.1, the same as the variance of each

mixing component. Figure 3 shows the decision boundaries
for CE, Noisy and Adv. Despite the apparent visual differ-
ence, the #Boundary does not differ that much. In Table
1, we can observe #Boundary to be smaller on average for
Noisy and especially Adv.

The effects of Noisy and Adv become more significant in the
harder, more challenging spiral case. CE does not perform
as consistently as Noisy or Adv and sometimes will miss the
spiral shape. The strength for Noisy and Adv are both set
at 0.01, which is roughly the size of the margin. As can be
seen from Table 2, both #Boundary and #Total significantly
dropped while F-norm stays relatively on the same level.

On both datasets, compared with CE, Noisy and Adv have
strong effects on reducing the boundary complexity. The
same is not true for function complexity such as F-norm.

5 DISCUSSION

We advocate that proper regularization on the decision
boundary is of critical importance to classification. As a
proof of concept, we choose the number of linear pieces of
ReLU networks to measure the boundary complexity, due
to its well-definedness. The main technical contribution is
the explicit formula to count the exact number of boundary
pieces as well as total affine pieces. Empirical evaluation
and justification are made on synthetic data and interesting
properties of the boundary piece count are revealed.

Limitations and extensions. (1) While the main focus of
this work is on rectified linear units, our method can eas-
ily be extended to leaky ReLU activation, and basically all
other piecewise linear functions. (2) In the experiments, we
only evaluated binary classification. However, it is also quite
straightforward to count the boundaries between any two
given classes in the multi-class classification scenario. (3)
In the present form, the computation scaling with respect to
the network size is impractical for large models, especially
with input dimension and depth. The most time-consuming
part is the Minkowski sum. However, most of them do not
directly contribute to the level set. We believe that further
optimizations could shed more light on the mechanics of
training procedures. Moreover, incorporating differentiabil-
ity would give a penalty term that regularizes a previously
unaddressed aspect of the network. (4) Though intuitive,
the number of boundary pieces may not be the best choice
for the complexity measurement in classification, since it
doesn’t take finer details such as piece arrangement into
consideration. How to better quantify boundary complexity
remains an open question.

Regularizing the boundary complexity. Given a measur-
able boundary complexity, regularizing it during the training
process can be challenging. Adversarial training or noise in-
jection can act as a regularization for boundary complexity,

as verified in our experiment. Defining suitable boundary
complexity measurement and proposing direct and more ef-
ficient ways to control it is an open question. The aim of this
work is to identify such an important problem and convince
the readers that boundary complexity is indeed proper to
regularize for classification robustness. Such regularization
is not at odds with other established methods, but a healthy
complement to existing literature. The level set sampling
method proposed in Atzmon et al. [2019] may be a good
starting point. Uncovering the link of our work to persistent
homology Chen et al. [2019] is also interesting. We hope
that further work will lead to achieving our ultimate goal –
designing practical and scalable algorithms for effective reg-
ularization and thus improving state-of-the-art performance
in classification.

References

Motasem Alfarra, Adel Bibi, Hasan Hammoud, Mohamed
Gaafar, and Bernard Ghanem. On the decision bound-
aries of neural networks: A tropical geometry perspective.
arXiv preprint arXiv:2002.08838, 2020.

Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai
Maron, and Yaron Lipman. Controlling neural level sets.
arXiv preprint arXiv:1905.11911, 2019.

Jean-Yves Audibert and Alexandre B Tsybakov. Fast learn-
ing rates for plug-in classifiers. The Annals of statistics,
35(2):608–633, 2007.

Han Bao, Clay Scott, and Masashi Sugiyama. Calibrated
surrogate losses for adversarially robust classification. In
Conference on Learning Theory, pages 408–451. PMLR,
2020.

Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe.
Convexity, classification, and risk bounds. Journal of
the American Statistical Association, 101(473):138–156,
2006.

Olivier Bousquet and André Elisseeff. Stability and gener-
alization. The Journal of Machine Learning Research, 2:
499–526, 2002.

Alvin Chan, Yi Tay, Yew Soon Ong, and Jie Fu. Jacobian
adversarially regularized networks for robustness. arXiv
preprint arXiv:1912.10185, 2019.

Vasileios Charisopoulos and Petros Maragos. A tropical
approach to neural networks with piecewise linear activa-
tions. arXiv preprint arXiv:1805.08749, 2018.

Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. A
topological regularizer for classifiers via persistent ho-
mology. In The 22nd International Conference on Artifi-
cial Intelligence and Statistics, pages 2573–2582. PMLR,
2019.

Lenaic Chizat and Francis Bach. Implicit bias of gradient
descent for wide two-layer neural networks trained with
the logistic loss. In Conference on Learning Theory,
pages 1305–1338. PMLR, 2020.

Liang Ding, Tianyang Hu, Jiahang Jiang, Donghao Li, Wen-
jia Wang, and Yuan Yao. Random smoothing regulariza-
tion in kernel gradient descent learning. arXiv preprint
arXiv:2305.03531, 2023.

Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Gold-
stein. Adversarially robust distillation. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 3996–4003, 2020.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. Deep learning, volume 1. MIT Press,
2016.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

Boris Hanin and David Rolnick. Complexity of linear re-
gions in deep networks. In International Conference on
Machine Learning, pages 2596–2604. PMLR, 2019.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
elements of statistical learning: data mining, inference,
and prediction. Springer Science & Business Media,
2009.

Christoph Hertrich, Amitabh Basu, Marco Di Summa, and
Martin Skutella. Towards lower bounds on the depth of
relu neural networks. arXiv preprint arXiv:2105.14835,
2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Tianyang Hu, Zuofeng Shang, and Guang Cheng. Sharp
rate of convergence for deep neural network classi-
fiers under the teacher-student setting. arXiv preprint
arXiv:2001.06892, 2020.

Tianyang Hu, Jun Wang, Wenjia Wang, and Zhenguo Li. Un-
derstanding square loss in training overparametrized neu-
ral network classifiers. arXiv preprint arXiv:2112.03657,
2021a.

Tianyang Hu, Wenjia Wang, Cong Lin, and Guang Cheng.
Regularization matters: A nonparametric perspective on
overparametrized neural network. In International Con-
ference on Artificial Intelligence and Statistics, pages
829–837. PMLR, 2021b.

Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Gareth James, Daniela Witten, Trevor Hastie, and Robert
Tibshirani. An introduction to statistical learning, volume
112. Springer, 2013.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. University of Toronto, 2009.

Shiye Lei, Fengxiang He, Yancheng Yuan, and Dacheng
Tao. Understanding deep learning via decision boundary.
arXiv preprint arXiv:2206.01515, 2022.

Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A
unified gradient regularization family for adversarial ex-
amples. In 2015 IEEE international conference on data
mining, pages 301–309. IEEE, 2015.

Diane Maclagan and Bernd Sturmfels. Introduction to trop-
ical geometry. Graduate Studies in Mathematics, 161,
2009.

Alessandro Magnani and Stephen P Boyd. Convex
piecewise-linear fitting. Optimization and Engineering,
10:1–17, 2009.

Enno Mammen and Alexandre B Tsybakov. Smooth dis-
crimination analysis. The Annals of Statistics, 27(6):
1808–1829, 1999.

Petros Maragos, Vasileios Charisopoulos, and Emmanouil
Theodosis. Tropical geometry and machine learning. Pro-
ceedings of the IEEE, 109(5):728–755, 2021.

Guido Montúfar, Yue Ren, and Leon Zhang. Sharp
bounds for the number of regions of maxout net-
works and vertices of minkowski sums. arXiv preprint
arXiv:2104.08135, 2021.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and
Yoshua Bengio. On the number of linear regions of deep
neural networks. In Advances in neural information pro-
cessing systems, pages 2924–2932, 2014.

Awais Muhammad, Fengwei Zhou, Chuanlong Xie, Jiawei
Li, Sung-Ho Bae, and Zhenguo Li. Mixacm: Mixup-
based robustness transfer via distillation of activated chan-
nel maps. Advances in Neural Information Processing
Systems, 34, 2021.

Sergei Ovchinnikov. Max-min representation of piecewise
linear functions. Contributions to Algebra and Geometry,
43(1):297–302, 2002.

Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen,
and Jun Zhu. Rethinking softmax cross-entropy loss for
adversarial robustness. arXiv preprint arXiv:1905.10626,
2019.

Lutz Prechelt. Early stopping-but when? In Neural Net-
works: Tricks of the trade, pages 55–69. Springer, 1998.

Noam Razin and Nadav Cohen. Implicit regularization in
deep learning may not be explainable by norms. arXiv
preprint arXiv:2005.06398, 2020.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. Adver-
sarial training is a form of data-dependent operator norm
regularization. arXiv preprint arXiv:1906.01527, 2019.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghi-
asi, Christoph Studer, David Jacobs, and Tom Goldstein.
Adversarially robust transfer learning. arXiv preprint
arXiv:1905.08232, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The
journal of machine learning research, 15(1):1929–1958,
2014.

Martin Trimmel, Henning Petzka, and Cristian Sminchis-
escu. Tropex: An algorithm for extracting linear terms
in deep neural networks. In International Conference on
Learning Representations, 2020.

Vladimir N Vapnik. An overview of statistical learning
theory. IEEE transactions on neural networks, 10(5):
988–999, 1999.

Blake Woodworth, Suriya Genesekar, Jason Lee, Daniel
Soudry, and Nathan Srebro. Kernel and deep regimes in
overparametrized models. In Conference on Learning
Theory (COLT), 2019.

Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and
Quoc V Le. Smooth adversarial training. arXiv preprint
arXiv:2006.14536, 2020.

Yaoqing Yang, Rajiv Khanna, Yaodong Yu, Amir Gholami,
Kurt Keutzer, Joseph E Gonzalez, Kannan Ramchandran,
and Michael W Mahoney. Boundary thickness and robust-
ness in learning models. Advances in Neural Information
Processing Systems, 33:6223–6234, 2020.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropi-
cal geometry of deep neural networks. In International
Conference on Machine Learning, pages 5824–5832.
PMLR, 2018.

Rui Zhu, Bo Lin, and Haixu Tang. Bounding the number of
linear regions in local area for neural networks with relu
activations. arXiv preprint arXiv:2007.06803, 2020.

	Background
	Proper Regularization for Classification
	From Function Space to Level Set
	Measuring Boundary Complexity
	Contributions

	Boundary Complexity of ReLU Networks
	Tropical Geometry
	ReLU Networks in the Context of Tropical Geometry
	Tropical Hypersurfaces
	Decision boundary
	Affine pieces

	Numerical Experiments
	Trends During Training
	Classification Robustness

	Discussion

