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ABSTRACT

Explainable AI (XAI) is a rapidly growing domain with a myriad of proposed
methods as well as metrics aiming to evaluate their efficacy. However, current
literature is often of limited scope, examining only a handful of XAI methods and
employing one or a few metrics. Furthermore, pivotal factors for performance,
such as the underlying architecture or the nature of input data, remain largely un-
explored. This lack of comprehensive analysis hinders the ability to make general-
ized and robust conclusions about XAI performance, which is crucial for directing
scientific progress but also for trustworthy real-world application of XAI. In re-
sponse, we introduce LATEC, a large-scale benchmark that critically evaluates 17
prominent XAI methods using 20 distinct metrics. Our benchmark systematically
incorporates vital elements like varied architectures and diverse input types, result-
ing in 7,560 examined combinations. Using this benchmark, we derive empirically
grounded insights into areas of current debate, such as the impact of Transformer
architectures and a comparative analysis of traditional attribution methods against
novel attention mechanisms. To further solidify LATEC’s position as a pivotal
resource for future XAI research, all auxiliary data—from trained model weights
to over 326k saliency maps and 378k metric scores—are made publicly available.
The benchmark is hosted at: https://github.com/kjdhfg/LATEC

1 INTRODUCTION

Explainable AI (XAI) methods have become essential tools in numerous domains, allowing for a
better understanding of complex machine learning decisions. The most prevalent XAI methods
originate from the domain of saliency maps Simonyan et al. (2013). For a systematic review of
other XAI methods such as counterfactual examples (Wachter et al., 2018) or concept testing Kim
et al. (2018) we refer to Speith (2022). As the diversity and abundance of proposed saliency XAI
methods expand alongside their growing popularity, ensuring their reliability becomes paramount
(Adebayo et al., 2018). Given that there is no clear “ground truth” for individual explanations (as e.g.
discussed in Adebayo et al. (2020)), the trustworthiness of XAI methods is typically determined by
examining three key aspects: their accuracy in reflecting a model’s reasoning (“faithfulness”) (Bach
et al., 2015; Samek et al., 2017), their stability under small changes (“robustness”) (Yeh et al., 2019;
Alvarez Melis & Jaakkola, 2018), and the understandability of their explanations (“complexity”)
(Chalasani et al., 2020; Bhatt et al., 2021). Beyond qualitative assessments such as in Doshi-Velez
& Kim (2017); Ribeiro et al. (2016); Shrikumar et al. (2017), which can be influenced by human
biases and don’t always scale well (as shown by Wang et al. (2019); Rosenfeld (2021)), a wide array
of metrics have been introduced to quantitatively evaluate XAI methods based on these key aspects.

However, the current state of validation in XAI research exhibits two major shortcomings. First,
many studies restrict their analyses to a limited set of methods and evaluation metrics. Second, cur-
rent research often fails to consider how different underlying model architectures (Yona & Green-
feld, 2021) and varied input modalities (Budding et al., 2021) directly impact the performance of
XAI methods. As a consequence, our current understanding of XAI performance and its general-
izability is limited, making it challenging for practitioners to determine a reliable XAI method for
their specific use case. Table 1 demonstrates this fragmented landscape specifically for the domain
of computer vision, including discrepancies found across studies, with some methods, such as Grad-
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                     XAI Method:  

Study:

Attribution Attention 
OC LIME KS VG IxG GB GC SC C+ IG EG DL DLS LRP RA RoA LA

Adebayo et al. (2018) 
(nA = 5 (8), nE = 2) F F F F F

Nie et al. (2019) 
(nA = 2 (3), nE = 0) F F

Kindermans et al. (2019) 
(nA = 4 (8), nE = 1) F F F

Ghorbani et al. (2019) 
(nA = 3, nE = 3) R R R

Hooker et al. (2019) 
(nA = 3 (12), nE = 1) F F F
Yang & Kim (2019) 
(nA = 6 (9), nE = 3) F F F F F
Yeh et al. (2019) 

(nA = 4 (6), nE = 2) R R R R
Nguyen & Martìnez (2020) 

(nA = 3, nE = 4) C C C
Chefer et al. (2020) 

(nA = 5, nE = 1) F F F F F
Bhatt et al. (2020) 

(nA = 6, nE = 3) F/R F/R F/R F/R F/R
Arun et al. (2021) 
(nA = 5 (8), nE = 4) F F F F

Singh et al. (2021) 
(nA = 9 (12), nE = 0) C C C C C C C C

Kakogeorgiou et al. (2021) 
(nA = 8 (12), nE = 3) F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C

Dombrowski et al. (2022) 
(nA = 5, nE = 1) R R R R R

Arras et al. (2022) 
(nA = 6 (12), nE = 2) F F F F F F
Hesse et al. (2023) 

(nA = 11, nE = 3) F F F F F F
Ours * 

(nA = 17, nE = 20) F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C F/R/C

Positive Neutral NegativeRelative assessment to other XAI methods in study:Evaluated Criteria: F Faithfulness, R Robustness, C Complexity

* Results for image modality

Table 1: Showing gaps and inconsistencies between 16 relevant related studies evaluating XAI meth-
ods. Colors coincide with their ranking inside the study depending on the evaluation criteria. nA:
Amount of XAI methods, number including slightly adapted versions in parenthesis as we do not
deem, e.g. IG and Smooth-IG, as two significantly different methods. nE : Number of evaluation
metrics. If nE = 0 the study was conducted either qualitatively or experiment-based without scores.
The color indicating the relative performance of our work is always based on the image modality.

CAM, receiving contradictory assessments depending on the evaluation setup Chefer et al. (2021);
Arras et al. (2022); Adebayo et al. (2018); Yang & Kim (2019); Arun et al. (2021).

Further, the present shortcomings in XAI research validation prevent us from answering a multitude
of general questions pivotal to the field’s advancement. For instance:

Q1: How does the performance of attention versus attribution methods differ in practice?
Q2: Does the efficacy of XAI methods vary across different computer vision modalities?
Q3: With the ascendency of Transformer architectures Dosovitskiy et al. (2021), is there a potential
misalignment with established attribution-based XAI methods?

These questions help direct research to make XAI methods more practical and relevant for the chang-
ing world of AI models and applications. In response to these challenges, we present LATEC, the
first comprehensive benchmark tailored for a holistic evaluation in the field of XAI in computer vi-
sion. LATEC encompasses 17 of the most widely-used saliency XAI methods, including attention-
based methods, and evaluates them using 20 distinct metrics (see Figure 1). Notably, LATEC inte-
grates a variety of model architectures, and, to extend the evaluation spectrum beyond traditional 2D
images, we included point cloud and volume data, adapting XAI methods as necessary to suit these
modalities. In total, LATEC assesses 7,560 unique combinations.

The presented benchmark offers a practical platform for the community to systematically investi-
gate general questions in the field of XAI. As proof of this utility, we provide a detailed empirical
analysis based on the three questions Q1-Q3. Moreover, in support of future research, we’ve made
all intermediate data, including 326,790 saliency maps and 378,000 evaluation scores, publicly ac-
cessible. This “LATEC dataset” is aimed at simplifying the benchmarking process for new methods
and metrics in XAI.

2 THE LATEC BENCHMARK

The LATEC benchmark includes a framework and dataset (see Figure 1). The framework structures
experiments in six stages for diverse large-scale studies, while the LATEC dataset provides reference
data for evaluating new XAI methods or exploratory analysis.
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Figure 1: Structure of the benchmark with the output data of each stage. Colors reflect the stages.

2.1 THE FRAMEWORK: DESIGNING DIVERSE LARGE-SCALE EVALUATIONS

Utilized computer vision datasets For the image modality we use ImageNet (IMN) (Deng et al.,
2009), UCSD OCT retina (OCT) (Kermany et al., 2018) and RESISC45 (R45) (Cheng et al., 2017),
for the volume modality the Adrenal-(AMN), Organ-(OMN) and VesselMedMNIST3D (VMN)
datatsets (Yang et al., 2023), and for the point cloud modality the CoMA (CMA) (Ranjan et al.,
2018), ModelNet40 (M40) (Wu et al., 2014) and ShapeNet (SHN) (Chang et al., 2015) datasets.

DL architectures On each utilized computer vision dataset except IMN, where we take pretrained
models, we train three models to achieve the architecture-dependent SOTA performance on the des-
ignated test set (if available, see Appendix B for a detailed description of all model trainings and
hyperparameters). For the image modality, we use the ResNet50, EfficientNetb0, and DeIT ViT
(Touvron et al., 2022) architectures, for the volume modality the 3D ResNet18, 3D EfficientNetb0,
and Simple3DFormer (Wang et al., 2022) architectures, and for the point cloud modality the Point-
Net, DGCNN and PC Transformer (Guo et al., 2021) architectures. The first two architectures are
always CNNs (CNN1 and CNN2), and the third is a Transformer.

XAI methods In total, we include 17 XAI methods, 14 attribution methods: Occlusion (OC)
(Zeiler & Fergus, 2013), LIME (on feature masks) (Ribeiro et al., 2016), Kernel SHAP (KS, on
feature masks) (Lundberg & Lee, 2017), Vanilla Gradient (VG) (Simonyan et al., 2013), Input x
Gradient (IxG) (Shrikumar et al., 2017), Guided Backprob (GB) (Springenberg et al., 2015), Grad-
CAM (GC) (Selvaraju et al., 2017), ScoreCAM (SC) (Wang et al., 2020), GradCAM++ (C+) (Chat-
topadhay et al., 2018), Integrated Gradients (IG) (Sundararajan et al., 2017), Expected Gradients
(EG, also called Gradient SHAP) (Erion et al., 2020), DeepLIFT (DL) (Shrikumar et al., 2017),
DeepLIFT SHAP (DLS) (Lundberg & Lee, 2017), LRP (with ϵ-,γ- and 0+-rules depending on the
model architecture) (Binder et al., 2016), and three attention methods: Raw Attention (RA) (Doso-
vitskiy et al., 2021), Rollout Attention (RoA) (Abnar & Zuidema, 2020) and LRP Attention (LA)
(Chefer et al., 2021). While the attribution methods are applied to all model architectures, the atten-
tion methods can only be applied to the Transformer-based architectures. For comparison reasons,
we only consider the original methods without adaptations, as several other works (Hooker et al.,
2019; Yang & Kim, 2019) already showed that advancing methods by VarGrad (Adebayo et al.,
2018) or SmoothGrad(-squared) (Smilkov et al., 2017) can, in general, improve results. We tuned
the XAI parameters per modality from the qualitative evaluation (see Figure 2) to not bias the quan-
titative evaluation results (see Appendix C for all XAI method parameters).

Evaluation metrics The evaluation metrics are grouped into three criteria: faithfulness (is the
explanation following the model behavior?), robustness (is the explanation stable?), and complexity
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Figure 2: Illustrative saliency maps for all three modalities. The upper row shows three attributions,
respectively, and the lower row, three attention-based methods. We observe how all XAI methods
highlight the runway in the image and the vessel for the volume modality but with different gran-
ularity and focus. For the point cloud plane, explanations are less understandable, with attribution
methods highlighting single points at the front tip, rudder, or wing tips.

(is the explanation concise and human understandable?). As every metric is again a proxy for the
respective criteria, we employ several to get more reliable results. In Appendix G, we provide a de-
tailed review of the metrics to examine their behaviour based on the criteria they approximate. We
utilize in total 20 evaluation metrics, of which 10 evaluate faithfulness, seven robustness, and three
complexity (see Appendix D for a detailed description of every single metric). We tune their param-
eters per dataset as some parameters depend on dataset properties (see Appendix subsection D.2 for
all parameters).

Ranking analysis As the nominal evaluation scores have no semantic meaning and their scales
differ between datasets, we analyze the XAI methods based on their ranking. To this end, we com-
pute the median evaluation score over the observations on the dataset level and rank the methods
according to the metric. See Appendix E for a detailed flow chart of how we get from evaluation
scores to rankings and Appendix K for the distribution of all scores before ranking. We utilize the
rankings for statistical analysis in the subsequent empirical study.

2.2 THE LATEC DATASET: REFERENCE DATA FOR STANDARDIZED EVALUATION

The resulting data of the three stages, which comprise the LATEC dataset, include pretrained model
weights (excluding IMN), saliency maps, and evaluation scores. Thanks to the LATEC dataset,
future experiments can start at a certain stage and use the results from the previous stage without
recomputing everything again, e.g. when testing out a new evaluation metric on the existing saliency
maps, preserving comparability. For the LATEC dataset, we compute per dataset saliency maps for
the entire test set or 1000 observations depending on which size is smaller (on the validation set
if the test set is unavailable), from which we sample 50 observations to compute evaluation scores
for all 7,560 combinations. In total, the LATEC dataset consists of 326,790 saliency maps and
378,000 evaluation scores. As for such large datasets, the size can go into the hundreds of gigabytes.
To save disk space, saliency maps could be cast from 64-bit precision to 32 or even 16-bit. We
would, however, strongly advise against this, as even casting to 32-bit precision introduced numer-
ical instability in our experiments due to the rounding of attribution and attention values, resulting
in all-zero saliency maps and nan or inf evaluation scores. Further, as ranking lengths between
CNN and Transformer architectures differ (attention methods only for Transformer architectures),
we recompute rankings in the subsequent study, which aggregate over all three architectures by first
combining the normalized evaluation scores per model architecture and then computing the ranking,
preserving equal length between rankings (see Appendix E).

To ensure a standardized setting with fair comparability between XAI methods over all possible
experiment set-ups and aggregation levels, we take precautions regarding e.g. different types of
feature attributions or the conversion of all metrics to single scores (see Appendix F for all detailed
procedures). LRP requires non-negative activation outputs Montavon et al. (2019), leading us to a
replacement of such activation functions (i.e. GeLU, leakyReLU) in CNN models, but we keep them
for Transformer models, as they are central to the architecture and therefore also to our benchmark,
and apply the 0+-rule instead.
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2.3 ADVANCING CURRENT XAI METHODS AND EVALUATION METRICS FOR 3D DATA

While many XAI methods and evaluation metrics are independent of the input space dimensions,
especially methods leveraging perturbations, interpolations for up- and down-scaling or segmenta-
tion are not. Our implementation builds upon the work from Kokhlikyan et al. (2020) and Hedström
et al. (2023b) for XAI methods and evaluation metrics for 1D and 2D images, and we extended it
to 3D volume and point cloud data. Both modalities come with their own specifies, e.g. that local
neighborhoods have to be defined via k-nearest neighbors (KNN) in point cloud data and not 2D or
3D patches as in image or volume data. For the XAI methods, we advanced e.g. OC, LI, and KS
by the adoption of 3D patches, all three CAM methods with 3D interpolation, all attention-based
methods with 3D and KNN-based interpolations, and LA with relevance backpropagation for the
Simple3DFormer and PC Transformer architectures. As the adoption of the CAM methods for point
cloud data and more complex architectures than PointNet is not trivial, we deem it out of scope for
this paper and do not include them in our point cloud experiments. In the case of evaluation metrics,
we adapted e.g. perturbation applying metrics to 3D patches or point-based perturbations, the su-
perpixel segmentation in IROF by 3D Slic and KMeans clustering and padded x-axis transversal for
the volume and point cloud data in Continuity. Additionally, we modified all methods and metrics
to function with (x, y, z) volume and (n, 3) point cloud dimensions. All adaptations were tested for
their coherency, and illustrative saliency maps can be observed in Figure 2. We refer to Appendix C
and Appendix subsection D.2 for all implementation details.

3 EMPIRICAL STUDY

Table 2 provides an overview of our empirical study, with a more detailed version in Appendix H. In
this study, we address three pivotal questions (Q1 - Q3) concerning XAI that remained unanswered
in prior work. We analyze the data pertaining to these questions in the subsequent three subsections,
with a concise presentation of our findings in subsection 3.4.

3.1 Q1: HOW DOES THE PERFORMANCE OF ATTENTION VERSUS ATTRIBUTION METHODS
DIFFER IN PRACTICE?

Traditionally, attribution methods are used to compute saliency maps, but since the rise of Trans-
formers in computer vision, more methods utilizing the Transformer architecture inherent attention
are explored. As researchers and engineers will be faced more and more with this choice between the
two types of XAI methods, we will analyze if and how they differ in application. To quantitatively
show that there are meaningful patterns between the rankings of all XAI methods in the dataset, we
utilized Multidimensional Scaling (MDS) to find distance-preserving clusters across all rankings.
The MDS plot in Figure 3 (a.) highlights distinct ranking similarities among analogous operating
methods, especially for the attention cluster. Within the attribution methods, the subgroups of CAM
methods (GC, C+, SC) and linear surrogate model methods (LI, KS), but also IG, with IxG and DL,
emerge as similarly clustered. When comparing attention and attribution methods between evalua-
tion criteria, we observe in Figure 3 (b.) a large difference in complexity and a smaller difference
in robustness while the difference in faithfulness is substantially lower and insignificant. A more
nuanced exploration into the attention and attribution methods (see Figure 3 (c.)) reveals already
more complex relationships.

Gradient and Deep Taylor Decomposition principle-based methods, including IxG, IG, DL, and
LRP, are ranked significantly less complex compared to the CAM and attention methods. In our
opinion, this observation is counterintuitive when comparing the complexity rankings to the maps in
Figure 2, based on which we would classify CAM and attention methods as more clearly arranged
and less noisy. While all three complexity metrics (Complexity (Bhatt et al., 2020), Effective Com-
plexity (Nguyen & Martı́nez, 2020) and Sparseness (Chalasani et al., 2020)) were also explicitly
proposed for image data, we notice that they all treat each pixel, voxel or point independent of each
other, ignoring locality and favoring methods which attribute to the smallest set of single pixels. As
this approach possibly transfers to low dimensional images such as MNIST Lecun et al. (1998) or
CIFAR-10 Krizhevsky (2009), the image datasets the three metrics were originally presented on, we
hypothesize that it may not be effective with higher-dimensional inputs as observed in our study.
Thus, it does not come as unexpected that methods like LRP are ranked high as they heavily filter
the importance of pixels (in the case of LRP through relevance) compared to e.g. either VG, which
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Evaluation Criteria: Faithfullness (n{A,M} = 90) Robustness (n{A,M} = 63) Complexity (n{A,M} = 27)

Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud
OC 11.5 9 12 12.5 9.5 12 9 7.5 6.5

LIME 16.5 13 2 16 15 14 7 9.5 9
KS 16.5 12 3 17 17 12 12.5 12 10
VG 13 14 8.5 4 4 6.5 11 14 8
IxG 9.5 5 5 14.5 11.5 9.5 4 2 3
GB 7.5 10 1 6.5 8 12 5 6 5
GC 6 17 - 2.5 13 - 14 9.5 -
SC 4.5 11 - 10 15 - 10 16.5 -
C+ 11.5 15.5 - 5 11.5 - 15.5 16.5 -
IG 4.5 2 4 10 4 9.5 3 3.5 4

EG 1 3 7 2.5 1 6.5 17 7.5 11
DL 7.5 5 6 12.5 7 8 2 3.5 2

DLS 2 5 12 6.5 9.5 5 6 5 6.5
LRP 15 15.5 10 14.5 15 2 1 1 1

         
RA 14 8 8.5 1 6 3.5 8 11 12

RoA 9.5 7 12 8 2 3.5 15.5 13 14
LA 3 1 14 10 4 1 12.5 15 13

At
tri

bu
tio

n
At

te
nt

io
n

Top 1 Top 2-4 Bottom 2-4 Bottom 1Per modality:

Table 2: Ranking of the average rank over model architectures, datasets, and all evaluation metrics
of the respective criteria for each XAI method and modality (i.e. the rank of OC on an image is
based on 3 ∗ 3 ∗ 10 = 90 ranks). Coloring coincides with top and bottom positions as point cloud
rankings are of length 14 and all others of length 17.

also acts on the pixel space but does not filter the gradients, or CAM methods, which attribute to
local regions. If these XAI methods are less complex and more human understandable on computer
vision modalities is debatable (see Appendix J for a more detailed discussion). Also, Bhatt et al.
(2020) argues that the Complexity metric is better suited for tabular data. In contrast, attention
methods are ranked commendable more robust, whereas KS and LIME are not. Faithfulness scores
are still largely uniform distribution among the methods at this analysis level, indicating differences
in faithfulness are caused by more distinguishing factors such as modalities.

3.2 Q2: DOES THE EFFICACY OF XAI METHODS VARY ACROSS DIFFERENT COMPUTER
VISION MODALITIES?

While modalities in computer vision share properties such as locality, spatial structure, or associ-
ated feature descriptors, other properties such as dimensionality or representation (e.g. grid versus
collection of points) differ. To quantify such an effect on XAI methods and identify clusters, we av-
erage ranks of XAI methods within modalities and evaluation criteria in Table 2, revealing some new
distinctive patterns in the ranking of various methods. The extended table in Appendix H shows that
ranking disparities between datasets within individual modalities are minimal, suggesting that no
new insights could be gained by including more datasets. We observe from Table 2, that both LIME
and KS consistently rank low across all three evaluation criteria except for point cloud faithfulness,
where both methods achieve high rankings. Further, KS diverges considerably from the other two
SHAP approximating methods, DLS and EG, which maintain consistently high rankings across the
image and volume modalities, only declining on point clouds. These differences between SHAP ap-
proximating methods, but not in terms of XAI evaluation, are also demonstrated in recent research
by Molnar et al. (2022). Regarding the attention methods, LA exhibits high faithfulness rankings
specifically for the image and volume modalities, and all three attention methods are ranked high
for robustness over all modalities. CAM methods, on the other hand, demonstrate average faithful-
ness and robustness within the image modality but rank considerably lower on the volume modality.
Their complexity scores remain low across both modalities as indicated in subsection 3.1.

3.3 Q3: WITH THE ASCENDENCY OF TRANSFORMER ARCHITECTURES, IS THERE A
POTENTIAL MISALIGNMENT WITH ESTABLISHED ATTRIBUTION-BASED XAI METHODS?

Specific architectural choices in Transformer architectures, such as negative activation outputs, ma-
trix multiplication in attention layers, or skip connections can, in theory, affect attribution methods
(see Chefer et al. (2021) for more details). To uncover such biases, we compare the difference in
faithfulness rankings of attribution methods between CNN and Transformer architectures, as biased
methods should be less faithful to the model (we refer to Appendix H for the full distinct versions
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Figure 3: a. MDS plot of all rankings shows that similar operating methods are also clustered (thus
ranked) similar, suggesting that the rankings are not random. b. Average rank per criteria shows
significant (two-sample T-test) differences between attribution and attention methods for robustness
and complexity but not faithfulness. c. Average rank per XAI method and evaluation criteria.

of Table 2 subdivided into CNN and Transformer architectures.). To this end, we compute the
Kendals-τ rank correlation between each of the three architectures per dataset and compute their
average correlation per modality (see Figure 4 (a.)). We observe a positive correlation between all
rankings. For the point cloud modality, however, the correlation is significantly lower than for the
other two modalities, indicating less similar rankings between model architectures. For volume and
image modality, the similarity between CNN architectures is generally higher.

To examine the architecture’s effect on image and volume data in more detail, we compute for
each attribution method the rank difference between CNN and Transformer architectures (see Fig-
ure 4(b.)), as especially score backpropagation- and Deep Taylor Decomposition-based methods
such as GB, DL, DLS, and LRP, but also CAM methods should be affected. Thus, if the method
is, on average, ranked more faithful on CNN architectures, the difference in rank should be positive
(the overall average is zero). The low ranking correlation across all architectures for point cloud
data suggests that rank differences are primarily random, diminishing statistical power and indicat-
ing that patterns in point cloud rankings arise from factors other than model architectures. Indeed,
if we compute the same figure for the point cloud architectures in Appendix I, we observe no signif-
icant difference from zero, except for OC, IxG, and LRP. In Figure 4(b.), we observe, as expected,
worse faithfulness for GC, C+, DL, and DLS on Transformer architectures, while only DL and DLS
are significantly different from zero and other hypothesized methods such as LRP or SC are not
significantly different from zero. But other XAI methods, such as OC and IG, are significantly
less faithful on Transformer architectures. Based on the presented results, we observe a trend that
specific methods perform worse on Transformer architectures, but nothing that would significantly
confirm the hypothesis.

3.4 MAIN INSIGHTS & TAKE-AWAYS

From the empirical analysis, we distill our findings into general and question-specific results. Prac-
tical recommendations from these results are outlined in the subsequent (take-aways).

1. No XAI method ranks consistently high on all evaluation criteria. (We recommend EG as the
initial approach due to its reliable good performance in faithfulness and robustness, especially
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a. Rank Correlation of Faithfulness 
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Figure 4: a. Kendall rank correlation between model architectures averaged over datasets and faith-
fulness criteria. b. Average difference in rank when subtracting the average rank of CNN architec-
tures from the rank of Transformer architectures over faithfulness metrics. T-test to validate if the
difference significantly differs from 0.

for data with non-trivial to select baseline values.)

2. Rankings of XAI methods generally generalize well over datasets given that observations have
the same size. (Focus on data properties such as dimensionality or modality rather than domains
when selecting XAI methods for your problem.)

3. Results in complexity seem counterintuitive, indicating that the evaluation objective of complex-
ity metrics in computer vision does not always has to match the perception of low complexity.
(Given that CAM or attention methods, which appear less fine-grained, receive low complexity
ranks, we recommend using these metrics cautiously, especially on high-dimensional data.)

4. Answer to Q1: Attention methods are generally more robust and attribution methods less
complex (see item 3), while differences in faithfulness depend on the specific method and
modality. (As relevance filtered attention (LA) consistently scores better than non-filtered raw
attention, we would always prefer it.)

5. Answer to Q2: We observe significant variations in evaluation performance manifest across
modalities, especially for point cloud data. (Given LIME and KS’s poor performance on image
and volume data, we advise against using them for high-dimensional and complex relationships.)

6. Answer to Q3: Although we observe a trend that theoretically biased XAI methods are less
faithful on Transformer architectures, the significance of these effects highly fluctuates between
methods. (As only DL and DLS stand out as performing significantly less faithfully on Trans-
former than on CNN architectures, we would not advise against any other attribution methods
for Transformer architectures at this point.)

4 COMPARISON WITH RELATED WORK

As we previously stated, the significance of current research is limited due to small and varying
subsets in XAI methods and criteria used for evaluation, which consequently lead to contradicting
outcomes. Due to the comprehensiveness of our study, we argue that the validity is significantly
increased compared to previous work and that our findings offer a more definitive resolution to the
inconsistencies observed in earlier, smaller-scale investigations. The difference in scale is particu-
larly evident from Table 1, which presents a summary of 16 related relevant studies (all on image
data), with an indication of what criteria were evaluated and how XAI methods performed relative
to other methods or baselines analyzed in the study, based on our assessment. We present our results
for the image modality indicated at the bottom, which do not necessarily transfer to other modalities
as Table 2 shows. While some “evergreen” XAI methods i.e. VG, IxG, GB, and IG, stand out,
Table 1 visualizes how sparse the field of XAI evaluation is, especially for attention methods.

In several cases, we observe similar results to other studies, e.g. Adebayo et al. (2018); Nie et al.
(2018); Hooker et al. (2019); Yang & Kim (2019) critic on the unfaithfulness of GB and Bhatt et al.
(2020); Yang & Kim (2019); Kakogeorgiou & Karantzalos (2021) evaluated IxG as unfaithful as
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both methods perform partial input recovery. However, we observe that these results can differ be-
tween modalities, as GB, for example, is considerably faithful on point cloud data. Our faithfulness
results especially contradict for GC with Arras et al. (2022); Chefer et al. (2021), LRP with Arras
et al. (2022) and IG with Kakogeorgiou & Karantzalos (2021); Arun et al. (2021); Hooker et al.
(2019). On the contrary, our observations are supported by Chefer et al. (2021) for LRP unfaith-
fulness, Chefer et al. (2021); Yang & Kim (2019); Arun et al. (2021); Kakogeorgiou & Karantzalos
(2021) for GC faithfulness and Arras et al. (2022); Bhatt et al. (2020) for IG faithfulness, with
Kindermans et al. (2019) arguing that the faithfulness of IG highly depends on the selected base-
line. Noteworthy, our best-evaluated method in terms of faithfulness and robustness, EG, was never
evaluated in any related study. Further, only Chefer et al. (2021) and Hesse et al. (2023) included
attention methods, and both found LA to be the most faithful, a finding that our work supports.

The majority of quantitative studies evaluate faithfulness (10/15), compared to robustness (5/15)
and complexity (2/15, Singh et al. (2021) evaluate qualitatively). Regarding robustness, Bhatt et al.
(2020) and Yeh et al. (2019) rank KS as highly robust on lower dimensional image data. While we
confirm the robustness of other SHAP methods, such as EG and DLS, KS is not robust in our image
data evaluation. In terms of faithfulness, however, KS and LIME improve on the lower dimensional
point cloud data, supporting the claim of Yeh et al. (2019) for KS and Zafar & Khan (2021) for LI,
arguing that both methods have low faithfulness and robustness if the underlying model architecture
or data is too complex to be modeled by a linear approximation on feature masks. The quantita-
tive work in the field of complexity only includes papers that present a metric (Bhatt et al., 2020;
Nguyen & Martı́nez, 2020; Kakogeorgiou & Karantzalos, 2021). We deemed the suitability of these
metrics for computer vision modalities as debatable (see subsection 3.1). However, most work in
complexity and human understandability is qualitative. As a notable example, Singh et al. (2021)
showed that ophthalmologists and optometrists rate GB as a highly understandable method on the
OCT dataset, claims that our quantitative work would support, in specific for the same OCT dataset,
but e.g. Kakogeorgiou & Karantzalos (2021) heavily contradicts. We assess this high fluctuation
between quantitative and especially qualitative complexity evaluation outcomes as further support
for our hypothesis that there is a gap between the aim of the metrics and human conception of low
complexity. In summary, our study aligns with several previous results, but especially faithful and
robust evaluated methods such as EG and DLS are not present in previous work, and we observe
discrepancies between modalities, as well as quantitative and qualitative evaluation of complexity.

5 CONCLUSION AND DISCUSSION

While we spent a significant amount of time adapting and parameterizing the evaluation metrics, we
still encountered shortcomings during our experiments. Some metrics can be relatively sensitive to
parameterization or perturbation baseline selections and depend on the properties of the dataset. We
discuss these operational shortcomings in Appendix J. Even if a metric fails in specific situations,
such as complexity metrics on higher-dimensional data, we still include them in the benchmark, as
the determination of such failure cases is pivotal to future work in meta-evaluation.

Although our benchmark is one of the most comprehensive in the field, we restricted us to the
modalities with the, in our opinion, most unique and not overlapping characteristics, ignoring e.g.
video data, and did not include more unconventional post-hoc XAI methods such as symbolic rep-
resentations or metamodels. Further, we did not include the evaluation criteria of localization and
axiomatic properties as they either require ground-truth bounding boxes or can not be applied to all
XAI methods. Finally, we want to comment that our benchmark focuses on the comparison between
methods, not on the evaluation of whether a method is faithful or robust in general, thus ignoring
e.g. synthetic baselines.

Our work was motivated by imminent challenges of the field, such as unreliable small-scale settings
and the dismissing of key factors and new emerging methods. As a solution, we propose the LATEC
benchmark, which not only serves as a more reliable platform for standardized large-scale evaluation
but also allows to answer a multitude of questions pivotal to the field’s advancement, from which
we exemplary address three and distill the findings into main insights and take-aways. In the future,
the benchmark can not only be used to evaluate new XAI methods but also leverage the vast amount
of high-quality saliency maps to compare ranking behavior between evaluation metrics, providing a
foundation for the emerging field of meta-evaluation.
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Umang Bhatt, Adrian Weller, and José M. F. Moura. Evaluating and aggregating feature-based
model explanations. In Proceedings of the Twenty-Ninth International Joint Conference on Arti-
ficial Intelligence, IJCAI’20, pp. 3016–3022, Yokohama, Yokohama, Japan, January 2021. ISBN
978-0-9992411-6-5.
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APPENDIX

A LIST OF ABBREVIATIONS

A.1 GENERAL

XAI . . . . . . . . . . . . . Explainable Artificial Intelligence
LATEC . . . . . . . . . Large-scale Attribution & Attention Evaluation in Computer Vision
DL . . . . . . . . . . . . . . Deep Learning
CV . . . . . . . . . . . . . . Computer Vision
CNN . . . . . . . . . . . . Convolutional Neural Network
KNN . . . . . . . . . . . . k-Nearest Neighbor
MDS . . . . . . . . . . . . Multidimensional Scaling

A.2 DATASETS

IMN . . . . . . . . . . . . ImageNet
OCT . . . . . . . . . . . . UCSD OCT Retina
R45 . . . . . . . . . . . . . RESISC45 - Remote Sensing Image Scene Classification
AMN . . . . . . . . . . . . Adrenal-MedMNIST3D
OMN . . . . . . . . . . . Organ-MedMNIST3D
VMN . . . . . . . . . . . . Vessel-MedMNIST3D
CMA . . . . . . . . . . . . CoMA - Generating 3D faces using Convolutional Mesh Autoencoders
M40 . . . . . . . . . . . . . ModelNet40
SHN . . . . . . . . . . . . ShapeNet

A.3 XAI METHODS

OC . . . . . . . . . . . . . . Occlusion
LIME . . . . . . . . . . . Local Interpretable Model-Agnostic Explanations
KS . . . . . . . . . . . . . . Kernel SHAP
VG . . . . . . . . . . . . . . Vanilla Gradient
IxG . . . . . . . . . . . . . Input x Gradient
GB . . . . . . . . . . . . . . Guided Backprob
GC . . . . . . . . . . . . . . GradCAM
SC . . . . . . . . . . . . . . ScoreCAM
C+ . . . . . . . . . . . . . . GradCAM++
IG . . . . . . . . . . . . . . Integrated Gradients
EG . . . . . . . . . . . . . . Expected Gradients
DL . . . . . . . . . . . . . . DeepLIFT
DLS . . . . . . . . . . . . . DeepLIFT SHAP
LRP . . . . . . . . . . . . Layer-Wise Relevance Propagation
RA . . . . . . . . . . . . . . Raw Attention
RoA . . . . . . . . . . . . . Rollout Attention
LA . . . . . . . . . . . . . . LRP Attention
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B DEEP LEARNING MODEL PERFORMANCE AND HYPERPARAMETER

B.1 TEST SET PERFORMANCE

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

OCT 

(MC: 4)

ResNet 50 0.999 0.999 0.999 0.999 1.0

EfficientNet b0 0.9969 0.9969 0.9969 0.9969 1.0

DeiT ViT 0.999 0.999 0.999 0.999 1.0

R45 

(MC: 45)

ResNet 50 0.9535 0.9536 0.9538 0.9535 0.9995

EfficientNet b0 0.9554 0.9554 0.9549 0.9549 0.9995

DeiT ViT 0.9568 0.957 0.9568 0.9567 0.9995

a. Testset Performance on Image Modality

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

AMN 

(BC)

3D ResNet 18 0.8003 0.8013 0.7987 0.8 0.8699

EfficientNet3D b0 0.8003 0.7954 0.8087 0.802 0.8647

Simple3DFormer 0.7936 0.7907 0.7907 0.7907 0.8728

OMN 

(MC: 11)

3D ResNet 18 0.9115 0.9248 0.9248 0.9226 0.9953

EfficientNet3D b0 0.8754 0.8924 0.8936 0.8914 0.9893

Simple3DFormer 0.8131 0.8463 0.8381 0.84 0.9815

VMN 

(BC)

3D ResNet 18 0.9359 0.937 0.9346 0.9358 0.98

EfficientNet3D b0 0.9162 0.9162 0.9162 0.9162 0.9229

Simple3DFormer 0.8861 0.8871 0.8848 0.886 0.9394

b. Testset Performance on Volume Modality

Model Performance Metric

Dataset:
Model 
Architecture: Accuracy Precision Recall F1 AUROC

CMA 

(MC: 12)

PointNet 0.9852 0.9743 0.9876 0.98 0.998

DGCNN 0.9535 0.9373 0.9498 0.9423 0.9989

PC Transformer 0.9751 0.9645 0.9688 0.9662 0.9996

M40 

(MC: 40)

PointNet 0.8914 0.8374 0.8564 0.8438 0.9958

DGCNN 0.9177 0.8844 0.891 0.8864 0.9973

PC Transformer 0.9149 0.8779 0.8842 0.8796 0.9969

SHN 

(MC: 16)

PointNet 0.9878 0.9673 0.9689 0.9668 0.9991

DGCNN 0.9903 0.966 0.9847 0.9745 0.9995

PC Transformer 0.9896 0.9642 0.9819 0.9716 0.9997

c. Testset Performance on Point Cloud Modality

MC #: Multi-Class (# Classes), BC: Binary-Class

Table 3: a., b. & c. Test set performance measured with the metrics: accuracy, precision, recall,
F1, and area under the receiver operating characteristic (AUROC) curve, for each modality. In the
case of IMN we use pretrained weights for the Transformer architecture from Huggingface1 and the
CNN architectures from TorchHub2,3.
1 https://huggingface.co/facebook/deit-small-patch16-224
2 https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html

3 https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b0.html

Architectures were chosen based on their popularity and, to a limited extent, comparability between
modalities, e.g. ResNet-50 and 3D ResNet-18 which both emerge from the same family of ResNet
architectures. While 3D volume architectures could also be applied to point cloud data, we choose
point cloud specific architectures for the modality.
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B.2 HYPERPARAMETER

We tuned all hyperparameters on either the declared validation set or sampled a validation set based
on 20% of the train set. The tuning was performed via grid search for each model. The primary
metric for hyperparameter tuning was the F1 score.

Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: OCT R45

ResNet 50

Batch size 128 128
Max Epochs 8 60

Learning rate (LR) 0.0001 0.0001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

EfficientNet b0

Batch size 128 128
Max Epochs 5 15

Learning rate (LR) 0.0001 0.001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

DeIT ViT

Batch size 128 128
Max Epochs 6 60

Learning rate (LR) 0.0001 0.0001
Optimizer Madgrad Madgrad

LR Scheduler Cosine Annealing Cosine Annealing
Weight Decay 0 0

Momentum 0.9 0.9

Augmentations

Train:

Resize (256,256)

RandomCrop (224,224)

RandomAffine (shear=0.2,

degrees=5)

RandomHorizontalFlip

Grayscale (channels=3)


Test:

Resize (256,256)

CenterCrop (224,224)

Grayscale (channels=3)

Train:

Resize (256,256)

RandomCrop (224,224)

RandomHorizontalFlip

RandAugment

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))


Test:

Resize (256,256)

Normalize (mean=(0.485, 0.456,

0. 406), std=(0.229, 0.224, 0.225))

Sampling Weighted Random Sampling None

a. Hyperparameter for Image Modality

Table 4: Hyperparameter for all three architectures and CV datasets, excluding IMN as we load
pretrained weights.
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Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: AMN OMN VMN

3D ResNet18

Batch size 32 32 32
Max Epochs 100 100 100

Learning rate (LR) 0.001 0.001 0.001
Optimizer SGD Adam Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0 0 0

Momentum 0.9 0 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

3D EfficientNet b0

Batch size 32 32 64
Max Epochs 100 100 100

Learning rate (LR) 0.001 0.001 0.001
Optimizer SGD AdamW Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0.0005 0

Momentum 0.9 0 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

Simple3DFormer

Batch size 32 32 64
Max Epochs 150 100 100

Learning rate (LR) 0.001 0.000001 0.001
Optimizer SGD Madgrad Adam

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0 0

Momentum 0.9 0.9 0

Augmentations

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

None

Train:

RandomBrightness(U(0,1))


Test:

FixedBrightness(0.5)

Sampling Weighted Random Sampling None Weighted Random Sampling

a. Hyperparameter for Volume Modality

Table 5: Hyperparameters for all three architectures and CV datasets.
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Utilized Computer Vision Datasets
Model Architecture: Hyperparameter: CMA M40 SHN

PointNet

Batch size 32 24 32
Max Epochs 100 200 200

Learning rate (LR) 0.001 0.001 0.001
Optimizer AdamW AdamW AdamW

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0001 0.0001 0.0001

Momentum 0 0 0

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

DGCNN

Batch size 32 32 32
Max Epochs 100 250 200

Learning rate (LR) 0.001 0.001 0.001
Optimizer AdamW AdamW AdamW

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0001 0.0001 0.0001

Momentum 0 0 0

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

PC Transformer

Batch size 32 32 32
Max Epochs 150 250 200

Learning rate (LR) 0.01 0.01 0.01
Optimizer SGD SGD SGD

LR Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight Decay 0.0005 0.0005 0.0005

Momentum 0.9 0.9 0.9

Augmentations

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomRotate (degrees=15)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

SamplePoints (1024)

RandomScale (0.67,1.5)

RandomJitter (0.02)


Test:

SamplePoints (1024)

Pretransforms:

NormalizeScale


Train:

RandomScale (0.67,1.5)

RandomJitter (0.01)

RandomRotate(degress=15, 

axis = (0,1,2))


Test:

None

Sampling None None None

a. Hyperparameter for Point Cloud Modality

Table 6: Hyperparameters for all three architectures and CV datasets.

C XAI METHODS OVERVIEW, PARAMETERS, AND ADAPTION

C.1 OVERVIEW

C.1.1 ATTRIBUTION METHODS

Occlusion [OC] (Zeiler & Fergus, 2013) Systematically obscures different parts of the input data
and observes the resulting impact on the output, to determine which parts of the data are most
important for the model’s predictions.

LIME [LIME] (Ribeiro et al., 2016) Creates an interpretable model around the prediction of a
complex model to explain individual predictions locally (patch-based in our case), using perturba-
tions of the input data and observing the corresponding changes in the output.

Kernel SHAP [KS] (Lundberg & Lee, 2017) Using a weighted linear regression model as the
local surrogate and selecting a suitable weighting kernel, the regression coefficients from the LIME
surrogate can estimate the SHAP values.

Vanilla Gradient [VG] (Simonyan et al., 2013) The raw input gradients of the model.
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Input x Gradient [IxG] (Shrikumar et al., 2017) Multiples the input features by their correspond-
ing gradients with respect to the model’s output.

Guided Backprob [GB] (Springenberg et al., 2015) Modifies the standard backpropagation pro-
cess to only propagate positive gradients for positive inputs through the network, thereby creating
visualizations that highlight the features that strongly activate certain neurons in relation to the target
output.

GradCAM [GC] (Selvaraju et al., 2017) Uses the gradients of the target class flowing into the
final convolutional layer to produce a coarse localization map by, highlighting the important regions
in the image by up-scaling the map.

ScoreCAM [SC] (Wang et al., 2020) Eliminates the need for gradient information by determining
the importance of each activation map based on its forward pass score for the target class, producing
the final output through a weighted sum of these activation maps.

GradCAM++ [C+] (Chattopadhay et al., 2018) Generates a visual explanation for a given class
label by employing a weighted sum of the positive partial derivatives from the final convolutional
layer’s feature maps, using them as weights with respect to the class score.

Integrated Gradients [IG] (Sundararajan et al., 2017) Explains model predictions by attributing
the prediction to the input features, calculating the path integral of the gradients along the straight-
line path from a baseline input to the actual input.

Expected Gradients [EG] (Erion et al., 2020) Also called Gradient SHAP. Avoids the selection
of a baseline value compared to IG, by leveraging a probabilistic baseline computed over a sample
of observations.

DeepLIFT [DL] (Shrikumar et al., 2017) Assigns contribution scores to each input feature based
on the difference between the feature’s activation and a reference activation, effectively measuring
the feature’s impact on the output compared to a baseline.

DeepLIFT SHAP [DLS] (Lundberg & Lee, 2017) Cmbines the DeepLIFT method with Shapley
values to assign importance scores to input features by computing their contributions to the output
relative to a reference input, while ensuring consistency with Shapley values.

Layer-Wise Relevance Propagation [LRP] (Binder et al., 2016) Explains neural network deci-
sions by backpropagating the output prediction through the layers, redistributing relevance scores to
the input features to visualize their contribution to the final decision. We use the ϵ-,γ- and 0+-rules
depending on the model architecture for relevance backpropagation.

C.1.2 ATTENTION METHODS

Raw Attention [RA] (Dosovitskiy et al., 2021) Rearranged and up-scaled attention values of the
last attention head.

Rollout Attention [RoA] (Abnar & Zuidema, 2020) Averages attention weights of multiple heads
to trace the contribution of each part of the input data through the network.

LRP Attention [LA] (Chefer et al., 2021) Assigns local relevance scores to attention weights
based on the Deep Taylor Decomposition principle and propagates these relevancy scores through
the model.
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C.2 PARAMETERS

XAI Method: OC LIME KS CAM (all) SC IG EG DL LRP RA

Parameter: strides
sliding_window_


shapes baseline
perturbations_


per_eval alpha n_samples
perturbations_


per_eval baseline n_samples
perturbations_


per_eval layer batch_size baseline n_steps n_samples std eps baseline rule eps gamma layer

Image 25 (50, 50) 0 1 1,0 10 5 0 10 5
ResNet50,layer4[-1]


EfficientNetbo,features[-1]

ViT,blocks[-1],norm1

32 0 30 40 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,0001 0,25 ViT,blocks[-1],attn

Volume 4 (7, 7, 7) 0 1 1,0 10 5 0 10 5
3DEfficientNetbo,blocks[-13]


3DResNet18,layer3

S3DF,blocks[-1],norm1

64 0 30 40 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,0001 0,25 S3DF[-1],attn

Point Cloud 1 (3,1) 0 5 4,0 10 5 0 10 5
PointNet,transform,bn1


DGCNN,conv5

PCT,sa4,after_norm

16 0 30 16 0,001 1e-9 0 ε & γ-rule /

0+-rule 0,00001 0,25 PCT,sa4,attn

Table 7: Parameters for each XAI method and modality.

The parameters for each XAI method are derived for each modality via qualitative evaluation which
we deem the most realistic scenario. We tuned the XAI methods on five observations per dataset
and modality, which we argue is a fair trade-off between fitting the methods to the dataset but not
overfitting them to bias the evaluation. We did not tune the parameters per dataset, as the parameters
transfer very well between datasets and only needed minimal adjustments.

C.3 ADAPTION

In this section, we explain how we adapted XAI methods in our framework to seamlessly work with
3D modalities. We neglect the methods that did not need any adaption (besides e.g. unit tests etc.)
as they work independently of the input dimensions. All XAI methods are adapted, such that they
only return positive attribution.

Occlusion For the 3D modalities we implemented a 3D kernel as the perturbation baseline for
volumes and a 1x3 mask (one point) for the point clouds. The image and volume mask transverse
with overlap and the point cloud mask without overlap over all dimensions of the input object.

LIME & Kernel SHAP For both methods, we implemented feature masks for each modality, as
training the linear surrogate models on the original input features is not informative and computa-
tionally very expensive. Each mask groups the input features to the same interpretable feature. We
use predefined grids as feature masks, as superpixel computing algorithms are too computational
and time-expensive, especially for 3D modalities and evaluation metrics that perturb the input space
or refit the XAI method multiple times. For the image modality, we use a 16x16x3, for volume
7x7x7, and for point cloud 1x3 (one point) mask, which is distributed as a non-overlapping grid in
all dimensions over the whole object. For point clouds we use ridge regression and for the other
modalities lasso regression.

GradCAM, ScoreCAM & GradCAM++ For all CAM methods on volume data we adapted
the gradient averaging and the subsequent weighting of the activations and used nearest-neighbor
interpolation to upscale the weighted activations to 3D volumes. In the case of ScoreCAM we also
use nearest neighbor up-sampling instead of bilinear up-sampling, to upscale the activations for
weighting the output of the previous layer. To correctly reshape the upscaled images and volumes in
the case of the Transformer architectures (taking the channels to the first dimension as for CNNs),
we use two different reshape functions for images and volumes when the CAM methods are applied
to Transformer architectures. Further, we use the absolute activation output, not the non-negative for
Transformer architectures, as the leaky-ReLU/GeLU function output otherwise would sometimes be
zero.

LRP For CNNs, we assigned the ϵ-rule to the linear or identity layers, the identity rule to all
non-linear layers, and to all other layers (convolutions, pooling, batch normalization, etc.) the γ-
rule. For Transformer architectures we implemented the 0+-rule for all layers. However, for the
Simple3DFormer and the PC Transformer, we had to add custom relevance propagation through the
whole model, as the architectures come with several sub-modules such as ”local gathering” for the
PC Transformer, which are non-trivial to backpropagate through.

Raw Attention We always use the raw attention of the last Transformer block and use bilinear
or trilinear interpolation to rescale the attention for image and volume data. For point cloud data,
this procedure is more complicated as the PC Transformer projects the embeddings on which the
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Transformer acts via farthest point sampling and k-nearest neighbor grouping. Thus in each down-
sampling step, we save which k points are sampled to then use k-nearest neighbor interpolation to
cast the attention values for these remaining points back into the input space onto all 1024 original
points.

Rollout Attention Same procedure as for Raw Attention but before we interpolate back into the
original input space, we use the rollout attention aggregation algorithm over all Transformer modules
in the architecture.

LRP Attention As for LRP we use custom relevance backpropagation for the Simple3DFormer
and PC Transformer architectures. Based on the relevance scores, we filter the attention of each
Transformer module, aggregate the filtered attention with the rollout algorithm, and interpolate the
resulting attention back into the input as described for Raw Attention.

D EVALUATION METRICS OVERVIEW, PARAMETERS, AND ADAPTION

D.1 OVERVIEW

D.1.1 FAITHFULNESS

Faithfulness Correlation (Bhatt et al., 2020) Gauges an explanation’s fidelity to model behavior.
It measures the linear correlation between predicted logits of modified test points and the average
explanation for selected features, returning a score between -1 and 1. For each test, selected features
are replaced with baseline values, and Pearson’s correlation coefficient is determined, averaging
results over multiple tests.

Faithfulness Estimate (Alvarez Melis & Jaakkola, 2018) Evaluates the accuracy of estimated
feature relevances by using a proxy for the ”true” influence of features, as the actual influence is
often unavailable. This is done by observing how the model’s prediction changes when certain
features are removed or obscured. Specifically, for probabilistic classification models, the metric
looks at how the probability of the predicted class drops when features are removed. This drop is
then compared to the interpreter’s prediction of that feature’s relevance. The metric also computes
correlations between these probability drops and relevance scores across various data points.

Monotonicity Correlation (Nguyen & Martı́nez, 2020) Evaluates the correlation between the
absolute values of attributions and the uncertainty in probability estimation using Spearman’s coef-
ficient. If attributions are not monotonic the authors argue that they are not providing the correct
importance of the features.

Pixel Flipping (Bach et al., 2015) The core concept involves flipping pixels with very high, very
low, or near-zero attribution scores. The effect of these changes is then assessed on the prediction
scores, with the average prediction being determined.

Region Perturbation (Samek et al., 2017) A step-by-step method where the class representation
in the image, as determined by a function, diminishes as we gradually eliminate details from an
image. This process, known as region perturbation, occurs at designated locations. Finally, the
effect on the average prediction is calculated.

Insertion (Petsiuk et al., 2018) Gradually inserts features into a baseline input, which is a strongly
blurred version of the image, to not create OOD examples. During this process, the change in
prediction is measured and the correlation with the respective attribution value is calculated.

Deletion (Petsiuk et al., 2018) Deletes input features one at a time by replacing them with a
baseline value based on their attribution score. During this process, the change in prediction is
measured and the correlation with the respective attribution value is calculated.

Iterative Removal of Features (IROF) (Rieger & Hansen, 2020) The metric calculates the area
under the curve for each class based on the sorted average importance of feature segments (super-
pixels). As these segments are progressively removed and prediction scores gathered, the results are
averaged across multiple samples.

Remove and Debias (ROAD) (Rong et al., 2022) Evaluates the model’s accuracy on a sample
set during each phase of an iterative process where the k most attributed features are removed.
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To eliminate bias, in every step, the k most significant pixels, by the most relevant first order, are
substituted with noise-infused linear imputations.

Sufficiency (Dasgupta et al., 2022) Assesses the likelihood that the prediction label for a specific
observation matches the prediction labels of other observations which have similar saliency maps.

D.1.2 ROBUSTNESS

Local Lipschitz Estimate (Alvarez Melis & Jaakkola, 2018) Lipschitz continuity in calculus is
a concept that measures the relative changes in a function’s output concerning its input. While the
traditional definition of Lipschitz continuity is global, focusing on the largest relative deviations
across the entire input space, this global perspective isn’t always meaningful in XAI. This is be-
cause expecting consistent explanations for vastly different inputs isn’t realistic. Instead, a more
localized approach, focusing on stability for neighboring inputs, is preferred, resulting in a point-
wise, neighborhood-based local Lipschitz continuity metric.

Max Sensitivity (Yeh et al., 2019) Measures the largest shift in the explanation when the input is
slightly altered. It specifically evaluates the utmost sensitivity of a saliency map by taking multiple
samples from a defined L-infinity ball subspace with a set input neighborhood radius, using Monte
Carlo sampling for approximation.

Continuity (Montavon et al., 2018) Evaluates, that if two observations are nearly equivalent, then
the explanations of their predictions should also be nearly equivalent. It then measures the strongest
variation of the explanation in the input domain.

Relative Input/Output/Representation Stability (Agarwal et al., 2022) All metrics leverage
model information to evaluate the stability of a saliency map with respect to the change in the either,
input data, intermediate representations, and output logits of the underlying prediction model.

Infidelity (Yeh et al., 2019) Calculates the expected mean-squared error (MSE) between the
saliency map multiplied by a random variable input perturbation and the differences between the
model at its input and perturbed input.

D.1.3 COMPLEXITY

Sparseness (Chalasani et al., 2020) Measures the Gini Index on the vector of absolute saliency
map values. The assessment ensures that features genuinely influencing the output have substantial
contributions, while insignificant or only slightly relevant features should have minimal contribu-
tions.

Complexity (Bhatt et al., 2020) Determines the entropy of the normalized saliency map.

Effective Complexity (Nguyen & Martı́nez, 2020) Evaluates the number of absolute saliency
map values that surpass a threshold. Values above this threshold suggest the features are significant,
while those below indicate they are not.

D.2 PARAMETERS

We tuned the parameters of the evaluation metrics per dataset based on the distribution of their
scores from Appendix K. We applied the suggested parameters from Hedström et al. (2022) or
the respective papers. If the resulting score distributions were collapsed, almost uniform, or too
indistinguishable between the XAI methods, we tuned the respective parameters. This step was
completed prior to the ranking analysis, and no adjustments were made to the metrics once the
ranking phase commenced.
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Image Voxel Point Cloud
Evaluation 
Metric: Parameter: IMN OCT R45 AMN OMN VMN CMA M40 SHN

Faithfulness 
Correlation

nr_runs 100 100 100 100 100 100 100 100 100

subset_size 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Faithfulness 
Estimate

features_in_step 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Monotonicity 
Correlation

nr_samples 10 10 10 10 10 10 10 10 10

features_in_step 3136 3136 3136 392 392 392 256 256 256

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

Pixel Flipping
features_in_step 224 224 224 56 56 56 32 32 32

perturb_baseline black black black black black black center center center

Region 
Perturbation

patch_size 14 14 18 4 4 4 3 3 3

regions_evaluation 10 10 20 20 20 20 32 32 32

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

Insertion

pixel_batch_size 50 50 50 50 50 50 50 50 50

sigma 5.0 120.0 40.0 2.5 2.5 2.5 0.05 0.1 0.05

kernel_size 15 39 19 1 1 1 1 1 1

Deletion pixel_batch_size 50 50 50 50 50 50 50 50 50

IROF
segmentation Slic Slic Slic 3D Slic 3D Slic 3D Slic KMeans KMeans KMeans

perturb_baseline mean mean mean black black black center center center

ROAD
noise 0.1 0.1 0.1 4.0 2.5 50.0 0.02 0.15 0.3

percentages_max 100 100 100 100 100 100 100 100 100

Sufficiency threshold 0.9 0.6 0.6 0.02 0.75 0.0002 0.75 0.75 0.6

Local Lipschitz 
Estimate

nr_samples 5 5 5 10 10 10 5 5 5

perturb_std 0.1 0.0002 0.1 0.2 0.2 0.2 0.1 0.1 0.1

perturb_mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MaxSensitivity
nr_samples 10 10 10 10 10 10 10 10 10

lower_bound 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Continuity

patch_size 56 56 56 7 7 7 3 3 3

nr_steps 20 20 20 20 20 20 20 20 20

perturb_baseline uniform uniform uniform uniform uniform uniform uniform uniform uniform

RIS nr_samples 10 10 10 10 10 10 10 10 10

ROS nr_samples 10 10 10 10 10 10 10 10 10

RRS nr_samples 10 10 10 10 10 10 10 10 10

Infidelity n_perturb_samples 50 50 50 50 50 50 50 50 50

Effective 
Complexity

eps 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001

Table 8: Parameters for all evaluation metrics on each CV dataset.

D.3 ADAPTION

In this section, we explain how we adapted the evaluation metrics in our framework to seamlessly
work with 3D modalities. All metrics were adapted for point cloud (n,d) and volume (x,y,z) dimen-
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sions besides classical image dimensions (w,h,c). We neglected the metrics which did not need any
further adaption. All metrics leveraging threshold values expect normalized saliency maps on the
observation level. Otherwise, thresholds have to be selected per observation.

Pixel Flipping We compute the Area Under the Curve (AUC) to receive a single score. For point
cloud data acts on the single coordinates.

Region Perturbation We compute the AUC to receive a single score. Acts on a 3D kernel for
volume data and single points for point cloud data. Compute the AUC to receive a single score.

Insertion Use Gaussian noise for 3D data instead of Gaussian blur for images. Inserting single
points for point cloud data and voxels for volume data.

Deletion Deletes single points for point cloud data and voxels for volume data. Compute the AUC
to receive a single score.

Iterative Removal of Features (IROF) Compute the Area Over the Curve (AOC) to receive a
single score. We use 3D Slic for volume segmentation and KMeans clustering with fixed k = 16
clusters for point cloud segmentation. k = 16 was determined by visual inspection. See exemplary
visualization in Figure 5.

Figure 5: Example of KMeans clustering for point cloud data with k=16.

Remove and Debias (ROAD) We use Gaussian noise for 3D modalities. Compute the AUC to
receive a single score.

Sufficiency Use the whole set of saliency maps for similarity comparison and not only the batch
the metric is applied to (see Appendix J). For distance calculation between saliency maps, we use
squared Euclidean distance for volume data and standardized Euclidean distance for image and point
cloud data due to numerical instability.

Continuity We implemented x-axis traversal for volume data along the x-axis with black padding
in all dimensions and for the point cloud data by traversing all points along the x-axis position at
(n, d = 0) (see Figure 6). As removing points for point cloud data would change the input dimension
of the object, we instead map them to the center (0,0,0). We did not observe any OOD behavior by
implementing this solution. We use the Pearson Correlation Coefficient (PCC) between traversals to
compute a single score.

Removed points get 

mapped to center (0,0,0)

x-axis traversal

y

Figure 6: X-axis traversal of point clouds for continuity metric. We can not remove points as this
would change the input dimensionality, thus we map them to the center (0,0,0), which is similar to
black padding for image and volume data.

Relative Representation Stability We use uniform noise (U(0, 0.05)) due to numerical stability
as Gaussian noise could generate infinity values.
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E RANKING COMPUTATION FLOW CHART

Figure 7 shows the transformation and aggregation steps from raw scores to final tables depending
if we want to average across architectures or construct tables per architecture. In the calculation of
the combinations, it must be taken into account that in the case of the Transformer architectures we
have three more XAI methods (attention methods), and in the case of the point cloud modality, we
have three fewer XAI methods (excluding CAM methods). In the case of the full ranking, we then
have 7,560 combinations of CV datasets, architectures, XAI models, and evaluation metrics based
on which we compute 50 scores for each combination, but always the same observations per dataset.
If we average across architectures, we have to first normalize the 50 scores per architecture together,
as the number of XAI methods differs between CNN and Transformer-based architectures. As we
normalize across architectures we end up with 2,520 combinations but 150 scores per combination,
which are in total again 378,000 scores. To receive the tables in the final step, we take the mean over
the computer vision datasets and evaluation metrics per evaluation criteria, to receive one average
rank per XAI method, evaluation criteria, modality, and depending if the ranking is full or across
architectures, architecture. Values in the last aggregation step coincide with the number of scores
per evaluation criteria, as each of the three criteria contains a different amount of metrics.

Full Ranking

Ranking Computation - From Scores to Ranks

Evaluation 
Scores

Aggregated Scores  
n = 2,520

dims = (3, 3, 17/14, 20) = 

(modalities, CV datasets, XAI methods, 

evaluation metrics)

Aggregated Scores  
n = 7,560

dims = (3, 3, 3, 17/14, 20) = 

(modalities, CV datasets, architectures,

XAI methods, evaluation metrics)

Ranking (Across Architectures)

Ranking of XAI methods 

by evaluation metrics

for modalities & CV datasets. 

Ranking (Full)

Ranking of XAI methods 

by evaluation metrics

for modalities, CV datasets & architectures. 

Ranking Table  
across Architectures 
(Table 2) 

Normalized Scores 
n = 150 x 2,520 = 378,000

Normalized Scores 
n = 50 x 7,560 = 378,000

Ranking across 

Architectures

Statistical 
Analysis

Ranking Tables 

per Architecture 
(Tables 10 & 11) 

Σ
Min/Max normalization of 


CV dataset and all architectures 

combined scores (n=150) for


each 2,520 combinations

Compute median of the 150 

scores for each 2,520 


combinations
Compute ranking and inverse 


it depending on metric
Compute mean rank with SE over 


CV datasets & eval. metrics  
(4,500/3,150/1,350 scores per cell)

Σ

Min/Max normalization of 

the 50 scores for 


each 7,560 combinations
Compute ranking and inverse 


it depending on metric
Compute median of the 50 scores


for each 7,560 combinations

Σ

Compute mean rank with SE over 

CV datasets & eval. metrics  

for each architecture

(1,500/1,050/450 scores per cell)

Σ

Transformation Σ Aggregation

Figure 7: Transformation and aggregation steps from raw evaluation scores to final tables.

F ENSURING COMPARABILITY OF RESULTS

To ensure fair comparability between XAI methods over all possible experiment set-ups and ag-
gregation levels, we take precautions about the XAI methods, evaluation metrics, and model archi-
tectures. Attribution measures the positive or negative contribution of an input feature (e.g. pixel)
into the predicted output class of the model. On the contrary, CAM methods only compute positive
attribution, and attention highlights all general (or absolute) important input features independent
of the output class. However, in practice, attention is only valuable in interpretation if it also high-
lights features that are used for prediction. New methods such as LA filter the attention to only
show such class-relevant attention, and their possible better performance to unfiltered attention can
only be shown by evaluating it as positive attribution. Thus we consider only positive attribution for
saliency map comparison (also suggested by Zhang et al. (2018)).

Further, we normalize the saliency maps on the observation level as some metrics have nominal
thresholds or noise intensities which depend on the scale of saliency maps. As not all metrics
compute single scores we have to convert all metrics computing sequences or array of sequences
into single scores either via the AUC for Pixel Flipping, Region Perturbation, Selectivity and ROAD,
AOC for IROF, or the PCC for SensitivityN and Continuity. All scores are normalized on the metric
and dataset level. Score backpropagation-based metrics such as LRP (excluding the 0+-rule), DS or
DLS, and the CAM methods expect non-negative activation outputs. Thus, we exchanged before the
CNN model training all GeLU or leakyReLU activation functions with standard ReLU functions as
they output negative values, biasing the XAI method. For the Transformer architectures, however,
we keep all activation functions, as well as the skip connections and patchification, as they are central

27



Under review as a conference paper at ICLR 2024

to the architecture. Their potential effect on different attribution methods is part of the benchmark.
For CAM methods on the Transformer architectures, we interpolate the reshaped absolute cls token,
as saliency maps would otherwise often be empty (also recommended by Chefer et al. (2021)).

G METRIC-ANALYSIS FOR ALL CRITERIA

a. Exemplary Ranking-(Dis)agreement between Metrics for Criteria based on ImageNet, ResNet50 and six selected XAI Methods

LIME

Figure 8: Distribution of ranks based on the different metrics for each criterion. This example shows
only the ranking of six attribution methods for the IMN dataset and ResNet50 model. To the right
of each plot, the average rank of each attribution method is shown. For certain attribution methods
metrics tend to agree more (e.g. LIME and DLS on faithfulness) than others. However, inter-metric
disagreement is important information for XAI evaluation.

Our study utilized a methodology of abstraction and aggregation into recognized criteria like faith-
fulness or robustness to simplify our analysis and strengthen the robustness of our findings. Such
criteria are established in the field, with mean aggregation commonly used to synthesize scores and
ranks Hesse et al. (2023); Bommer et al. (2023); Hedström et al. (2023a;b). For our aggregation,
we incorporated standard metrics readily available in the popular computer vision XAI software
packages Quantus (Hedström et al., 2023b) and Captum (Kokhlikyan et al., 2020), reflecting the
field’s most prevalent metrics. Nonetheless, questions persist regarding potential information loss
due to aggregation and the robustness of these abstracted criteria. To address these concerns, we will
initially provide a rationale for our methodologies, followed by an empirical analysis of our metrics
for attribution methods within the image modality, with the aim of validating our assumptions and
offering insights into metric behaviors.

To begin with, the lack of a reliable and general trend of aggregated ranks is not a sign of random-
ness, but a sign of robustness against outlier scores of individual metrics. A metric is always only a
proxy for a criteria (faithfulness etc.) and is designed to be independent of the model architecture,
utilized dataset, or other variables. Metrics are distinguished solely by their mathematical formula-
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      Model Architectures       Utilized CV Datasets

    Evaluation Criteria: ResNet50 EffNetb0 DeiT ViT IMN OCT R45

Faithfulness 3.35 3.31 3.45 3.43 3.25 3.43

Robustness 3.19 3.2 2.96 3.25 3.09 3.01

Complexity 0.43 0.48 0.47 0.38 0.63 0.37

Weighted Average 2.86 2.85 2.83 2.91 2.80 2.82

a. Mean Standard Deviation for Model Architecture and Utilized CV Dataset Dimensions

Table 9: Mean standard deviation per model architectures and utilized CV datasets. The weighted
average is based on the number of metrics per criterion to take into account the significance of the
standard deviation of each criterion.

tions for computing these criteria. Thus, disagreement between metrics provides essential insights
for XAI evaluation, reflecting the diversity of perspectives and implementations of the criteria. This
important information is not even biasing the benchmark, as in the event of a lack of consensus
among metrics, the average rank is expected to converge towards an uninformative mean rank, and
only robust trends are detected. Statistically speaking, the sample of metrics is an unbiased esti-
mator for the criteria. This is contrary to model performance metrics like e.g. F1 and accuracy,
which measure different aspects of classification performance. Figure 8 demonstrates the ranking
behavior of all metrics based on IMN, ResNet50, and six selected XAI methods. The line charts
show the agreement and differences in ranking between metrics, with the average aggregated rank
to the right. For e.g. faithfulness we observe as anticipated that XAI methods with high agreement
between metrics such as LIME and DLS show more extreme ranks, while the other XAI methods
with higher disagreement have average ranks converging against the mean rank of 7. Interestingly
we observe almost no disagreement between the complexity metrics.

The inquiry emerges as to whether the variance seen in metric rankings is stochastic or systematic,
and whether distinct patterns can be identified upon examining the variance through various dimen-
sions. We computed the average standard deviation between metric rankings for each model and
dataset dimension. The results are shown in Table 9. They show, that the average standard deviation
is relatively stable within each evaluation criteria. For the model architectures, only the DeiT ViT
standard deviation varies to a small extent for the faithfulness and robustness criteria compared to the
two CNN models. For the utilized dataset dimensions, OCT complexity exhibits a higher SD than
the other two datasets. However, the weighted average per column shows no major deviations. In
general, we can conclude, that the variance between metric rankings is generally invariant to model
architectures and dataset choices.

Attribution Method:

   Evaluation Criteria: OC LI KS VG IxG GB GC SC C+ IG EG DL DLS LRP Average

Faithfulness 0.0 0.56 0.78 0.67 0.22 0.22 0.56 0.11 0.56 0.33 1.0 0.22 0.67 0.22 0.44

Robustness 0.33 0.56 1.0 0.56 0.0 0.56 0.44 0.22 0.33 0.11 0.33 0.0 0.89 0.33 0.4

Complexity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weighted Average 0.27 0.63 0.89 0.68 0.26 0.46 0.58 0.28 0.55 0.35 0.77 0.26 0.8 0.38 0.51

> 0.7 < 0.3

a. Proportion of smaller Metric Ranking Variance than Random Ranking Variance based on one-sided Levene Test for all 
Utilized Image Datasets and Model Architectures

Table 10: Proportion of accepted one-sided Levene-Tests for significant (α = 0.1) smaller metric
ranking variance than random ranking variance. Higher values show higher agreement between met-
rics of certain criteria. The weighted average at the bottom is computed by weighting the proportions
per criteria by the number of metrics per criteria (i.e. 0.5, 0.35, and 0.15).

Nonetheless, such findings do not extend to the XAI methods, particularly attribution methods, an
intended outcome that may be anticipated from the observations in Figure 8. To equitably and
effectively quantify the differences in variance among attribution methods, we utilize a one-sided
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a. Distanced Matrices between Metric Rankings over all Utilized Image Datasets visualizing frequently agreeing or disagreeing Metrics

Avg. Rank

Distance

Figure 9: Average Euclidean ranking distance between metric pairs for model architectures and the
faithfulness and robustness criteria. More often agreeing metric pairs in their rankings appear more
green, and disagreeing pairs more red.

Levene’s Test (Levene, 1960), testing if the rank-variance of a set of metrics is significant (α = 0.1)
lower than the variance of a total random rank distribution. The variance of a total random rank
distribution can be analytically calculated through the variance of a discrete uniform Ud(1, 14) dis-
tribution: σ2 = 142−1

12 = 16.25. We compute this test for every combination of dataset, model
architecture, attribution method, and evaluation criteria, and show the average acceptance rate of
the test per attribution method and evaluation criteria in Table 10. A value converging against 1
indicates for all combinations statistically significant lower variance than random ranking, thus high
agreement between metrics. Similar to Figure 8, we observe that there is almost no disagreement
between complexity metrics. When computing the weighted average again at the bottom, we ob-
serve strong variations between the attribution methods. Specifically for KS, EG and DLS, in a
large majority of cases, metrics agree, while for OC, IxG, SC, and DL only in about ∼ 27% of the
cases variance in metric ranking is lower than random ranking. It is important to mention that a
high number of test rejections does not necessarily suggest a variance greater than that of random
ranking. Our findings reveal that metrics tend to agree more for certain attribution methods, whereas
others exhibit increased inter-rater variability. Investigating all underlying reasons for this discrep-
ancy and why some attribution methods display greater inter-rater variability than others presents a
compelling direction for future research.

In scenarios of high disagreement among metrics, potential biases could arise when considering
only a limited subset of metrics, a concern we have raised in relation to other studies. Such scenar-
ios further underscore our large-scale experimental design as it prevents undetected biases that could
result from the selective use of individual metrics, intentional or accidental. Figure 9 shows the Eu-
clidean distance, averaged over all attribution methods and datasets, between the ranking of two
metrics for all model architectures and the faithfulness and robustness criteria. We observe that the
general mean distance or disagreement between two metrics is around 4 ranks. We further observe
around 8-10 outlier pairs for faithfulness and 2-5 for robustness, which have either substantially
higher agreement (∼ 2 ranks) or higher disagreement (∼ 5.5 ranks). By first selecting a favorable
metric and then pairing it with strongly similar ranking metrics based on this distance matrix (e.g.
Faithfulness Estimate with Faithfulness Correlation), it is in theory possible to selectively pair simi-
lar ranking metrics to deliberately skew results towards a favorable outcome. However, this is only
possible for a very small subset of metrics. Also the likelihood of any such ”extremist subgroups”
unduly influencing our large-scale study is small. The closest example of such subgroups would be
the Relative Stability metrics for robustness.
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We determined, that aggregation of metrics not only increases the robustness and large-scale studies
employing several metrics but can give insight into metric disagreement, a valuable information.
Further, our empirical metric analysis shows that aggregated ranks do indeed convey meaningful
signals and are not significantly biased and hard to cheat in practise. Our inclusion of several model
architectures and datasets also explicitly shows that they have no strong influence on the metric be-
havior (i.e. agreement and discrepancies). To ensure certainty beyond doubt, ranking independence
from subgroup influence could also be ensured by using weighted averaging for the criteria by using
the computed ranking distance matrices between the metrics. Other approaches including synthetic
data or ground truth explanations have the advantage of computing metrics specifically independent
of such dimensions. Hesse et al. (2023) propose the Background independence metric, which mea-
sures the extent to which a model’s explanations are not overly sensitive to the entire image. It does
this by focusing on the importance assigned to background objects that are deemed irrelevant to the
model’s decision. Further, Rao et al. (2022) showed the usefulness and accuracy of an explanation
independent of the underlying model for graph neural networks on molecular data. First, they dis-
tilled the explanation(s) into an XAI-assisted fingerprint which they second used as the only input
for a random forest model in molecular property prediction. The highly accurate predictions of the
random forest classifier demonstrate the effectiveness of the XAI-assisted fingerprints.

H ADDITIONAL RANKING TABLES

H.1 FULL RANKING TABLE WITH STANDARD ERRORS

Evaluation 
Criterion: Faithfullness Robustness Complexity
Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud

Utilized Computer 
Vision Datasets: IMN OCT R45 AMN OMN VMN CMA M40 SHN IMN OCT R45 AMN OMN VMN CMA M40 SHN IMN OCT R45 AMN OMN VMN CMA M40 SHN

OC 10 ±1.97 8 ±1.42 10 ±1.92 9 ±1.29 5 ±0.67 13 ±1.52 11 ±1.07 7 ±1.68 8 ±1.29 11 ±1.96 9 ±1.23 9 ±1.9 11 ±1.77 7 ±1.39 10 ±1.43 9 ±1.67 10 ±1.03 10 ±1.48 8 ±0.67 12 ±0.0 8 ±0.0 7 ±0.33 12 ±1.15 5 ±1.86 11 ±0.33 7 ±1.0 5 ±0.33

LIME 13 ±1.29 14 ±1.16 13 ±1.48 12 ±1.22 13 ±0.84 8 ±1.29 5 ±0.86 6 ±1.3 6 ±1.18 14 ±1.53 15 ±1.08 14 ±1.93 11 ±1.63 13 ±1.62 10 ±1.4 11 ±0.95 11 ±1.3 12 ±1.07 7 ±1.33 13 ±0.88 6 ±0.33 12 ±0.33 6 ±0.33 12 ±1.53 9 ±0.88 7 ±0.88 9 ±0.88

KS 12 ±1.2 15 ±0.6 13 ±1.27 12 ±1.1 12 ±0.7 8 ±1.52 7 ±0.98 5 ±1.25 7 ±0.93 15 ±1.31 15 ±1.62 15 ±1.35 13 ±1.89 14 ±2.08 13 ±1.81 10 ±0.65 10 ±0.81 9 ±0.87 10 ±0.33 16 ±0.33 12 ±0.67 12 ±1.0 9 ±0.67 12 ±1.2 9 ±0.33 9 ±0.67 8 ±0.0

VG 8 ±1.36 12 ±0.89 9 ±1.15 14 ±1.19 12 ±1.56 8 ±1.57 8 ±0.99 8 ±1.07 8 ±1.24 7 ±0.9 7 ±0.94 8 ±1.3 7 ±1.66 7 ±2.24 7 ±2.29 7 ±1.04 8 ±0.81 9 ±1.27 11 ±0.88 14 ±0.67 9 ±0.0 15 ±0.33 11 ±0.88 13 ±0.58 7 ±0.33 8 ±0.58 9 ±0.88

IxG 10 ±1.5 8 ±1.65 8 ±1.8 6 ±1.47 6 ±1.39 9 ±1.46 8 ±1.14 6 ±0.97 7 ±1.01 10 ±1.83 10 ±2.04 11 ±1.78 9 ±1.93 10 ±1.62 10 ±2.11 8 ±1.0 9 ±1.44 9 ±1.13 3 ±0.0 4 ±0.33 3 ±0.33 2 ±0.33 2 ±0.33 5 ±3.38 2 ±0.67 4 ±0.0 3 ±0.67

GB 7 ±1.87 11 ±1.3 7 ±1.93 9 ±1.54 9 ±1.55 10 ±1.58 5 ±1.28 6 ±1.33 5 ±1.01 6 ±1.74 9 ±1.34 9 ±1.22 10 ±1.95 9 ±2.13 8 ±1.57 10 ±1.48 10 ±0.61 9 ±0.4 5 ±0.0 5 ±0.33 5 ±0.0 9 ±0.33 4 ±1.2 9 ±0.88 4 ±0.0 3 ±0.88 6 ±0.33

GC 6 ±0.99 8 ±1.17 10 ±1.22 14 ±0.47 13 ±1.22 12 ±1.08 -  -  -  6 ±2.02 6 ±1.49 5 ±1.36 11 ±1.18 10 ±1.46 11 ±1.43 -  -  -  13 ±0.0 12 ±1.0 14 ±0.0 13 ±1.0 8 ±0.58 9 ±0.58 -  -  -  

SC 6 ±1.2 8 ±1.56 8 ±1.58 10 ±1.35 11 ±1.04 9 ±1.92 -  -  -  9 ±1.76 9 ±1.66 9 ±1.85 12 ±1.77 12 ±1.12 10 ±2.01 -  -  -  12 ±0.33 7 ±1.33 10 ±0.33 16 ±1.33 14 ±2.33 15 ±1.2 -  -  -  

C+ 8 ±1.0 10 ±1.2 10 ±0.86 11 ±1.84 14 ±0.88 11 ±1.38 -  -  -  5 ±1.52 10 ±1.69 8 ±1.98 10 ±1.97 10 ±1.23 9 ±1.93 -  -  -  15 ±0.58 14 ±0.58 13 ±0.33 16 ±0.33 16 ±1.33 13 ±2.08 -  -  -  

IG 7 ±1.32 7 ±1.55 8 ±1.72 5 ±1.14 5 ±1.49 9 ±1.58 6 ±1.32 6 ±1.17 8 ±1.38 9 ±1.7 10 ±1.82 8 ±1.94 7 ±1.65 7 ±1.06 7 ±1.51 8 ±1.93 10 ±2.15 8 ±1.85 4 ±0.0 2 ±0.33 3 ±0.67 4 ±0.33 4 ±0.33 4 ±1.45 5 ±0.0 4 ±1.0 3 ±1.0

EG 6 ±1.32 6 ±0.84 5 ±1.09 8 ±1.29 6 ±0.96 6 ±1.39 8 ±1.2 8 ±1.02 7 ±1.49 7 ±2.04 5 ±1.83 5 ±1.1 6 ±2.18 5 ±1.97 5 ±1.31 8 ±1.3 8 ±1.21 8 ±1.23 16 ±0.67 17 ±0.33 16 ±0.33 6 ±0.33 12 ±0.88 6 ±0.33 10 ±0.88 11 ±0.0 11 ±0.0

DL 9 ±1.12 8 ±1.56 8 ±1.67 6 ±1.2 5 ±0.86 10 ±1.05 8 ±1.24 7 ±1.07 7 ±1.02 9 ±2.07 10 ±2.25 10 ±1.96 7 ±1.82 7 ±1.92 9 ±2.19 8 ±1.15 8 ±1.13 9 ±1.43 2 ±0.0 3 ±0.33 2 ±0.33 3 ±0.33 5 ±0.33 4 ±0.88 2 ±0.0 3 ±0.33 3 ±0.0

DLS 6 ±1.27 7 ±0.78 7 ±1.31 5 ±0.7 7 ±0.69 9 ±1.22 8 ±0.84 9 ±0.53 9 ±1.08 8 ±1.19 9 ±1.46 7 ±1.3 10 ±1.49 8 ±1.54 10 ±1.91 9 ±0.97 7 ±0.34 7 ±0.44 7 ±0.67 8 ±1.2 7 ±0.33 5 ±0.0 8 ±1.33 5 ±0.33 6 ±0.0 8 ±0.88 9 ±0.88

LRP 13 ±1.22 10 ±1.31 13 ±0.87 10 ±1.53 14 ±1.06 12 ±1.46 7 ±1.15 8 ±0.7 10 ±0.85 9 ±1.7 10 ±1.46 12 ±1.75 12 ±2.59 10 ±2.92 12 ±2.38 3 ±0.43 4 ±0.22 4 ±0.34 1 ±0.0 1 ±0.0 1 ±0.0 2 ±1.0 1 ±0.0 2 ±0.67 2 ±0.67 1 ±0.0 1 ±0.33

RA 12 ±1.52 7 ±1.7 11 ±1.35 8 ±1.69 7 ±1.27 9 ±1.9 8 ±1.77 9 ±1.8 7 ±1.53 7 ±2.12 3 ±1.32 6 ±1.93 6 ±1.55 7 ±1.98 9 ±1.94 5 ±1.52 4 ±1.64 3 ±1.6 8 ±0.58 8 ±0.67 11 ±0.67 8 ±0.0 13 ±1.45 11 ±4.7 12 ±0.0 12 ±0.0 12 ±0.0

RoA 11 ±1.4 8 ±2.01 7 ±1.18 8 ±1.75 8 ±1.8 6 ±1.49 9 ±1.38 9 ±1.34 8 ±1.74 9 ±1.6 9 ±2.07 8 ±1.84 6 ±0.95 7 ±1.23 6 ±1.8 5 ±1.95 3 ±1.62 4 ±1.27 16 ±0.58 9 ±0.33 17 ±0.0 11 ±1.53 14 ±0.88 12 ±2.03 14 ±0.33 14 ±0.33 14 ±0.33

LA 8 ±1.81 7 ±2.14 6 ±1.22 7 ±1.58 7 ±1.98 3 ±0.76 8 ±1.89 11 ±1.57 8 ±1.8 11 ±1.54 7 ±1.89 9 ±1.53 6 ±1.15 8 ±1.31 7 ±1.72 4 ±1.72 3 ±1.51 3 ±1.41 15 ±0.67 8 ±0.0 15 ±0.33 13 ±1.86 16 ±0.67 15 ±1.2 13 ±0.33 13 ±0.33 13 ±0.33
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Top 3 Top 4-6 Bottom 4-6 Bottom 3

Table 11: Full ranking table for all XAI methods and CV datasets with standard error (SE).
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H.2 RANKING TABLE CNNS ONLY

Evaluation Criteria: Faithfullness (n{A,M} = 60) Robustness (n{A,M} = 42) Complexity (n{A,M} = 18)

Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud
OC 8.5 5.5 9 11.5 5.5 4.5 9 10.5 7.5

LIME 14 9.5 2.5 14 12.5 11 6 8.5 7.5
KS 13 9.5 7 13 14 9 13.5 8.5 10
VG 11.5 11 9 6 2 2 10 13 9
IxG 10 2.5 5 11.5 9.5 7 3.5 1.5 3
GB 8.5 7 1 10 8 8 2 5 5.5
GC 3 14 - 2 11 - 12 7 -
SC 5 8 - 8 9.5 - 7.5 14 -
C+ 4 13 - 4.5 7 - 11 12 -
IG 6 1 5 8 3 4.5 5 4 4

EG 1 5.5 11 2 1 10 13.5 10.5 11
DL 7 2.5 2.5 8 4 4.5 1 3 2

DLS 2 4 9 4.5 5.5 1 7.5 6 5.5
LRP 11.5 12 5 2 12.5 4.5 3.5 1.5 1

At
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tio

n

Top 1 Top 2-4 Bottom 2-4 Bottom 1Per modality:

Table 12: Ranking of the average rank over CNN architectures, datasets, and all evaluation metrics
of the respective criteria, for each XAI method and modality (i.e. the rank of OC on image is based
on 3∗2∗10 = 60 ranks). Coloring coincides with top and bottom positions as no attention methods
can be applied to CNN architectures.

H.3 RANKING TABLE TRANSFORMER ONLY

Evaluation Criteria: Faithfullness (n{A,M} = 30) Robustness (n{A,M} = 21) Complexity (n{A,M} = 9)

Modality: Image Volume Point Cloud Image Volume Point Cloud Image Volume Point Cloud
OC 13 9 11.5 12.5 12 13 11.5 8.5 6.5

LIME 16.5 15 2 15.5 16 14 9 8.5 5
KS 15 14 4.5 17 17 10 17 12.5 9
VG 11.5 11 8.5 1.5 2 7 13.5 10 6.5
IxG 9.5 3 1 7.5 10 10 1 1 3
GB 5 5 3 10 13 12 4.5 5 4
GC 9.5 16.5 - 12.5 10 - 10 14 -
SC 6.5 11 - 6 15 - 6 16.5 -
C+ 14 16.5 - 15.5 10 - 13.5 16.5 -
IG 6.5 2 6 5 5.5 8 3 3 2

EG 1 1 7 1.5 1 6 15.5 7 12
DL 11.5 4 4.5 10 7.5 10 4.5 2 1

DLS 3 6.5 8.5 3 7.5 5 7 6 8
LRP 16.5 13 13.5 14 14 4 2 4 10.5

         
RA 8 11 10 4 3.5 3 8 12.5 10.5

RoA 4 6.5 11.5 10 3.5 2 15.5 11 14
LA 2 8 13.5 7.5 5.5 1 11.5 15 13
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Top 1 Top 2-4 Bottom 2-4 Bottom 1Per modality:

Table 13: Ranking of the average rank over Transformer architectures, datasets, and all evaluation
metrics of the respective criteria, for each XAI method and modality (i.e. the rank of OC on image
is based on 3 ∗ 1 ∗ 10 = 30 ranks). Coloring coincides with top and bottom positions.
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I DIFFERENCE IN FAITHFULNESS RANK FOR POINT CLOUD MODALITY

a. Difference in Faithfulness Ranks between CNN and Transformer Architectures 

for Point Cloud Modality.

***:

**:

*:


ns:

≤ 0.01

≥ 0.01

≥ 0.05

≥ 0.1

Signif. Codes

Standard Error

Transformer

CNN

More faithful on:

LIME

Figure 10: a. Average difference in rank when subtracting the average rank of CNN architectures
from the rank of Transformer architectures over faithfulness metrics. T-test to validate if the differ-
ence significantly differs from 0.

J OPERATIONAL SHORTCOMINGS OF EVALUATION METRICS

While all metrics are theoretically very well founded, we observed for some metrics shortcomings
in applications:

Sufficiency evaluates the likelihood that observations with the same saliency maps also share the
same prediction label. In practice, this requires several saliency maps from observation with the
same prediction label. While this works well on datasets with a small number of labels and balanced
sampling, for datasets like IMN with 1000 labels, the probability is almost zero that at least 5-10
sampled observations in a set of sizes 50 or 100 have the same label (see Appendix K).

Sequence outputting metrics that alter the input space, such as Pixel Flipping, Region Perturba-
tion, or ROAD, are only limited suitable for binary prediction tasks. When the input object is too
noisy/perturbed to predict accurately, the probability for each class is 0.5 resulting in sequences con-
verging against 0.5 and not 0. While the resulting AUC (or AOC in the case of Region Perturbation)
can be compared between XAI methods within this task, between tasks the AUC would be biased as
the area for the binary task would always be larger.

ROAD scores are arrays of binary sequences which are averaged to one sequence. The amount of
noise has to be carefully tuned (also depending on the underlying model) as otherwise, all binary
sequences in the array are only 0 or 1.

Local Lipschitz Estimate approximates the Lipschitz smoothness through several forward passes
of a batch of observations. In application, this results in a large amount of RAM used (depending
on modality) if the approximation should be stable. While the computation is relatively fast on a
GPU, stable approximations exceed 40GB of VRAM by far and have to be partitioned. For the
Transformer architectures, computation on the CPU for our amount of data was too slow to be
feasible.

Effective complexity uses a nominal threshold value to determine attributed features. Even through
normalization of the saliency maps, the threshold value can have a large effect on the results, differ-
ing between observations, and we would suggest tuning it per dataset.

IROF superpixel segmentation can result in very defined or binary structures such as in the AMN
dataset in only two superpixels (object and background), ignoring finer structures.
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As elaborated, all complexity metrics flatten the input object treating it as a vector and ignoring
spatial dependencies.

K SCORE DISTRIBUTIONS OF EVALUATION METRICS FOR ALL DATASETS

K.1 IMAGE MODALITY

Figure 11: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.

Figure 12: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.
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Figure 13: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.

K.2 VOLUME MODALITY

Figure 14: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.
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Figure 15: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.

Figure 16: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.
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K.3 POINT CLOUD MODALITY

Figure 17: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.

Figure 18: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.
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Figure 19: Score distributions of all evaluation metrics for each XAI method. Scores are normalized
also for the Continuity PCC, as a negative correlation is worse than no correlation.
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