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Abstract001

The rapid advancement of large multi-modal002
models has generated an immediate demand003
for comprehensive evaluation methodologies.004
In this paper, we introduce a novel and system-005
atic Self-Reflective Evaluation System (SRES)006
framework for comprehensive multi-modal007
model evaluation. Unlike traditional frame-008
works, our SRES uniquely integrates three009
core dimensions (Visual, Linguistic, and Ro-010
bustness) to comprehensively cover evalua-011
tion tasks while enabling synchronized multi-012
dimensional assessment for holistic multi-013
modal analysis. Importantly, we establish014
the first standardized dynamic assessment015
mechanism by incorporating a novel self-016
reflective module, which autonomously as-017
sesses performance and conducts process op-018
timization without human intervention. Addi-019
tionally, we construct a comprehensive bench-020
mark dataset comprising 352 subtasks to sys-021
tematically evaluate 15 leading large multi-022
modal models. Through rigorous multi-023
dimensional comparative analysis, we assess024
their performance metrics and robustness char-025
acteristics. The framework implementation026
and benchmark data are publicly available027
at: https://anonymous.4open.science/r/SRES-028
B2B029

1 Introduction030

Large Multi-modal Models (LMMs) have achieved031

significant advancements in recent years, with nu-032

merous architectures demonstrating effectiveness033

across diverse domains (Dai et al., 2023; Zhu et al.,034

2024; Li et al., 2023). Nevertheless, the community035

lacks a standardized benchmarking framework to036

systematically evaluate their holistic capabilities037

(Liu et al., 2024b; Yu et al., 2024; Liu et al., 2024c;038

Schwenk et al., 2022).039

As shown in Figure 1, the current LMM evalua-040

tion system (Singh et al., 2019; Guetta et al., 2023;041

Du et al., 2024; Li et al., 2024; Liu et al., 2024a)042
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Figure. 1. Comparison of our proposed SRES with the
existing mainstream evaluation system. Task refers to a single
question in the input model.

narrowly focus on singular evaluation metrics that 043

fail to capture the multi-dimensional complexity 044

required for real-world applications. This can be 045

further elaborated in the following three fundamen- 046

tal aspects: 047

1) Modular evaluation frameworks fail to 048

address inherent model architectural limita- 049

tions. Mainstream LMMs typically integrate a 050

visual translator alongside the core Large Lan- 051

guage Model (LLM) through partitioned designs 052

(Verma et al., 2024), yet this structural segre- 053

gation introduces critical evaluation blind spots. 054

By restricting visual processing to the translator’s 055

domain-specific capacities (e.g., image-to-text con- 056

version) while confining linguistic reasoning within 057

LLMs’ pre-trained syntactic boundaries (Goyal 058

et al., 2017), existing frameworks systematically 059

handle visual and linguistic components as discrete 060

modules while neglecting intrinsic multi-modal in- 061

tegration (Guetta et al., 2023; Saikh et al., 2022; 062

Nemani et al., 2023; Xu et al., 2023). 063

2) Robustness evaluation inadvertently ob- 064

scures assessment results. Existing evaluation 065

frameworks typically rely on repeated experimental 066

trials to calculate performance averages. While this 067

approach is widely adopted, it often incurs substan- 068

tial computational overhead and fails to quantify 069

system robustness adequately. The stability of a 070

model across multiple runs should be a core eval- 071

uation criterion for accurately assessing its true 072
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Figure. 2. Our framework implements a three-stage evaluation pipeline: (I) Tri-channel Assessment Framework, (II)
Self-Reflective Mechanism, and (III) DeepEval Scoring Network, assessing visual, linguistic, and robustness capabilities.

capabilities. However, most evaluation systems073

neglect this dimension, treating robustness as an074

afterthought rather than a foundational requirement.075

This oversight can lead to misleading evaluations076

by conflating model instability with inherent capa-077

bility limitations (Sun et al., 2024; Lou et al., 2023;078

Jing et al., 2024).079

3) Task monotony disconnected from real-080

world complexity. The evaluation and task design081

of models face significant challenges due to the082

diverse array of scenarios, which encompass both083

fixed-format responses and open-ended inquiries.084

Current systems exhibit critical limitations in ad-085

dressing real-world complexity, primarily because086

of their siloed architectural designs and fragmented087

assessment methodologies. These systems rely088

on a task-isolated paradigm, necessitating separate089

benchmark executions for each scenario, which is090

fundamentally unscalable as the number of scenar-091

ios grows. Moreover, the lack of task diversity in092

assessment design undermines cross-domain adapt-093

ability, undermining the reliability of evaluations094

in real-world applications.095

Taking into account these limitations, we pro-096

pose the Self-Reflective Evaluation System (SRES)097

to allow a comprehensive evaluation of the capa-098

bilities of LMMs. The main contributions of this099

paper are:100

• We establish a comprehensive evaluation sys-101

tem that seamlessly integrates visual compre-102

hension, linguistic understanding, and robust-103

ness testing within a unified architecture. The104

framework captures intrinsic multi-modal in- 105

teractions through carefully constructed task 106

inter-dependencies, enabling comprehensive 107

capability evaluation while eliminating human 108

bias and ensuring reproducibility. 109

• To address the critical challenge of output vari- 110

ability in model assessments, we introduce a 111

novel self-reflective module designed to dy- 112

namically adjust and mitigate output fluctua- 113

tions, thereby substantially enhancing the reli- 114

ability of assessments. 115

• We develop a meticulously designed evalu- 116

ation dataset and conduct a comprehensive 117

comparison of 15 state-of-the-art mainstream 118

LLMs, offering the most comprehensive per- 119

formance analysis. 120

2 SRES 121

As illustrated in Figure 2, our SRES framework 122

implements a three-stage evaluation pipeline: 123

Step I: We first design a tri-channel assessment 124

framework to simultaneously evaluate three core 125

dimensions: Visual (V) comprehension, Linguistic 126

(L) understanding, and Robustness (R) testing. 127

Step II: The self-reflective module employs it- 128

erative introspective reasoning, thereby enabling 129

accurate performance evaluation. 130

Step III: Finally, we develop a comprehensive 131

DeepEval scoring network powered by advanced 132

DeepSeek-R1 models to quantitatively obtain accu- 133

rate scores for each LMM. 134
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Figure. 3. Distribution statistics of the 11 evaluated
capabilities are presented, illustrating their proportional
representation across test samples. It is noted that the
cumulative percentage exceeds 100% because most samples
are designed to assess multiple capabilities simultaneously.

2.1 Tri-channel Assessment Framework135

To ensure comprehensive model evaluation, we pro-136

pose a tri-channel assessment framework that con-137

currently evaluates three fundamental dimensions:138

visual, linguistic, and robustness. This integrated139

approach employs quantitative metrics to systemat-140

ically compare model outputs against ground truth141

answers across question-answering tasks, enabling142

simultaneous assessment of 11 core capabilities,143

comprising 5 visual, 4 linguistic, and 2 robustness144

competencies (see Figure 3 for capability distribu-145

tion). Furthermore, the more detailed implementa-146

tion details of these 11 evaluation capabilities are147

systematically elaborated in Section 4.148

2.2 Self-Reflective Mechanism149

Our self-reflective evaluation framework employs a150

dual-channel verification architecture (as depicted151

in Figure 2, Step II) to guarantee the reliability152

of outputs. Initially, parallel model predictions153

are subjected to hierarchical validation by a hy-154

brid adjudication network. This network employs155

a two-step approach: it first preliminarily screens156

and then leverages LLM-based analysis for more157

complex cases. When both channels produce per-158

fectly consistent outputs, the result is immediately159

accepted. In cases of discrepancy, however, the sys-160

tem initiates a controlled self-reflection cycle (with161

a predefined limit on the number of attempts). This162

cycle involves the following steps: 1) retrieving163

relevant historical outputs to serve as contextual164

references, 2) regenerating predictions using the165

model under evaluation, and 3) re-evaluating un-166

til achieving a stable consensus or reaching the167

iteration limit. By limiting the number of regenera-168

tions, the self-reflection mechanism not only yields169

more stable and objective results but also provides170

valuable data on model stability.171

Fundamentally, the self-reflection mechanism 172

decouples the interference arising from model ro- 173

bustness indicators, which should be evaluated in- 174

dependently, from the conventional model capabil- 175

ity assessment process. This separation enhances 176

the objectivity of model ability evaluation and en- 177

ables a more reasonable and comprehensive ex- 178

amination of model robustness. Furthermore, this 179

mechanism employs an external diagnostic frame- 180

work that operates independently of LMMs’ na- 181

tive capabilities. By monitoring answer transitions 182

(correct-to-incorrect or vice versa) during reflection 183

cycles to both precisely measure model stability 184

and objectively evaluate inherent characteristics, 185

without relying on any pre-existing self-reflective 186

capabilities in the target models. 187

To better reduce the interference caused by vi- 188

sual factors in the evaluation of language tasks, the 189

visual tasks in the dataset we designed to provide 190

the knowledge that the model needs in the eval- 191

uation of language tasks. Specifically, in Step II, 192

the visual task output is automatically integrated 193

into subsequent language processing to ensure the 194

continuity of multi-modal context, while providing 195

evaluation results and diagnostic insights. 196

2.3 DeepEval Scoring Network 197

Building upon the powerful reasoning capabili- 198

ties of LLM, we develop a DeepEval Scoring Net- 199

work, which is an adaptive scoring architecture that 200

synergistically integrates deterministic comparison 201

functions with LLM. This hybrid network, based 202

on task-specific requirements, dynamically selects 203

either the pre-determined determination function 204

or the inference model to initiate (Ji et al., 2024; 205

Chen et al., 2024; Nowak et al., 2024). We employ 206

DeepSeek-R1 as our primary scoring model. The 207

reason for this selection will be comprehensively 208

elaborated in Section 4.6. 209

As shown in Figure 2, the input in Step III is 210

subjected to concurrent processing via three in- 211

dependent scoring channels, each employing our 212

DeepEval scoring network. Then, initial channel 213

scores enter a circular comparison. Any discrep- 214

ancies trigger a self-reflection mechanism (limited 215

to 8 iterations), where answers are re-evaluated 216

through carefully designed prompts in their origi- 217

nal channels. This cyclic refinement process contin- 218

ues until achieving stable consensus is achieved or 219

the iteration limit is reached. As mentioned above, 220

DeepEval uses an inference model for scoring, and 221

we design scoring rules for it as shown in Figure 222
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     You are an artificial intelligence assistant, now please follow the following steps to think, and then score, the  relevant scoring 

rules, examples, to be scored will be listed in turn. 

     The scoring process is divided into two steps, and here's what you need to do in each step: 

1. According to the content of 'Question' and the style of 'Ground truth', extract the predicted answer of the model from 'Pr ediction'. Please note that the content format of 'Prediction' 
to be extracted is similar to that of 'Ground truth', but the content may not be the same. In this step, you only need to extract without judging whether it is right or wrong; When 
'Prediction' is concise enough, you may not need to make any changes; 'Question' can be multiple choice or open -ended, you need to look at it on a case-by-case basis. 
2. According to the scoring rules mentioned above, compare 'Ground truth' and 'Prediction' and output the score.

     Please compare the ground truth and prediction from AI models to give a correctness score for the prediction.You 

need to follow the following scoring rules, each of which is equally important:

 1.<AND> in the ground truth means it is totally right only when all elements in the ground truth are present in the prediction, and <OR> means it is totally right when any one element in the ground truth is 
present in the prediction.  
2.The correctness score is 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Don't have any extra output. 
3.Ignore extra ' '(space symbol), for example, '(x + 2) ̂  2 = 9' and '(x+2)^2=9' are equivalent,they all got perfect score. 
4.Ignore the difference between upper and lower case letters for example,'right' and 'Right' are equivalent. 
5.When the basic facts are long, score the predicted answers based on the main content of the text, without having to be iden tical word for word. 
6.They are considered equivalent as long as the meaning is the same, for example, 0 and no one are equivalent. 
7.All the Ground truth appeared in Prediction and no additional relevant answers were judged to be full marks.  8.Synonyms ar e also treated as inclusive relations, equal in price to the correct answer. 
Semantic similarity is awarded according to the degree of correlation.

     Below are eight answers format I am going to upload along with some examples:

     Question | Ground truth | Prediction | Correctness

       

What is the answer to the equation?| -1 <AND> 8 | x = 2 | 0.0
What is the answer to the equation?| -1 <AND> 8 | x = -1 | 0.5
What is the answer to the equation?| -1 <AND> 8 | x = 8 | 0.5
What is the answer to the equation?| -1 <AND> 8 | x = -1 or 1 | 0.5
What is the answer to the equation?| -1 <AND> 8 | x = -1 or x = -5 | 1.0
What is the answer to the equation?| -1 <AND> 8 | x = -1 , x = -5 | 1.0
Can you describe the picture? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is 
mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme talks about Iceland and Greenland. It's pointing 
out that despite their names, Iceland is not very icy and Greenland isn't very green. | 0.4
Can you describe the picture?| This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is 
mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme is using humor to point out the misleading nature 
of Iceland's and Greenland's names. Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and snow. The text 'This is why I have trust issues' is a playful way to suggest that these 
contradictions can lead to distrust or confusion. The humor in this meme is derived from the unexpected contrast between the names of the countries and their actual physical characteristics. | 1.0

 

     Here are the questions and answers to be scored, in the same format as the examples above:

     Question | Ground truth | Prediction | Correctness (to be supplemented)

------------|-------------------|---------------|--------------

Figure. 4. The scoring model’s input template consists of four color-coded sections arranged vertically: 1) chain-of-thought
prompt, 2) scoring rubric, 3) scoring case example, and 4) test subject. Key elements include: "Question" (sample input),
"Ground truth" (reference answer), and "Prediction" (model’s output).

4. Finally, the scoring network computes the final223

performance scores based on the averaged score224

derived from the stabilized channel outputs.225

Thanks to the addition of the self-reflection sys-226

tem, we avoid the traditional method of using227

repetitive experiments to obtain relatively accurate228

scores as much as possible, and instead use a scor-229

ing system with variable elastic quantities. This230

not only avoids giving biased scores to the results231

due to abnormal data or model bias in traditional232

methods, ensuring the objectivity and fairness of233

the results, but also reduces the number of repeated234

experiments and improves the system efficiency.235

After subsequent performance verification, the rea-236

soning model can maintain a level close to human237

results in a statistical sense and achieve the same238

level as human ratings in horizontal comparisons.239

3 Experimental Setting240

3.1 Evaluation Dataset Construction241

To operationalize our framework, we develop a242

comprehensive evaluation data set spanning vari-243

ous domains such as medical imaging, biological244

sciences, mathematics, humanities, social sciences,245

1. "What activities are people taking part in here? 

Please choose between funeral, wedding, party, 

dinner." 

2. "Who is the man standing between the 

newlyweds?"

3. [（1）"What is the role of the police in this 

scene?If the object does not exist, answer 'nothing'",   

     （2）"What is the role of the teacher in this 

scene?If the object does not exist, answer 'nothing'",    

     （3）"What color is the second couple in the 

picture wearing?If the object does not exist, answer 

'nothing'"]

1."wedding"

2."pastor <OR> witness"

3.["nothing","nothing","nothing"]

Capability vision: ["Environmental understanding"]

Capability language: ["Knowledge"]

Capability robustness: ["Hallucination"]

Level:[1,1] 

Image name:    
v1_111.png

Figure. 5. A sample task set is presented, consisting of five
complete questions: one visual task, one language task, and a
set of robustness tasks. This set also showcases its
capabilities in examination, difficulty levels, and other
relevant information.

flow charts, and emoticons. By incorporating the 246

reasoning model in Step III, the system is able 247

to break through the traditional form of multiple- 248

choice questions in the choice format and instead 249

handle forms such as completion questions and 250

short-answer questions. This significantly diversi- 251

fies the types of questions the system can manage. 252
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The dataset comprises 181 carefully designed253

task groups, totaling 352 fine-grained subtasks,254

with each group containing up to five strategically255

structured questions (as illustrated in Figure 5): one256

visual task, one linguistic task, and three robustness257

evaluation items. Each task in the dataset is sup-258

ported by 1–8 images and manually annotated with259

high, medium, or low difficulty levels.260

3.2 Benchmarking Model Selection261

We systematically evaluate 15 leading LMMs using262

our comprehensive assessment framework, includ-263

ing 9 open source and 6 proprietary models. For the264

open-source models, we employ full parameter lo-265

cal deployment, ensuring a thorough and controlled266

evaluation environment. In contrast, the proprietary267

models are invoked through their official APIs, ad-268

hering to the standard usage guidelines provided by269

the respective model owners. Specifically, the nine270

open source models included in our evaluation are:271

• DeepSeek-VL2272

• ChatGlm-4V273

• InternVL2-26B274

• LLaMA-3.2-90B-vision-instruct275

• QVQ-72B-Preview276

• Qwen2-VL-72B-Instruct277

• Qwen2.5-VL-7B-Instruct278

• Qwen2.5-VL-32B-Instruct279

• Yi-vision-v2280

Besides, the six proprietary models included in our281

evaluation are:282

• Claude-3.5-sonnet283

• Doubao-1.5-vision-pro-32k284

• Gemini-2.0-flash-thinking-exp285

• ChatGPT-4o286

• ChatGPT-4o-all287

• Moonshot-v1-128k-vision-preview288

3.3 Implementation Details289

Self-reflection can be initiated in both Step II and290

Step III, with their upper limits for loop iterations291

being adjustable. In Step II, a dual-channel evalua-292

tion mechanism was employed, and the maximum293

number of self-reflection cycles was set to 1. In294

Step III, a three-channel scoring approach was uti-295

lized, and the maximum number of self-reflection296

cycles was set to 5, meaning that each valid score297

could be calculated between 3 and 8 times. For298

scenarios requiring higher precision, the number of299

cycles can be increased by simply modifying the300

configuration parameters.301

4 Core Capability Benchmarking 302

4.1 Visual Comprehension Evaluation 303

Visual comprehension evaluation assesses funda- 304

mental capabilities in visual information process- 305

ing. This evaluation encompasses a range of spe- 306

cific visual tasks, which are outlined as follows: 307

• Optical character recognition (OCR): Detect- 308

ing and reasoning about text in images. 309

• Visual recognition: Identifying objects, at- 310

tributes, and performing vision tasks. 311

• Spatial awareness: Understanding object rela- 312

tionships in two and three dimensions. 313

• Motion recognition: Interpreting movement in 314

image sequences. 315

• Environmental understanding: Holistic scene 316

context analysis and semantic interpretation. 317

For visual capabilities, the experimental results 318

presented in Table 1 demonstrate substantial perfor- 319

mance variations among different LMMs across 320

a range of visual tasks. For example, in OCR 321

tasks, Gemini-2.0 achieves an impressive accu- 322

racy of 0.817, while Yi-vision-v2 only reaches 323

0.444. Besides, certain models showcase excep- 324

tional performance in specific tasks. Qwen2.5-VL- 325

32B shines in visual recognition, Gemini-2.0 in 326

OCR, and Doubao-1.5 demonstrates strong capa- 327

bilities in multiple tasks, including Spatial aware- 328

ness, Motion recognition, and environmental un- 329

derstanding, and thus ranks the best in terms of 330

visual capabilities. Overall, these differences stem 331

from factors like model architecture, training data, 332

and optimization strategies. Hence, it’s crucial to 333

evaluate and select the appropriate LMMs based 334

on specific tasks and application scenarios. 335

4.2 Linguistic Processing Evaluation 336

Linguistic processing evaluation focuses on the 337

model’s capabilities in understanding and generat- 338

ing natural language, encompassing tasks. 339

• Knowledge: Leveraging social, visual, and 340

encyclopedic information. 341

• Logical inference: Reasoning to predict or 342

generate new content. 343

• Mathematics: Solving written equations or 344

arithmetic problems. 345

• Text generation: Producing fluent and gram- 346

matically correct language. 347

Table 1 presents the results of LMMs across linguis- 348

tic capabilities. Compared with visual ability, the 349

language ability of the model shows a more obvious 350
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Table 1: Comprehensive Evaluation of Large Multi-modal Models’ Core Capabilities (Vision, Language, and Robustness). Note:
Composite scores are computed as: Visual = average(5 Visual abilities), Language = average(4 Linguistic abilities), Robustness
= average(2 Robustness abilities), Composite Score = average(Vision, Language, Robustness). The top performance in each
column is underlined. Abbreviations: Vis.Rec=Visual Recognition, Sp.Aware=Spatial Awareness, Mot.Rec=Motion Recognition,
Env.Under=Environmental Understanding, Knowl.=Knowledge, Tex.Gen=Text Generation, Log.Inf=Logical Inference,
Halluc.=Hallucination, In.Adapt=Input Adaptation.

Large Multi-modal
Models Visual Abilities Linguistic Abilities Robustness Abilities Composite

Score

OCR Vis.Rec Sp.Aware Mot.Rec Env.Under Visual Knowl. Tex.Gen Math Log.Inf Language Halluc. In.Adapt Robustness
Open-source Models

DeepSeek-VL2 0.449 0.550 0.420 0.681 0.652 0.550 0.461 0.139 0.214 0.492 0.327 0.095 0.121 0.108 0.328
ChatGLM-4V 0.586 0.689 0.562 0.717 0.824 0.676 0.837 0.852 0.422 0.539 0.663 0.340 0.535 0.438 0.592

InternVL2-26B 0.604 0.712 0.658 0.557 0.574 0.621 0.584 0.260 0.493 0.629 0.492 0.328 0.657 0.493 0.535
LLaMA-3.2-90B 0.590 0.710 0.576 0.579 0.796 0.650 0.746 0.602 0.420 0.581 0.587 0.059 0.167 0.113 0.450

QVQ-72B 0.747 0.787 0.722 0.758 0.691 0.741 0.776 0.672 0.690 0.577 0.679 0.085 0.515 0.300 0.573
Qwen2-VL-72B 0.541 0.692 0.606 0.651 0.708 0.640 0.723 0.407 0.561 0.653 0.586 0.209 0.276 0.243 0.490
Qwen2.5-VL-7B 0.616 0.695 0.582 0.704 0.739 0.667 0.753 0.672 0.489 0.684 0.650 0.529 0.868 0.699 0.672

Qwen2.5-VL-32B 0.735 0.826 0.720 0.758 0.842 0.776 0.842 0.821 0.732 0.668 0.766 0.405 0.838 0.622 0.721
Yi-vision-v2 0.444 0.662 0.489 0.758 0.733 0.617 0.548 0.300 0.368 0.495 0.428 0.229 0.396 0.313 0.453

Proprietary Models
Claude-3.5 0.656 0.740 0.658 0.765 0.761 0.716 0.814 0.762 0.545 0.542 0.666 0.320 0.485 0.403 0.595
Doubao-1.5 0.724 0.790 0.747 0.854 0.875 0.798 0.857 0.768 0.647 0.737 0.752 0.144 0.222 0.183 0.578
Gemini-2.0 0.817 0.780 0.728 0.629 0.779 0.747 0.827 0.745 0.826 0.677 0.769 0.124 0.475 0.300 0.605
ChatGPT-4o 0.678 0.736 0.707 0.561 0.765 0.689 0.869 0.889 0.587 0.710 0.764 0.157 0.273 0.215 0.556

ChatGPT-4o-all 0.616 0.701 0.641 0.521 0.677 0.631 0.593 0.337 0.457 0.495 0.471 0.160 0.303 0.232 0.445
Moonshot-v1 0.601 0.696 0.618 0.600 0.692 0.641 0.597 0.222 0.399 0.606 0.456 0.078 0.101 0.090 0.396

disparity both horizontally and vertically. Some351

models exhibit exceptional performance in partic-352

ular language sub-tasks. For example, ChatGPT-353

4o achieves the highest score of 0.889 in the Text354

generation task, significantly outperforming other355

models like DeepSeek-VL2, which only gets 0.139.356

This suggests that ChatGPT-4o has a strong abil-357

ity to generate high-quality text, possibly due to358

its advanced language generation algorithms and359

extensive training on diverse textual data. In the360

mathematics task, Gemini-2.0 leads with a score of361

0.826, indicating its superior capability in mathe-362

matical reasoning within the context of language.363

This could be because Gemini-2.0 has been specifi-364

cally trained or fine-tuned to handle mathematical365

language and logic.366

Specifically, there seems to be a certain degree367

of correlation between different language abilities.368

Models that perform well in one language task of-369

ten show relatively good performance in other tasks370

as well. For instance, Gemini-2.0 not only excels in371

mathematical tasks but also has high scores in log-372

ical inference (0.677) and language (0.775) tasks.373

This implies that a strong foundation in one aspect374

of language processing may contribute to better375

performance in related areas.376

4.3 Robustness Stress Evaluation377

Robustness stress evaluation assesses model per-378

formance under external perturbations, including379

hallucination phenomena and noisy/interfered in-380

puts. We first examine two critical dimensions:381

• Hallucination: Evaluating factual inconsisten-382

cies in generated content. 383

• Input adaptation: Evaluating a system’s ro- 384

bustness against three challenging input sce- 385

narios: noisy, ambiguous, and structured in- 386

puts that deviate from the norm. 387

As shown in Table 1, we observe significant 388

variance in robustness performance across mod- 389

els. The hallucination metrics reveal particularly 390

striking contrasts: while LLaMA-3.2-90B and 391

Moonshot-v1 exhibit elevated hallucination rates 392

(0.059 and 0.078, respectively), Qwen2.5-VL vari- 393

ants demonstrate superior performance with signif- 394

icantly lower rates (0.529 for 7B and 0.405 for 32B 395

architectures). In input adaptation tests, Qwen2.5- 396

VL-7B achieves exceptional performance (0.868 397

success rate), indicating remarkable capability in 398

processing structured inputs and maintaining sta- 399

bility under interference. 400

It’s worth noting that our experimental compari- 401

son between ChatGPT-4o and ChatGPT-4-all has 402

uncovered a crucial trade-off in integrating exter- 403

nal knowledge. While supplementary data can help 404

reduce hallucinations (instances where the model 405

generates inaccurate or fabricated information), our 406

experiments with ChatGPT-4-all show that an ex- 407

cess of external inputs can introduce noise, which 408

in turn adversely affects overall performance. This 409

finding implies that achieving optimal knowledge 410

integration necessitates a delicate balance between 411

leveraging the model’s inherent capabilities and 412

supplementing it with external information. 413
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Figure. 6. Inconsistency rates of all 15 benchmark models
when processing 352 test subtasks, where lower values
indicate higher output stability.

4.4 Comprehensive Capability Analysis414

Building upon the results established in previous415

sections, we derive a comprehensive Composite416

Score, which enables a holistic comparison of417

model performance across multiple dimensions,418

revealing fundamental differences in architectural419

approaches to multi-modal integration.420

As evidenced by the results in Table 1, Qwen2.5-421

VL-32B emerges as the top performer in composite422

scoring, demonstrating well-balanced capabilities423

across all evaluation dimensions. Notably, Doubao-424

1.5 exhibits superior Vision-Language Integration425

performance, attributable to its innovative expert426

network routing mechanism that effectively aligns427

cross-modal features. However, its overall com-428

posite score is constrained by comparatively lower429

robustness metrics.430

Besides, our analysis reveals distinct specializa-431

tion patterns among LMMs, with some models432

excelling in linguistic tasks while showing rela-433

tive weakness in visual processing, and vice versa.434

This divergence primarily stems from fundamen-435

tal differences in model architectures and training436

methodologies. Models optimized for linguistic437

tasks typically employ deeper transformer layers438

and extensive text-based pretraining, while vision-439

dominant architectures often incorporate sophisti-440

cated visual encoders and cross-modal attention441

mechanisms.442

4.5 Efficacy of Self-Reflection Mechanisms443

To validate the necessity of our proposed self-444

reflection mechanism, we systematically quan-445

tify output inconsistency across all 15 benchmark446

LMMs through repeated experiments in Step II,447

encompassing a total of 352 subtasks. Figure 6448

quantifies the percentage of 352 subtasks that ex-449

hibit inconsistent results in repeated experimental450

runs. The experimental results reveal that the ma-451

jority of LMMs exhibit substantial output inconsis-452

Figure. 7. Variance analysis of ablation configurations for
Qwen2.5-VL across three parameter scales (7B, 32B, 72B),
comparing four variants: Baseline, Eval-Reflect,
Score-Reflect, and Full-Reflect. Performance is evaluated via
visual, linguistic, and vision-language integration metrics,
with lower variance indicating superior stability and efficacy.

tency rates, with more than 50% tasks that demon- 453

strate divergent responses in repeated trials. This 454

observed instability could introduce substantial in- 455

terference when evaluating the models’ core com- 456

petencies, thereby validating the effectiveness of 457

our self-reflection mechanism in stabilizing model 458

outputs and mitigating response fluctuations. 459

To further validate the effectiveness of our pro- 460

posed self-reflective mechanism, we conduct exten- 461

sive experiments on three variants of the Qwen2.5- 462

VL model (7B, 32B, and 72B). For each scale, we 463

compare four distinct configurations: 464

• Baseline (no-reflection) completes absence of 465

self-reflection mechanism. 466

• Eval-Reflect incorporates a self-reflection 467

mechanism exclusively during the evaluation 468

phase. 469

• Score-Reflect applies a self-reflection mecha- 470

nism only during the scoring phase. 471

• Full-Reflect integrates the self-reflection 472

mechanism for all phases. 473

As shown in Figure 7, the experimental results re- 474

veal clear performance distinctions among the con- 475

figurations. The Baseline configuration, devoid of 476

any self-reflection mechanism, exhibits the weak- 477

est performance across all evaluation dimensions. 478

This significant performance gap underscores the 479

fundamental importance of self-reflection in our 480

framework. Eval-Reflect demonstrates measurable 481

improvements, particularly in assessment accuracy, 482

7



Figure. 8. The scoring differences of specific scoring models (OpenAI O1, Qwen3-32B, DeepSeek-V3, and DeepSeek-R1)
across several representative model datasets (ChatGPT-4o, Doubao-1.5-vision-pro-32k, Gemini-2.0-flash-thinking, and
Qwen2-VL-72B-instruct). The data in the figures indicate the differences from human evaluations.

though its impact on scoring consistency remains483

limited. This confirms that evaluation-phase re-484

flection primarily enhances measurement precision485

while leaving scoring logic largely unaffected. Con-486

versely, the Score-Reflect configuration shows sub-487

stantial gains in scoring consistency but more mod-488

est improvements in assessment accuracy, indicat-489

ing that scoring-phase reflection predominantly op-490

timizes judgment formulation. The results firmly491

validate that the comprehensive integration of the492

self-reflection system in the assessment framework493

significantly enhances its effectiveness.494

4.6 Efficacy of DeepEval Scoring Network495

To validate the efficacy of reasoning models in au-496

tomated evaluation scoring, we conduct systematic497

experiments comparing model-generated scores498

with human judgments. We utilize DeepSeek-R1 as499

the evaluation framework, and its outputs are subse-500

quently processed by four state-of-the-art language501

models (OpenAI O1, Qwen3-32B, DeepSeek-V3,502

and DeepSeek-R1), which function as scoring mod-503

els. Additionally, we conduct evaluations of each504

model across four benchmark datasets (ChatGPT-505

4o, Doubao-1.5, Gemini-2.0, and Qwen2-VL-72B).506

The experimental design generates parallel scores507

using all four LLM scorers while computing devia-508

tion metrics from human annotations, with results509

visualized through stacked area charts (Figure 8).510

Specifically, in these visualizations, the layered ar-511

eas represent discrepancies between model scores512

and human annotations. Crucially, closer proximity513

to the vertical axis indicates a stronger alignment514

with human scoring. This representation enables515

a clear comparative analysis of how closely each516

model’s evaluations match human judgment.517

As clearly illustrated in Figure 8, the yellow-518

highlighted DeepSeek-R1 scores consistently show519

the closest alignment to the vertical axis across all 520

four datasets, demonstrating its superior agreement 521

with human evaluations and stable, near-human 522

performance across diverse scenarios. The stability 523

of DeepSeek-R1’s performance is particularly note- 524

worthy, maintaining consistent scoring accuracy 525

across different task types and difficulty levels, in- 526

cluding visual, linguistic, and robustness test cases. 527

Based on these findings, in our evaluation system, 528

we adopt DeepSeek-R1 as our scoring model. 529

5 Conclusions 530

This paper presents a novel LMM evaluation frame- 531

work that systematically examines three critical 532

dimensions: visual perception, linguistic compre- 533

hension, and robustness testing. This evaluation 534

framework introduces two key innovations: 1) a 535

self-refinement mechanism that effectively miti- 536

gates experimental instability through automated 537

error correction, and 2) a reasoning-based scoring 538

network capable of generating reliable performance 539

scores without human intervention. 540

Our comprehensive benchmark evaluation of 541

15 state-of-the-art LMM models reveals distinct 542

capability profiles: Doubao-1.5 excels in both 543

model and visual capabilities, Qwen2.5-VL-32B- 544

Instruct outperforms in model composite capa- 545

bility, ChatGPT-4o leads in language proficiency, 546

Qwen2.5-VL-7B-Instruct shows superior robust- 547

ness and demonstrates outstanding dynamic stabil- 548

ity. Furthermore, we demonstrate the effectiveness 549

of our scoring network as an alternative to humans 550

for precise model assessment, offering a scalable 551

solution for large-scale model evaluation. 552
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Limitations553

Data Accuracy: The benchmark tasks of SRES554

are manually engineered with structured annotation555

frameworks, where each task instance undergoes a556

three-stage validation including requirement veri-557

fication, label consistency checking, and difficulty558

calibration. A self-reflection system is employed559

to screen and remove anomalous tasks, ensuring560

that the final uploaded task sets have undergone561

rigorous selection. However, the validation of the562

task difficulty setting was only verified in the 15563

LMMs we evaluated. We will continue to conduct564

broader validation.565

Data Richness: SRES’s task sets encompass566

a wide range of task types and formats. Answer567

formats include multiple-choice questions, true or568

false questions, and open-ended questions. Image-569

based tasks feature single images, dual images, and570

multi-image sets. Question categories span the hu-571

manities and social sciences, mathematics, modern572

common knowledge, medical imaging, biological573

sciences, image sequences, flowcharts, and emoti-574

cons. Despite this diversity, the current task sets575

remain insufficient in both quantity and variety. We576

plan to expand the number and types of tasks in577

future iterations.578

Model Selection: Currently, all the auxiliary579

models in SRES are based on DeepSeek-R1. After580

our experimental adjustments, the accuracy of the581

models has become relatively reliable. As technol-582

ogy progresses and more powerful LLMs emerge,583

we will adjust the configuration of the auxiliary584

models and introduce other methods as assistance.585

Prompt Engineering: Additional prompts are586

utilized in task pruning, self-reflection regenera-587

tion, and scoring to assist model operations. How-588

ever, our experiments revealed that different task589

types exhibit varying responses to these prompts,590

with some cases showing performance degrada-591

tion. Therefore, we will consider customizing the592

prompts for specific task types to optimize the per-593

formance of the system.594
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