Seeing is believing: Comprehensive Self-Reflective Evaluation System for
Large Multi-modal Models

Anonymous ACL submission

Abstract

The rapid advancement of large multi-modal
models has generated an immediate demand
for comprehensive evaluation methodologies.
In this paper, we introduce a novel and system-
atic Self-Reflective Evaluation System (SRES)
framework for comprehensive multi-modal
model evaluation. Unlike traditional frame-
works, our SRES uniquely integrates three
core dimensions (Visual, Linguistic, and Ro-
bustness) to comprehensively cover evalua-
tion tasks while enabling synchronized multi-
dimensional assessment for holistic multi-
modal analysis. Importantly, we establish
the first standardized dynamic assessment
mechanism by incorporating a novel self-
reflective module, which autonomously as-
sesses performance and conducts process op-
timization without human intervention. Addi-
tionally, we construct a comprehensive bench-
mark dataset comprising 352 subtasks to sys-
tematically evaluate 15 leading large multi-
modal models. Through rigorous multi-
dimensional comparative analysis, we assess
their performance metrics and robustness char-
acteristics. The framework implementation
and benchmark data are publicly available
at: https://anonymous.4open.science/r/SRES-
B2B

1 Introduction

Large Multi-modal Models (LMMs) have achieved
significant advancements in recent years, with nu-
merous architectures demonstrating effectiveness
across diverse domains (Dai et al., 2023; Zhu et al.,
2024; Liet al., 2023). Nevertheless, the community
lacks a standardized benchmarking framework to
systematically evaluate their holistic capabilities
(Liu et al., 2024b; Yu et al., 2024; Liu et al., 2024c;
Schwenk et al., 2022).

As shown in Figure 1, the current LMM evalua-
tion system (Singh et al., 2019; Guetta et al., 2023;
Du et al., 2024; Li et al., 2024; Liu et al., 2024a)
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Figure. 1. Comparison of our proposed SRES with the
existing mainstream evaluation system. Task refers to a single
question in the input model.

narrowly focus on singular evaluation metrics that
fail to capture the multi-dimensional complexity
required for real-world applications. This can be
further elaborated in the following three fundamen-
tal aspects:

1) Modular evaluation frameworks fail to
address inherent model architectural limita-
tions. Mainstream LMMs typically integrate a
visual translator alongside the core Large Lan-
guage Model (LLM) through partitioned designs
(Verma et al., 2024), yet this structural segre-
gation introduces critical evaluation blind spots.
By restricting visual processing to the translator’s
domain-specific capacities (e.g., image-to-text con-
version) while confining linguistic reasoning within
LLMs’ pre-trained syntactic boundaries (Goyal
et al., 2017), existing frameworks systematically
handle visual and linguistic components as discrete
modules while neglecting intrinsic multi-modal in-
tegration (Guetta et al., 2023; Saikh et al., 2022;
Nemani et al., 2023; Xu et al., 2023).

2) Robustness evaluation inadvertently ob-
scures assessment results. Existing evaluation
frameworks typically rely on repeated experimental
trials to calculate performance averages. While this
approach is widely adopted, it often incurs substan-
tial computational overhead and fails to quantify
system robustness adequately. The stability of a
model across multiple runs should be a core eval-
uation criterion for accurately assessing its true
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Figure. 2. Our framework implements a three-stage evaluation pipeline: (I) Tri-channel Assessment Framework, (II)
Self-Reflective Mechanism, and (IIT) DeepEval Scoring Network, assessing visual, linguistic, and robustness capabilities.

capabilities. However, most evaluation systems
neglect this dimension, treating robustness as an
afterthought rather than a foundational requirement.
This oversight can lead to misleading evaluations
by conflating model instability with inherent capa-
bility limitations (Sun et al., 2024; Lou et al., 2023;
Jing et al., 2024).

3) Task monotony disconnected from real-
world complexity. The evaluation and task design
of models face significant challenges due to the
diverse array of scenarios, which encompass both
fixed-format responses and open-ended inquiries.
Current systems exhibit critical limitations in ad-
dressing real-world complexity, primarily because
of their siloed architectural designs and fragmented
assessment methodologies. These systems rely
on a task-isolated paradigm, necessitating separate
benchmark executions for each scenario, which is
fundamentally unscalable as the number of scenar-
ios grows. Moreover, the lack of task diversity in
assessment design undermines cross-domain adapt-
ability, undermining the reliability of evaluations
in real-world applications.

Taking into account these limitations, we pro-
pose the Self-Reflective Evaluation System (SRES)
to allow a comprehensive evaluation of the capa-
bilities of LMMs. The main contributions of this
paper are:

* We establish a comprehensive evaluation sys-
tem that seamlessly integrates visual compre-
hension, linguistic understanding, and robust-
ness testing within a unified architecture. The

framework captures intrinsic multi-modal in-
teractions through carefully constructed task
inter-dependencies, enabling comprehensive
capability evaluation while eliminating human
bias and ensuring reproducibility.

* To address the critical challenge of output vari-
ability in model assessments, we introduce a
novel self-reflective module designed to dy-
namically adjust and mitigate output fluctua-
tions, thereby substantially enhancing the reli-
ability of assessments.

* We develop a meticulously designed evalu-
ation dataset and conduct a comprehensive
comparison of 15 state-of-the-art mainstream
LLMs, offering the most comprehensive per-
formance analysis.

2 SRES

As illustrated in Figure 2, our SRES framework
implements a three-stage evaluation pipeline:

Step I: We first design a tri-channel assessment
framework to simultaneously evaluate three core
dimensions: Visual (V) comprehension, Linguistic
(L) understanding, and Robustness (R) testing.

Step II: The self-reflective module employs it-
erative introspective reasoning, thereby enabling
accurate performance evaluation.

Step III: Finally, we develop a comprehensive
DeepEval scoring network powered by advanced
DeepSeek-R1 models to quantitatively obtain accu-
rate scores for each LMM.
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Figure. 3. Distribution statistics of the 11 evaluated
capabilities are presented, illustrating their proportional
representation across test samples. It is noted that the
cumulative percentage exceeds 100% because most samples
are designed to assess multiple capabilities simultaneously.

2.1 Tri-channel Assessment Framework

To ensure comprehensive model evaluation, we pro-
pose a tri-channel assessment framework that con-
currently evaluates three fundamental dimensions:
visual, linguistic, and robustness. This integrated
approach employs quantitative metrics to systemat-
ically compare model outputs against ground truth
answers across question-answering tasks, enabling
simultaneous assessment of 11 core capabilities,
comprising 5 visual, 4 linguistic, and 2 robustness
competencies (see Figure 3 for capability distribu-
tion). Furthermore, the more detailed implementa-
tion details of these 11 evaluation capabilities are
systematically elaborated in Section 4.

2.2 Self-Reflective Mechanism

Our self-reflective evaluation framework employs a
dual-channel verification architecture (as depicted
in Figure 2, Step II) to guarantee the reliability
of outputs. Initially, parallel model predictions
are subjected to hierarchical validation by a hy-
brid adjudication network. This network employs
a two-step approach: it first preliminarily screens
and then leverages LLM-based analysis for more
complex cases. When both channels produce per-
fectly consistent outputs, the result is immediately
accepted. In cases of discrepancy, however, the sys-
tem initiates a controlled self-reflection cycle (with
a predefined limit on the number of attempts). This
cycle involves the following steps: 1) retrieving
relevant historical outputs to serve as contextual
references, 2) regenerating predictions using the
model under evaluation, and 3) re-evaluating un-
til achieving a stable consensus or reaching the
iteration limit. By limiting the number of regenera-
tions, the self-reflection mechanism not only yields
more stable and objective results but also provides
valuable data on model stability.

Fundamentally, the self-reflection mechanism
decouples the interference arising from model ro-
bustness indicators, which should be evaluated in-
dependently, from the conventional model capabil-
ity assessment process. This separation enhances
the objectivity of model ability evaluation and en-
ables a more reasonable and comprehensive ex-
amination of model robustness. Furthermore, this
mechanism employs an external diagnostic frame-
work that operates independently of LMMs’ na-
tive capabilities. By monitoring answer transitions
(correct-to-incorrect or vice versa) during reflection
cycles to both precisely measure model stability
and objectively evaluate inherent characteristics,
without relying on any pre-existing self-reflective
capabilities in the target models.

To better reduce the interference caused by vi-
sual factors in the evaluation of language tasks, the
visual tasks in the dataset we designed to provide
the knowledge that the model needs in the eval-
uation of language tasks. Specifically, in Step 11,
the visual task output is automatically integrated
into subsequent language processing to ensure the
continuity of multi-modal context, while providing
evaluation results and diagnostic insights.

2.3 DeepEval Scoring Network

Building upon the powerful reasoning capabili-
ties of LLM, we develop a DeepEval Scoring Net-
work, which is an adaptive scoring architecture that
synergistically integrates deterministic comparison
functions with LLM. This hybrid network, based
on task-specific requirements, dynamically selects
either the pre-determined determination function
or the inference model to initiate (Ji et al., 2024,
Chen et al., 2024; Nowak et al., 2024). We employ
DeepSeek-R1 as our primary scoring model. The
reason for this selection will be comprehensively
elaborated in Section 4.6.

As shown in Figure 2, the input in Step III is
subjected to concurrent processing via three in-
dependent scoring channels, each employing our
DeepEval scoring network. Then, initial channel
scores enter a circular comparison. Any discrep-
ancies trigger a self-reflection mechanism (limited
to 8 iterations), where answers are re-evaluated
through carefully designed prompts in their origi-
nal channels. This cyclic refinement process contin-
ues until achieving stable consensus is achieved or
the iteration limit is reached. As mentioned above,
DeepEval uses an inference model for scoring, and
we design scoring rules for it as shown in Figure



You are an artificial intelligence assistant, now please follow the following steps to think, and then score, the relevant scoring

rules, examples, to be scored will be listed in turn.

The scoring process is divided into two steps, and here's what you need to do in each step:

1. According to the content of '‘Question’ and the style of 'Ground truth’, extract the predicted answer of the model from ‘Prediction’. Please note that the content format of 'Prediction’
to be extracted is similar to that of ‘Ground truth’, but the content may not be the same. In this step, you only need to extract without judging whether it is right or wrong; When
‘Prediction’ is concise enough, you may not need to make any changes; ‘Question’ can be multiple choice or open-ended, you need to look at it on a case-by-case basis.

2. According to the scoring rules mentioned above, compare ‘Ground truth’ and 'Prediction and output the score.

Please compare the ground truth and prediction from Al models to give a correctness score for the prediction.You
need to follow the following scoring rules, each of which is equally important:

o)
(")

1.<AND>in the ground truth means itis totally right only when all elements in the ground truth are present in the predictian, and <OR> means it is totally right when any one element in the ground truth is

present in the prediction.

2.The correctness score is 0.0 (totally wrong), 0.1, 0.2,0.3,0.4,0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Don't have any extra output.

3.Ignore extra " '(space symbol), for example, '(x +2)* 2=9" and ' (x+2)"2=9" are equivalent,they all got perfect score.

4.Ignore the difference between upper and lower case letters, for example,right’ and 'Right’ are equivalent.

5.When the basic facts are long, score the predicted answers based on the main content of the text, without having to be iden tical word for word.

6.They are considered equivalent as long as the meaning is the same, for example, 0 and no one are equivalent.

7.All the Ground truth appeared in Prediction and no additional relevant answers were judged to be full marks. 8.Synonyms are also treated as inclusive relations, equal in price to the correct answer.

Semantic similarity is awarded according to the degree of correlation.

Question | Ground truth | Prediction | Correctness
]

Below are eight answers format | am going to upload along with some examples:

e
(1]

Whatis the answer to the equation?| -1 <AND> 8| x=2]0.0
Whatis the answer to the equation?| -1 <AND>8 | x =-1|0.5
Whatis the answer to the equation?| -1 <AND> 8| x =8| 0.5
What is the answer to the equation?| -1 <AND:

What is the answer to the equation?| -1

What is the answer to the equation?| -1

Can you describe the picture? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful greenlandscapes, while Greenland is

mostly covered in ice and snow. The meme is saying that the person has trustissues because the names of these countries do not accurately represent their landscapes. | The meme talks about Iceland and Greenland. It's pointing

outthat despite their names, Iceland is not very icy and Greenland isn'tvery green. | 0.4

Can you describe the picture?| This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is
mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme is using humor to point out the misleading nature
of Iceland’s and Greenland's names. Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and snow. The text ‘Thisis why | have trust issues' isa playful way tosuggest that these

¥

contradictions can lead to distrust or confusion. The humor in this meme is derived from the unexpected contrast between the names of the countries and their actual physical characteristics. | 1.0

Question | Ground truth | Prediction | Correctness (to be supplemented)

Figure. 4. The scoring model’s input template consists of four color-coded sections arranged vertically: 1) chain-of-thought
prompt, 2) scoring rubric, 3) scoring case example, and 4) test subject. Key elements include: "Question" (sample input),
"Ground truth" (reference answer), and "Prediction” (model’s output).

4. Finally, the scoring network computes the final
performance scores based on the averaged score
derived from the stabilized channel outputs.
Thanks to the addition of the self-reflection sys-
tem, we avoid the traditional method of using
repetitive experiments to obtain relatively accurate
scores as much as possible, and instead use a scor-
ing system with variable elastic quantities. This
not only avoids giving biased scores to the results
due to abnormal data or model bias in traditional
methods, ensuring the objectivity and fairness of
the results, but also reduces the number of repeated
experiments and improves the system efficiency.
After subsequent performance verification, the rea-
soning model can maintain a level close to human
results in a statistical sense and achieve the same
level as human ratings in horizontal comparisons.

3 Experimental Setting

3.1 Evaluation Dataset Construction

To operationalize our framework, we develop a
comprehensive evaluation data set spanning vari-
ous domains such as medical imaging, biological
sciences, mathematics, humanities, social sciences,

"pastor <OR> witness"
.["nothing”,"nothing”, "nothing"]

(" Image name: )
)

| Capability vision: [*Environmental understanding'] ]
: Capability language: ["Knowledge"] :
4 Capability robustness: ["Hallucination"] 1

Figure. 5. A sample task set is presented, consisting of five
complete questions: one visual task, one language task, and a
set of robustness tasks. This set also showcases its
capabilities in examination, difficulty levels, and other
relevant information.

flow charts, and emoticons. By incorporating the
reasoning model in Step III, the system is able
to break through the traditional form of multiple-
choice questions in the choice format and instead
handle forms such as completion questions and
short-answer questions. This significantly diversi-
fies the types of questions the system can manage.



The dataset comprises 181 carefully designed
task groups, totaling 352 fine-grained subtasks,
with each group containing up to five strategically
structured questions (as illustrated in Figure 5): one
visual task, one linguistic task, and three robustness
evaluation items. Each task in the dataset is sup-
ported by 1-8 images and manually annotated with
high, medium, or low difficulty levels.

3.2 Benchmarking Model Selection

We systematically evaluate 15 leading LMMs using
our comprehensive assessment framework, includ-
ing 9 open source and 6 proprietary models. For the
open-source models, we employ full parameter lo-
cal deployment, ensuring a thorough and controlled
evaluation environment. In contrast, the proprietary
models are invoked through their official APIs, ad-
hering to the standard usage guidelines provided by
the respective model owners. Specifically, the nine
open source models included in our evaluation are:

* DeepSeek-VL2

* ChatGlm-4V

* InternVL2-26B

* LLaMA-3.2-90B-vision-instruct

* QVQ-72B-Preview

¢ Qwen2-VL-72B-Instruct

¢ Qwen2.5-VL-7B-Instruct

¢ Qwen2.5-VL-32B-Instruct

* Yi-vision-v2
Besides, the six proprietary models included in our
evaluation are:

* Claude-3.5-sonnet

* Doubao-1.5-vision-pro-32k

* Gemini-2.0-flash-thinking-exp

* ChatGPT-40

* ChatGPT-40-all

* Moonshot-v1-128k-vision-preview

3.3 Implementation Details

Self-reflection can be initiated in both Step II and
Step 111, with their upper limits for loop iterations
being adjustable. In Step II, a dual-channel evalua-
tion mechanism was employed, and the maximum
number of self-reflection cycles was set to 1. In
Step 111, a three-channel scoring approach was uti-
lized, and the maximum number of self-reflection
cycles was set to 5, meaning that each valid score
could be calculated between 3 and 8 times. For
scenarios requiring higher precision, the number of
cycles can be increased by simply modifying the
configuration parameters.

4 Core Capability Benchmarking

4.1 Visual Comprehension Evaluation

Visual comprehension evaluation assesses funda-
mental capabilities in visual information process-
ing. This evaluation encompasses a range of spe-
cific visual tasks, which are outlined as follows:
* Optical character recognition (OCR): Detect-
ing and reasoning about text in images.
* Visual recognition: ldentifying objects, at-
tributes, and performing vision tasks.
* Spatial awareness: Understanding object rela-
tionships in two and three dimensions.
* Motion recognition: Interpreting movement in
image sequences.
* Environmental understanding: Holistic scene
context analysis and semantic interpretation.
For visual capabilities, the experimental results
presented in Table 1 demonstrate substantial perfor-
mance variations among different LMMs across
a range of visual tasks. For example, in OCR
tasks, Gemini-2.0 achieves an impressive accu-
racy of 0.817, while Yi-vision-v2 only reaches
0.444. Besides, certain models showcase excep-
tional performance in specific tasks. Qwen2.5-VL-
32B shines in visual recognition, Gemini-2.0 in
OCR, and Doubao-1.5 demonstrates strong capa-
bilities in multiple tasks, including Spatial aware-
ness, Motion recognition, and environmental un-
derstanding, and thus ranks the best in terms of
visual capabilities. Overall, these differences stem
from factors like model architecture, training data,
and optimization strategies. Hence, it’s crucial to
evaluate and select the appropriate LMMs based
on specific tasks and application scenarios.

4.2 Linguistic Processing Evaluation

Linguistic processing evaluation focuses on the
model’s capabilities in understanding and generat-
ing natural language, encompassing tasks.
* Knowledge: Leveraging social, visual, and
encyclopedic information.
* Logical inference: Reasoning to predict or
generate new content.
* Mathematics: Solving written equations or
arithmetic problems.
* Text generation: Producing fluent and gram-
matically correct language.
Table 1 presents the results of LMMs across linguis-
tic capabilities. Compared with visual ability, the
language ability of the model shows a more obvious



Table 1: Comprehensive Evaluation of Large Multi-modal Models’ Core Capabilities (Vision, Language, and Robustness). Note:
Composite scores are computed as: Visual = average(5 Visual abilities), Language = average(4 Linguistic abilities), Robustness
= average(2 Robustness abilities), Composite Score = average(Vision, Language, Robustness). The top performance in each
column is underlined. Abbreviations: Vis.Rec=Visual Recognition, Sp.Aware=Spatial Awareness, Mot.Rec=Motion Recognition,
Env.Under=Environmental Understanding, Knowl.=Knowledge, Tex.Gen=Text Generation, Log.Inf=Logical Inference,
Halluc.=Hallucination, In.Adapt=Input Adaptation.

La’ge]&/lum'm"dal Visual Abilities Linguistic Abilities Robustness Abilities Composite

odels Score
OCR Vis.Rec Sp.Aware MotRec Env.Under | Visual | Knowl. Tex.Gen Math Log.lInf | Language | Halluc. In.Adapt | Robustness
Open-source Models
DeepSeek-VL2 0.449  0.550 0.420 0.681 0.652 0.550 | 0.461 0.139 0.214 0492 0.327 0.095 0.121 0.108 0.328
ChatGLM-4V 0.586  0.689 0.562 0.717 0.824 0.676 | 0.837 0.852 0422  0.539 0.663 0.340 0.535 0.438 0.592
InternVL2-26B 0.604  0.712 0.658 0.557 0.574 0.621 0.584 0.260 0493  0.629 0.492 0.328 0.657 0.493 0.535
LLaMA-3.2-90B | 0.590  0.710 0.576 0.579 0.796 0.650 | 0.746 0.602 0420  0.581 0.587 0.059 0.167 0.113 0.450
QVQ-72B 0.747  0.787 0.722 0.758 0.691 0.741 0.776 0.672  0.690  0.577 0.679 0.085 0.515 0.300 0.573
Qwen2-VL-72B 0.541  0.692 0.606 0.651 0.708 0.640 | 0.723 0.407 0.561  0.653 0.586 0.209 0.276 0.243 0.490
Qwen2.5-VL-7B | 0.616  0.695 0.582 0.704 0.739 0.667 | 0.753 0.672 0489  0.684 0.650 0.529 0.868 0.699 0.672
Qwen2.5-VL-32B | 0.735  0.826 0.720 0.758 0.842 0.776 | 0.842 0.821 0.732  0.668 0.766 0.405 0.838 0.622 0.721
Yi-vision-v2 0.444  0.662 0.489 0.758 0.733 0.617 | 0.548 0.300  0.368  0.495 0.428 0.229 0.396 0.313 0.453
Proprietary Models

Claude-3.5 0.656  0.740 0.658 0.765 0.761 0.716 | 0.814 0.762 0.545  0.542 0.666 0.320 0.485 0.403 0.595
Doubao-1.5 0.724  0.790 0.747 0.854 0.875 0.798 | 0.857 0.768 0.647  0.737 0.752 0.144 0.222 0.183 0.578
Gemini-2.0 0.817  0.780 0.728 0.629 0.779 0.747 | 0.827 0.745  0.826 0.677 0.769 0.124 0.475 0.300 0.605
ChatGPT-40 0.678  0.736 0.707 0.561 0.765 0.689 | 0.869 0.889  0.587  0.710 0.764 0.157 0.273 0.215 0.556
ChatGPT-40-all 0.616  0.701 0.641 0.521 0.677 0.631 0.593 0.337 0457 0.495 0.471 0.160 0.303 0.232 0.445
Moonshot-v1 0.601  0.696 0.618 0.600 0.692 0.641 0.597 0.222 0.399  0.606 0.456 0.078 0.101 0.090 0.396

disparity both horizontally and vertically. Some
models exhibit exceptional performance in partic-
ular language sub-tasks. For example, ChatGPT-
40 achieves the highest score of 0.889 in the Text
generation task, significantly outperforming other
models like DeepSeek-VL2, which only gets 0.139.
This suggests that ChatGPT-40 has a strong abil-
ity to generate high-quality text, possibly due to
its advanced language generation algorithms and
extensive training on diverse textual data. In the
mathematics task, Gemini-2.0 leads with a score of
0.826, indicating its superior capability in mathe-
matical reasoning within the context of language.
This could be because Gemini-2.0 has been specifi-
cally trained or fine-tuned to handle mathematical
language and logic.

Specifically, there seems to be a certain degree
of correlation between different language abilities.
Models that perform well in one language task of-
ten show relatively good performance in other tasks
as well. For instance, Gemini-2.0 not only excels in
mathematical tasks but also has high scores in log-
ical inference (0.677) and language (0.775) tasks.
This implies that a strong foundation in one aspect
of language processing may contribute to better
performance in related areas.

4.3 Robustness Stress Evaluation

Robustness stress evaluation assesses model per-
formance under external perturbations, including
hallucination phenomena and noisy/interfered in-
puts. We first examine two critical dimensions:

* Hallucination: Evaluating factual inconsisten-

cies in generated content.

* Input adaptation: Evaluating a system’s ro-
bustness against three challenging input sce-
narios: noisy, ambiguous, and structured in-
puts that deviate from the norm.

As shown in Table 1, we observe significant
variance in robustness performance across mod-
els. The hallucination metrics reveal particularly
striking contrasts: while LLaMA-3.2-90B and
Moonshot-v1 exhibit elevated hallucination rates
(0.059 and 0.078, respectively), Qwen2.5-VL vari-
ants demonstrate superior performance with signif-
icantly lower rates (0.529 for 7B and 0.405 for 32B
architectures). In input adaptation tests, Qwen2.5-
VL-7B achieves exceptional performance (0.868
success rate), indicating remarkable capability in
processing structured inputs and maintaining sta-
bility under interference.

It’s worth noting that our experimental compari-
son between ChatGPT-40 and ChatGPT-4-all has
uncovered a crucial trade-off in integrating exter-
nal knowledge. While supplementary data can help
reduce hallucinations (instances where the model
generates inaccurate or fabricated information), our
experiments with ChatGPT-4-all show that an ex-
cess of external inputs can introduce noise, which
in turn adversely affects overall performance. This
finding implies that achieving optimal knowledge
integration necessitates a delicate balance between
leveraging the model’s inherent capabilities and
supplementing it with external information.
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Figure. 6. Inconsistency rates of all 15 benchmark models
when processing 352 test subtasks, where lower values
indicate higher output stability.

4.4 Comprehensive Capability Analysis

Building upon the results established in previous
sections, we derive a comprehensive Composite
Score, which enables a holistic comparison of
model performance across multiple dimensions,
revealing fundamental differences in architectural
approaches to multi-modal integration.

As evidenced by the results in Table 1, Qwen2.5-
VL-32B emerges as the top performer in composite
scoring, demonstrating well-balanced capabilities
across all evaluation dimensions. Notably, Doubao-
1.5 exhibits superior Vision-Language Integration
performance, attributable to its innovative expert
network routing mechanism that effectively aligns
cross-modal features. However, its overall com-
posite score is constrained by comparatively lower
robustness metrics.

Besides, our analysis reveals distinct specializa-
tion patterns among LMMs, with some models
excelling in linguistic tasks while showing rela-
tive weakness in visual processing, and vice versa.
This divergence primarily stems from fundamen-
tal differences in model architectures and training
methodologies. Models optimized for linguistic
tasks typically employ deeper transformer layers
and extensive text-based pretraining, while vision-
dominant architectures often incorporate sophisti-
cated visual encoders and cross-modal attention
mechanisms.

4.5 Efficacy of Self-Reflection Mechanisms

To validate the necessity of our proposed self-
reflection mechanism, we systematically quan-
tify output inconsistency across all 15 benchmark
LMMs through repeated experiments in Step 11,
encompassing a total of 352 subtasks. Figure 6
quantifies the percentage of 352 subtasks that ex-
hibit inconsistent results in repeated experimental
runs. The experimental results reveal that the ma-
jority of LMM:s exhibit substantial output inconsis-

® Baseline m» Eval-Reflect « Score-Reflect mm Full-Reflect

Figure. 7. Variance analysis of ablation configurations for
Qwen2.5-VL across three parameter scales (7B, 32B, 72B),
comparing four variants: Baseline, Eval-Reflect,
Score-Reflect, and Full-Reflect. Performance is evaluated via
visual, linguistic, and vision-language integration metrics,
with lower variance indicating superior stability and efficacy.

tency rates, with more than 50% tasks that demon-
strate divergent responses in repeated trials. This
observed instability could introduce substantial in-
terference when evaluating the models’ core com-
petencies, thereby validating the effectiveness of
our self-reflection mechanism in stabilizing model
outputs and mitigating response fluctuations.

To further validate the effectiveness of our pro-
posed self-reflective mechanism, we conduct exten-
sive experiments on three variants of the Qwen2.5-
VL model (7B, 32B, and 72B). For each scale, we
compare four distinct configurations:

* Baseline (no-reflection) completes absence of

self-reflection mechanism.

* Eval-Reflect incorporates a self-reflection
mechanism exclusively during the evaluation
phase.

* Score-Reflect applies a self-reflection mecha-
nism only during the scoring phase.

* Full-Reflect integrates the self-reflection
mechanism for all phases.

As shown in Figure 7, the experimental results re-
veal clear performance distinctions among the con-
figurations. The Baseline configuration, devoid of
any self-reflection mechanism, exhibits the weak-
est performance across all evaluation dimensions.
This significant performance gap underscores the
fundamental importance of self-reflection in our
framework. Eval-Reflect demonstrates measurable
improvements, particularly in assessment accuracy,
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Figure. 8. The scoring differences of specific scoring models (OpenAl O1, Qwen3-32B, DeepSeek-V3, and DeepSeek-R1)
across several representative model datasets (ChatGPT-40, Doubao-1.5-vision-pro-32k, Gemini-2.0-flash-thinking, and
Qwen2-VL-72B-instruct). The data in the figures indicate the differences from human evaluations.

though its impact on scoring consistency remains
limited. This confirms that evaluation-phase re-
flection primarily enhances measurement precision
while leaving scoring logic largely unaffected. Con-
versely, the Score-Reflect configuration shows sub-
stantial gains in scoring consistency but more mod-
est improvements in assessment accuracy, indicat-
ing that scoring-phase reflection predominantly op-
timizes judgment formulation. The results firmly
validate that the comprehensive integration of the
self-reflection system in the assessment framework
significantly enhances its effectiveness.

4.6 Efficacy of DeepEval Scoring Network

To validate the efficacy of reasoning models in au-
tomated evaluation scoring, we conduct systematic
experiments comparing model-generated scores
with human judgments. We utilize DeepSeek-R1 as
the evaluation framework, and its outputs are subse-
quently processed by four state-of-the-art language
models (OpenAl O1, Qwen3-32B, DeepSeek-V3,
and DeepSeek-R1), which function as scoring mod-
els. Additionally, we conduct evaluations of each
model across four benchmark datasets (ChatGPT-
40, Doubao-1.5, Gemini-2.0, and Qwen2-VL-72B).
The experimental design generates parallel scores
using all four LLM scorers while computing devia-
tion metrics from human annotations, with results
visualized through stacked area charts (Figure 8).
Specifically, in these visualizations, the layered ar-
eas represent discrepancies between model scores
and human annotations. Crucially, closer proximity
to the vertical axis indicates a stronger alignment
with human scoring. This representation enables
a clear comparative analysis of how closely each
model’s evaluations match human judgment.

As clearly illustrated in Figure 8, the yellow-
highlighted DeepSeek-R1 scores consistently show

the closest alignment to the vertical axis across all
four datasets, demonstrating its superior agreement
with human evaluations and stable, near-human
performance across diverse scenarios. The stability
of DeepSeek-R1’s performance is particularly note-
worthy, maintaining consistent scoring accuracy
across different task types and difficulty levels, in-
cluding visual, linguistic, and robustness test cases.
Based on these findings, in our evaluation system,
we adopt DeepSeek-R1 as our scoring model.

5 Conclusions

This paper presents a novel LMM evaluation frame-
work that systematically examines three critical
dimensions: visual perception, linguistic compre-
hension, and robustness testing. This evaluation
framework introduces two key innovations: 1) a
self-refinement mechanism that effectively miti-
gates experimental instability through automated
error correction, and 2) a reasoning-based scoring
network capable of generating reliable performance
scores without human intervention.

Our comprehensive benchmark evaluation of
15 state-of-the-art LMM models reveals distinct
capability profiles: Doubao-1.5 excels in both
model and visual capabilities, Qwen2.5-VL-32B-
Instruct outperforms in model composite capa-
bility, ChatGPT-40 leads in language proficiency,
Qwen2.5-VL-7B-Instruct shows superior robust-
ness and demonstrates outstanding dynamic stabil-
ity. Furthermore, we demonstrate the effectiveness
of our scoring network as an alternative to humans
for precise model assessment, offering a scalable
solution for large-scale model evaluation.



Limitations

Data Accuracy: The benchmark tasks of SRES
are manually engineered with structured annotation
frameworks, where each task instance undergoes a
three-stage validation including requirement veri-
fication, label consistency checking, and difficulty
calibration. A self-reflection system is employed
to screen and remove anomalous tasks, ensuring
that the final uploaded task sets have undergone
rigorous selection. However, the validation of the
task difficulty setting was only verified in the 15
LMMs we evaluated. We will continue to conduct
broader validation.

Data Richness: SRES’s task sets encompass
a wide range of task types and formats. Answer
formats include multiple-choice questions, true or
false questions, and open-ended questions. Image-
based tasks feature single images, dual images, and
multi-image sets. Question categories span the hu-
manities and social sciences, mathematics, modern
common knowledge, medical imaging, biological
sciences, image sequences, flowcharts, and emoti-
cons. Despite this diversity, the current task sets
remain insufficient in both quantity and variety. We
plan to expand the number and types of tasks in
future iterations.

Model Selection: Currently, all the auxiliary
models in SRES are based on DeepSeek-R1. After
our experimental adjustments, the accuracy of the
models has become relatively reliable. As technol-
ogy progresses and more powerful LLMs emerge,
we will adjust the configuration of the auxiliary
models and introduce other methods as assistance.

Prompt Engineering: Additional prompts are
utilized in task pruning, self-reflection regenera-
tion, and scoring to assist model operations. How-
ever, our experiments revealed that different task
types exhibit varying responses to these prompts,
with some cases showing performance degrada-
tion. Therefore, we will consider customizing the
prompts for specific task types to optimize the per-
formance of the system.
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