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Abstract

Large Language Models (LLMs) are typically trained on data mixtures: most data
come from web scrapes, while a small portion is curated from high-quality sources
with dense domain-specific knowledge. In this paper, we show that when train-
ing LL.Ms on such data mixtures, knowledge acquisition from knowledge-dense
datasets—unlike training exclusively on knowledge-dense data [Allen-Zhu and
Li, 2024a]l—does not always follow a smooth scaling law but can exhibit phase
transitions with respect to the mixing ratio and model size. Through controlled
experiments on a synthetic biography dataset mixed with web-scraped data, we
demonstrate that: (1) as we increase the model size to a critical value, the model sud-
denly transitions from memorizing very few to most of the biographies; (2) below
a critical mixing ratio, the model memorizes almost nothing even with extensive
training, but beyond this threshold, it rapidly memorizes more biographies. We
attribute these phase transitions to a capacity allocation phenomenon: a model with
bounded capacity must act like a knapsack problem solver to minimize the overall
test loss, and the optimal allocation across datasets can change discontinuously as
the model size or mixing ratio varies. We formalize this intuition in an information-
theoretic framework and reveal that these phase transitions are predictable, with
the critical mixing ratio following a power-law relationship with the model size.
Our findings highlight a concrete case where a good mixing recipe for large models
may not be optimal for small models, and vice versa.

1 Introduction

The pre-training data of large language models (LLMs) can be categorized into two major types. The
first type consists of large-scale corpora scraped from the web [Raffel et al., 2020, Penedo et al., 2024,
Li et al., 2024], often spanning billions to trillions of tokens across diverse topics and styles. Due to
the scale, it is inherently hard to ensure the information density of the dataset and its relevance to
downstream tasks. Hence, a second type of data, smaller-scale datasets curated from high-quality
sources, is incorporated. This type of data usually contains very dense knowledge on tasks or domains
with significant practical value. For example, Wikipedia and Stack Exchange cover a wide range of
world knowledge. OpenWebMath [Paster et al., 2024] and StarCoder [Li et al., 2023, Kocetkov et al.,
2022] provide valuable data for improving model performance on mathematics and coding tasks.

The second type of data, which we refer to as knowledge-dense data, typically accounts for only
a small fraction of the entire corpus. In the pre-training data of a recently released model family,
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Figure 1: Phase transition in model size.

For each mixing ratio, as model size in- Figure 2: Phase transition in mixing ratio. For each model
creases, accuracy initially remains zero. size, as mixing ratio 7 increases, accuracy initially remains
Once model size surpasses some thresh- zero. Only when r exceeds some threshold does accuracy
old, accuracy rapidly grows to over 60%. quickly improve.

OLMo 2 [OLMo et al., 2025], over 95% of the tokens are from web data, and only less than 5%
are from knowledge-dense data. The proportion of each individual knowledge-dense dataset is even
smaller, e.g., only less than 0.1% of the tokens are from Wikipedia. This naturally raises a question:
How much knowledge can LLMs really acquire from this small amount of knowledge-dense data?

If LLMs were exclusively trained on knowledge-dense data without any data mixing, the amount
of knowledge acquired after sufficient training should scale linearly with model size. Although
quantifying knowledge in natural data is non-trivial, Allen-Zhu and Li [2024a] sidestep this issue
and provide strong empirical evidence for this linear scaling law through extensive pre-training
experiments on synthetically generated biographies. In their setting, the amount of knowledge stored
by a model is quantified by evaluating its memorization of the biographies using information-theoretic
metrics. Similar linear scaling laws are also observed in memorizing Wikidata fact triples by Lu
et al. [2024], and analyzed theoretically by Nichani et al. [2025]. Based on these results, one
might naively expect a similar linear relationship between model size and acquired knowledge when
knowledge-dense data is mixed with web data.

However, in this paper, we show that the linear scaling no longer holds under data mixing. We
consider the setup where a knowledge-dense dataset focused on a single domain constitutes a small
fraction r of the pre-training corpus—referred to as the mixing ratio—and the rest is large-scale web
text (see Appendix E.1 for our implementation of data mixing). We demonstrate via a quantitative
study that knowledge acquisition from the knowledge-dense data exhibits a more intricate behavior
with notable phase transitions with respect to the mixing ratio and model size.

More specifically, we study factual knowledge acquisition. We follow the approach of Allen-Zhu
and Li [2024a] to curate a synthetic dataset of biographies, where each individual’s information is
embedded into natural text descriptions using diverse templates. Due to the uniform data format
and content of this dataset, we can quantify how much knowledge the model has stored simply by
counting the number of memorized biographies. We then mix this synthetic biography dataset with
large-scale web corpus FineWeb-Edu [Penedo et al., 2024] or the Pile [Gao et al., 2020] to create
the pre-training mixture. We pre-train or continually pre-train Pythia models [Biderman et al., 2023]
ranging from 14M to 6.9B parameters on these mixtures.

While setting r closer to 1 will make the model learn more from the knowledge-dense data, in practice,
r is typically set to a small value either because the knowledge-dense data has limited amount or
increasing r may hurt the model’s capabilities acquired from other domains. Therefore, the essence
of our study is to understand whether models can still memorize a decent number of biographies for
relatively small 7. Our experiments reveal two interesting findings (Section 3):

Finding 1: Phase Transition in Model Size (Figure 1). Fixing the mixing ratio r and varying the
model size M, we observe that when M is smaller than a critical model size M;res, the number of
memorized biographies can be nearly zero. Only when M > M}, es, the model suddenly memorizes
most biographies. Moreover, the threshold My, is higher for smaller 7.

Finding 2: Phase Transition in Mixing Ratio (Figures 2 and 9). When varying the mixing ratio
r while keeping the model size M fixed, we find that below a critical mixing ratio r¢pes, the model
memorizes almost nothing even after significantly longer training, during which each biography
appears hundreds of times or more (Figures 3(a) and 4). But when r > rines, the number of
memorized biographies grows rapidly with r. We further find that as we gradually decrease r, the
number of steps needed to memorize a fixed number of biographies initially grows linearly with



1/r (Figure 3(b)), but soon becomes exponential and even superexponential (Figure 3(c)), making it
impossible or practically infeasible for the model to memorize a non-trivial number of biographies.

In Figure 10, we further show that the observed phase transitions are not limited to discrete metrics
like accuracy, but also persist in validation loss, a continuous metric.

Theoretical Analysis. In Section 4, we attribute the observed phase transitions to a capacity
allocation phenomenon: a model with bounded capacity must act like a knapsack problem solver to
minimize the overall test loss, and the optimal allocation across datasets can change discontinuously
as the model size or mixing ratio varies. To formalize this intuition, we model a sufficiently trained
LLM as the best model that minimizes the test loss under a fixed capacity constraint /. We develop
an information-theoretic framework and show that, when trained on a mixture of knowledge-dense
and web-scraped data, the model should allocate its capacity across the two datasets based on their
respective “marginal values”—that is, the reduction in test loss achieved by assigning one additional
unit of capacity to that dataset. We rigorously prove that only when the mixing ratio r or the model
size M is above a certain threshold does the knowledge-dense dataset become worth learning, thus
leading to the observed phase transitions. Assuming that the optimal test loss on web-scraped data
follows a power law in model size, we further show that these phase transitions are in fact predictable,
with the critical mixing ratio following a power-law relationship with the model size. Empirically, we
validate this power-law relationship on both synthetic biographies and a set of real-world knowledge
extracted from Wikipedia (Section 5).

Strategies to Enhance Knowledge Acquisition Under Low Mixing Ratios (Section 6). Inspired
by our theory, we propose two strategies to enhance knowledge acquisition at low mixing ratios: (1)
randomly subsampling the knowledge-dense dataset; (2) rephrasing knowledge into more compact
forms and augmenting the original dataset with the rephrased versions. The key idea is to increase
the “marginal value” of the knowledge-dense dataset by increasing the exposure frequency of each
single fact. We validate on both synthetic and real-world Wikipedia biographies that these strategies
help models memorize significantly more biographies while preserving models’ general capability.

Takeaways. The key takeaways of our paper are as follows:

1. The mixing ratio should be set with care for different model sizes: mixing in knowledge-dense
datasets with small mixing ratios can offer no benefit at all, especially when training small LMs.

2. Naively measuring the performance of small models on a small data domain may provide little to
no predictive signal on how well larger models perform, revealing a potential limitation of using
small proxy models for data curation, as also evidenced by Kang et al. [2024], Jiang et al. [2024],
Ye et al. [2024], Magnusson et al. [2025], Mizrahi et al. [2025].

3. Slightly improving the “marginal value” of knowledge-dense data can offer a large gain in
performance, as evidenced by our proposed strategies.

2 Experimental Setup

The SynBio Dataset. We follow Allen-Zhu and Li [2024b] to create a synthetic biography dataset,
with each individual characterized by five attributes: birth date, birth city, university, major, and
employer. For each individual, the value of each attribute is randomly and independently sampled
from a predefined domain. These (name, attribute, value) triplets are then converted into natural text
using sentence templates. For instance, (Gracie Tessa Howell, birth city, St. Louis, MO) is converted
into “Gracie Tessa Howell’s birthplace is St. Louis, MO.” Following [Allen-Zhu and Li, 2024b],
every time the model encounters a biography, the five sentences are randomly shuffled, and a new
sentence template is selected for each attribute from a set of five possible templates. We denote the
dataset containing /N biographies as SynBio-/N. See Appendix E.2.1 for full details.

Evaluation. Denote a knowledge triplet (name, attribute, value) as (n, a, v) and let |v| represent
the number of tokens in v. For evaluation, the model is prompted with the sentence prefix containing
n and a and is tasked to generate |v| tokens via greedy decoding. We then check whether the output
exactly matches v. For example, given the triplet (Gracie Tessa Howell, birth city, St. Louis, MO),
the prompt “Gracie Tessa Howell’s birthplace is” is provided. We say the model has memorized the
fact if it generates ““St. Louis, MO.” We report the accuracy averaged over all individuals, attributes,
and templates in the main text and defer the detailed results to Appendix D.6.
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Training Setup. Our experiments use the Pythia architecture [Biderman et al., 2023], with model
sizes ranging from 14M to 6.9B. The default setup involves pre-training from scratch on a mixture
of FineWeb-Edu and SynBio. Since FineWeb-Edu is large (>1T tokens) and SynBio is small (<1B
tokens), our typical training runs involve the model seeing SynBio for multiple epochs but FineWeb-
Edu for less than one epoch. For instance, in a 32B-token run with the mixing ratio for SynBio-320k
set as 0.1, the model passes SynBio ~ 100 times. We also study the continual pre-training setup
in Section 6 and Appendix D.1. Full experimental details are provided in Appendix E.

3 Phase Transitions of Knowledge Acquisition within Data Mixtures

3.1 Phase Transition in Model Size

We first investigate how knowledge acquisition is affected by model size given the data mixture.
For each r € {0.1,0.2,0.3,0.4}, we train models with sizes from 14M to 410M on the mixture of
FineWeb-Edu and SynBio-320k for a sufficiently long horizon of 32B tokens, which is approximately
four times the compute-optimal training tokens for 410M models according to Hoffmann et al. [2022].
As shown in Figure 1, as the model size increases, accuracy on SynBio initially remains near zero.
Once the model size surpasses some threshold, accuracy rapidly grows to above 60%. The transition
is consistently sharp across different mixing ratios while larger r leads to a smaller critical point.

3.2 Phase Transition in Mixing Ratio
We now study how knowledge acquisition under data mixing scenario is affected by mixing ratios.

Performance on knowledge-dense data undergoes a phase transition as mixing ratio increases.
We begin by training models of the same size with different mixing ratios r. Specifically, we train
70M models on the mixture of FineWeb-Edu and SynBio-320K, varying = from 0.1 to 0.45 (stepsize
0.05), and 410M models on the mixture of FineWeb-Edu and SynBio-1.28M, varying 7 from 0.1
to 0.4 (stepsize 0.1). All models are trained for a total of 32B tokens. As shown in Figure 2(a),
for 70M models, as r increases from 0.1 to 0.25, its accuracy on SynBio remains near zero. Only
when 7 > 0.3 does the accuracy begin to steadily improve. In Figure 2(b), the accuracy for 410M
models exhibit similar trends where it remains near zero for < 0.3 and suddenly attains 80% when
r grows to 0.4. In Figure 9, we replicate the experiments on Pythia 2.8B and 6.9B models to show
that similar phase transition in mixing ratio persists for larger models. In Table 1, we report the mean
and standard deviation of accuracy for experiments in Figure 2(a).

Training longer barely helps for low mixing ratios. Given the observed phase transition, one may
raise the following counter-argument: if models are trained for a sufficiently long horizon—such that
even a small mixing ratio » would eventually result in each biography being encountered hundreds
or even thousands of times—then the phase transition might no longer exist. To test this counter-
argument, we extend the training horizon for » = 0.2 to 512B tokens for the 70M and 410M models
by 16 and 4 times respectively. Under this extended training, each biography appears ~ 3000 times
for the 70M model and ~ 200 times for the 410M model. As shown in Figures 3(a) and 4, the
accuracy on SynBio remains near zero even after such extensions.

Required training steps increase exponentially or even superexponentially with 1/r. To further
refute this counter-argument, we quantify how the required training steps to reach a target accuracy,
denoted as T, scales with 1/r. Specifically, we train 70M models with 7 ranging from 0.2 to 0.8. For
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each mixing r, we evaluate 20 training horizons, approximately evenly spaced on a logarithmic scale
with a factor of 1.2 ranging from O to 256B tokens. Training continues until the model reaches 60%
accuracy or exhausts 256B tokens. As shown in Figures 3(a) and 3(b), when r decreases from 0.8, T’
initially increase linearly with 1/r for » > 0.4 and quickly deviates from the linear trend for r < 0.4.

We further fit a scaling law the required training steps to reach 40% accuracy against 1/, modeling
T as a power-law or exponential function of 1/r. Specifically, we fit T against 1/r for r > 0.3
and examine whether the extrapolation can predict T" for smaller . As shown in In Figure 3(c), the
actual 7" is more than 2.9 times the power-law prediction for » = 0.25, and more than 1.9 times for
r = 0.2. Moreover, the actual T" for r = 0.25 is even more than twice the exponential prediction.
These significant deviations suggest exponential or even superexponential growth of 7" with respect
to 1/7. See Appendix E.5 for the detailed fitting process.

We also conduct ablation studies on hyperparameters in Appendix D.2.

3.3 Phase Transitions on Reasoning Tasks

In this subsection, we show that the phase transition phenomenon is not limited to factual knowledge,
but also extends to datasets related to reasoning. Such datasets are often multi-task in practice.
For example, OpenWebMath [Paster et al., 2024] covers diverse math topics. We show that phase
transitions can occur for each single subtask within this dataset. Inspired by Ruis et al. [2024], we
consider the slope calculation task between two points (x1,y1) and (z2, y2). To explicitly control the
frequency and format of the slope calculation examples, we replace all the documents containing the
word “slope” in OpenWebMath with our clean and high-quality slope calculation demonstrations.
We then mix the modified OpenWebMath with FineWeb-Edu and train Pythia models on this mixture
from scratch. Similar to the setup of SynBio, every time the model sees a slope calculation example,
we uniformly sample x1,y;, 2, y2 from {0,1,--- 99} (ensuring x; # x3), and apply randomly
chosen question-answer templates. For evaluation, we randomly generate 1k questions for slope
calculation and check if the model produces the correct final answer. Results in Figure 5 show similar
phase transitions as factual knowledge acquisition (see details in Appendix E.3). Appendix D.3
presents further discussions and experiments on another reasoning task with larger input space.

4 Theoretical Analysis

In this section, we take an information-theoretic view to explain the observed phase transitions. The
key challenge in developing a theory is that training LLMs can involve a lot of tricks, making it hard
to identify the most important factors in inducing the phase transitions. In our paper, we consider
an ideal case where the model is sufficiently trained, allowing us to focus on the key factor—model
capacity—and abstract away all other complexities.

4.1 High-Level Intuition

We model a sufficiently trained language model with capacity M as an optimal bounded-capacity
learner, which minimizes test loss as much as possible under the capacity constraint M. The
high-level intuition can be framed as a fractional knapsack problem (see Figure 6 for an illustration).

When training solely on knowledge-dense data, where each fact appears with equal probability, the
optimal learner seeks to store as much knowledge as possible within its capacity. As a result, the total
amount of memorized knowledge scales proportionally with the model’s capacity M (Section 4.3).



Case 1: Train exclusively on random facts Case 2: Train on facts + web data

Model capacity M

I should allocate my capacity based on A =P
the “marginal value” of each dataset! r X random facts (D;)
“Marginal value”: test loss reduction per @
extra unit “capacity” assigned to a dataset
Model capacity 4/ Knowledge-dense data (1 —7) x web data (D,)
(et ith nniform prob. ) o omweb doa
Marginal value of D, ~ Marginal value of Dy 20
NV .
‘ The model stores a maximal number of facts gnly st (1 =) |£2(“[A) S )eees e Lo ElanE It slope: L4,(M)
. L . ata become worth learning. 2., pe:Loy(f
without exceeding its “capacity”. K

Key Example: L= A- M~ + C (Power Law Web Data) 14
- 1/(a+1, 12
‘ Knowledge stored « capacity ‘ M, ~ (L flect) IS ~ L G20 a0 e 80 100
- - ARG p e p- Mo+t Model size (8)
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However, the situation changes when the knowledge-dense data is mixed with web-scraped data.
In this case, the optimal learner should allocate its capacity across the two datasets based on their
respective “marginal values”—that is, the reduction in test loss resulting from assigning one additional
unit of capacity to a dataset. Only when r or M exceeds a certain threshold does the knowledge-dense
data become worth learning.

4.2 Problem Formulation

Data distribution. The essence of language modeling is to model the distribution of the next token
y for a given context x containing all previous tokens. We take a Bayesian view, assuming a latent
variable f € © governing the distribution of (z, y), denoted as (x,y) ~ Dy. Conceptually, 6 encodes
knowledge about the world. For example, a person may be born in 1996 in one universe but 1999 in
another. Or, in a different universe, popular Python libraries may feature a different set of functions.
We assume the universe first draws 6 from a prior P before we observe the data distribution Dy.

Learning Algorithm. A learning algorithm A is a procedure that takes samples from a data
distribution D of (x, y) and outputs a predictor h = A(D), which maps x to a distribution over y. The
performance of / is measured by the expected cross-entropy loss L(h; D) := E(, ,)~p[—logp(y |
h, x)], where p(y | h, x) denotes the predicted distribution of y given z by the predictor h, and log is
in base 2 for convenience. We measure the performance of a learning algorithm A by its expected
loss over all data distributions Dy with respect to the prior P:

Lp(A) := Egup[L(A(Dy); Do). (1)
In practice, a predictor h can be a transformer, and A can be the pre-training algorithm.

Model Capacity and Mutual Information. We measure a model’s “effective” capacity—the
amount of information a model, produced by some learning algorithm .A, stores about the data
distribution Dy—>by the mutual information (MI) between the model and the data distribution Dy, i.e.,
I(A(Dy); Dy). For practical learning algorithms with bounded capacity, if A always outputs a model
h with at most N parameters each represented by a b-bit floating number, then I(A(Dy); Dy) < bN
by information theory. Empirically, Allen-Zhu and Li [2024a] found that I (A(Dp); Dy) ~ 2N holds
across various training setups by controlled experiments.

We model a sufficiently trained LM with capacity M as an optimal bounded-capacity learner, which
minimizes the expected loss as much as possible under the capacity constraint M:

Definition 4.1 (Optimal Bounded-Capacity Learner). For a given prior P and M > 0, the best
achievable loss under the capacity constraint M is defined as

Fp(M) := inf {Lp(A) : I(A(Dy); Dy) < M}, )

where the infimum is taken over all learning algorithms. An optimal M -bounded-capacity learner is
a learning algorithm A such that I(A(Dp); Dy) < M and Lp(A) = Fp(M).

4.3 Warmup: Training Exclusively on Mixture of Facts

We start with a simple case where the data distribution Dy contains K random facts. Each fact is a
pair (X;,y;), where X; is a set of input contexts (e.g., paraphrases) and y; is the target token. For



instance, the fact “Gracie Tessa Howell was born in 1946” can have contexts like “Gracie Tessa
Howell’s birth year is” or “Gracie Tessa Howell came to this world in the year,” all mapping to the
target y = “1946”. We further assume that X, ..., X are disjoint.

Let Dy(y | x) be the next-token distribution given context x. The universe samples y1,ya, - - -, Yx
independently from fixed distributions )1, ..., Yk and sets @ = (y1, ..., yx ). The universe further
sets Dy(y | x;) as a point mass at y;, Vz; € X;. Other inputs = may occur in Dy, but their target
tokens are independent of 6. Define the exposure frequency of the i-th fact as the total probability
that any 2 € X; appears in Dp: >, x, Po(z = a’). If all K facts have equal exposure frequency p
(despite different entropies), a bounded-capacity learner reduces expected loss linearly with capacity
M , thus no phase transitions:

Theorem 4.2. For all M > 0, if all the facts have the same exposure frequency p, then
Fp(M)=C +p-max{Hy — M,0}, 3)
where Hyot := Zfil H(Y;) and C := Fp().

4.4 Data Mixing Induces Phase Transitions

What if we mix the random facts with data from another domain, say web text? Consider a data
distribution Dy composed of two domains: (1) a mixture of K random facts (as in Section 4.3)
and (2) another domain with a much more complex structure. Let the latent variable § = (61, 6),
where 6, governs the distribution of K random facts, Déi)
)

, and A, governs the data distribution of
the second domain, Déz
P2, respectively. The overall data distribution Dy is Dy = TD(S? +(1- T)D((,z

r € (0, 1). Let p denote the exposure frequency of each fact in Déi), and Hyop := Zfi 1 H(Y;) be
the total entropy of the target tokens in the first domain (as in Section 4.3). For simplicity, we assume
the two domains contain non-overlapping information (see Definition F.5).

. Assume the universe draws #; and 6 independently from priors P; and

), with mixing ratio

To measure models’ performance on the first domain after training with algorithm .4 on the data
mixture, we define £1(A) := Egp, [L(A(Dp); Déi))] as the model’s expected loss on the first
domain. If £, (A) = Fp, (0), then the model learns nothing (random guessing). If £1(A) = Fp, (o),
the model perfectly learns the facts.

Theorem 4.3 shows that the learner sharply transitions between the two extremes as model size
increases. This transition is characterized by two functions: M (t) := sup{M > 0: —Fp (M) >
t} and M (t) := inf{M > 0: —F} (M) < t}. By rate-distortion theorem, Fp, (M) is convex and
hence —F, (M) is non-increasing. Thus, M; (t) and Mg (t) mark the last and first model sizes
where —F'P, (M) exceeds or falls below ¢. If F, (M) is strictly decreasing, then My (t) = M (t).
Theorem 4.3 (Phase Transition in Model Size). For any optimal M -bounded-capacity learner A,

1. if M < My (7= - p), then L1(A) = Fp, (0);

1—r

2. if M > M{ (% - p) + Hor, then L1(A) = Fp, (c0).
Key Example: When Web Data Loss Follows a Power Law in Model Size. Consider the case
where F'p, (M) is a power-law function of M, i.e., Fp,(M) = C+A-M~“. Here, o« € (0,1) and A is
a large constant. This is a reasonable assumption since LLM pre-training usually exhibits such power-
law scaling behavior in model size [Kaplan et al., 2020, Hoffmann et al., 2022]. In this case, taking the
derivative of Fip, (M) gives —F}, (M) = A-a - M~°~'. Then, My (t) = M (t) = (42)1/ (),
Plugging this into Theorem 4.3, we have the critical value for model size:
1 )1/ (a+1)

Mthrcs ~ <
rp

“4)

This implies that a small r or p may cause the model to learn nothing from the knowledge-dense
dataset, even if its capacity is sufficient to learn the entire dataset.

Arranging the terms in (4), we can also obtain the critical value in the mixing ratio r:
1

p- MOé+1 : (5)

Tthres ™~
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Figure 7: Validating the power-law relationship of threshold Frequency and model size. (a) & (b): Experiments
on the mixture of SynBio-10k-power-law and FineWeb-Edu confirm that (1) the threshold frequency follows a
power-law relationship with model size, and (2) the power-law exponent is approximately equal to the model
scaling exponent plus one. (c): For the three open-source model families we examined, the threshold popularity
for knowledge tested in PopQA also follows a power-law relationship with model size.

Threshold Frequency for a Single Fact. For each fact in the first domain, its overall probability of
being sampled is p in the data mixture. Again, arranging the terms in (5), we obtain that for a single
fact to be learned by the model, its frequency of appearing in the pre-training corpus should be larger
than a threshold frequency finres, Which scales with the model size following a power law:

1
fthres ~ W . (6)

S Power-Law Relationship of Threshold Frequency and Model Size

In this section, we validate the predicted power-law relationship between model size and threshold
frequency on both synthetic biographies and a set of knowledge extracted from Wikipedia.

5.1 Experiments on Synthetic Biographies

We construct SynBio-10k-power-law, where 10k biographies are divided into 100 subsets of 100
individuals, with subset sampling probability following a power-law distribution (exponent 1.5).
Within each subset, all biographies have a uniform sampling probability. We then mix this dataset
with FineWeb-Edu using = 0.01 and train models under this setup.

To estimate the threshold frequency finres, We sort the subsets by sampling probability in descending
order and identify the first group where model accuracy falls below a target value cgarget. The
frequency of biographies in this subset is used to approximate finres. We Us€ Qarget = 80%.

As shown in Figure 7(a), log finres and log M exhibit a linear relationship, yielding a slope of 1.152.
This value is larger than 1, as expected from our theory. Further, we wonder if this slope is indeed
close to a + 1. Following the approach of Hoffmann et al. [2022], we fit a model scaling function for
FineWeb-Edu validation loss in Figure 7(b), obtaining o« = 0.283. This leads to a predicted exponent
of 1.283, which is close to the observed value of 1.152.

5.2 Experiments on Knowledge Extracted from Wikipedia

We further evaluate models on PopQA [Mallen et al., 2023], which contains 14k QA pairs derived
from Wikidata triplets, along with monthly page view for corresponding Wikipedia articles. Since
knowledge tested in PopQA can be structured as triplets, we consider them as homogeneous and
expect them to exhibit similar threshold frequencies for a given model size.

Estimating the Threshold Frequency. Counting the frequency of specific knowledge in the pre-
training data is challenging due to the scale [Kandpal et al., 2023]. Following Mallen et al. [2023],
we use Wikipedia page views as a proxy for popularity, which is assumed roughly proportional to the
frequency of the knowledge in web data. To estimate the threshold popularity Pijyes, we identify the
smallest popularity P such that the model’s accuracy on knowledge with popularity above P meets
the target accuracy Qugarget Which is set to 60% in our experiments. See Appendix E.6 for details.

Threshold frequency and model size follow a power law. We examine base models from Llama-
2 [Touvron et al., 2023], Qwen-2.5 [Qwen et al., 2024], and Gemma-2 [Team et al., 2024], which
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Figure 8: Our proposed strategies significantly boost knowledge acquisition under low mixing ratios
while preserving models’ general capability.

are likely trained on similar data mixtures within each family. Figure 7(c) reveals that log Pipyes
generally decreases linearly as log model size increases, though the slope varies across families due
to differences in architecture and training data. We examine more model families in Appendix D.4.

6 Strategies to Enhance Knowledge Acquisition Under Low Mixing Ratios

Inspired by our theory, we propose two simple yet effective strategies to enhance knowledge acqui-
sition under low mixing ratios. This setting is common in practice, as a large » may harm general
capabilities expected to be acquired from other data sources. The key idea is to raise the frequency of
each fact, thereby increasing the “marginal value” of the knowledge-dense data.

* Strategy 1: Random Subsampling: Randomly subsample the knowledge dataset.

 Strategy 2: Compact Knowledge Mixing (CKM): Rephrase the knowledge into a compact form
and add the rephrased version to the original dataset while keeping the overall mixing ratio fixed.
See implementation details in Appendix E.7.

We validate these strategies on SynBio and WikiBio, a curated dataset of Wikipedia biographies. For
example, on WikiBio, random subsampling and CKM improve the number of learned facts by 4x
and 20x, respectively. The effectiveness of random subsampling is especially surprising, as it yields
higher accuracy despite discarding a significant proportion of the knowledge-dense data.

6.1 Real-World Knowledge Data: WikiBio

To extend our study to a more real-world scenario, we curate WikiBio, a dataset containing Wikipedia
biographies along with ten paraphrased versions for 275k individuals, totaling 453M tokens. This
task is more challenging than SynBio as WikiBio features diverse texts without uniform formats,
requiring the model to generalize to queries that rarely have exact matches in the training data.
See Appendix E.2.2 for dataset construction details and Appendix E.7 for evaluation details.

6.2 Strategy 1: Random Subsampling

While random subsampling seems counterintuitive at first glance, it becomes reasonable if we
consider how the threshold mixing ratio .5 relates to the exposure frequency of each fact within
the knowledge-dense dataset, denoted as p. For a dataset containing only S facts with uniform
probability, p < 1/S. We can derive from (5) that the threshold mixing ratio ripres ~ %
Subsampling reduces S and thus lowers the threshold mixing ratio, allowing the model to achieve
much higher accuracy on the subsampled dataset. We use p to represent the subsampling ratio below.

Experimental Setup. We study both pre-training from scratch and continual pre-training setups.
To evaluate the model’s general capabilities, we use its validation loss on the web data (the Pile or
FineWeb-Edu) and its zero-shot performance on five downstream tasks (see details in Appendix D.7).
We compare the validation loss and average downstream performance to the model trained with » = 0
in the pre-training-from-scratch setup or to the original Pythia model in the continual pre-training
setup. Downstream performance drop of more than 2% is considered unacceptable.

Subsampling enables faster knowledge acquisition while maintaining general capability. We
train 410M models from scratch FineWeb-Edu mixed with SynBio-1.28M using » € {0,0.1,0.2,0.3}



for a total of 32B tokens. As shown in Figures 8(a) and 14(a), increasing r degrades FineWeb-Edu
validation loss and downstream accuracy, with performance becoming unacceptable at » = 0.3
(-2.09% accuracy, +0.05 loss), while SynBio accuracy remains near zero. In contrast, subsampling
SynBio-1.28M to 25%, 50%, and 56.25% boosts SynBio accuracy to 23.53%, 37.46%, and 39.81%,
respectively, while maintaining downstream performance within the acceptable range. Note that
further increasing p to 62.5% makes the frequency of each biography too low, resulting in SynBio
accuracy dropping back to near zero. See more details in Appendix E.7, Tables 2(b) and 3(a).

Consistent Results for Continual Pre-training. We continually pre-train the 410M or 1B Pythia
models from their 100k-step checkpoints on the mixture of the Pile and WikiBio or SynBio-2.56M.
The 410M models are trained for 32B tokens and 1B models for 64B. When r is large, the Pile
validation loss may increase with training due to catastrophic forgetting [Ibrahim et al., 2024]. To
preserve models’ general capabilities, we apply early stopping when Pile validation loss increases
by 0.05 (410M model) or 0.03 (1B model), each corresponding to ~ 2% drop in downstream
performance. As shown in Figures 8(b) and 14(b), without subsampling, » = 0.1 or 0.15 results in
slow learning of WikiBio, while » = 0.2 triggers early stopping after 20B tokens, resulting in poor
WikiBio performance. By contrast, subsampling WikiBio to 25% or 50% significantly accelerates
knowledge acquisition and keeps Pile validation loss acceptable. For example, for » = 0.1, setting
p to 50% improves the number of learned facts by 4 times. Similar trends hold for 1B models:
subsampling SynBio to 50% at r = 0.2 outperforms both » = 0.2 and early-stopped r» = 0.4 without
subsampling by ~ 30%. See more details in Appendix E.7, Tables 2(c), 3(b) and 4.

6.3 Strategy 2: Compact Knowledge Mixing (CKM)

The second strategy rephrases knowledge into compact forms (e.g., tuples) and adds them to the
original dataset. Given that the frequency of each fact f is inversely proportional to its average
representation token count, this augmentation reduces the average token count, thereby increasing f’s
effective frequency and potentially pushing it above the threshold fi 0s. CKM is in the same spirit
as the data synthesis technique in Su et al. [2024], which rephrases high-quality data into condense
forms such as QA pairs and knowledge lists.

For WikiBio, we compress the key information—name, birth date, and occupation—into the tuple
format “Bio: N {name} B {birth date} O {occupation}”. We add these tuples until their
token count equals a proportion 7 (which we call the CKM ratio) of the original dataset’s token count.

Experimental Setup. We apply CKM to WikiBio with the same continual pre-training setup as in
Section 6.2. We apply early stopping when Pile validation loss increases by 0.05.

CKM significantly improves knowledge acquisition efficiency while preserving general capa-
bility. We fix » = 0.1 and explore CKM ratios 7 € {0.1,0.3, 0.6}, which correspond to roughly
2x, 3x, and 4x increases in fact frequency, respectively. As shown in Figures 8(b) and 14(c), CKM
preserves the general capability and consistently boosts knowledge acquisition. Notably, performance
on WikiBio improves by 4x when the short-form augmentation makes up only 10% tokens of the
original WikiBio dataset. Increasing 7 to 30% further boosts the number of learned facts by 20x. See
downstream performance in Table 5.

7 Discussions and Future Directions

Extensions to reasoning tasks. Although our experiments mainly investigate factual knowledge, we
also identify phase transitions in simple reasoning tasks. This suggests a commonality: memorization
is foundational to reasoning, not just to fact-recall. Without basic knowledge, models cannot reason
effectively, an observation shared by Ruis et al. [2024], Xie et al. [2024]. For instance, solving math
problems requires memorizing theorems, definitions, and techniques. We defer the exploration of
more complex reasoning tasks to future work.

Connection to real-world data. Following Allen-Zhu and Li [2024a], we use synthetic biographies
as a proxy for knowledge-dense data for controlled and quantitative experiments. In contrast, real-
world datasets are more heterogeneous—for example, Wikipedia includes both simple facts (e.g.,
biographies) and more complex content (e.g., scientific theories). These types of knowledge vary in
learning difficulty and may exhibit different threshold frequencies. As a result, phase transitions may
not be as apparent when mixing a heterogeneous dataset with web text. Nevertheless, our findings
still apply at the level of individual knowledge pieces. That is, a specific fact or reasoning procedure
may not be acquired at all if its frequency or the model size falls below a threshold, as evidenced by
the theoretical result in (6) and empirical evidence in Section 5 and Section 3.3.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main contributions of this paper are (1) identifying two phase transitions in
knowledge acquisition within data mixtures and (2) providing theoretical understanding of these
phenomena. The abstract and introduction are closely aligned with these contributions, providing
a detailed overview and context for our findings and theory.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.
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not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix A.
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* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

» The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: [Yes]
Justification: See Appendix F.
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o All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer:
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Justification: We provide detailed instructions for how to reproduce our experiments in Ap-
pendix E. Moreover, our experiments are based on the public gpt-neox-library. We are currently
preparing our codebase for public release and will make it available once the cleaning and
documentation process is complete.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

» The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: See Appendix E
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard deviation of accuracy in Table 1 for the experi-
ments in Figure 2(a). However, it is computationally infeasible for us to replicate all experiments
with different random seeds. As shown in Table 6, our experiments involves training LLMs from
scratch, which is computationally expensive.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: See Table 6.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: See Appendix B.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

¢ The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

 If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not have such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We cite all the public datasets, code, and models used in this paper. We explicitly
mention their licenses in Appendix E.1.

Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

» For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See Appendix E.2.
Guidelines:

¢ The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.x
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LL.M usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We only use LLMs for writing, editing, and formatting purposes.
Guidelines:

¢ The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

The high computational costs to conduct all these experiments impede us from replicate all the
experiments with different random seeds. These costs include the number of GPU hours. For
example, a typical run of training a 410M model for 32B tokens requires 256 A100 GPU hours.
Despite these difficulties, we managed to conduct experiments on models up to 6.9B and conduct
ablation studies on hyperparameters in Appendix D.2.

B Broader Impact

This paper identifies two phase transitions in knowledge acquisition within data mixtures and provides
theoretical understanding of these phenomena. Building on our theory, we propose two strategies
to enhance the efficiency of knowledge acquisition. Our findings offer deeper insights into LLM
behavior and can be applied to improve the factual accuracy of LLMs.

C Related Works

Knowledge Capacity Scaling Law. LLMs are typically trained on a vast amount of data that
are rich in knowledge, and extensive studies have investigated how much knowledge LLMs can
acquire from the training data. Pioneering studies [Petroni et al., 2019, Roberts et al., 2020, Da
et al., 2021] demonstrate that LLLMs can capture a substantial amount of knowledge, suggesting
their potential as knowledge bases. To quantify the relationship between model size and knowledge
storage, Allen-Zhu and Li [2024a] and Lu et al. [2024] discover a linear relationship between models’
knowledge capacity and their parameter count by training LLMs on data only containing fixed-format
knowledge for sufficiently long horizons. Later, Nichani et al. [2025] formally proved this linear
relationship. In contrast, this paper examines the data mixing scenario and demonstrates that this
linear scaling can be disrupted when the knowledge-dense dataset is mixed with vast amounts of
web-scraped data. Another important factor is the frequency of occurrence for knowledge.

Impact of Frequency on Knowledge Acquisition. This paper identifies phase transitions in
knowledge acquisition within data mixtures with respect to model size and mixing ratio. Some
relevant observations can be found in previous papers, but we takes a more direct and systematic
approach. Kandpal et al. [2023], Mallen et al. [2023], Sun et al. [2024] find that LLMs can perform
poorly on low-frequency knowledge. Ghosal et al. [2024] show that frequency of knowledge in
the pre-training data determines how well the model encodes the knowledge, which influences its
extractability after QA fine-tuning. Taking a more microscopic view, Chang et al. [2024] insert
a few pieces of new knowledge during training and track their loss. By fitting a forgetting curve,
they conjecture that the model may fail to learn the knowledge if its frequency is lower than some
threshold.

Memorization and Forgetting. Our findings also relate to prior observations on the memorization
and forgetting behaviors of LLMs, but we explicitly characterize phase transitions in the context
of data mixing. Carlini et al. [2023] show that memorization of training data follows a log-linear
relationship with model size, the number of repetitions, and prompt length. Biderman et al. [2024]
take a data point-level perspective and demonstrate that it is difficult to predict whether a given
data point will be memorized using a smaller or partially trained model. By injecting a few new
sequences into the training data, Huang et al. [2024] find that a sequence must be repeated a non-
trivial number of times to be memorized. By examining training dynamics, Tirumala et al. [2022]
observe that memorization can occur before overfitting and that larger models memorize faster while
forgetting more slowly. Zucchet et al. [2025] study the training dynamics governing factual knowledge
acquisition of LLMs and find that the performance can undergo a plateau before the model acquires
precise knowledge, during which the attention-based circuits form. From a theoretical perspective,
Feldman [2020] prove that memorization of training labels is necessary to achieve near-optimal
generalization error for long-tailed data distributions.

Scaling laws for Data Mixing. LLM performance is significantly influenced by the mixing propor-
tions of the training data from different domains. Our paper is related to a line of studies that optimize
the mixing proportions by modeling LLM performance as a function of the mixing proportions [Liu
et al., 2024, Kang et al., 2024, Ye et al., 2024, Ge et al., 2024]. However, their datasets can be highly
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heterogeneous even within a single domain (e.g., OpenWebText, Pile-CC) while we focus on mixing
a uniform, knowledge-dense dataset into web-scraped data.

D Additional Experimental Results

D.1 Additional Results for Phase Transitions
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Figure 9: Phase transition in mixing ratio persists for larger models. We train Pythia-2.8B and
Pythia-6.9B with 2B and 1B total training tokens, respectively. To ensure sufficient exposure to
SynBio within these training horizons, we use smaller SynBio datasets—SynBio-20k for the 2.8B
model and SynBio-10k for the 6.9B model-—mixed with FineWeb-Edu.
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Figure 10: In addition to discrete metrics like accuracy, we can also observe phase transitions in
validation loss, a continuous metric.

Table 1: We replicate the experiments in Figure 2(a) with three different random seeds and report the
mean and standard deviation below. While accuracy varies slightly with random seeds, the phase
transition behavior remains consistent and clearly observable across runs.

r Mean Acc. (%) Std. Dev. (%)

0.1 04 0.0
0.15 0.4 0.0
0.2 04 0.0
0.25 0.8 0.0
0.3 7.3 2.8
0.35 27.5 2.8
0.4 40.4 3.1
0.45 58.1 3.1
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Figure 11: Ablation studies on hyperparameters. The models exhibit consistent trends in knowledge
acquisition across different batch sizes, learning rate values and schedules. All experiments are
conducted by training 70M models on the mixture of FineWeb-Edu and SynBio-320k.

D.2 Ablation Studies

We now conduct ablation studies to demonstrate the robustness of our findings with respect to
hyperparameters. We explore r € {0.2,0.4,0.8} and train 70M models for a total of 64B, 32B, and
16B tokens, respectively, ensuring each configuration passes SynBio the same number of times.

Consistent Trends Across Different Batch Sizes. As shown in Figure 11(a), we evaluate three
batch sizes, B € {256,512, 1024}, for each r and observe consistent general trends across all batch
sizes. For r = 0.4 and r = 0.8, smaller batch sizes yield slightly higher accuracies, likely due to
the increased number of update steps. These experiments further distinguish between two types of
frequency at which the model encounters the knowledge dataset: per-token frequency and per-step
frequency. For a fixed mixing ratio, doubling the batch size doubles the occurrences of each biography
per step, while the occurrences per token remain unchanged. The results demonstrate that per-token
frequency, rather than per-step frequency, determines training efficiency in knowledge acquisition.

Consistent trends across learning rate values and schedules. In Figure 11(b), we explore peak
learning rates among {2.5 x 1074, 1073, 4 x 1073} using the WSD scheduler. We observe that the
trends are consistent across these values, although the learning process slows down at the lowest
value 2.5 x 1074, In Figure 11(c), results for both cosine and WSD schedulers show similar trends.

D.3 Additional Discussions and Experiments on Reasoning Tasks

—_ 100-
o 60-
s Z 60 e e e e I A
=2 T~
< 29
> 40- °®
2 82 10
C
c 20 °ox
° g~
b1 <
< 0 ‘ ‘ ; ‘ ‘ 1 i e =]
0.0 0.1 02 03 04 0.5 14 31 50 90 160256410

Mixing ratio r Model size (M, log scale)
(a) Accuracy on Max-over-N for 70M (b) Accuracy on Max-over-N for r =
models. 0.2.

Figure 12: Phase transitions in the Max-over-N task. Here, we set N = 30.

Discussion on the slope calculation task: model is indeed learning the procedure rather than
memorizing the training data. We show that the model cannot rely purely on memorization to
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solve the slope calculation tasks specified in Section 3.3. Specifically, the total number of possible
slope calculation problems in our setup is 100 x 100 x 99 x 100 = 9.9 x 107. In contrast, a typical
training run in Figure 5 with r = 0.4 sees fewer than 3.5 x 10° unique slope calculation examples,
less than 5% of the full space. Despite this limited coverage, the model still achieves 60% accuracy
at test time, where examples are uniformly sampled from the full distribution. This substantial
generalization beyond the training data suggests that the model is indeed learning a generalizable
computation procedure, rather than memorizing specific input-output pairs.

Experiments on Another Reasoning Task with Larger Input Space: Max-over-N. The slope
calculation task suggests that the model learns a generalizable procedure. To test this hypothesis
in a more challenging setting, we introduce another task named “Max-over-N". This task is explic-
itly designed with a vastly larger input space, rendering memorization computationally infeasible.
Specifically, the model is asked to find the maximum number given a list of N = 30 integers, each
randomly sampled from {0, 1,--- ,99}. This creates an enormous input space of 105°. The format
of the training samples is shown in Table 13.

Following the setup in Section 3.3, we add 3M tokens of such examples to the OpenWebMath dataset
(accounting for less than 0.02% of the original OpenWebMath token count) to create a modified
version. We then train Pythia models on the mixture of FineWeb-Edu and the modified OpenWebMath
dataset, with r denoting the mixing ratio of the modified OpenWebMath. For evaluation, we generate
1,000 test samples of “Max-over-N” and assess whether the model outputs the correct final answer.

As shown in Figure 12, we observe the same phase transition phenomena with respect to both model
size and mixing ratio, consistent with our main findings. The key result is that the 70M model achieves
60% test accuracy after training on fewer than 3,500 unique examples (at » = 0.5). This training
set is an infinitesimal fraction of the 10°° possible inputs. This clearly demonstrates generalization
beyond memorization.
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D.4 Additional Results for Validating the Power-Law Relationship of Threshold Frequency

and Model Size

In Figure 13, we relax the constraint of training on the same
data mixture and investigate the overall trend between model
size and Pihres. We add the Llama-3 [Dubey et al., 2024]
family, and evaluate both base and instruction-tuned models for
all families, totaling 30 models. Interestingly, in Figure 13, log
model size and log Py,yes also exhibit a linear relationship, with
most models falling within the 95% confidence interval. We
further use models from the OLMo [Groeneveld et al., 2024]
family as a validation set, where predictions of the fitted power
law closely match the ground truth.

Potential Application: Inferring the Size of Proprietary
Models. The identified power-law relationship offers a poten-
tial method for estimating the size of proprietary models, such
GPTs. As a preliminary attempt, we estimate the threshold
popularity for GPT-3.5-Turbo, GPT-4, GPT-40, and GPT-40-
mini. Applying the fitted power law yields size predictions of
61B, 514B, 226B, and 24B, respectively. The 95% confidence
intervals are 12-314B, 80-3315B, 39-1313B, and 5-118B,
respectively.
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Figure 13: For 410M models trained
on the mixture of FineWeb-Edu and
SynBio-1.28M, accuracy for r = 0.2
remains near zero even when we extend
the training by 4 times.

D.5 Additional Plots for Strategies to Enhance Knowledge Acquisition
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Figure 14: Additional plots for strategies to enhance knowledge acquisition.
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D.6 Detailed Performance on SynBio

In Table 2(a), we detail the accuracy of each attribute for 70M models trained on the mixture of
FineWeb-Edu and SynBio-320k with » € {0.2,0.4,0.8}, trained for 64B, 32B, and 16B tokens
respectively. We notice that the accuracy for birth date is lower than other attributes. This can be
attributed to the complexity of precisely recalling the combined elements of day, month, and year
information, which together form a much larger domain than other attributes. To maintain clarity
and conciseness, we omit the detailed performance in other 70M experiments, as this pattern persists
across them.

Furthermore, we present the detailed performance of 410M models on SynBio-1.28M corresponding
to Figure 8(a) in Table 2(b). We also provide the detailed performance of 1B models on SynBio-2.56M
corresponding to Figure 8(c) in Table 2(c).

Table 2: Detailed performance on SynBio. We report the accuracy (%) for each attribute averaged
over five templates.

(a) 70M model, pre-trained from scratch on the mixture of FineWeb-Edu and SynBio-

320k.
r Birth date  Birth city ~ University Major Employer  Avg.
Random guess 0.00 0.50 0.33 1.00 0.38 0.44
0.2 0.00 0.63 0.43 1.12 0.38 0.51
0.4 16.96 45.67 41.03 50.78 43.93 39.68
0.8 79.76 88.64 88.55 90.10 88.30 87.07

(b) 410M model, pre-trained from scratch on the mixture of FineWeb-Edu and SynBio-1.28M.

N p (%) r Birth date  Birthcity  University Major Employer  Avg.

Random guess 0.00 0.50 0.33 1.00 0.38 0.44

- - 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.28M 100 0.1 0.00 0.42 0.33 1.01 0.21 0.39
1.28M 100 0.2 0.00 0.45 0.34 1.09 0.22 0.42
1.28M 100 0.3 0.00 0.49 0.35 1.14 0.25 0.45
320k 25 0.2 22.34 23.98 23.64 24.03 23.65 23.53
640k 50 0.2 27.97 39.66 38.51 41.50 39.68 37.46
720k 56.25 0.2 28.02 42.94 42.15 44.07 41.88 39.81
800k 62.5 0.2 0.01 1.16 0.85 3.19 0.89 1.22

(c) 1B model, continually pre-trained on the mixture of the Pile and SynBio-2.56M. Note that » = 0.4 is early
stopped due to its Pile validation loss increasing beyond the acceptable range.

Trainin . . . . . .
N p (%) r tokens (é) Birth date  Birth city  University Major Employer  Avg.
Random guess 0.00 0.50 0.33 100 0.38 0.44
Pythia-1B-100k-ckpt 0.00 0.00 0.00 0.00 0.00 0.00
2.56M 100 0.2 64 0.01 0.46 0.33 0.98 0.21 0.39
2.56M 100 04 24 0.05 10.95 3.90 4.74 3.64 4.66
1.28M 50 0.2 64 23.95 34.55 35.05 35.96 35.19 32.94

D.7 Detailed Downstream Performance

We employ the lm-eval-harness [Gao et al., 2024] codebase to evaluate the zero-shot perfor-
mance on five downstream tasks, including LAMBADA [Paperno et al., 2016], ARC-E [Clark et al.,
2018], PIQA [Bisk et al., 2020], SciQ [Welbl et al., 2017], and HellaSwag [Zellers et al., 2019], cov-
ering core capabilities such as text understanding, commonsense reasoning, and question answering.
We compute the validation loss on about SOM tokens on a holdout set from the Pile or FineWeb-Edu.
The detailed downstream performance and validation loss for applying the random subsampling
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strategy to SynBio and WikiBio are presented in Tables 3 and 4, respectively. Additionally, we report
the detailed downstream results for applying CKM to WikiBio in Table 5.

Table 3: Detailed downstream performance and validation loss for applying the random subsampling
strategy to SynBio. We report the accuracy (%) and standard deviation (%) in the format acc. s¢d. dev.)
for each downstream task.

(a) 410M model, train from scratch.

N p (%) r LAMBADA ARC-E Sciq PIQA HellaSwag Avg. Fmve;;Vell())—SI;Zdu
- - 0 38250005 61.83(1.00) 83.60117) 6801100 35.0400.4s) 57.35 2.667

1.28M 100 0.1 34.56(0.66) 62-33(0.00) 83.50(1.17)  68.34(1.00) 35.13(0.4sy  56.77(L 0.58)  2.668(1 0.001)
1.28M 100 0.2 34.430.67) 62.13(0.00) 83.801.17)  68.12(1.00) 35.39(0.4sy  56.77(L 0.58)  2.668(1 0.001)
1.28M 100 0.3  33.9400.66) 60.77(1.00) 80.80(1.25  66.54(1.10) 34.23(0.a7y  55.26(1 2.09)  2.722(1 0.054)

320k 25 0.2 36.70(0.67) 60.35(1.00) (82.701.20) 67.T4(1.09) 34.76(0.4sy  56.45(1 0.90)  2.686( 0.019)
640k 50 0.2 36.58(0.67) 60.61(1.00) 83.30(1.1s) 66.651.10) 34.53(0.a7) 56.33(} 1.02)  2.688(1 0.021)
720k 56.25 0.2 35.61(0.67) 60.94(1.00) 83.00(1.109) 67.14(110) 34.54(0.47) 56.25(1 1.10)  2.687(1 0.020)
800k  62.5 0.2 35.20(0.67) 60.48(1.00) 83.40(150) 66.54(1.10) 34.45(0.47) 56.01() 1.34)  2.688(1 0.021)

(b) 1B model, continually pre-trained. Note that » = 0.4 is early stopped due to its Pile validation loss increasing beyond the acceptable

range.
N % Training 1 \\fBADA ARC-E Sci PIQA HellaSw A Pile
p (%) r tokens (B) i ¢ cllaswag Ve val. loss
Pythia-1B-100k-ckpt 55.66(0.60) 54.50(1.02) 83.00(110) 70.78(1.06)  36.97(0.a8) 60.18 2.168
2.56M 100 0.2 64 53.68(0.60) 51.47(1.0s) 81.00(124) 68.77(10s) 35.91(as) 58.17(L2.01)  2.184(1 0.016)
2.56M 100 0.4 24 52.38(0.70) 51.47(1.0s) 80.70(1 25  68.17(100) 34.95(04s) 57.53(L 2.65)  2.198(1 0.030)
1.28M 50 0.2 64 54.71(0.60) 52.86(1.02) 81.30(123 68.99(10s 35.48(.4s  58.67(L 1.51)  2.189(1 0.022)

Table 4: Detailed downstream performance for applying the random subsampling strategy to WikiBio.
We use p to denote the subsampling ratio. We report the accuracy (%) and standard deviation (%) in
the format acc. (s¢q. dev.) for each downstream task. Note that 7 = 0.2 is early stopped due to its Pile
validation loss increasing beyond the acceptable range.

Trainin, . .
N p (%) r tokens (g) LAMBADA ARC-E Sciq PIQA HellaSwag Avg. Pile val. loss
Pythia-1B-100k-ckpt 50.86(0.70) 52.10(1.03) 83.70(1.17) 67.14(1.10) 34.09(0.47) 57.58 2.255
277k 100 0.1 32 50.77(0.70) 48.95(1.03) 80.80(1.25) 66.43(1.10) 33.16(0.47) 56.02(4 1.56) 2.286(1 0.031)
277k 100 0.15 32 49.12(9.70) 49.66(1.03) 81.80(1.22) 66.38(1.10) 32.84(0.47) 55.96(J 1.62) 2.292(1 0.037)
277k 100 0.2 20 49.370.70) 49.87(1.03) 79.70(1.27) 65.40(1.11) 33.08(0.47) 55.48(4 2.10) 2.306(1 0.051)
69k 25 0.1 32 48.63(0.70) 50.59(1.03) 81.00(1.24) 66.49(1.10) 33.16(0.47) 55.97({ 1.54) 2.286(1 0.031)
137k 50 0.1 32 50.30(0.70) 50.38(1.03) 78.80(1.29) 66.27(1.10) 33.16(0.47) 55.78(] 1.80) 2.285(1 0.030)
208k 75 0.1 32 50.340.70) 49.20(1.03) 80.10(1.26) 66.97(1.10) 33.19(0.47) 55.96(] 1.62) 2.286(1 0.031)

Table 5: Detailed downstream performance for applying the compact knowledge mixing strategy on
WikiBio. We use 7 to denote the CKM ratio. We report the accuracy (%) and standard deviation (%)
in the format acc. (s¢q. dev.) for each downstream task. Note that 7 = 0.2 is early stopped due to its
Pile validation loss increasing beyond the acceptable range.

Training

r 7 (%) tokens (B) LAMBADA ARC-E Sciq PIQA HellaSwag Avg. Pile val. loss
Pythia-1B-100k-ckpt 50.86(0.70y  52.10(1.03) 83.70(1.17)  67.14(1.10)  34.09(0.47) 57.58 2.255
0.1 0 32 50.770.70y  48.95(1.03) 80.80(1.25y 66.43(1.10) 33.16(0.a7y  56.02({ 1.56)  2.286(1 0.031)
0.15 0 32 49.12(0.70y  49.66(1.03) 81.80(1.22) 66.38(1.10) 32.84(0.47)  55.96({ 1.62)  2.292(1 0.037)
0.2 0 20 49.370.70y  49.87(1.03)  79.70(1.27)  65.40(1.11)  33.08(0.47)  55.48({ 2.10)  2.306(1 0.051)
0.1 10 32 49.70(0.70y  49.54(1.03) 80.40(1.26) 66.32(1.10y 33.11(g.47)  55.81( 1.77)  2.287(1 0.032)
0.1 30 32 50.11(0.70y  49.12(1.03)  80.20(1.26) 66.54(1.10) 33.11¢0.a7)y  55.82(4 1.76)  2.285(1 0.030)
0.1 60 32 49.990.70y  49.41(1.03) 80.00¢1.27)  65.78(1.11)  32.99(0.47)  55.63( 1.76)  2.286(1 0.031)
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E Experimental Details

E.1 General Setup

Code Base and Hyperparameters. Our experiments use the GPT-NeoX library [Andonian et al.,
2023]. For all experiments, we set the batch size as 512 and the sequence length as 2048. For all the
experiments in Section 3, we use a Warmup-Stable-Decay (WSD) learning rate schedule with a peak
learning rate of 10~2. We allocate 160 steps for warmup and the final 10% steps for cooldown. We
keep other hyperparameters consistent with those used in Pythia.

Hardware. We train models of sizes 70M and 160M using 8 NVIDIA RTX 6000 Ada GPUs, while
models of sizes 410M and 1B are trained using either 16 NVIDIA RTX 6000 Ada GPUs or 8 NVIDIA
A100 GPUs. The estimated runtime required to train each model size on 1B tokens is detailed
in Table 6. Consequently, a typical run training a 410M model on 32B tokens takes approximately 32
hours, whereas the longest run, which trains a 1B model on 64B tokens, exceeds five days.

Table 6: Estimated runtime required to train each model size on 1B tokens on our hardware.

Model size Hardware Runtime (h) per billion tokens.
70M 0.25
160M 8xNVIDIA RTX 6000 Ada 070
410M 16xXNVIDIA RTX 6000 Ada 1.0
1B or 8XNVIDIA A100 2.0
2.8B 5.8
6.9B 8xNVIDIA A100 16.89

Implementation of Data Mixing. Let S denote the total number of training tokens. Then, the
model sees S tokens from the knowledge-dense dataset and (1 — r)S tokens from the web data.
Let S; and S5 denote the total sizes (in tokens) of the knowledge-dense dataset and web data. Since
S1 is small (< 1B tokens) and S is large (> 1T tokens), for the training horizons S considered
in our experiments, we typically have S > S7 and (1 — r)S < S5. In this case, we replicate the
knowledge-dense dataset rS/.S; times, sample a random (1 — r)S-token subset from the web data,
and then shuffle the combined data.

Licenses for the Public Assets. The FineWeb-Edu and OpenWebMath datasets are under the
ODC-BY License. The Pile dataset is under the MIT License. The Pythia model suite and the
gpt-neox-library are under the Apache License 2.0. All of them are open for academic usage.
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E.2 Details of Dataset Construction

E.2.1 Constructing the SynBio Dataset

To generate names, we collect a list of 400 common first names, 400 common middle names, and
1000 common last names, resulting in 1.6 x 108 unique names. To generate SynBio- N, we sample N
names from this set without replacement. For each individual, the value for each attribute is randomly
assigned as follows: birth date (1-28 days x 12 months x 100 years spanning 1900-2099), birth
city (from 200 U.S. cities), university (from 300 institutions), major (from 100 fields of study), and
employer (from 263 companies). Each attribute is paired with five sentence templates, which are used
to convert (name, attribute, value) triplets into natural text descriptions. A complete list of sentence
templates is provided in Table 7, and an example of a synthetic biography can be found in Table 8.

Table 7: Sentence templates to generate the SynBio Dataset.

Attribute

Template

Birth date

{name} was born on {birth date}.

{name} came into this world on {birth date}.

{name}’s birth date is {birth date}.

{name}’s date of birth is {birth date}.

{name} celebrates {possessive pronoun} birthday on {birth
date}.

Birth city

{name} spent {possessive pronoun} early yearsin {birth city}.
{name} was brought up in {birth city}.

{name}’s birthplace is {birth city}.

{name} originates from {birth city}.

{name} was bornin {birth city}.

University

{name} received mentorship and guidance from faculty members at
{university}.

{name} graduated from {university}.

{name} spent {possessive pronoun} college years at {university}.
{name} completed {possessive pronoun} degree at {university}.
{name} completed {possessive pronoun} academic journey at
{university}.

Major

{name} completed {possessive pronoun} education with a focus on
{major}.

{name} devoted {possessive pronoun} academic focus to {major}.
{name} has a degree in {major}.

{name} focused {possessive pronoun} academic pursuits on {major}.
{name} specialized in the field of {major}.

Employer

{name} is employed at {employer}.
{name} a staff member at {employer}.
{name} is associated with {employer}.
{name} is engaged in work at {employer}.
{name} is part of the team at {employer}.

Table 8: An example of a synthetic biography. The values that we expect the
model to recall during evaluation are underlined.

Gracie Tessa Howell’s birth date is August 09, 1992. Gracie Tessa Howell’s
birthplace is St. Louis, MO. Gracie Tessa Howell received mentorship and
guidance from faculty members at Santa Clara University. Gracie Tessa How-
ell has a degree in Robotics. Gracie Tessa Howell is engaged in work at
Truist Financial.

33



E.2.2 Constructing the WikiBio Dataset

To create the WikiBio dataset, we first query Wikidata to gather names and birth dates of individuals
from 16 common occupations. We then identify each person’s Wikipedia page by matching their
name with the page title. We retain the first paragraph of each page, as it typically provides a short
summary of the person’s life and contains key biographical information. The detailed composition
is listed in Table 9. Finally, to align with the evaluation setup in Section 6, we filter the dataset to
ensure both the person’s occupation and birth date are explicitly mentioned.

Inspired by Allen-Zhu and Li [2023], we employ Llama-3.1-70B-Instruct to paraphrase each biogra-
phy ten times, thereby simulating the real-world scenario where models encounter different variations
of the same person’s information during training. See Table 10 for the prompt for paraphrasing. An
example of the original text and the paraphrased versions are presented below.

* Original text: Rebecca Jo Budig (born June 26, 1973) is an American actress and television
presenter. Her career began in 1993, and in 1995, she was cast in the role of Michelle Bauer on the
CBS soap opera Guiding Light. In 1999, she was cast as Greenlee Smythe on the ABC soap opera
All My Children; she held the role off-and-on until the network series finale in 2011. In 2015, she
was cast in the role of Hayden Barnes on General Hospital. In 2019, Budig was cast on L.A.’s
Finest, as Carlene Hart, the drug trafficking-soccer mom of two young school-age children, a boy
and a girl.

» Paraphrased versions:

1.

Born on June 26, 1973, Rebecca Jo Budig is an American television presenter and actress
with a career spanning nearly three decades. Her professional journey began in 1993 and has
included notable roles such as Michelle Bauer on Guiding Light and Greenlee Smythe on
All My Children. After playing the latter role on-and-off until 2011, she went on to portray
Hayden Barnes in General Hospital in 2015 and Carlene Hart in the 2019 television series
L.A’s Finest.

. With a diverse career in television, Rebecca Jo Budig, born June 26, 1973, has established

herself as a talented actress and presenter. Her career milestones include her roles as Michelle
Bauer in the CBS soap opera Guiding Light, and Greenlee Smythe in All My Children. Her
portrayal of Greenlee spanned several years, concluding with the show’s finale in 2011. Budig
continued to expand her repertoire with roles in General Hospital and L.A.’s Finest.

. Rebecca Jo Budig is a versatile American actress and television host, born on June 26, 1973.

Since her career began in 1993, she has landed prominent roles in several television series. One
of her earliest notable roles was Michelle Bauer in Guiding Light, followed by her portrayal
of Greenlee Smythe in All My Children, a character she played until the series’ conclusion in
2011. In the years that followed, she appeared in General Hospital and L.A.’s Finest.

. Rebecca Jo Budig, an American actress and television presenter, was born on June 26, 1973.

She began her career two decades later, securing the role of Michelle Bauer on Guiding Light.
Budig’s subsequent roles have included Greenlee Smythe on All My Children, a part she
played intermittently until the series ended in 2011. Her later appearances include a role in
General Hospital and as Carlene Hart in the series L.A.’s Finest.

. American actress Rebecca Jo Budig was born on June 26, 1973. Her television career, which

began in 1993, encompasses multiple notable roles, such as Michelle Bauer on the soap opera
Guiding Light and Greenlee Smythe on All My Children. She portrayed the latter character
until the series finale in 2011. Budig later appeared as Hayden Barnes in General Hospital and
took on the role of Carlene Hart in L.A.’s Finest.

Since launching her career in 1993, Rebecca Jo Budig has established herself as a talented
actress and television presenter in the United States. Born on June 26, 1973, she has appeared
in a range of notable roles, including Michelle Bauer on Guiding Light and Greenlee Smythe
on All My Children. The latter role spanned several years, concluding with the show’s finale
in 2011. Her subsequent appearances include General Hospital and L.A.’s Finest.

. Rebecca Jo Budig, born on June 26, 1973, has enjoyed a successful career in American

television as an actress and presenter. Her breakout role came in 1995 when she was cast as
Michelle Bauer on Guiding Light. Later, she played the character Greenlee Smythe on All My
Children, a part she held intermittently until the show’s finale in 2011. Her more recent roles
include appearances in General Hospital and as Carlene Hart in L.A.’s Finest.
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8.

10.

Born on June 26, 1973, Rebecca Jo Budig is a talented American actress and television
presenter. Since her career began in 1993, she has appeared in various television series.
Notable roles include her portrayal of Michelle Bauer on the soap opera Guiding Light, as
well as Greenlee Smythe on All My Children. Budig continued to expand her acting repertoire
with roles in General Hospital and L.A.’s Finest, including her portrayal of Carlene Hart.

. As an American actress and television host, Rebecca Jo Budig has had a diverse career

spanning nearly three decades. Born on June 26, 1973, she began her professional journey in
1993. Her notable roles include Michelle Bauer on Guiding Light and Greenlee Smythe on All
My Children, a character she played until the series finale in 2011. Her subsequent appearances
include General Hospital and the series L.A.’s Finest, where she portrayed Carlene Hart.
With a career in television that began in 1993, Rebecca Jo Budig, born June 26, 1973, has
established herself as a versatile actress and presenter. Her early roles include Michelle Bauer
on Guiding Light, while her breakout role came as Greenlee Smythe on All My Children.
She continued to portray Greenlee intermittently until the show’s finale in 2011. Her later
roles include appearances in General Hospital and L.A.’s Finest, where she took on the role of
Carlene Hart.

Table 9: Detailed Composition of WikiBio.
Occupation Num. Wikipedia biographies

Singer 18,482
Actor 31,846
Politician 38,653
Businessperson 8,068
Mathematician 5,093
Physicist 4,296
Writer 26,746
Football player 56,547
Basketball player 16,956
Sport shooter 3,156
Tennis plater 7,602
Swimmer 9,108
Painter 12,927
Volleyball player 3,556
Composer 13,719
Athlete 18,013
Total 274,768

Table 10: The prompt for paraphrasing the first paragraph of Wikipedia
documents.

am creating the training data for an LLM. I
would like to teach it to flexibly extract
knowledge from a Wikipedia paragraph.
Therefore, I want to diversify the Wikipedia
paragraphs as much as possible so that the
model can learn the actual relationships
between entities, rather than just memorizing
the text. Please assist with the
paraphrasing task. Paraphrase the following
Wikipedia paragraph about {Wikipedia document
itle} 10 times. Aim to make the paraphrased
versions as varied as possible. Ensure all
essential information is retained,
particularly the information about the
birthday and the occupation.

R
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E.3 Constructing the SlopeQA Dataset

Every time the model sees a slope calculation example, we first uniformly sample x1, y1, 22, Y2
from {0, 1,---,99} (ensuring 21 # x2), and then apply randomly chose question and step-by-step
answer templates. We prompt GPT-40 to generate diverse question and answer templates, as shown
in Tables 11 and 12. The final answer is expressed as the simplified fraction.

Table 11: Question templates for the slope calculation subtask.

Q: Find the slope of the line passing through ({x1},{yl}) and (
< {x2},{y2}) .

Think step-by-step.

Q: What is the slope of the line passing through ({x1},{yv1l}) and
o ({x2},{y2}) >

Think step-by-step.

Q: Compute the slope of the line going through ({x1},{yl}) and (
o {x2},{y2}) .

Think step-by-step.

Q: Determine the slope of the line connecting ({x1},{yl}) and (

< {x2},{y2}).

Think step-by-step.

Q: If a line goes through ({x1},{yl}) and ({x2},{y2}), what is its
— slope?

Think step-by-step.

Table 12: Answer templates for the slope calculation subtask.

A: Recall the slope formula:
k=(y2-yl)/ (x2-x1)

1. Let (x1,yl)=({x1},{yl}) and (x2,y2)=({x2},{yv2}) .
2. Compute the difference:

x2-x1={x2}-{x1}={x2-x1}

y2-yl={y2}-{y1}={y2-y1}

3. Plug into the formula:
k={x2-x1}/{y2-y1}

### Final Answer:

k={k}
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=

Identify the coordinates:
First point: (x1,yl)=({x1},{v1})
Second point: (x2,y2)=({x2},{v2})

2. Compute the difference in y-values:
{v2}Avit={y2-y1}

3. Compute the difference in x-values:

{XZ}*{X1}={X2*X1}

4. Divide the differences:
k={y2-y1}/{x2-x1}

### Final Answer:

k={k}

A: We use the slope formula:
k=(y2-y1l) / (x2-x1)

1. Plug in the coordinates:

k=({y2}-{yv1}) / {x2}-{x1})

2. Simplify the numerator and denominator:
k={y2-y1}/{x2-x1}

3. Simplify the fraction:

k={k}

### Final Answer:

k={k}

A: To find the slope, we use the slope formula:
k=(y2-yl)/ (x2-x1)

1. We are given two points: ({x1},{y1}), ({x2},{v2})

2. Plug the values into the formula:

k=({v2}-{v1}) / {x2}-{x1}) ={y2-y1}/{x2-x1}

##4# Final Answer:

k={k}
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A: The slope k between (x1,x2) and (yl,y2) is given by:
k=(y2-yl)/ (x2-x1)

1. From the problem: (xl,yl):({xl},{yl}),(x2,y2):({x2},{y2})

2. Substituting into the formula:
k=({y2}-{y1}) / ({x2}-{x1}) ={y2-y1}/{x2-x1}

3. Simplify:
k={y2-y1l}/{x2-x1}

### Final Answer:

k={x}

E.4 Constructing the Max-over-N Dataset

We design a new task named “Max-over-N”, where the model is tasked with outputting the maximum
number of a list of NV integers, each randomly sampled from {0, 1,--- ,99}. In our experiments, we
set N = 30.

Table 13: An example of the Max-over-N subtask.

Q: Find the maximum value of the following list:
(47, 83, 38, ...]
Think step-by-step.

A:
Compare 47 and 83. Keep 83.
Compare 83 and 38. Keep 83.

E.5 Details of the Fitting Process

We use T to denote the required training steps to reach 40% accuracy and r to denote the mixing
ratio.

Fitting the exponential function. We fit 7" with respect to r for all » > 0.3 using the function
T(r) = Aexp(B/r), where A and B are coefficients to be fitted. Taking logarithmic on both sides,
we obtain a linear function log T = log A + B/r. By fitting log T against 1/ with linear regression,
we obtain log A ~ —0.25512, B ~ 1.5137 with goodness-of-fit R? = 0.9980.

Fitting the power-law function. We fit T" with respect to r for all € {0.3,0.4,0.45,0.5,0.55}
using the function T'(r) = Cr~P, where C and D are coefficients to be fitted. Taking logarithmic on
both sides, we obtain a linear function logT" = log C' — D log r. By fitting log T" against log r with
linear regression, we obtain C' =~ 0.098158, D ~ 3.83878 with goodness-of-fit R? = 0.9853.

E.6 Details of Estimating the Threshold Popularity

Following Mallen et al. [2023], we evaluate models using 15-shot prompting. We use the prompt
presented in Table 14 for evaluatioin and allow models to generate up to 128 tokens with greedy
decoding. To assess answer correctness, we employ Llama-3.1-8B-Instruct as a judge. Specifically,
we instruct the Llama-3.1-8B-Instruct model to evaluate the semantic similarity between the model-
generated answer and the reference answer provided in PopQA. The prompt used for the Llama judge
is detailed in Table 15.

After judging the correctness of each answer, we use Algorithm 1 to estimate the popularity threshold.
In our experiments, we set the target accuracy avjarget = 60% and the fault tolerance level Ny = 5.
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Table 14: The prompt for evaluating models on PopQA.

You are a helpful assistant. I want to test your knowledge level.
— Here are a few examples.

{few shot examples text with templates}

Now, I have a question for you. Please respond in just a few words
— , following the style of the examples provided above.

Table 15: The prompt for testing synonym.

<|begin_of_text|><|start_header_id|>system<]
— end_header_id|>

Cutting Knowledge Date: December 2023

Today Date: 19 Dec 2024

You are a linguistic expert specializing in synonyms.
< Your task 1is to determine whether two given English
— words are synonyms or not. A synonym is a word that
— has a very similar meaning to another word and can

— often replace it in sentences without significantly
— changing the meaning.

For each pair of words provided:

1. Analyze their meanings and typical usage.

2. Decide whether they are synonyms (Yes/No).

3. Provide a brief explanation for your decision.

Here are some examples to guide you:

Words: "happy" and "joyful"

Yes

Explanation: Both words describe a state of being

— pleased or content and are often interchangeable in
— most contexts.

" "3

Jog

and "

Words: "run
No
Explanation: While both refer to forms of movement, "run

— typically implies a faster pace than "jog."

Words: "angry" and "frustrated"

No

Explanation: Although both express negative emotions,
— angry" implies strong displeasure or rage, while "
— frustrated" conveys annoyance due to obstacles or
— failure.

n

<|eot_id|><|start_header_id|>user<|end_header_id|>

Words: {} and {}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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Algorithm 1: Estimate Threshold Popularity
1: Input:
2: - x: Alist of popularity values for each data point, where x; represents the popularity of the
1-th data point.
3: - y: Alist of binary values indicating the correctness of the model’s response, where y; = 1 if
the model answers the i-the question correctly, and y; = 0 otherwise.
4: - igarget: The target accuracy.
- Ntai1: The maximum number of failures before termination, denoting the fault tolerance
level.
Output:
- Pinres: The threshold popularity.
Initialize correct count: sum_correct <— 0
9: Initialize error count: e <— 0
10: Sort (z,y) by x in ascending order and store the indices in a list 1.
11: Initialize loop variable j < len(z) — 1
12: Initialize flag counter flag <— 0
13: while 5 > 0do

bl

A

4. k<« j
15 while £ > 0and z;, =7, do
16: k+ k-1

17:  end while
18: fori=Fk+1tojdo

19: 14+ I

20: sume_correct <— sum-_correct + y;

21:  end for

22: if miﬁrlff‘l < set_threshold then

23: e+—e+1

24:  end if

25: if ¢ = Np,; then

26: Return: z;; {Return the threshold popularity }
27:  endif

28: j<+k

29: end while
30: Return: xy, {If no such point is found, return the smallest popularity value}

E.7 Experimental Details for Strategies to Enhance Knowledge Acquisition

This subsection presents the experimental details for Section 6.

Evaluation Details for WikiBio. For simplicity, we focus on how well the model memorizes
one specific type of fact: the birth date of a person, which is ensured to be mentioned in WikiBio.
Specifically, for each fact, which can be represented as a (name, occupation, birth date) triplet, we
prompt the model with “The {occupation} {name} was born on” and consider the response
correct if it contains the correct birth year and month. The occupation is included in the evaluation
prompt not only to avoid prompts that are exactly identical to the training data but also to provide
additional context for disambiguation.

Implementation Details of CKM. When we apply CKM to WikiBio, we augment the dataset
by adding compact tuple representations. To maintain the same token budget for WikiBio after
augmentation (as r and the total training tokens are fixed), we proportionally reduce the number
of epochs. Although the model completes fewer epochs over the dataset, each fact’s frequency per
epoch is increased, boosting its total exposure during training. For example, in Figure 8(b), setting
7 = 0.1,0.3 and 0.6 correspond to roughly 2x, 3x, and 4x increases in fact frequency, respectively.
Each time models encounter the tuple-form data point, the order of birth date and occupation is
randomly flipped.

Experimental Details of Random Subsampling. In Figure 8(a), we train all models from scratch
on the mixture of FineWeb-Edu and SynBio-1.28M using the cosine learning rate schedule with a
peak value of 1073, In Figures 8(b) and 8(c), following Zhu et al. [2024], we continually pre-train
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intermediate checkpoints of Pythia models. This strategy allows us to use a larger learning rate
without experiencing extreme loss spikes. Specifically, we continually pre-train 410M and 1B Pythia
models from their respective 100k-step checkpoint with a constant learning rate of 8.7 x 10~5, which
corresponds to the original learning rate used at step 100k in the Pythia model training.

F Proofs of Theoretical Results

We follow the notations in Section 4. We use H ( -) to denote the entropy and I( -; - ) to denote the
mutual information.

We define a data distribution D as a distribution over (x,y), where z is an input and y is a token.
A data universe U = (P, Dy) is defined by a prior P over a latent variable § and a family of data
distributions Dy indexed by 6.

A predictor h is a function that maps « to a distribution over y. A learning algorithm A4 is a procedure
that takes samples from a data distribution D of (z,y) and outputs a predictor h ~ A(D) in the end.
For a given predictor h, we measure its performance by the expected cross-entropy loss

C(h7D) = E(z,y)ND[_ logp(y ‘ h,.’E)L (7)

where p(y | h, x) denotes the predicted distribution of y given x by the predictor h, and log is in
base 2 for convenience. For a data universe ¢/ = (P, Dy), we measure the performance of a learning
algorithm A by its expected loss over all data distributions Dy with respect to the prior P:

Lp(A) :=EopEnoap,) [L(h; Do)]. ®)

We use the mutual information I(A(Dy); Dy) as a measure of the effective model capacity for the
predictor picked by A on Dy, where 6 is sampled from Q.

Same as Definition 4.1, for a data universe i = (P, Dy) and M > 0, we define the best achievable
loss under the capacity constraint M as

Fp(M) := inf {Lp(A) : I(A(D); D) < M}, 9)

where the infimum is taken over all learning algorithms. An optimal M -bounded-capacity learner is
a learning algorithm A such that I(A(Dy); Dy) < M and Lp(A) = Fp(M).

F.1 Convexity of the Best Achievable Loss

It is easy to see that Fp(M) is non-negative and non-increasing in M. A classic result in rate-
distortion theory is that the rate-distortion function is convex. This further implies that Fp (M) is
convex in M. Here we present it as a lemma for completeness.

Lemma F.1. For any data universe U = (P, Dy), Fp(M) is convex in M.

Proof. Let € > 0 be any positive number. Let A; be a learning algorithm that achieves a loss
< Fp(M;) + € with mutual information I; (A(Dy); Dy) < M and A be a learning algorithm that
achieves a loss Fp(Ms) + € with mutual information I5(A(Dy); Dp) < Mo.

Let A be a new learning algorithm that outputs the same as .4; with probability 1 — p and the same
as Ay with probability p. Then the mutual information between A(Dy) and Dy is

I(A(Dy); Dg) = (1 — p)I(A1(Dy); Do) + pI(A2(Ds); Dy)
< (1 —=p)M; + pMs.

By linearity of expectation, the expected loss of .4 can be bounded as
Eg~p(9)[L(A(Do); Do)] = (1 — p)Eg~p(9)[L(A1(Do); Do) + PEo~p(0)[L(A2(Da); Do)
< (1 =p)Fp(My) + pFp(Ma) + 2e.
Therefore, we have
Fp((1 —p)My + pMs) < Eop(9)[L(A(Dg); Do)] < (1 — p)Fp(My) + pFp (M) + 2,
taking € — O finishes the proof. O
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F.2 Proofs for the Warmup Case

Definition F.2 (Factual Data Universe). We define a fact as a pair (X, y), where X is a set of inputs
and y is a target token. A factual data universe is a data universe i/ = (P, Dy) containing K random
facts (X1,41), ..., (XK, yx) in the following way:

1. X1,..., Xk are K disjoint sets of inputs, and 1, . . . , yx are random tokens;

2. 0 is structured as (y1,...,yx ). Given 8 = (y1,...,yx ), the data distribution Dy satisfies that
forallz € X;, Dy(y | ;) is a point mass at y;;

3. For all 0, the input distribution Dy(z) is the same;

4. For all 6, the target distribution Dy(y | x) is the same for all = ¢ U1K:1 Xi;

5. The prior distribution P over € is given by the product distribution P(y1,¥2,...,yx) =
Hszl Vi (yx), where Yy, is a fixed prior distribution over y.

The exposure frequency of each random fact is defined as the total probability that an input z € X;
occurs in Dy.

Theorem F.3 (Theorem 4.2, restated). For a factual data universe U = (P, Dy) with K random
facts, if all the facts have the same exposure frequency p, then

Fp(M)=C +p-max{Hy+ — M,0}, (10)

where Hio := ZZKZ1 H(Y:) and C := Fp(0).

Proof. First, we prove a lower bound for Fp(M). For any learning algorithm A with
I(A(Dy); Dg) < M,
Lp(A(Dy)) = EonpE(a,y)opy Enmsa(py) [~ logp(y | b, )]
= E:EonpEynpy (- |2)Enna(py) E[—log p(y | h, 2)]
K
Z (H(Yi) = I(A(Do); yi))

i=1 +

> E, [l{xeulexi}HGNP(’De(' | x))} +p
—:Co

> Co + p[Hiot — I(A(Ds); Do) .

> Co +p[Hior — M]

+

For upper bounds, we first show that Fp(M) < Cj for all M > Hi.. Let Ay be the learning
algorithm that inputs Dy and outputs the predictor h that always outputs the token y; for the input
x € X;. For all the other inputs z, the predictor just outputs h(y | h,z) = Eg.p[Dy(y | )]. Both
A1(Dy) and Dy can be transformed from 6 with a reversible function, so

I(AI(D9)§D0) = H(@) = ZH(yi) = Hiot.

It is easy to see that Lp(A;) = Cy. This implies that Fp(M) < C for all M > Hyy.

Now, if M < Hios, we construct a learning algorithm A, that outputs the same as .A; with probability

q and outputs h(y | h,x) = Eg.p[Dy(y | )] with probability 1 — ¢. Setting ¢ = %, we have
I(A4(Dp); Do) = q - Hyor = M.

By linearity of expectation, we also have Lp(A¢(Dy)) = Lp (A1) + (1 —¢q) - p S K H(Y;). This

implies that Fip (M) < Lp(A1) + p - max{Hot — M,0} for all M < Hyot.

Putting all the pieces together finishes the proof. O
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F.3 Proofs for the Data Mixing Case

Definition F.4 (Mixture of Data Universes). LetlU; = (P1, Dg)) and Uy = (Pa, Déz)) be two data
universes. We mix them together to form a new data universe i = (P, Dy):

1. 6 is structured as (01,02). Given 6 = (61,65), the data distribution Dy is formed as Dy =
ng) +(1- T)Déz), where 7 is called the mixing ratio;,

2. The prior distribution P over 6 is a joint distribution of P; and Ps.

In reality, mixing two datasets can be seen as mixing two data universes first and then sampling a
data distribution from the mixed data universe. Here we consider the simplified case where the two
data universes are so different from each other that they convey orthogonal information.

Definition F.5 (Orthogonal Mixture of Data Universes). We say that I/ is an orthogonal mixture of
U7 and Uy if

1. For any z that is in both supports of Déi) and D(Si), we have Déi)(y | z) = Déi)(y | ) for all
61 and 05. In other words, the conditional distribution of the next token y given the context x
remains consistent across both domains and is unaffected by variations in values of 6, and 6.

2. P(01,02) = P1(61) - P2(62), i.e., 01 and 05 are independent.

Below, we first establish two lemmas that provide conditions for when the loss on the first domain
will be very low or very high for an optimal M -bounded-capacity learner given an orthogonal mixture
of two data universes. Then, we use these lemmas to prove Theorem 4.3.

We use D7F(t) and DTF(t) to denote the left and right derivatives of a function F at a point ¢,
respectively.
Lemma F.6. Let U = (P, Dy) be an orthogonal mixture of Uy = (P, Déi)) and Uy = (Pa, Déz))
with mixing ratio r. For all v € (0,1) and M > 0, if the following inequality holds,
r < DiFP2 (M)
1—r D+F7)1 (O) ’

(11)
then for any optimal M -bounded-capacity learner A onU, BopEp, a(py)[L(R; Dg))] = Fp, (0).

Intuitive Explanation. We define £5(A) := Egp, [L’(A(Dg);D(f))], similar to £;(A). The
overall test loss is given by Lp(A) = rLy(A) + (1 — r)L2(A). Since D™Fp, () < 0, we can
rearrange (11) to obtain rD™Fp, (0) — (1 —7)D~Fp,(M) > 0. Intuitively, this means that increasing
the capacity assigned to learn {{; by one unit and reducing the capacity for U by one unit will
increase the overall test loss, compared to fully assigning capacity to {5 and none to ;. Alternatively,
rDTEp, (0)
(1—T‘)D7F‘17>2 (M)
to web data. Hence, the model should prioritize web data and not learn from the knowledge-dense
dataset when this ratio is below 1.

we can view as the ratio of cost-effectiveness of the knowledge-dense dataset relative

Proof. Let h be the predictor picked by A on Dy. Let X} and X, be the supports of z in Déi)

and Déz), respectively. Let my := I(h[y, ;Dg,) and my := I(h|,, ; Ds,). By data processing
inequality, we have

my = I(h|y ;Ds,) < I(h;Dy,),
ma = I(h|y, ;De,) < I(h;Dy,),
Further noticing that I(h; Dy) = I(h; Dy, ; De,) > I(h; Dy, ) + I(h; Dy, ), we have
my +mao < I(h;Dy) < M.
Since b/ x, and hl x, are valid predictors on Dy, and Dy, , respectively, we have
E[L(h: Dy, )] = E[L(D, s Do,)] = Fp, (ma),
E[L(h; Dy, )] = E[L(h|y, ; De,)] > Fp,(m2) > Fp,(M — my).
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Adding the two inequalities with weights  and 1 — r, we have
Lp(A) = E[L(h; Dy)] > 7Fp, (m1) + (1 —7)Fp, (M —ma).

By convexity (Lemma F.1), we have

Fp,(my) > Fp,(0) + DTFp, (0)my, Fp,(M —my) > Fp,(M) — D™ Fp,(M)m;.
Plugging these into the previous inequality, we have

E[L(h; Do)] = 1Fp, (0) + (1 — ) Fp, (M) + (rD¥Fp, (0) — (1 — 7)D"Fp,(M)) m.
By (11) and the fact that D*Fp, (0) < 0, we have rD*Fy, (0) > (1 — r)D~Fp (M). So the
right-hand side is strictly increasing in m; .

Now we claim that m; = 0. If not, then the following learning algorithm A’ is better than A. Let A;
be an optimal 0-bounded-capacity learner on {; and As be an optimal M -bounded-capacity learner
on Us. Run the algorithms to obtain hy ~ A;(Dy| X1> and hy ~ Az( Dy x,)- Then, whenever seeing

an input = from X, output h4 (x); otherwise output ho(x). This algorithm achieves the expected loss
rFp, (0) + (1 — r)Fp, (M), which is strictly less than L (.A) and contradicts the optimality of A.

Therefore, for the optimal algorithm A, £ (A) = Fp, (0). O

Lemma F.7. Let U = (P, Dy) be an orthogonal mixture of Uy = (P1,Dy,) and Us = (P2, Dy,)
with mixing ratio r. For allr € (0,1), M > 0and 3 > 0, if the following inequality holds,

r D+F732 (M - ﬂ)
1—r ])_}7731 (ﬁ) ’

then for any optimal M -bounded-capacity learner A onU, BogpEp, a(py)[L(h; Do, )] < Fp, (B).

12)

Intuitive Explanation. Similar to the explanation for Lemma F.6, we can rearrange Equation (12)
into —rD~Fp, (8) + (1 — r)DTFp, (M — ) < 0. Intuitively, this means that reducing the capacity
assigned to learn {/; by one unit and increasing the capacity for Us by one unit will increase the
overall test loss, compared to assigning capacity g to Uy and M — ( to Us. Therefore, the optimal
M -bounded-capacity learner A4 will assign at least capacity [ to learn Uy, resulting in a test loss
on U that is lower than Fp, (/3). Alternatively, we can view % as the ratio of cost-

effectiveness of the knowledge-dense dataset relative to web data. Hence, the model should do its
best to learn the knowledge-dense dataset when this ratio is above 1.

Proof. Similar to the previous proof, letting my := I(hl|y, ;Dp,) and ma := I(h|y, ; Dy, ), we
have

m1 +ma < I(h;Dy) < M,
E[L(h; Dy, )] = E[L(h|x, ; Do,)] = Fp, (ma),
E[L(h; Dy, )] = E[L(hly, ; Doy)] = Fp,(m2) = Fp,(M —m1),
E[L(h; Dy)] = rFp,(m1) + (1 — 1) Fp, (M — m1).
First, we show that m; > (. If not, then by convexity (Lemma F.1), we have
Fp,(m1) = Fp,(8) = D" Fp,(B) - (B —ma),
Fp,(M —my) > Fp,(M — ) + D*Fp,(M — B) - (8 — m1).
Plugging these into the previous inequality, we have
E[L(1; Dp)] > rFp, (B) + (1 — 1) Fp, (M — 8) + (=D Fp, (8) + (1 — r)D*Fp, (M — B)) (8 — my).
By (12) and the fact that D~ Fp, (8) < 0, we have YD~ Fp, (8) < (1 — r)D*Ep,(M — ). So the
right-hand side is strictly decreasing in m; .

Next, we prove by contradiction that m; > §. If m; < 3, the following learning algorithm A’
is better than 4. Let A; be an optimal S-bounded-capacity learner on U{; and A, be an optimal
(M — B)-bounded-capacity learner on U>. Run the algorithms to obtain hy ~ A;1(Dyl,,) and

ha ~ A2(Dy|y,). Then, whenever seeing an input = from X1, output sy (); otherwise output ho(x).
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This algorithm achieves the expected loss 7 Fp, (3) + (1 — r)Fp, (M — /), which is strictly less than
Lp(A).

Therefore, we have m; > S for the algorithm A. Now we prove that E[L(h; Dy,)] < Fp,(B).
If not, then the following learning algorithm A" is better than A. Construct A" similarly as A’,
but with A; and A5 replaced by the optimal m1-bounded-capacity learner on I/; and the optimal
ma-bounded-capacity learner on Us, respectively. If E[L(h; Dy, )] > Fp, (8), then A" achieves a
lower expected loss than A, which contradicts the optimality of A. [

Now we consider the case where U/; is a factual data universe, and U5 is an arbitrary data universe.

Theorem E.8. Let U be a factual data universe with K random facts, each with the same exposure

frequency p, and the entropies of their target tokens sum to Hyoy = Zfil H(Y;). Let U be an
arbitrary data universe. Let U = (P, Dy) be an orthogonal mixture of Uy and Uy with mixing ratio r.
Forallr € (0,1) and M > 0,

1. lf 117’ p< _DiFP2 (M)’ then EI(A) = FP1 (0)’

2. if = -p>—DTFp,(M — Hyo), then L1(A) = Fp, (o).

1—r

Proof. By Theorem F.3, D™Fp, (0) = D Fp,(Hyot) = p. Plugging this into Lemma F.6
and Lemma F.7 with § = Hy finishes the proof. O

Now we are ready to prove the main theorem we stated in Section 4.4. Recall that
Mg (t) :=sup{M > 0: —Fp (M) > t},
M (t) :=inf{M >0: —Fp (M) < t},
Theorem E.9 (Theorem 4.3, restated). For any optimal M -bounded-capacity learner A,

1. if M < My (= - p), then L1 (A) = Fp, (0);

1—r

2. if M > My (+% - p) + Hior, then £1(A) = Fp, (c0).

1-r

Proof. This is a direct consequence of Theorem F.8 by noting that (1) —D~Fp, (M) is left continuous
and non-increasing in M; (2) —D*Fp, (M) is right continuous and non-increasing in M; (3) Fp, (M)
is almost everywhere differentiable. O
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