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Abstract—Recent years have witnessed an increasing interest
in the correspondence between infinitely wide networks and
Gaussian processes. Despite the effectiveness and elegance of the
current neural network Gaussian process theory, to the best of
our knowledge, all the neural network Gaussian processes are
essentially induced by increasing width. However, in the era of
deep learning, what concerns us more regarding a neural network
is its depth as well as how depth impacts the behaviors of a
network. Inspired by a width-depth symmetry consideration, we
use a shortcut network to show that increasing the depth of a
neural network can also give rise to a Gaussian process, which is
a valuable addition to the existing theory and contributes to
revealing the true picture of deep learning. Beyond the pro-
posed Gaussian process by depth, we theoretically characterize
its uniform tightness property and the smallest eigenvalue of
the Gaussian process kernel. These characterizations can not
only enhance our understanding of the proposed depth-induced
Gaussian process but also pave the way for future applications.
Lastly, we examine the performance of the proposed Gaussian
process by regression experiments on two benchmark data sets.

Index Terms—Deep neural networks, neural network Gaussian
processes, generalized Central Limit Theorem, weak dependence,
uniform tightness, smallest eigenvalue

I. INTRODUCTION

Currently, kernel methods and deep neural networks are
two of the most remarkable machine learning methodologies.
Recent years have witnessed lots of works on their connection.
Lee et al. [1] pointed out that randomly initializing parameters
of an infinitely wide network gives rise to a Gaussian process,
which is referred to as neural network Gaussian processes
(NNGP). Due to the attraction of this idea, the studies of
NNGP have been scaled into more types of networks, such
as attention-based models [2] and recurrent networks [3].

A Gaussian process is a classical non-parametric model.
The equivalence between an infinitely wide fully-connected
network and a Gaussian process has been established in
[1], [4]. Given a fully-connected multi-layer network whose
parameters are i.i.d. randomly initialized, the output of each
neuron is an aggregation of neurons in the preceding layer
whose outputs are also i.i.d. When the network width goes
infinitely large, according to the Central Limit Theorem [5],
the output of each neuron conforms to the Gaussian dis-
tribution. As a result, the output function expressed by the
network is essentially a Gaussian process. The correspondence
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Fig. 1. A deep topology that can induce a neural network Gaussian process
by increasing depth.

between neural networks and Gaussian processes allows the
exact Bayesian inference using the neural network [1].

Despite the achievements of the current NNGP theory, it has
an important limit that is not addressed satisfactorily. So far,
the neural network Gaussian process is essentially induced by
increasing width, regardless of how many layers are stacked
in a network. But in the era of deep learning, what concerns
us more regarding deep learning is its depth and how the
depth affects the behaviors of a neural network, since the
depth is the major element accounting for the power of deep
learning. Although that the current NNGP theory is beautiful
and elegant in its form, unfortunately, it can not accommodate
our concern adequately. Therefore, it is highly necessary to
expand the scope of the existing theory to include the depth
issue. Specifically, our natural curiosity is what is going to
happen if we have an infinitely deep but finitely wide network.
Can we derive an NNGP by increasing depth rather than width,
which contributes to understanding the true picture of deep
learning? If this question is positively answered, we are able
to reconcile the successes of deep networks and the elegance
of the NNGP theory. What’s more, as a valuable addition,
the depth-induced NNGP greatly enlarges the scope of the
existing NNGP theory, which is posited to open lots of doors
for research and translation opportunities in this area.

The above idea is well-motivated based on a width-depth
symmetry consideration. Previously, Lu et al. [6] and Hornik
et al. [7] have respectively proved that the width-bounded and
depth-bounded neural networks are universal approximators.
Fan et al. [8] suggested that a wide network and a deep
network can be converted to each other with a negligible error
by De Morgan’s law. Since somehow there exists a symmetry
between width and depth, deepening a neural network in
certain conditions can likely lead to an NNGP as well. Along
this direction, we investigate the feasibility of inducing an
NNGP by depth (NNGP(d)), with a network of a shortcut
topology in Figure 1. The characteristic of this topology is that
outputs of intermediate layers with a gap of ~ are aggregated
in the final layer, yielding the network output. Such a shortcut
topology has been successfully applied to medical imaging [9]
and computer vision [10] as a backbone structure.

An NNGP by width (NNGP(w)) is accomplished by sum-
ming the i.i.d. output terms of infinitely many neurons and
applying Central Limit Theorem. In contrast, for the topology
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in Figure 1, as the depth increases, the outputs of increas-
ingly many neurons are aggregated together. We constrain the
random weights and biases such that those summed neurons
turn weakly dependent by the virtue of their separation.
Consequently, when going infinitely deep, the network is also
a function drawn from a Gaussian process according to the
generalized Central Limit Theorem under weak dependence
[11]. Beyond the proposed NNGP(d), we theoretically prove
that NNGP(d) is uniformly tight and provide a tight bound
of the smallest eigenvalue of the concerned NNGP(d) kernel.
From the former, one can determine the properties of NNGP(d)

such as the functional limit and continuity, while the non-
trivial lower and upper bounds mirror the characteristics of
the derived kernel, which constitutes a cornerstone for its
optimization and generalization properties.

Main Contributions. In this manuscript, we establish the
NNGP by increasing depth, in contrast to the present main-
stream NNGPs that are induced by width. Our work substan-
tially enlarges the scope of the existing elegant NNGP theory,
making a stride towards understanding the true picture of deep
learning. Furthermore, we investigate the essential properties
of the proposed NNGP and its associated kernel, which lays
a solid foundation for future research and applications. Lastly,
we implement an NNGP(d) kernel and apply it for regression
experiments on benchmark datasets.

II. PRELIMINARIES
Let [N ] = {1, 2, . . . , N} be the set for an integer N > 0.

Given a function g(n), we denote by h1(n) = Θ(g(n)) if
there exist positive constants c1, c2, and n0 such that c1g(n) ≤
h1(n) ≤ c2g(n) for every n ≥ n0; h2(n) = O(g(n)) if there
exist positive constants c and n0 such that h2(n) ≤ cg(n)
for every n ≥ n0; h3(n) = Ω(g(n)) if there exist positive
constants c and n0 such that h3(n) ≥ cg(n) for every n ≥ n0.
Let ‖W‖ denote the matrix norm for the matrix W ∈ Rn×m.
Throughout this paper, we employ the maximum spectral norm

‖W‖ def
= max

k
|λk|, for k ∈ [min{m,n}],

as the matrix norm [12], where λk denotes the k-th singular
value of the matrix W. Let | · |# denote the number of
elements, e.g., |W|# = nm. Finally, we provide several
definitions for the characterization of inputs and parameters.

Definition 1. A data distribution P is said to be well-scaled,
if the following conditions hold for x ∈ Rd:

1)
∫
x dP (x) = 0;

2)
∫
‖x‖2 dP (x) = Θ(

√
d);

3)
∫
‖x‖22 dP (x) = Θ(d).

Definition 2. A function σ : R→ R is said to be well-posed, if
σ is first-order differentiable, and its derivative is bounded by
a certain constant Cσ . Specially, the commonly used activation
functions like ReLU, tanh, and sigmoid are well-posed (Please
see Table I).

Definition 3. A matrix V is said to be stable-pertinent for a
well-posed activation function σ, in short V ∈ SP (σ), if the
inequality Cσ‖V‖ < 1 holds.

TABLE I
WELL-POSEDNESS OF THE COMMONLY-USED ACTIVATION FUNCTIONS.

Activations Well-Posedness
ReLU ‖σ′(x)‖ ≤ 1
tanh ‖σ′(x)‖ = ‖1− σ2(x)‖ ≤ 1
sigmoid ‖σ′(x)‖ = ‖σ(x)(1− σ(x))‖ ≤ 1/4

III. MAIN RESULTS

In this section, we formally present the neural network
Gaussian process NNGP(d), led by an infinitely deep but
finitely wide neural network with i.i.d. weight parameters.
We also derive the uniform tightness for NNGP(d) with the
increased depth and the bound estimation of its associated
kernel’s smallest eigenvalue. These two valuable characteriza-
tions serve as the solid cornerstones for NNGP(d).

A. Neural Network Gaussian Process with Increasing Depth

Consider an L-layer neural network whose topology is
illustrated as Figure 1, the feed-forward propagation follows{

z0 = x

zl = σ(Wlzl−1 + bl) ,
(1)

where Wl and bl are the weight matrix and bias vector of
the lth layer, respectively, and σ is the activation function.
Invoking shortcut connections, the final output of this network
is a mean of κ ∈ N+ previous layers with an equal separation
~ ∈ N+ and l1 ∈ [L]

f(x;θ) =
1√
Mz

K∑
κ=0

1l1+κ~zl1+κ~ , (2)

where the matrix 1l1+κ~ ∈ {1}no×nl1+κ~ indicates the unit
shortcut connection between zl1+κ~ and the final layer, and
Mz denotes the summed number of concerned hidden neurons

Mz =
∑K

κ=0
nκ with nκ = |zl1+κ~|# .

Let θ = concat(
⋃L
l=1 vec(bl,Wl)) be the concatenation of

all vectorized weight matrices and n = |θ|#. Regarding the
neural network f : Rd → Rno , we present the first main
theorem as follows:

Theorem 1. The infinitely deep neural network, defined by
Eqs. (1) and (2), is equivalent to a Gaussian process NNGP(d),
if σ is well-posed and the augmented parameter matrix of each
layer is stable-pertinent for σ, that is, (Wl, bl) ∈ SP (σ), for
∀ l ∈ [L].

Theorem 1 states that our proposed neural network con-
verges to a Gaussian process as L → ∞. Given a data set
D = {(xi, yi)}Ni=1, the limit output variables of this network
belongs to a multivariate Gaussian distribution N (0,KD,D)
whose mean equals to 0 and covariance matrix is an N ×N
matrix, the (i, j)-entry of which is defined as

K(xi,xj) = E[〈f(xi;θ), f(xj ;θ)〉], for xi,xj ∈ D .
(3)

The key idea of proving Theorem 1 is to show that our
proposed neural network converges to a Gaussian process as
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depth increases according to the generalized Central Limit
Theorem with weakly dependent variables instead of random
ones. To implement this idea, we constrain the weights and
biases to enable that random variables of two hidden layers
with a sufficient separation degenerate to weak dependence,
i.e., mixing processes. By aggregating the weakly dependent
variables to the final layer via shortcut connections, the output
of the proposed network converges to a Gaussian process as
the depth goes to infinity. The key steps are formally stated
by Lemmas 1 and 2 as follows:

Lemma 1. Provided a well-posed σ and stable-pertinent
parameter matrices, the concerned neural network comprises
a stochastic sequence of weakly dependent variables as the
depth goes to infinity.

Proof. Let Ht
s denote the distribution of the random variable

sequence {Zs, Zs+1, . . . , Zt}, where 0 ≤ s < t, and Z−t =
(Z0, . . . , Zt) indicates the vector of random variables before
the timestamp t. We define a coefficient [13] as

β(s) = sup
t

EZ−t
[
‖H+∞

t+s (· | Z−t)−H+∞
t+s (·)‖µ

]
,

where H(·|·) stands for a conditional probability distribution,
and µ denotes a probability measure, or equally the σ-algebra
of events G [14], which satisfies

‖P −Q‖µ = sup
z∈G
|P (z)−Q(z)| ,

for two probability distributions P and Q. According to
Eq. (1), we have Zl = σ(W̃lZ̃l−1) for all l ∈ [L], where
W̃l = (Wl, bl) and Z̃l−1 = (Zl−1; 1). Given the well-posed
σ and stable-pertinent parameter matrices, i.e., W̃l ∈ SP (σ)
for any l ∈ [L], the followings hold

∂Zl+s

∂Zl
≤ Rs and EZl,W̃

[
|Zl+sZl|
|Zl|

]
≤ Rs|Zl| ,

where Cσ‖W̃l‖ ≤ R < 1 and s ∈ N+. This implies that
(informally) the “dependence” between variables Zl and Zl+s

goes to be weak as s→∞. From Sklar’s theorem, we have

Hl+s(·) ∧Hl(·) = Cl(s) · Hl+s(·) · Hl(·) ,

where Cl(s) ∈ Ω(Rs) is the corresponding Copula function.
Further, it holds

H+∞
l+s (· | Z−l)−H+∞

l+s (·) =
∑
l

Cl(s) ·H+∞
l+s (·) · Hl(·) .

Since Cl(s) is independent to the layer (i.e., time) index l, we
assert that β(s) is proportional to Cl(s). Thus, we have

β(s)→ 0 as s→ +∞ .

Therefore, the sequence {Zt} led by Eq. (1) is β-mixing, or
equally weakly dependent, which completes the proof.

Lemma 2. Suppose that (i) a random variable sequence
{Zs}ts=1 is weakly independent, satisfying β-mixing with an
exponential convergence rate, (ii) for ∀s ∈ [t], we have

E[Zs] = 0 and E[(Zs)2] <∞.

Let Λt = Z1 + Z2 + · · ·+ Zt, then we have

µ
def
= lim

t→∞
E[Λt] = 0 and υ2 def

= lim
t→∞

E(Λ2
t )/t <∞ .

Further, the limit variable Λt/(υ
√
t) converges in distribution

to N (0, 1) as t→∞, provided υ 6= 0.

Lemma 2 is a variant of the generalized Central Limit
Theorem under weak dependence. The proof idea can be
summarized as follows. From [15], it’s observed that an β-
mixing sequence with an exponential convergence rate can be
covered by the α-mixing one with O(t−5). Thus, the condi-
tions of Lemma 2 satisfy the preconditions of the generalized
Central Limit Theorem under weak dependence [11, Theorem
27.5]. This lemma also has alternative proofs according to
the encyclopedic treatment of limit theorems under mixing
conditions. Interested readers can refer to [16] for more details.

Finishing the Proof of Theorem 1. Let zl denote the out-
put variables of the l-th layer, which satisfies that zl+1 =
σ(Wl+1zl + bl+1) and z0 = x. Because the weights and
biases are taken to be i.i.d., the sequence {zl} (l ∈ [L]) leads
to a stochastic process, and the post-activations in the same
layer, such as zli and zlj are independent for i 6= j. Given an
integer ~ ∈ N+, we select a sub-sequence of {zl} as follows:

Z l1~ = {zl1+~, zl1+2~, . . . ,zl1+κ~, . . . } ,

for l1 ∈ [L] and κ ∈ N+, which satisfies l1 + κ~ ≤ L. From
Lemma 1, the sequence Z l1~ leads to a weakly dependent
stochastic process. Aggregating this sub-sequence with κ
shortcut connections to the output layer, the output of the
concerned neural network converges to a Gaussian process
as κ→∞ as well as L→∞, from Lemma 2. �

ResNet

Ours

Fig. 2. Both ResNet and ours can be regarded as wide networks in the
unraveled view.

Discussions. To the best of our knowledge, our proposed
NNGP(d) is the first NNGP induced by increasing depth.
Currently, there is no rigorous definition for width and depth.
The way we claim depth just aligns with the conventional
usage of the width and depth for a neural network, in which
the depth is understood as the maximum number of neurons
among all possible routes from the input to the output, and
the width is the maximum number of neurons in a layer. As
illustrated in Figure 2, if examined in an unraveled view, our
network is a simultaneously wide and deep network due to
the layer reuse in different routes. However, we argue that this
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will not affect our claim because not every layer has an infinite
width in the unraveled view, which is different from the key
character of NNGP(w). What’s more, the conventional usage
is more acceptable relative to the unraveled view; otherwise,
it is against common sense because the ResNet is also a wide
network in the unraveled view.

The existence of the proposed NNGP(d) kernel relies heav-
ily on the generalized Central Limit Theorem, which holds
on three conditions as mentioned in Lemma 2: i) The random
variable sequence is weakly dependent; ii) the random variable
maintains a finite mathematical variance; iii) the input data are
drawn from a compact set. According to these conditions, we
make two remarks. First, as shown in Lemma 1, ~ provides
a separation of the network depth to ensure that the layers
at both ends of the separation interval are weakly dependent.
Therefore, ~ is not necessarily an equal separation. Second,
our proof doesn’t prescribe the distribution of the input data,
as long as the input data are drawn from a compact set.

B. Uniform Tightness of NNGP(d)

In this subsection, we delineate the asymptotic behavior of
NNGP(d) as the depth goes to infinity. Here, we assume that
the weights and biases are i.i.d. sampled from N (0, η2). Per
the conditions of Theorem 1, we have the following theorem:

Theorem 2. For any l1 ∈ [L], the stochastic process, de-
scribed in Lemma 1, is uniformly tight in C(Rd,R).

Theorem 2 reveals that the stochastic process contained by
our network (illustrated in Figure 1) is uniformly tight, which
is an intrinsic characteristic of NNGP(d). Based on Theorem 2,
one can obtain not only the functional limit and continuity
properties of NNGP(d), in analogy to the results of NNGP(w)

[17]. Similarly, we start the proof of Theorem 2 with some
useful lemmas.

Lemma 3. Let {Z1, Z2, . . . , Zt} denote a sequence of random
variables in C(Rd,R). This stochastic process is uniformly
tight in C(Rd,R), if (1) x = 0 is a uniformly tight point of
Zs(x) (s ∈ [t]) in C(Rd,R); (2) for any x,x′ ∈ Rd and s ∈
[t], there exist α, β, C > 0, such that E [|Zs(x)− Zs(x′)|α] ≤
C‖x− x′‖β+d.

Lemma 3 is the core guidance for proving Theorem 2. This
lemma can be straightforwardly derived from Kolmogorov
Continuity Theorem [18], provided the Polish space (R, | · |).

Lemma 4. Based on the notations of Lemma 3, x = 0 is a
uniformly tight point of Zs(x) (s ∈ [t]) in C(Rd,R).

Proof. It suffices to prove that 1) x = 0 is a tight point of
Zs(x) (s ∈ [t]) in C(Rd,R) and 2) the statistic (Z1(0)+ · · ·+
Zs(0))/s converges in distribution as s → ∞. Note that 1)
is self-evident since every probability measure in (R, | · |) is
tight [19]; 2) has been proved by Theorem 1. Therefore, we
finish the proof of this lemma.

Remark. Notice that the convergence in distribution ( d→)
from Lemmas 2 and 4 paves the way for the convergence
of expectations. Specifically, provided a linear and bounded

functional F : C(Rd;Rn∗
) → R as L → ∞ and a func-

tion f which satisfies that f(x;θ)
d→ f∗, then we have

F(f(x;θ))
d→ F(f∗) and E [F(f(x;θ))] → E [F(f∗)]

according to General Transformation Theorem [20, Theorem
2.3] and Uniform Integrability [21], respectively. These results
may serve as solid bases for development and applications of
NNGP(d) in the future.

Lemma 5. Based on the notations of Lemma 3, for any x,x′ ∈
Rd and s ∈ [t], there exist α, β, C > 0, such that

E
[
sup
i

∣∣Zsi (x)− Zsi (x′)
∣∣α] ≤ C‖x− x′‖β+d .

The proof of Lemma 5 can be accessed from Appendix
A. Further, Theorem 2 can be completely proved by invoking
Lemmas 4 and 5 into Lemma 3.

C. Tight Bound for the Smallest Eigenvalue

In this subsection, we provide a tight bound for the smallest
eigenvalue of the NNGP(d) kernel. For the NNGP(d) with
ReLU activation, we have the following theorem:

Theorem 3. Suppose that x1, . . . ,xN are i.i.d. sampled from
PX = N (0, η2), and PX is a well-scaled distribution, then
for an integer r ≥ 2, with probability 1 − δ > 0, we have
λmin (KD,D) = Θ(d), where

δ ≤ Ne−Ω(d) +N2e−Ω(dN−2/(r−0.5)) .

Theorem 3 provides a tight bound for the smallest eigen-
value of the NNGP(d) kernel. This nontrivial estimation mir-
rors the characteristics of this kernel, and usually be used as
a key assumption for optimization and generalization.

The key idea of proving Theorem 3 is based on the follow-
ing inequalities about the smallest eigenvalue of real-valued
symmetric square matrices. Given two symmetric matrices
P,Q ∈ Rm×m, it’s observed that{

λmin(PQ) ≥ λmin(P) min
i∈[m]

Q(i, i) ,

λmin(P + Q) ≥ λmin(P) + λmin(Q) .
(4)

From Eqs. (2) and (3), we can unfold K(xi,xj) as a sum
of covariance of the sequence of random variables {zl1+κ~}.
Thus, we can bound λmin (KD,D) by Cov(zl1 , zl1) via a chain
of feedforward compositions in Eq. (1). For conciseness, we
put the proof of Theorem 3 into Appendix B.

IV. EXPERIMENTS

Generally, the depth can endow a network with a more
powerful representation ability than the width. However, it is
unclear whether or not the superiority of depth can sustain in
the setting of NNGP, as all parameters are random rather than
trained. In other words, it is unclear whether our established
NNGP(d) is more expressive than NNGP(w). To answer this
question, in this section, we apply the NNGP(d) kernel into the
generic regression task and then compare its performance on
the Fashion-MNIST (FMNIST) and CIFAR10 data sets with
that of NNGP(w).
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NNGP(d) regression. Provided the data set D =
{(xi, yi)}Ni=1, where xi ∈ Rd×1 is the input, and yi ∈ R
is the corresponding label, our goal is to predict y∗ for the
test sample x∗. From Theorem 1, xi and x∗ belong to a
multivariate Gaussian process N (0,K∗), whose mean equals
to 0, and covariance matrix has the following form:

K∗ =

[
KD,D K>x∗,D
Kx∗,D Kx∗,x∗

]
, (5)

where KD,D is an N × N matrix computed by Eq. (3), and
the i-th element of Kx∗,D ∈ R1×N is K(x∗,xi) for xi ∈
D. It’s observed that Eq. (5) provides a division paradigm
corresponding to the training set and test sample, respectively.
Thus, we have (· | D,x∗) ∈ N (µ∗,K∗) with{

µ∗ = Kx∗,DKD,Dy
>,

K∗ = Kx∗,x∗ −Kx∗,DK
−1
D,DK

>
x∗,D ,

(6)

where y = (y1, y2, . . . , yn) denotes the label vector. When the
observations are corrupted by the Gaussian additive noise of
N (0, η2), Eq. (6) becomes{

µ∗ = Kx∗,D(KD,D + η2In)y> ,

K∗ = Kx∗,x∗ −Kx∗,D(KD,D + η2In)−1K>x∗,D ,
(7)

where In is the n × n identity matrix. For numerical imple-
mentation, we calculate the kernels as, for xi,xj ∈ D,

K(xi,xj) = E[〈g(xi;θ), g(xj ;θ)〉] , (8)

where g(·;θ) indicates the deep network or wide network.
Experimental setups. We conduct regression experiments

on FMNIST and CIFAR10 data sets. We respectively sample
1k, 2k, and 3k data from the training sets to construct two
kernels and then test the performance of kernels on the test
sets. Here, we employ a one-hidden-layer wide network to
compute the NNGP(w) kernel, whereas the width of the deep
network is set to the number of classes which is the smallest
possible width for prediction tasks. For a fair comparison, the
depth of NNGP(d) and the width of NNGP(w) are equally set
to 200 (~ = 1). For classification tasks, the class labels are
encoded into an opposite regression formation, where incorrect
classes are −0.1 and the correct class is 0.9 [1]. For two net-
works, we employ tanh as the activation function. Following
the setting of NNGP(w) [1], all weights are initialized with a
Gaussian distribution of the mean 0 and the variance of 0.3/nl
for normalization in each layer, where nl is the number of
neurons in the l-th layer. The initialization is repeated 200
times to compute the empirical statistics of the NNGP(d) and
NNGP(w) based on Eq. (8). We also run each experiment 5
times for counting the mean and variance of accuracy. All
experiments are conducted on Intel Core-i7-6500U.

Results. Table II lists the performance of the regression
experimental results using NNGP(d) and NNGP(w) kernels. It
is observed that the test accuracy of NNGP(d) and NNGP(w)

kernels are comparable to each other, which implies that
NNGP(d) and NNGP(w) kernels are similar to each other in
representation ability. The reason may be that both NNGP(d)

and NNGP(w) kernels are not stacked kernels. Their difference

TABLE II
TEST ACCURACY OF REGRESSION EXPERIMENTS BASED ON NNGP(d)

AND NNGP(w) KERNELS.

Model FMNIST Test accuracy CIFAR10 Test accuracy

NNGP(d)
1k 0.345±0.016 1k 0.166±0.018

NNGP(w) 0.342±0.021 0.187±0.018
NNGP(d)

2k 0.352±0.019 2k 0.178±0.007
NNGP(w) 0.373±0.030 0.188±0.012
NNGP(d)

3k 0.372 ±0.024 3k 0.182±0.005
NNGP(w) 0.365±0.007 0.185±0.019

is mainly the aggregation of independent or weakly dependent
variables. Thus, their ability should be similar [1].

Next, we use the angular plot to investigate how the separa-
tion ~ affects the representation ability of the NNGP(d) kernel.
The angle is computed according to

α = arccos

(
K(x1,x2)√

K(x1,x1) ·K(x2,x2)

)
,

and the angular plot manifests the relationship between kernel
values and angles. If an angular plot comes near zero, the
kernel cannot well recognize the difference between samples.
Otherwise, the kernel is regarded to have a better discrimi-
native ability. We set the network depth to 200 × ~ so that
the NNGP(d) kernel is empirically computed by aggregating
κ = 200 shortcut connections with a separation of ~ between
neighboring shortcut connections. Figure 3 illustrates the an-
gularities of NNGP(d) kernels with ~ = 1, 3 for FMNIST-1k
training data. It is observed that the angular plot of the kernel
with ~ = 3 is compressed to be closer to zero relative to that of
the kernel with ~ = 1, which implies that a smaller separation
~ may induce a powerful NNGP(d) kernel.

To have a better understanding of the proposed NNGP(d)

kernel, we explore the impacts of the separation ~, the number
of samples, the parameter variance, and the network size on
it, as well as the computation time of the kernel in Appendix
C. We have shared all our code in link1 and link2.

Fig. 3. Angularities of NNGP(d) kernels with various ~.

V. RELATED WORK

Deep Learning and Kernel Methods. There have been
great efforts on correspondence between deep neural networks
and Gaussian processes. Neal et al. [4] presented the seminal
work by showing that a one-hidden-layer network of infinite
width turns into a Gaussian process. Cho et al. [22] linked
the multi-layer networks using rectified polynomial activation

https://github.com/FengleiFan/NNGP_by_Depth
http://www.lamda.nju.edu.cn/zhangsq/
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with compositional Gaussian kernels. Lee et al. [1] showed
that the infinitely wide fully-connected neural networks with
commonly-used activation functions can converge to Gaussian
processes. Recently, the NNGP has been scaled to many
types of networks including Bayesian networks [23], deep
networks with convolution [24], and recurrent networks [3].
Furthermore, Wang et al. [25] wrote an inclusive review for
studies on connecting neural networks and kernel learning.
Despite great progress, all existing works about NNGP still
rely on increasing width to induce the Gaussian processes,
yet we go into the depth paradigm and offer an NNGP by
increasing depth, which not only complements the existing
theory to a good degree but also enhances our understanding
to the true picture of “deep” learning.

Developments of NNGPs. Recent years have witnessed
a growing interest in neural network Gaussian processes.
NNGPs can provide a quantitative characterization of how
likely certain outcomes are if some aspects of the system
are not exactly known. In the experiments of [1], an explicit
estimate in the form of variance prediction is given to each
test sample. Besides, Pang et al. [26] showed that the NNGP is
good at handling data with noise and is superior to discretizing
differential operators in solving some linear or nonlinear
partially differential equations. Park et al. [27] employed the
NNGP kernel in the performance measurement of network
architectures for the purpose of speeding up the neural archi-
tecture search. Dutordoir et al. [28] presented the translation
insensitive convolutional kernel by relaxing the translation
invariance of deep convolutional Gaussian processes. Lu et
al. [29] proposed an interpretable NNGP by approximating an
NNGP with its low-order moments.

VI. CONCLUSIONS AND PROSPECTS

In this paper, we have presented the first depth-induced
NNGP (NNGP(d)) based on a width-depth symmetry consid-
eration. Next, we have characterized the basic properties of the
proposed NNGP(d) kernel by proving its uniform tightness and
estimating its smallest eigenvalue, respectively. Such results
serve as a solid base for the understanding and application of
the derived NNGP, such as the generalization and optimization
properties and Bayesian inference with the NNGP(d). Lastly,
we have conducted regression experiments on image classi-
fication and showed that our proposed NNGP(d) kernel can
achieve a performance comparable to the NNGP(w) kernel.
Future efforts can be put into scaling the proposed NNGP(d)

kernel into more applications.
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Appendices of ’Neural Network Gaussian Processes by
Increasing Depth’
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In Appendices A-B, we prove the uniform tightness of
the depth-induced kernel and provide the tight bound of
the smallest eigenvalue. In Appendix C, to have a better
understanding of the proposed NNGP(d) kernel, we explore
the impacts of the separation ~, the number of samples, the
parameter variance, and the network size on it, as well as the
computation time of the kernel.

A. Uniform Tightness of NNGP(d)

Lemma 1 (Lemma 5 in the manuscript). Based on the
notations in the manuscript, for any x,x′ ∈ Rd and s ∈ [t],
there exist α, β, C > 0, such that

E
[
sup
i

∣∣Zsi (x)− Zsi (x′)
∣∣α] ≤ C‖x− x′‖β+d.

Proof. This proof follows mathematical induction. Before that,
we show the following preliminary result. Let θ be one element
of the augmented matrix (Wl, bl) at the l-th layer, then we
can formulate its characteristic function as

ϕ(t) = E
[
eiθt
]

= e−η
2t2/2 with θ ∼ N (0, η2),

where i denotes the imaginary unit with i =
√
−1. Thus, the

variance of hidden random variables at the lth layer becomes

σ2
l = η2

[
1 +

1

nl

nl∑
i=1

∣∣ϕ ◦ Zl−1
i

∣∣2] . (1)

Since the activation σ is a well-posed function and (Wl, bl) ∈
SP (σ), we affirm that ϕ is Lipschitz continuous (with Lips-
chitz constant Lϕ).

Now we start the mathematical induction. When s = 1, for
any x,x′ ∈ Rd and s ∈ [t], we have

E
[
sup
i

∣∣Z1
i (x)− Z1

i (x′)
∣∣α] ≤ Cη,θ,α‖x− x′‖α,

where Cη,θ,α = ηα E[|N (0, 1)|α]. Per mathematical induction,
for s ≥ 1, we have

E
[
sup
i

∣∣Zsi (x)− Zsi (x′)
∣∣α] ≤ Cη,θ,α‖x− x′‖α.
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Thus, one has

E
[
sup
i

∣∣Zsi (x)− Zsi (x′)
∣∣α]

≤ (Cσ)α E[|N (0, 1)|α]
∣∣Zs−1
j (x)− Zs−1

j (x′)
∣∣α, (2)

where

Cσ = σ2
0(x)− 2Σx,x′ + σ2

0(x′)

=
η2

ns−1

ns−1∑
j=1

∣∣ϕ ◦ Zs−1
j (x)− ϕ ◦ Zs−1

j (x′)
∣∣2 (from Eq. (1))

≤
η2L2

ϕ

ns−1

ns−1∑
j=1

∣∣Zs−1
j (x)− Zs−1

j (x′)
∣∣2.

Thus, Eq. (2) becomes

E
[
sup
i

∣∣Zsi (x)− Zsi (x′)
∣∣α] ≤ C ′η,θ,α∣∣Zs−1

j (x)−Zs−1
j (x′)

∣∣α,
where

C ′η,θ,α =
(ηLϕ)α

ns−1

ns−1∑
j=1

∣∣Zs−1
j (x)−Zs−1

j (x′)
∣∣α E[|N (0, 1)|α].

Iterating this argument, we obtain

E
[
sup
i

∣∣Zsi (x)− Zsi (x′)
∣∣α] ≤ Cη,θ,α‖x− x′‖α,

where
Cη,θ,α = ηα(s+1)Lαsϕ E[|N (0, 1)|α]s+1.

The above induction holds for any positive even α. Let β =
α− d > 0, then this lemma is proved as desired.

B. Tight Bound for the Smallest Eigenvalue

Theorem 1 (Theorem 3 in the manuscript). Suppose that
x1, . . . ,xN are i.i.d. sampled from PX = N (0, η2) and PX
is a well-scaled distribution, then for an integer r ≥ 2, with
probability 1− δ > 0, we have λmin (KD,D) = Θ(d), where

δ ≤ Ne−Ω(d) +N2e−Ω(dN−2/(r−0.5)).

We begin this proof with the following lemmas.

Lemma 2. Let f : Rd → R be a Lipschitz continuous function
with constant L and PX denote the Gaussian distribution
N (0, η2), then for ∀ δ > 0, there exists c > 0, s.t.

P
(∣∣∣∣f(x)−

∫
f (x′) dPX (x′)

∣∣∣∣ > δ

)
≤ 2e

−cδ2

L2 . (3)

Lemma 2 shows that the Gaussian distribution correspond-
ing to our samples satisfies the log-Sobolev inequality (i.e.,
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Eq. (3)) with some constants unrelated to dimension d. This
result also holds for the uniform distributions on the sphere or
unit hypercube [1].

Lemma 3. Suppose that x1, . . . ,xN are i.i.d. sampled from
N (0, η2), then with probability 1− δ > 0, we have

‖xi‖2 = Θ(
√
d) and |〈xi,xj〉|r ≤ dN−1/(r−0.5),

for i 6= j, where

δ ≤ Ne−Ω(d) +N2e−Ω(dN−2/(r−0.5)).

Proof. From Definition 1 of the manuscript, we have∫
‖x‖22 dPX(x) = Θ(d).

Since x1, . . . ,xn are i.i.d. sampled from PX = N (0, η2),
for ∀ i ∈ [N ], we have ‖xi‖22 = Θ(d) with probability at
least 1−NeΩ(d). Provided xi, the single-sided inner product
〈xi, ·〉 is Lipschitz continuous with the constant L = O(

√
d).

As such, from Lemma 2, for ∀ j 6= i, we have

P (|〈xi,xj〉| > δ∗) ≤ 2e−δ
2/L2

.

Then, for r ≥ 2, we have

P
(

max
j 6=i
|〈xi,xj〉|r > δ∗

)
≤ N2e−Ω(δ∗2).

We complete the proof by setting δ∗ ≤ dN−1/(r−0.5).

Proof of Theorem 1. We start this proof with some notations.
Recall the empirical NNGP(d) kernel KD,D. For convenience,
we force n∗ = |z1|# = |z2|# = · · · = |zL|#. We also
abbreviate the covariance Cov(zl1+κ~, zl1+κ~) as Cl1+κ~ and
pick l1 = 1 throughout this proof.

Unfolding the NNGP(d) kernel equation

K(xi,xj) = E[〈f(xi;θ), f(xj ;θ)〉], for xi,xj ∈ D,
(4)

we have

K(xi,xj) =
1

Mz

∑
κ

ϕκ +
∑
κ1 6=κ2

φκ1,κ2

 , (5)

whereϕκ = E
[
〈zl1+κ~, zl1+κ~〉

]
,

φκ1,κ2
=
∑

p,q
E
[
zl1+κ1~
p zl1+κ2~

q

]
, for κ1 6= κ2,

in which the subscript p indicates the p-th element of vector
zl1+κ1~. From Theorem 1 of the manuscript, the sequence
of random variables {zl1 , zl1+~, . . . ,zl1+κ~} is weakly de-
pendent with β(s) → ∞ as s → ∞. Thus, φκ1,κ2

is an
infinitesimal with respect to l1 + |κ2 − κ1|~ when κ1 6= κ2

and ~ is sufficiently large.
Invoking the following equations{

λmin(PQ) ≥ λmin(P) min
i∈[m]

Q(i, i) ,

λmin(P + Q) ≥ λmin(P) + λmin(Q)
(6)

into Eq. (5), we have

λmin(KD,D) ≥
∑

κ
λmin (Cl1+κ~) , (7)

λmin (Cl1+κ~) ≥ λmin (Cl1+κ~−1) , for κ ∈ N. (8)

Iterating Eq. (8) and then invoking it into Eq. (7), we have

λmin(KD,D) ≥
∑

κ
λmin (C1) . (9)

From the Hermite expansion [2] of ReLU function, we have

µr(σ) = (−1)
r−2
2 (r − 3)!!/

√
2πr! , (10)

where r ≥ 2 indicates the expansion order. Thus, we have

λmin (C1) = λmin

(
σ(W1X)σ(W1X)>

)
≥ µr(σ)2λmin

(
X(r)

(
X(r)

)>)
≥ µr(σ)2

(
min
i∈[N ]

‖xi‖2r2 − (N − 1) max
j 6=i
|〈xi,xj〉|r

)
≥ µr(σ)2Ω(d) ,

(11)

where the superscript (r) denotes the r-th Khatri Rao power
of the matrix X, the first inequality follows from Eq. (10),
the second one holds from Gershgorin Circle Theorem [3],
and the third one follows from Lemma 3. Therefore, we can
obtain the lower bound of the smallest eigenvalue by plugging
Eq. (11) into Eq. (9)

On the other hand, it’s observed from Lemma 1 of the
manuscript that for l ∈ [L],{
‖zlp‖22 = EWl

p

[
σ(Wl

pz
l−1)2

]
= ‖zlq‖2, for ∀q 6= p,

‖zl‖22 = EWl

[
σ(Wlzl−1)2

]
≤ ‖zl‖22.

(12)
Thus, we have

λmin(KD,D) ≤ tr(KD,D)

N
=

1

N

N∑
i

K(xi,xi)

≤ 1

N

N∑
i

1

Mz

∑
κ

ϕκ +
∑
κ1 6=κ2

φκ1,κ2


≤ 1

N

N∑
i

(
1

κ

∑
κ

max
j∈[N ]

‖xj‖22 + Ω(d)

)
≤ Θ(d),

where the second inequality follows from Eq. (5), the third
one follows from Eq. (12), and the fourth one holds from
Lemma 3. This completes the proof. �

C. Analysis Experiments

To have a better understanding of the proposed NNGP(d)

kernel, here we explore the impacts of the separation ~, the
number of samples, the parameter variance, and the network
size on it, as well as the computation time. Now we introduce
them one by one.

The impact of ~. We set the network depth to 200 × ~
so that the NNGP(d) kernel is empirically computed by
aggregating κ = 200 shortcut connections with a separation
of ~. For a comprehensive comparison, ~ is selected from
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TABLE I
TEST ACCURACY ON THE FMNIST TEST DATA BY THE NNGP(d) KERNEL

INDUCED WITH DIFFERENT ~.

~ Test accuracy
1 0.329±0.027
2 0.198±0.027
3 0.179±0.022
4 0.145±0.014
5 0.146±0.017

{1, 2, 3, 4, 5}. Next, the NNGP(d) kernels are constructed with
these networks and FMNIST-4k training data. All parameters
are initialized with a mean of 0 and a variance of 0.5. Table
I demonstrates the testing performance of so-built NNGP(d)

kernels with respect to the FMNIST test data. As suggested by
our angular plot analysis in the main body, the kernel with a
larger ~ is compressed to be closer to zero relative to the kernel
with a lower ~. Correspondingly, the kernel with a larger ~
should have lower discriminative ability. Table I shows that a
larger ~ leads to an inferior test accuracy, which agrees with
our analysis. We conclude that the separation ~ should be set
to a smaller number to make a powerful NNGP(d) kernel.

The impact of number of samples. Here we investigate
the impact of the number of training samples on the model’s
performance. We still conduct regression experiments on FM-
NIST and CIFAR-10 data sets. Following the configurations
in the main body, we respectively sample 1k, 2k, 3k, 4k,
5k data from the training sets to construct NNGP(d) and
NNGP(w) kernels. Figure 1 shows the testing accuracy and
its associated error bars of two kernels on FMNIST and
CIFAR-10. Regarding the NNGP(d) kernel, its test accuracy
culminates at 3k for both datasets. While for NNGP(w) kernel,
the maximum accuracy is reached at 2k and 3k for FMNIST
and CIFAR-10, respectively. We conclude that NNGP(w) and
NNGP(d) kernels have a similar performance-sample behavior.
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Fig. 1. The performance of the NNGP(d) and NNGP(w) kernels constructed
by different number of samples on FMNIST and CIFAR-10.

The impact of parameter variance and network size.
We construct a synthetic data set to investigate the impact of
variance and network size on the model’s performance. The
task is to use the NNGP(w) and NNGP(d) kernels to fit a
function: f(x) = sin(x) over [0, π]. A total of 200 data points

are evenly sampled from [0, π], from which 100 points are
randomly sampled for training and the rest for testing.

Similarly, we employ a one-hidden-layer wide network for
computing the NNGP(w) kernel whose width is cast from
{500, 1000, 2000}. In contrast, we use a deep network for the
NNGP(d) kernel whose depth is cast from {100, 200, 500}.
The width of the deep network is set to 30, and ~ = 1.
No label encoding is needed here because this is not a
classification task. For two networks, we take tanh as the
activation function. For the NNGP(w), all weights are initial-
ized with a Gaussian distribution of mean 0 and variance of
{0.3, 0.5, 0.8}/nl, where nl is the number of neurons in the l-
th layer. For NNGP(d), all weights are initialized with a Gaus-
sian distribution of mean 0 and variance of {0.2, 0.3, 0.5}. The
initialization is repeated 200 times to compute the empirical
statistics of the NNGP(d) and NNGP(w). We run each model
10 times to count the mean and variance of accuracy. All
experiments are conducted on an NVIDIA TITAN Xp GPU.

0 /2
x

-0.2

0

0.2

0.4

0.6
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y

Fitting Curves via NNGP(d) and NNGP(w)

Ground Truth

NNGP(d) Prediction

NNGP(w) Prediction

Fig. 2. The fitting curves of the NNGP(d) and NNGP(w) kernels for a sine
function over [0, π].

Table II shows the performance of NNGP(d) and NNGP(w)

kernels with respect to different variances and network sizes,
from which we draw two highlights. The first is that with the
same network size, the NNGP(d) kernel favors a lower vari-
ance, while the NNGP(w) kernel is on the contrary. The second
one is that increasing the network size may not necessarily give
rise to a lower MSE. In fact, it depends on the variance. For
the NNGP(d) kernel, when σ = 0.2, increasing the network
depth is beneficial, whereas when σ = 0.3, increasing the
network depth hurts the performance. Figure 2 presents the
fitting curves of the NNGP(d) (σ = 0.2, depth=200) and
NNGP(w) (σ = 0.5, width=1000) kernels for sin(x), where
the curve of NNGP(w) is more accurate in [0, π/2] and the
curve of NNGP(d) is more accurate in [π/2, π].

Computation time. Here, we also compare the time spent
on constructing the NNGP(d) and NNGP(w) kernels relative
to different numbers of samples. We sample the data from
FMNIST. The network size is 200 for both deep and wide
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TABLE II
THE MSE SCORES OF NNGP(d) AND NNGP(w) KERNELS WITH RESPECT TO DIFFERENT VARIANCES AND NETWORK SIZES ON THE SYNTHETIC

DATASET.

NNGP(w)
width=500 width=1000 width=2000

σ = 0.3 σ = 0.5 σ = 0.8 σ = 0.3 σ = 0.5 σ = 0.8 σ = 0.3 σ = 0.5 σ = 0.8
0.1240±0.0279 0.1051±0.0317 0.1143±0.0208 0.1350±0.0243 0.1092±0.0438 0.1075±0.0389 0.1255± 0.0158 0.0920± 0.0444 0.1006±0.0275

NNGP(d)
depth=100 depth=200 depth=500

σ = 0.2 σ = 0.3 σ = 0.5 σ = 0.2 σ = 0.3 σ = 0.5 σ = 0.2 σ = 0.3 σ = 0.5
0.1437± 0.0217 0.1808 ±0.0443 0.2184±0.0188 0.1310±0.0635 0.1926±0.0436 0.1742±0.0442 0.0917±0.0391 0.2056±0.0304 0.2384±0.1308

networks. ~ is 1 for the deep network. Previously, we repeat
the initialization 200 times to compute a kernel. Here, the
repetition time is set to 1 for convenience. The experiment
is conducted on Intel Core-i7-6500U. As shown in Table
III, generally, it is more expensive to construct the NNGP(d)

kernel than the NNGP(w) kernel. However, the difference in
computation time is no more than 2×, as the number of
samples increases. This might be because we use the CPU
which does not admit parallel acceleration.

TABLE III
THE COMPUTATION TIME IN CONSTRUCTING THE NNGP(d) AND

NNGP(w) KERNELS.

#Sample NNGP(d) NNGP(w)

1k 0.011s 0.057s
2k 0.173s 0.083s
3k 0.228s 0.160s
4k 0.286s 0.226s
5k 0.444s 0.342s
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