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Abstract

The optimal transport (OT) map is a geometry-driven transformation between
high-dimensional probability distributions which underpins a wide range of tasks
in statistics, applied probability, and machine learning. However, existing statistical
theory for OT map estimation is quite restricted, hinging on Brenier’s theorem
(quadratic cost, absolutely continuous source) to guarantee existence and unique-
ness of a deterministic OT map, on which various additional regularity assumptions
are imposed to obtain quantitative error bounds. In many real-world problems
these conditions fail or cannot be certified, in which case optimal transportation
is possible only via stochastic maps that can split mass. To broaden the scope of
map estimation theory to such settings, this work introduces a novel metric for
evaluating the transportation quality of stochastic maps. Under this metric, we
develop computationally efficient map estimators with near-optimal finite-sample
risk bounds, subject to easy-to-verify minimal assumptions. Our analysis further
accommodates common forms of adversarial sample contamination, yielding es-
timators with robust estimation guarantees. Empirical experiments are provided
which validate our theory and demonstrate the utility of the proposed framework
in settings where existing theory fails. These contributions constitute the first
general-purpose theory for map estimation, compatible with a wide spectrum of
real-world applications where optimal transport may be intrinsically stochastic.

1 Introduction

Optimal transport (OT) is a principled framework for comparing and transforming probability
distributions according to the geometry of the underlying metric space [Villani, [2003], Santambrogiol
2015|]. Central to OT theory is the transport map, which performs said transformation. For X', Y C R¢,
we say that T : X — Y is a transport map from source distribution p € P(X) to target v € P(Y) if
the pushforward measure Typ1 = p1 0 T coincides with v. An optimal transport map 7™, if it exists,
is a solution to the Monge OT problem from p to v, which reads as follows for the p-Wasserstein cost:
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Monge maps are employed for many applications, including domain adaptation [Courty et al.| 2017,
Redko et al.}2019], single-cell genomics [Schiebinger et al.l 2019, [Bunne et al.,[2023|], style transfer
[Kolkin et al., 2019} Mroueh, |2020]], and generative modeling [Zhang et al., 2018}, |Vesseron et al.,
2025]]. An important special case is when p = 2 and p is absolutely continuous with respect to
(w.r.t.) the Lebesgue measure; then, Brenier’s theorem guarantees the existence of a unique Monge
map, often called the Brenier map, given as the gradient of a convex potential [Brenier, |1991]]. More
generally, existence of optimal maps is guaranteed if y is absolutely continuous and uniqueness holds
if further p > 1 (see, e.g., Section 2.4 of |Villanil 2003).

There is a rich literature on formal guarantees for estimation of Brenier maps [Hiitter and Rigollet,
2021}, [Pooladian and Niles-Weed, 2021}, [Deb et al., 2021} Manole et al., [2024] (see related work).
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However, all of these works impose stringent regularity assumptions on the density of x (e.g., two-
sided bounds) and/or the unique Brenier map 7™ (e.g., Lipschitzness and Holder smoothness). This
is because the quality of the estimator is measured by its LP () distance from 7%, which inherently
requires uniqueness (otherwise, the LP(u) metric is meaningless) and hinges on said regularity
assumptions to obtain quantitative error bounds. However, such regularity assumptions are often
impossible to verify in practice. Worse yet, many real-world applications violate the conditions of
Brenier’s theorem, whence deterministic Monge maps may not exist, and optimal transportation
strategies require stochasticity. For instance, this is the case in domain adaptation whenever the source
distribution lies on a lower-dimensional manifold than the target [[Courty et al., 2017, Redko et al.,
2019], such as in text-to-image or sketch-to-photo translation. Similarly, single-cell developmental
trajectories branch over time, so any measure-preserving map from an early snapshot to a later one
must be stochastic [Schiebinger et al., 2019]. As such scenarios far exceed the account of current
OT map estimation theory, this work sets out to close this gap by providing a broadly applicable
estimation framework that offers strong recovery guarantees for a breadth of applications.

1.1 New Framework for Stochastic OT Map Estimation and Contributions

The Kantorovich OT problem [Kantorovich, |1942] relaxes that of Monge by allowing stochastic
maps. Reparametrizing the standard formulation via couplings in terms of Markov kernels, it reads as

s Proposed
W,(u,v) = min // z — y||Pdr(y|z)d x) , @2 &, framework
p(/J' ) nEKﬁX,)ﬂ( H yH (y| ) N( ) ) (all W, problems)
K/n =V

where k(-|-) varies over Markov kernels (regular conditional prob-
ability distributions) from A" to ) and rp denotes the pushfor-
ward measure | n(|x)du(x)ﬂ We propose a novel framework for
stochastic OT map estimation by furnishing a suitable error metric.
For source distribution p € P(X), target distribution v € P(}),
and kernel s from X to ), we define the transportation error
Ep(K; p, v) of k for the W, (u, ) problem by

Brenier’s Thm
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where [c]; = max{c,0} and k. (-) == k(:|z). Under &,, the Her circle, despite many OT
quality of & is thus measured by its transportation cost overhead P applications lying outside it.
on top of the optimum W, (p, v) (dubbed optimality gap), plus its The proposed estimation fram(?-
p-Wasserstein gap from matching the target v (the feasibility gap). work under &, covers all possi-
While the £, error metric naturally accounts for deterministic OT ble W, problems.(su.bject to tail
maps, it does not require uniqueness or even existence thereof. bounds for quantitative rates).
This enables treating OT map estimation settings far beyond those accounted by existing theory,
as illustrated in Figure |1| to the right. Remarkably, beyond the broad coverage of the proposed
framework, quantitative bounds on &£, can be derived under minimal and easy-to-verify assumptions,
rendering the guarantees applicable in practice.

Our technical contributions build upon a foundation of stability lemmas for &, established in Section
These characterize how &, responds to TV and Wasserstein perturbations of the input measures and to
compositions of the kernel. In Section 3| we apply these to finite-sample estimation and computation.
Here, our strongest result holds when v is sub-Gaussian and p has bounded 2pth moments, but
assuming no regularity of an optimal kernel. For i.i.d. samples X;,...,X,, ~pand Y7,...,Y, ~ v,
we present a rounding-based estimator &, which achieves E[E,,(fn; it, )] = Op g (nfl/ (d+2p)), with
running time O(n2+°d(1)) dominated by a single, low-accuracy call to an entropic OT solver. We
also observe a minimax lower bound of (n~1/(4V2P)) showing that our rate is near-optimal.

'The standard Kantorovich OT problem optimizes the cost over couplings 7w € TI(y, v/), but the disintegration
theorem yields that each such coupling can be decomposed as dn(z,y) = du(z)dn(y|z), where 7(+|-) is a
Markov kernel induced by conditioning on the left argument. When a coupling is induced by a deterministic
map T, i.e., m = (Id, T')3, the corresponding kernel  is given by ke = dr(z).



In Sectiond] we examine the statistical landscape of estimation when there exists a Holder continuous
optimal kernel, a condition that is still significantly weaker than typical assumptions for Brenier
map estimation when p = 2. In particular, for the case of a Lipschitz optimal kernel x4, i.e., when
Wy ((Kx)as (Kx)ar) S |l — /|| for all z, 2" € X, we show that kernel estimation under &, has the

same statistical complexity as estimating y and v under W,,, with rate 5(n‘1/ (dV2p)) - For this
reduction, we employ an estimator based on Wasserstein distributionally robust optimization.

In Section[5} we show that effective kernel estimation is possible in the presence of adversarial data
contamination. Historically, robust statistics has been well-studied under Huber’s e-contamination
model for global outliers, which is subsumed by TV e-corruptions of the input data [[Huber, |1964].
More recently, statisticians have examined robust estimation under localized Wasserstein corruptions
of the input samples [Zhu et al.,[2022},|Chao and Dobribanl 2023, |Liu and Loh}2023[]. We consider
a strong corruption model where the clean samples can be corrupted both in TV and under the
Wasserstein metric. This combination of local and global corruptions only has only explored recently
[Nietert et al.l [2023bl 2024} [Pittas and Pensia, [2024]], and their interaction has required careful
analysis. Here, stability of &£, enables us to cleanly decouple the two corruption types. Against
an adversary with TV budget € and W,, budget p, we show that a convolutional estimator achieves

error \/de'/? + \/dp'/ PV 4 O, 4(n~1/(4+2P)) An accompanying minimax lower bound of

Vde'? 4 dM /4 pl/2 4 =1/ (@V2P) implies a separation between robust map estimation under &p and
robust distribution estimation under W,,, where one can achieve linear dependence on p.

In Section[6], we validate our theory with numerical simulations for two settings with irregular OT
maps that are poorly suited for existing theory. These showcase the performance of our rounding
estimator and the benefits of £, over L?. Overall, our results constitute a general-purpose theory
for (possibly stochastic) OT map estimation, subject to minimal primitive assumptions. As such,
it is capable of providing formal performance guarantees in the &, sense in various practically
relevant settings.

Related work. Most related to this paper is a line of statistics work on the minimax sample
complexity of Brenier map estimation when p = 2, initiated by Hiitter and Rigollet|[2021]]. Under
density assumptions on p and smoothness conditions on the unique Brenier map 7™ (in particular,
Lipschitzness), they obtain near-optimal risk bounds of the form ||7" — T*|| L2 = O(n~Y9),
using empirical risk minimization for a semi-dual objective. The myriad of follow-ups include
Pooladian and Niles-Weed| [2021]], |[Deb et al.| [2021]], Manole et al.|[2024], all of which impose
density and smoothness assumptions. [Pooladian et al.| [2023]] considered the semi-discrete setting
where the Brenier map is piecewise constant, employing an estimator based on entropic OT (EOT).
Recently, Balakrishnan and Manole| [2025] provided refined guarantees that sidestep the typical
density assumptions, but they still rely on the Brenier map being the gradient of a sufficiently
regular convex potential. Lastly, a variety of neural map estimators have been developed by the
machine learning community [Seguy et al.,|[2018, Meng et al.,[2019, Wang and Goldfeld, |2024], with
applications to domain adaptation, style transfer, trajectory estimation, and the like.

Two recent approaches for neural map estimation warrant further discussion. First is the Monge gap
regularizer of [Uscidda and Cuturi|[2023]]. For the p-Wasserstein cost, this work proposes training a
deterministic map estimator to minimize the objective J,(T'; , v) = My (T; n) + D(Typ, v), where
D is a statistical divergence and the Monge gap M,, is defined by

My (T 1) = / e = T(@)IIP dpu(z) — Wy (i, Top)?. 3)

They show that M,, > 0 with equality if and only if T" is c-cyclically monotone over supp(u). Con-
sequently, 7, nullifies exactly when T is optimal for the W, (u, /) problem. The statistical analysis
of that work accounts for consistency, under the assumption that a deterministic and continuous
optimal map exists. In practice, they suggest taking D as an EOT cost, estimating W,, with EOT, and
substituting ¢ and v with their empirical measures. Parameterizing 7" via a multilayer perceptron,
they achieve competitive empirical performance on a range of map estimation tasks. As we will show
in Section |2} £, and J,, are very connected; in particular, they coincide up to constant factors when
p=1and A = W;. We view &, as better suited for quantitative statistical analysis, enabling rates
which seem difficult to prove under 7, for general p (and we are unaware of any existing rates proven
under 7). On the other hand, as discussed in Section @, we find that 7, is better suited for neural
implementation, since its gradients seem to carry a stronger signal when far from optimality.
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Figure 2: Diagrams of 2 maps and a kernel for W),(u, v), where in each 1 is uniform over the blue
line connecting (0, 0) and (0,1) and, in orange, v = T} u for T*(z) = ((— 1)l#2/8] 25). We depict
T* on the left, T(x) = (—(—1)*2/%] z,) in the center, and kernel ,, = Unif({(—1,z2), (1,22)})
on the right. While 7" and « are far from 7™ in an L” sense, they achieve £, < ¢ (indeed, both T" and
k achieve zero optimality gap and at most J feasibility gap). Taking § — 0, T becomes impossible
to recover from finite samples, whereas x can be estimated effectively.

Lastly, there is an existing line of work on the design of neural estimators for stochastic OT maps
[Korotin et al.| [2023albl]. They show that any optimal kernel is the solution of a certain maximin
problem, which they approximately solve via a neural net parameterization and stochastic gradient
ascent-descent. However, this maximin problem sometimes admits spurious solutions associated with
suboptimal maps. In general, these are more empirical works which do not address statistical rates.

1.2 Preliminaries

Notation. Let || - || denote the Euclidean norm on R?, and B¢ be the d-dimensional unit ball. For
measurable S C RY, write P(.S9) for the space of probability measures over S and diam(S) for its
diameter. Let P,(S) denote those with finite gth moments, and write A'(x, ) for the multi-variate

Gaussian distribution with mean x € R¢ and covariance 3 € R?*4. We say that u € P(R?) is
o2-sub-Gaussian if E,[exp(]| X [|?/o?)] < 2. Write M(S) for the space of finite signed measures on

S, equipped with the TV norm ||v||rv = $|v[(S), and MT(S) for those which are non-negative.

Let fi, = 7 Zl dx, be the empirical measure of n i.i.d. samples Xy, ..., X,, from p. We write
aVb = max{a, b} aAb = min{a, b}, and <., >, =, for (in)equalities up to a constant depending
only on z (omitting x for absolute constants).

Kernels and their composition. Writing B()) for the Borel subsets of ), we recall that a Markov
kernel k € K(X,Y) isamap (A, z) : B(Y) x X — k,(A) € [0,1] which is measurable in « for
fixed A and is a probability measure on y for fixed x. Consequently, given any p € P(X), the
pushforward measure ryu(-) == [ Ky (- ) is well-defined probability measure on ). Moreover,

fixing any intermediate space Z C R4, kernels k€EK(Z,Y)and A € K(X, Z ) can be composed to
obtain the composite kernel x o A € K(X,)) defined by (ko X)(Alz) == [k.(A

Statistical distances and empirical convergence. We often use the following standard results.
Fact 1 (W,,-TV comparison). For i, v € P(X), we have W, (i, v) < diam(X)||p — 1/||1/p
Lemma 1 (W, empirical convergence Lei, 2020). If ¢ > pand pu € Py(R?), then E[W,, (14, f1n)] Sp.q

1

B, (|17 leava G- og2(n). 17 d > g > 2p, then BIW, (4. )] Spg Bl X]|7) ¥

2 Basic Properties of the Error Functional

Before turning to estimation, we establish some fundamental properties of our error functional

in) = |( [ [le=vipaswanta >) vvp<u,u>L+vvp<w,u>. @



This metric is natural because it vanishes for any optimal kernel, namely, £, (x; u, ¥) = 0 if and only
if kK minimizes (2)). Further, it generalizes the existing L? benchmark, which applies only when an
optimal deterministic map 7™ exists.

Proposition 1 (Relation to L? loss). Foranymap T : X — Y and T* : X — Y minimizing (1),
Ep(Ts i v) < 2T =T Lo )-

See Appendix for the proof. In Figure 2} we show how LP can be arbitrarily large compared to
&p, failing to recognize the performance of map estimates that deviate pointwise from 77.

Remark 1 (Optimality vs. feasibility). An alternative version of £, weights the feasibility gap by a
regularization strength A\. When A = 0, the identity map is optimal, and, as A — oo, the constant
kernel k(-|z) := v becomes optimal. Our setting is a natural balance between these two extremes.

Remark 2 (Reverse L2 comparison). If p = 2 and T* is the gradient of an L-smooth convex potential,
we show in Appendixthat T — T, HL2(M) (LV1)E&(T; pyv) (Walp, v) + E(T; 1, v)).

We also compare &, to the Monge gap objective discussed in Section The proof in Appendix
essentially follows by the W, triangle inequality.

Lemma 2 (Comparison to Monge gap). For the alternative objective 81’, defined by

£ (s 1) // i — ylP sy () i) — Wi (1 right)? +Wo (Typs, )P,

Monge gap
we have &, < 4AE,. Forp =1, we have £1/2 < & < 2&].

We now examine stability of &£, with respect to perturbations of the source and target distributions.
These stability results form the backbone for the estimation risk analysis of the estimators proposed in
the subsequent sections. Their proofs in Appendix [A] generally follow via the L? triangle inequality.

Lemma 3 (Stability in v). Fix u € P(X) and v,V € P(Y). For each k € K(X,Y), we have
|53 18,v) = Ep s 1,7')| < 2W, (v, ') < 2diam(V) v — v/ [| -

The &, metric tolerates W, perturbations of ; when  is appropriately Holder continuous.

Lemma 4 (W), stability in p). Fix p, ' € P(X), v€P(Y), and K € K(X,Y) with Wy (ky, fgr) <
Lijz—a'||* forall z, 2" € X, where 0 < a < 1. Setting p = W, (1, 1), we have

p(ri i v) = Ep(kip, v)| < 2p + 2Lp™.
In particular, the above holds with oo = 1 whenever k is induced by a deterministic, L-Lipschitz map.

We can treat TV perturbations of the source measure when ) is bounded.

Lemma 5 (TV stability in p). Fix p,p/ € P(X), v € P(Y), and kernel k € K(X,)Y). Setting
e = ||u— t||Tv, we have

Ey(r; ', v) < Adiam(P)eY? + 108, (5: 1, v) + 6, (s 1, v) Wy (. 1) T
In particular, we have &, (k; 1/, v) < diam(Y)e + &1 (k; p, v).
That is, if ¢/ and u share substantial mass, and « performs well on p, then its performance on p under
&, cannot be substantially worse. In particular, the proof in Appendix [A.6| decomposes uw=a+p,
where « is its shared mass with 1/, and uses that, if « is optimal for the W »(1t, V) problem, then it
must also be optimal for the W, («, 4r) sub-problem.

Finally, we consider the behavior of £, when evaluated on composite kernels, which we employ in
some of the subsequent kernel estimators.

Lemma 6 (Kernel composition). Fixing an intermediate space Z C R?, let i € P(X), v € P(Y),
AEK(X,Z),and k € K(Z,Y). We then bound

1
eyt %) = &yl )| < 2( [ 12— alPar,(ahaute) )
In particular, for X induced by a deterministic map f : X — Z, we have

|Ep(ri 0 f5 1) = Ep(: fypv)| < 20 f = Td o

This can be applied iteratively to analyze the composition of many kernels, peeling off one at a time.



3 Finite-Sample Estimation and Computation

Under &, we can perform kernel estimation without regularity or existence of a Brenier map. We
analyze one estimator based on EOT using W, stability (Lemma and another based on rounding
using TV stability (Lemma[5). The former is closer to existing estimators, but the latter achieves
sharper rates under milder assumptions. Fixing n > 3, we have i.i.d. samples X1,...,X,, ~ u €
P(X)and Y7,...,Y, ~ v € P(Y), whose empirical measures we denote by /i,, and &, respectively.

Entropic kernel estimator. As a warm-up, we recall the EOT problem, defined for 7 > 0 by

Sprlim)i= _int [ [lle = ylPrante.) + Dwlrlne v), )
mell(p,v)

where the Kullback-Leibler (KL) divergence is Dxr,(ullv) == [ log(%)dy if 4 < v and 400

otherwise. This objective is strictly convex due to the KL penalty, so a unique optimal coupling always

exists (supposing that the value is finite). Most solvers for EOT use its equivalent dual formulation:

Spr(p,v) = sup /fd/t+/gdz/77// eV @ra@=llz=vl"V/mqu(z)dv(y) + 7. (6)
feL (p)
geL (v)

The primal and dual structure of EOT is well-studied (see, e.g.,|Cuturi, [2013] |Genevay et al., 2019). In
particular, if 7 minimizes (5)), then there exists maximizers f, g, for (6)), termed entropic potentials,
such that the conditional entropic kernel 7, (-|x) can be written as

dr. (y|z) = exp((fr(2) + g-(y) — [lz — y|IP)/7) dv(y)
_exp((gr(y) — [l = ylIP)/7) dv(y) O
- Jen((g:(y) — e —y'lP)/7) dv(y’)
By this result, we may assume that the entropic kernel is defined over all z € R?. We show that, if

diam(X U Y) is bounded, the empirical entropic kernel achieves a vanishing &, error.

Theorem 1 (Entropic kernel estimator). Assume X,Y C [0,1]% and set T = dP/*n=1/ 24V Jog n.
Let 7., be the optimal coupling for Sy, - (fin,0n). Then, the conditional kernel &, defined by

(Fn)z = Trn(|x) satisfies B[Ep (Rn; p, V)] Sp.a n~1/(2pdvip) log2(n).

~.

The proof in Appendix Ililhas three steps. First, we control &,(An; fin, ¥n) = Oa(7'/P) using a
known bound of |Genevay et al.|[2019]]. Then, using the support constraint and the softmax form
in (7), we bound the TV Lipschitz constant of ., by Oq(7 '), which implies the kernel is W,, Holder
continuous with exponent 1/p and constant O4(7~ /7). Finally, we apply Lemmas andto bound

Epfins 11,) < EplFins fins D) + Oual(p/T)P) + O(p) = Oa(7'% + (p/7)"/" + p),

where p = W, (fin, 1) V W, (2, v). Applying Lemmaﬁ]to bound p and tuning 7 gives the theorem.
Note that 7 controls a bias-variance trade-off (7 — 0 overfits, while 7 — oo blurs out all structure).

To understand the quality of this bound, we compare to Brenier map estimation with p = 2. Here,
the conditional kernel is usually converted into a deterministic map 7}, via barycentric projection,
which sends x to the mean of Y ~ 7 ,,(+|z). Existing work has derived a variety of L? estimation
guarantees for this estimator with respect to the Brenier map 7. In particular, [Pooladian and Niles+
Weed [2021] show that E || T, — T*|| p2(,) Sa n~(@+D/d+et Dl ogn if T* € Co+l forl < o < 3
and V™ has eigenvalues bounded from above and below. For the sake of comparison, we can take a
formal limit as o — 0 (although not covered by their theory) to obtain a rate of =/ (44+4) which is
always worse than our n~/(44V8) rate (which does not require p = 2 nor the existence of 7*).

Improved rounding estimator. While guarantees for the entropic kernel estimator from Theorem |I]
are compelling, we can achieve sharper rates using the following rounding estimator, via an analysis
based on TV stability of &£,. The estimator is specified by an accuracy § > 0, a trimming radius
R > 0, a partition P of R¢, and a collection of centers Cp = {cp}pep such that each cp € P. This
induces a rounding function rp : RY — Cp which, for each P € P, maps z € P to cp. Given
empirical measures [i,, and ©,,, we proceed as follows:

1. Round fi,, onto P, taking p/, = (p)4fin



2. Compute a preliminary kernel %,, € K(Cp,supp(#,,)) which pushes !, onto 2, and is near-
optimal for the W), problem, satisfying [ ||z — y||Pd&, (y|z)dul, (x) < Wy (4, 05 )P + 6.

3. Return kernel &,, = &, o rp, which, given x € R%, rounds it to 7p () before applying &,,.

For a simple choice of P, this procedure achieves low &, error when p and v are sub-Gaussian. With
a more complex partition, we can support g with only bounded 2pth moments.

Theorem 2 (Rounding estimator). Let u, v be 1-sub-Gaussian, and take P as the regular partition
of R into cubes of side length r. Then, for R, r, and 0 tuned independently of p and v, we have
E[&, (Rn; 1, v)] = O pid (10 _1/(d+2p)). For an alternative, non-uniform partition, this guarantee

still holds if the sub-Gaussianity assumption on p is relaxed to E,[|| X ||*"] < 1. In both cases,
computation is dominated by Step 2 which, if implemented via an EOT solver, runs in time O((Cs +
d)yn?**+°1) where Co, = max; ; | X; — Yj|.

This improved n~—1/(d+2p) rate is near-optimal; indeed, when g is a point mass, the problem reduces
to estimation of v under W, for which there are existing minimax lower bounds of order n—1/(dv2p)
[Singh and Pé6czos|, 2018]] (see Appendix for full details). We also note that the tail bounds on x
and v can be weakened further under our analysis, but not without worsening the rate.

We sketch the proof when  is sub-Gaussian, 6 = 0, and diam())) < 1; see Appendix for the
full derivation. We first show, for the cubic partition P with side length r, that p1], = (7p)4/i,, and

W = (rp)sp converge in TV at rate /7~ /n. Here, 7~ arises as a bound on the number of relevant
partition blocks. We then bound

Ep(Rni i, v) = Ep(Rn 0 Tp5 1y 1)
< EplFims p!,v) + Vr (Lemma 6))
S Wy (v, o) + (m'd)_% + Vdr (Lemmas 3| and )

Applying Lemma [I] and tuning r gives the theorem. The general sub-Gaussian case follows by a
similar argument. If 1 only has bounded 2pth moments, we can still achieve TV convergence at a
comparable rate by employing a partition whose bins increase in size away from the origin.

Remark 3 (One-dimensional refinements). Given the gap between our n~1/(4+2P) upper bound and
the n~1/(4V2P) Jower bound of |Singh and Péczos| [2018], it is natural to ask if the lower bound can
be improved. At least when d = 1, this is impossible. In Appendix [B.4] we improve the rate from
Theoremto n~'/2 when d = 1, using stability of £, under the Kolmogorov-Smirnov metric.

4 Improved Statistical Guarantees with Holder Continuous Optimal Kernels

For p = 2, many existing works assume the existence of a Brenier map 7 whose gradient has
eigenvalues bounded from above and below (in particular, such a 7™ is Lipschitz) For example,
Balakrishnan and Manole|[2025] show that a nearest-neighbor estimator achieves E ||}, —T*|| .» (n) =
()(n“/ k‘”‘”) matching the W5 empirical convergence rate. Of course, by Proposition l 1] this
guarantee also holds under &;. In this section, we treat general p > 1 under the related but distinctly
weaker assumption that W,, (1, ) admits an optimal kernel which is Holder continuous under W,

Assumption 1. There exists L > 1, « € (0, 1], and an optimal kernel x* € K(X,Y) for W, (p, v)
such that W, (k%, k%) < L|jx — '||* forall z, 2’ € X.

T

Here, we propose an estimator based on Wasserstein distributionally robust optimization (WDRO):

’%pDRO [ﬂ’ ZA/] = arg min sup gp(“ﬁ /’le 19)7
KRELRLY) 1/ €P(RY): Wy, (1, 2)<p

where [i, U are any proxies for u, v (potentially their empirical measures). This estimator is computa-
tionally inefficient but allows us to better understand the statistical limits of estimation.

Theorem 3 (WDRO estimator). Under Assumption[l} suppose Wy, (ji, j1) < py, and Wy, (0, 1) < py.
Then the estimate k = I%QDPR“O (i1, U] achieves E,(k; p,v) S Lo + pu + po-



Proof. Using the WDRO problem structure and our stability lemmas, we bound

Ep(Rs p,v) < Ep(Rs i, 0) + 2py (Lemma[3)
< sup Ep(R ', ) +2p, (W (s 1) < pu)

Wy (p',0)<pp
< sup Ep(kus it D) + 2p,, (optimality of &)

HiWp (0, 0)<pp
< sup Ep(kus 1, 0) + 2py, (W,, triangle inequality)

w €PRY): Wy (1 ,1) <2pp

< 4Lpy +4pu + 2p0, (Lemmaf)
as desired. O

This gives an information-theoretic reduction from kernel estimation under &, to estimation of . and
v under W, i.e., if we can estimate p up to error p,, and v up to error p,,, then we can find a kernel
wiFh error O(Lp,‘j‘ +pu+ pv). Focusing on the Lipschitz case with o = 1, we first apply Theorem
using the plug-in estimators p = fip, Vv = 0y,

Corollary 1 (Plug-in estimators). Under Assumption || with « = 1 and L = O(1), suppose
v € Pap(RY). Then taking fi = fin, and U = by, p can be tuned to achieve E,(Rhgo; 11y V) =
Op7d(n_1/ (dVZP)) with probability 0.9, which is minimax optimal up to logarithmic factors.

Plugging in p = 2, we recover the L? rate of Balakrishnan and Manole|[2025]]; however, this result
holds under our significantly weaker assumption and for general p > 1. If further i and v are
compactly supported with smooth densities, we can employ wavelet-based distribution estimators
(see, e.g.,|Weed and Berthet [2019]], Manole et al.| [2024]) to attain faster rates.

Corollary 2 (Wavelet estimators). Under Assumption[ljwith « = 1 and L = O(1), suppose that
w,v € P([0,1]¢) admit Lebesgue densities f,g € C*([0,1]%). Then taking i and ¥ as appropriate
wavelet-based estimators, one can tune § to achieve E,(; j1,v) = O, g(n~[(1F/P)/(d+s)A1/(2p)])
with probability 0.9, which is minimax optimal up to logarithmic factors.

Balakrishnan and Manole|[2025] also reduce map estimation to distribution estimation, so they prove
a variety of similar guarantees. However, unlike our derivation, their analysis relies crucially on the
structure of the Brenier map as the gradient of a sufficiently regular convex potential.

Remark 4 (Lipschitz regularization). Wasserstein DRO is known to be closely related to Lipschitz
regularization (see, e.g.,|Gao et al.,2022). So perhaps expectedly, one can show for p = o = 1 that
the guarantees of Apro are matched by the estimator which minimizes the regularized empirical
risk k — &1 (k; 1, 7) + A Lip(z — k; W1). For deterministic map estimation, |Gonzalez-Sanz et al.
[2022] considered related neural estimators that enforced Lipschitz constraints on the estimated
map. In general, minimizing the unregularized empirical risk &, or, by Lemma[2] the corresponding
Monge gap objective, achieves good rates whenever the obtained minimizer has a small Lipschitz
constant (whether this arises due to explicit constraints or implicit optimization bias). This gives a
partial explanation for the empirical success of the Monge gap regularizer for neural map estimation.

S Robust Estimation with Adversarial Corruptions

The previous sections allowed us to handle sampling error under £,. We now address local and global
adversarial perturbations of the data points with minimal technical overhead, thanks to the strong
stability properties of &, in both TV and W,,.

Formal corruption model and assumptions. As discussed in the introduction, TV and W), perturba-
tions have historically been studied separately in robust statistics to model outliers and adversarial
examples, respectively, with the former dating back to |[Huber| [1964]]. Our work adopts a recent
combined model permitting both local and global perturbations of the input data [Nietert et al.,2023b].
Here, clean i.i.d. data from the unknown distributions p € P(X) and v € P(}) are first nudged
by small local perturbations (namely, in Wasserstein distance with budget p > 0) and then partially
overwritten by global outliers (in TV, with allowed fraction € € [0,1]). More precisely, letting

iid. iid. 5 5
Xq,..., X, RS pand Y7,....Y, 25" v denote the clean samples, we observe X1,...,X,, € X and



Vi,...,Y, € Ysuchthat L 3. o [|X; — X,|[P vV LS | X; — X;||P < pP for some S, T C [n]
with |S],|T| > (1 — e)n.

Write iy, fi, and D,, I, for the clean and corrupted empirical measures for ; and v, respectively.
We further suppose that g is 1-sub-Gaussian and ) C [0, 1]¢. These assumptions can be relaxed at
the cost of estimation complexity, as in Section[3] We impose them to focus on the new aspects of
adversarial robustness without distractions.

An initial idea is to combine the Sectionapproaches, since the entropic kernel used W/, stability and
the rounding estimator used TV stability. This is viable, however our entropic kernel analysis requires
that X U ) is bounded. To avoid this, we employ a similar approach to the rounding estimator, but
replace deterministic rounding with Gaussian convolution. Defining the kernel N7 = N (z, 021 )
and letting #5[oc — (] denote (any) optimal kernel for the W,,(c, 3) problem, we consider

"%gonv[:ana Dn] = H;[Njf/ln — Dn] o N°.

That is, we find an optimal kernel for the convolved Wp(Njf fin, Up,) problem and compose it with the
convolution kernel. The initial convolution of [i,, ensures that the inner kernel is defined over all of
R?, potentially outside the support of fi,,. The subsequent composition ensures that the outer kernel
is sufficiently continuous, as needed to apply Lemma[d] We prove the following in Appendix [D}

Theorem 4 (Robust estimation guarantee). Under the setting above, we have
E[Ep (Rlonyi 1 V)] S Ve +VdpiT + p+ Opa(n” 55,

for tuned o = o(p,d, p). Also, the naive estimator (finun)e = 0o satisfies Ep(Rnun; 1, V) < V.
By selecting between the two estimators according to which bound is smaller, we achieve an error

bound of (\/&5% + \/Epﬁ +p+ Op,d(n_ﬁl%)) AVd. Moreover; up to constants, no estimator
can achieve worst-case expected error less than (\/asi +d /A pl/? 4 nfﬁl‘b’r’) AV,

The upper bound follows by a remarkably straightforward application of our stability lemmas. For
the d'/*p'/? term in the LB, we construct a pair of instances (with all distributions supported on two
points) which are indistinguishable from p-corrupted samples and such that no kernel achieves error
o(d'/*p'/2) on both. Interestingly, this \/p dependence rules out a lossless reduction from estimation
under &, to distribution estimation under W,,. That is, our rounding estimator from Section

achieves &, = O(n~1/(4+20)) but the guarantee that W, (fi,, 1) V W, (0, v) = O(n~1/(dv2p))
alone cannot imply a rate faster than O(n~'/(24V4P))_ Finally, although the convolved OT problem

for our estimator may not be efficiently solvable, we show in Appendix [D]that an additional rounding
step enables efficient computation, mirroring the proof of Theorem 2}

6 Experiments

To empirically validate our theory, we run experiments in two synthetic settings with OT maps whose
irregularities limit the utility of the LP objective and prevent application of existing theory. For Setting
A, we fix p and v as uniform discrete measures over N = 2000 points, obtained as i.i.d. samples from
Unif ({0} x [0,1]471) and 3 Unif ({1} x [0, 1]71) 4 1 Unif({1} x [0, 1]~ 1), respectively. In the
N — oo limit, the optimal kernel satisfies ., ., = Unif({(—1,22.q), (1, 22:4)}). For our discrete
1 and v, there is an optimal deterministic map 7™ induced by a permutation, but it is highly oscillatory.
For Setting B, we set ;1 and v as discrete distributions over N samples from Unif([—1,1]¢) and
fi Unif([—1, 1]¢), respectively, where f(x) = x + (sign(x1), .. .,sign(x4)) pushes each orthant of
the cube away from the origin. Here, the OT map is discontinuous but Lipschitz within each orthant.

Now, for each setting and sample size n € {10, 20, ...,100}, we take n i.i.d. samples from x and v
and compute the p = 1 nearest-neighbor map estimate 7~ [Manole et al.,[2024] and the rounding

kernel estimate 41°""¢ (Section . (Specifically, the NN estimator first computes an optimal \W; map
T,, from ji,, to ©,. Then, TNN maps each 2z € R? to the image of its nearest source point under 7},.)
We then compute the L' error | TN — T*|11(, and the &; errors & (TN 1, v), & (A1 1, v).
Since p and v are discrete, these can be computed using finite sums and the default Python Optimal
Transport solver [Flamary et al., 2021]]. Repeating this process for KX = 100 iterations, we compute
mean errors for each sample size and dimension d € {3,5,10}, along with bootstrapped 10%
and 90% quantiles (via 1000 bootstrap resamples). In Figure [3| (left), we compare the &; vs L*



&1 vs. L* for NN Estimator (Setting A) &1: NN vs. Rounding (Setting A) &1: NN vs. Rounding (Setting B)
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Figure 3: & and L' performance of nearest-neighbor and rounding estimators in two settings.

performance of the NN estimator under Setting A (where the latter is well-defined since each T,If N
is a deterministic map). As expected, L' performance is quite poor, with error always greater than
1. Although we currently lack formal guarantees for the NN estimator (and our setting lies outside
of existing theory), it achieves strong &; performance, with faster rates in lower dimensions. In
Figure [3| (center), we compare the NN and rounding estimators under &, the latter enjoying formal
guarantees by Theorem 2] Empirically, the NN estimator performs better, but this gap diminishes in
high dimensions. We suspect that low-dimensional performance of the rounding estimator is more
sensitive to its side-length hyperparameter, which we have simply set to n—!/ (de) as per the proof of
Theorem|[2} Finally, in Figure [3| (right) we turn to Setting B, again comparing 72N and #:°""¢ under
&1 and observing similar trends. We note that all experiments were performed on an M1 MacBook
Air with 16GB RAM and 8 CPU cores. See Appendix [E|for full experiment details and two additional
experiments (one with larger parameter settings, but no bootstrapping, and one in two dimensions, so
that our estimator can be visualized).

Remark 5 (Neural map estimation). Given the connections between £, and the Monge gap objective
discussed in Sections [I]and 2] one could consider training a neural map estimator to minimize an
empirical &, objective, perhaps after approximating the W,, terms via EOT. However, while both
&, and the Monge gap objective nullify on optimal maps, they behave quite differently when far
from optimality. Indeed, gradients of the feasibility gap term in &£, push towards the identity map
(since it achieves the minimum transport cost of zero), while gradients of the Monge gap push
towards the much larger set of c-cyclically monotone maps. In preliminary tests, we found that the
Monge gap objective led to significantly more stable training dynamics, which we attribute to this
difference. Thus, we maintain our recommendation of &, as an evaluation metric, enabling provable
error guarantees under weaker assumptions, rather than a training objective for neural map estimation.
Still, we hope that our analysis under &£, might inspire new regularization methods in the future.

7 Discussion

This work proposed a novel error metric £, which broadens the scope of OT map estimation research
to support stochastic maps, sidestepping existence, uniqueness, and regularity issues faced by existing
approaches and treating p # 2. We developed an efficient rounding estimator with near-optimal rates
under &£, and characterized the minimax rate for Lipschitz continuous kernels. Our analysis extends
naturally to adversarial corruptions, and our theory is supported by numerical simulations.

There are two clear open questions. First, what is the minimax finite-sample risk for estimation under
&y, say for v € P([0,1]%)? We have established that the correct rate lies between n~1/(4V2p)
and n~1/(4+2)_ The slower rate mirrors that attained by bounding E[W,, (j,,, 11)] without analyzing
sampling error at multiple geometric scales. Can a multi-scale approach extend to kernel estimation
and improve the current upper bound in Section[3] Second, under the setting of Section ] with o = 1,
where there exists an optimal Lipschitz kernel, can a computationally efficient estimator achieve
the optimal n~'/(?V2P) rate? Our experiments demonstrate strong empirical performance of the NN
estimator in varied settings, so it seems to be a promising candidate to attain such a guarantee.

Finally, our objective can naturally be extended to many OT variants, including EOT, weak OT
[Gozlan et al.| 2017]], conditional OT [Hosseini et al., [2025]], and adapted OT [Bartl et al., [2024]].
Adapting our toolkit of stability lemmas to such settings is an interesting direction for future work.

10



Acknowledgments and Disclosure of Funding

Z. Goldfeld is partially supported by NSF grants CCF-2046018, DMS-2210368, and CCF-2308446,
and the IBM Academic Award.

References

S. Balakrishnan and T. Manole. Stability bounds for smooth optimal transport maps and their
statistical implications. arXiv preprint arXiv:2502.12326, 2025.

D. Bartl, M. Beiglbock, and G. Pammer. The Wasserstein space of stochastic processes. Journal of
the European Mathematical Society, 2024.

Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communica-
tions on pure and applied mathematics, 44(4):375-417, 1991.

C. Bunne, S. G. Stark, G. Gut, J. S. Del Castillo, M. Levesque, K.-V. Lehmann, L. Pelkmans,
A. Krause, and G. Ritsch. Learning single-cell perturbation responses using neural optimal
transport. Nature methods, 20(11):1759-1768, 2023.

P. Chao and E. Dobriban. Statistical estimation under distribution shift: Wasserstein perturbations
and minimax theory. arXiv preprint arXiv:2308.01853, 2023.

N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy. Optimal transport for domain adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9):1853—-1865, 2017. doi:
10.1109/TPAMI.2016.2615921.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural
Information Processing Systems (NeurIPS), 2013.

N. Deb, P. Ghosal, and B. Sen. Rates of estimation of optimal transport maps using plug-in estimators
via barycentric projections. Advances in Neural Information Processing Systems, 34:29736-29753,
2021.

R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos,
K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko,
A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer. Pot: Python
optimal transport. Journal of Machine Learning Research, 22(78):1-8, 2021.

R. Gao, X. Chen, and A. J. Kleywegt. Wasserstein distributionally robust optimization and variation
regularization. Operations Research (Forthcoming), 2022.

A. Genevay, L. Chizat, F. Bach, M. Cuturi, and G. Peyré. Sample complexity of sinkhorn divergences.
In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1574-1583,
2019.

Z. Goldfeld, K. Greenewald, J. Niles-Weed, and Y. Polyanskiy. Convergence of smoothed empirical
measures with applications to entropy estimation. IEEE Transactions on Information Theory, 66
(7):4368-4391, 2020.

A. Gonzélez-Sanz, L. De Lara, L. Béthune, and J.-M. Loubes. Gan estimation of lipschitz optimal
transport maps. arXiv preprint arXiv:2202.07965, 2022.

N. Gozlan, C. Roberto, P.-M. Samson, and P. Tetali. Kantorovich duality for general transport costs
and applications. Journal of Functional Analysis, 273(11):3327-3405, 2017.

B. Hosseini, A. W. Hsu, and A. Taghvaei. Conditional optimal transport on function spaces. SIAM/ASA
Journal on Uncertainty Quantification, 13(1):304-338, 2025.

P. J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 35
(1):73-101, 1964.

J.-C. Hiitter and P. Rigollet. Minimax estimation of smooth optimal transport maps. 2021.

11



L. V. Kantorovich. On the translocation of masses. In Doklady Akademii Nauk USSR, volume 37,
pages 199-201, 1942.

N. Kolkin, J. Salavon, and G. Shakhnarovich. Style transfer by relaxed optimal transport and self-
similarity. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 10051-10060, 2019.

A. Korotin, D. Selikhanovych, and E. Burnaev. Kernel neural optimal transport. In International
Conference on Learning Representations (ICLR), 2023a.

A. Korotin, D. Selikhanovych, and E. Burnaev. Neural optimal transport. In International Conference
on Learning Representations (ICLR), 2023b.

J. Lei. Convergence and concentration of empirical measures under Wasserstein distance in un-
bounded functional spaces. Bernoulli, 26(1):767-798, 2020.

W. Li and R. H. Nochetto. Quantitative stability and error estimates for optimal transport plans. IMA
Journal of Numerical Analysis, 41(3):1941-1965, 2021.

Z. Liu and P.-L. Loh. Robust W-GAN-based estimation under Wasserstein contamination. Information
and Inference: A Journal of the IMA, 12(1):312-362, 2023.

Y. Luo, Y. Xie, and X. Huo. Improved rate of first order algorithms for entropic optimal transport. In
International Conference on Artificial Intelligence and Statistics, pages 2723-2750. PMLR, 2023.

T. Manole, S. Balakrishnan, J. Niles-Weed, and L. Wasserman. Plugin estimation of smooth optimal
transport maps. The Annals of Statistics, 52(3):966-998, 2024.

P. Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The Annals of Probability,
pages 12691283, 1990.

C. Meng, Y. Ke, J. Zhang, M. Zhang, W. Zhong, and P. Ma. Large-scale optimal transport map
estimation using projection pursuit. Advances in Neural Information Processing Systems, 32, 2019.

Y. Mroueh. Wasserstein style transfer. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

S. Nietert, R. Cummings, and Z. Goldfeld. Robust estimation under the Wasserstein distance. arXiv
preprint arXiv:2302.01237, 2023a.

S. Nietert, Z. Goldfeld, and S. Shafiee. Outlier-robust Wasserstein DRO. In Advances in Neural
Information Processing Systems, 2023b.

S. Nietert, Z. Goldfeld, and S. Shafiee. Robust distribution estimation with local and global adversarial
corruptions. In Conference on Learning Theory (COLT), 2024.

T. Pittas and A. Pensia. Optimal robust estimation under local and global corruptions: Stronger
adversary and smaller error. arXiv preprint arXiv:2410.17230, 2024.

A.-A. Pooladian and J. Niles-Weed. Entropic estimation of optimal transport maps. arXiv preprint
arXiv:2109.12004, 2021.

A.-A. Pooladian, V. Divol, and J. Niles-Weed. Minimax estimation of discontinuous optimal transport
maps: The semi-discrete case. In International Conference on Machine Learning, pages 28128—

28150. PMLR, 2023.

A. Redko, N. Courty, R. Flamary, and D. Tuia. Optimal transport for multi-source domain adap-
tation. [International Journal of Computer Vision, 127(8):1923-1953, 2019. doi: 10.1007/
$11263-018-1116-4.

P. Rigollet. 18.s997:  High dimensional statistics lecture notes. https://ocw,
mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/
619e4ae252f1b26cbe0£7a29d5932978_MIT18_S997515_CourseNotes.pdf, 2015. Lecture
notes for MIT course 18.S997, Spring 2015.

12


https://ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/619e4ae252f1b26cbe0f7a29d5932978_MIT18_S997S15_CourseNotes.pdf
https://ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/619e4ae252f1b26cbe0f7a29d5932978_MIT18_S997S15_CourseNotes.pdf
https://ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/619e4ae252f1b26cbe0f7a29d5932978_MIT18_S997S15_CourseNotes.pdf

F. Santambrogio. Optimal Transport for Applied Mathematicians. Birkhéduser, 2015.

G. Schiebinger, J. Shu, B. T. Tabaka, J. Ashouri, D. J. Cleary, V. Subramanian, and et al. Optimal-
transport analysis of single-cell gene expression identifies developmental trajectories in reprogram-
ming. Cell, 176(4):928-943.e22, 2019. doi: 10.1016/j.cell.2019.01.006.

V. Seguy, B. B. Damodaran, R. Flamary, N. Courty, A. Rolet, and M. Blondel. Large scale optimal
transport and mapping estimation. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

S. Singh and B. P6czos. Minimax distribution estimation in Wasserstein distance. arXiv preprint
arXiv:1802.08855, 2018.

D. Toneian. Measurable selection in optimal transport and Skorokhod embeddings. PhD thesis, Wien,
2019.

T. Uscidda and M. Cuturi. The monge gap: A regularizer to learn all transport maps. In International
Conference on Machine Learning (ICML), 2023.

N. Vesseron, L. Béthune, and M. Cuturi. Sample and map from a single convex potential: Generation
using conjugate moment measures. arXiv preprint arXiv:2503.10576, 2025.

C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics. American Mathe-
matical Society, 2003.

T. Wang and Z. Goldfeld. Neural estimation of entropic optimal transport. In IEEE International
Symposium on Information Theory (ISIT-2024), 2024.

J. Weed and Q. Berthet. Estimation of smooth densities in Wasserstein distance. In Conference on
Learning Theory (COLT), 2019.

L. Zhang, L. Wang, et al. Monge-amp'\ere flow for generative modeling. arXiv preprint
arXiv:1809.10188, 2018.

B. Zhu, J. Jiao, and J. Steinhardt. Generalized resilience and robust statistics. The Annals of Statistics,
50(4):2256 — 2283, 2022.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we summarized the key aspects of our new framework, our new results in
this setting, and our accompanying experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We fully state all assumptions and describe two main open questions in the
conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All formal claims have precise statements and full proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All such details appear in the experiments section and accompanying appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: All data is synthetic and full code is provided.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Our experiments section and appendix are comprehensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide error bars and explain how they are produced via bootstrapping.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These details appear in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We abide by the ethics code.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is primarily theoretical and does not have any clear or immediate
societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Our paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs for Section 2]

A.1 Proof of Proposition 1]

Clearly, &,(k; pt,v) = 0 if x minimizes (). On the other hand, if &,(k, i1, v) = 0, then kyu = v.
Thus, « is feasible for @ with optimal objective value, i.e., it is a minimizer.

Further, if 7™ is an optimal map, then Wy, (41, v) = ||T* — Id || () and T}"u = v. We thus bound

Ep(Tip,v) = [IT = 1d Loy — Wplp,v)] , + Wp(Typ,v)
T = T oy — 1T — T ], + Wy (Toss Ty )
2||T7T*HLP(;A)7

as desired. O

A.2 Reverse L? comparison (Remark [2)

Suppose that there exists a unique Brenier map of the form T* = V¢, where ¢ : R — R is
convex and twice differentiable such that Hyp < LI;. Fixing any map 7 : X — )/, we abbreviate
e = &(T; i, v). By the definition of £, we have Wy (Typ,v) < e. Let A € K(),)) be a kernel
which achieves this bound, and take K = A o T'. By construction, we have x4t = v and

(/ ||yw||2dn<yx>du<x>)évv2 o) < [[17@) - alPanta >> W) +
< 2e.
Consequently, we have
[ 1= alPastole)ute) - wag vy < z(( [~ x2dn<y|x>du<x>)é

< 2e- (2Wa(p, v) + 2¢)

+W2(u71/)>

Thus, by Proposition 3.1 of |[Li and Nochetto| [2021]], we have

J[ 1= T @IPastlanta) < £ [[ o= elPantuiaut) - Wt
<4Le- (Wa(u,v)+¢).

Finally, we bound

IT = Tellz2 ) < (// ly — T*(év)ll%lfi(y96)<11M(90)>é +e

< VALe - (Wa(p,v) +¢) +¢
5\/L\/1 - (Wa(p,v) +¢),

as desired.
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A.3 Proof of Lemmal[2

First, we bound &, in terms of EZ/), computing

£y (ki o) = ( [~ xnpdmwdu(mf W, ()

+ W, (Typ, v)
+

IN

+ 2W,, (T, v)
+

( - xllpd%z(y)du(x)y W, (4, Tope)

IN

[ 1= elpane )ute) ~ W Tw} T W, (T, v)

Bl 4

-1/ ||y—59||pdffx(y)d/i(ff)_Wp(N»TW)p} W, Ty, )

3 =

<2%7p (/ ly = =[P dra(y)dp(a) = Wy, Ty)” + Wy (Typ, V)p>
21 .
< 2T E (ks ),

where the second inequality uses that [a'/? —b'/?] | < [a—b] i_/ P forall a,b > 0, and the penultimate
inequality uses that ¢; < 21~/ P{, in R2. This implies the claimed bound of &, < 4€,. Whenp = 1,
the above gives £; < 2&7, and we similarly bound

&1t m,0) = [ [ 1y alldia)duta) - Wa o, ) + Wa T )
- [ [ 1= ahaatanto) —w1<u,Tﬁu>} W, (T )
+

< | [ 1y = allamsauto) - wigen)| W Ty

< 2&1(k; p, V)
as desired. O

A.4 Proof of Lemma[3l

We simply bound
|5p("ﬁ/‘ay) - gp("ﬁ/‘ay/” < Wi (p,v) = Wi (V)| + Wy (g, v) — Wy (g, V)|
< 2W, (v, v/')
< 2diam(Y)||v — V' ||rv,
where the final inequality uses Fact ] O

A.5 Proof of Lemmald]

While the key ideas of this proof are straightforward, measurability issues require some care (we
encourage the reader to skip such details on an initial read). In what follows, we equip all spaces
of distributions with the weak topology and always employ Borel measurability. By the definition
of a Markov kernel, € X’ +— k,(A) is a measurable function for each measurable A C ). Thus,
(z,2') € X? — (ky(A), ke (B)) is measurable for fixed, measurable A, B C Y, implying that
(x,2") € X% (Kg, ker) € P(Y)? is measurable. Therefore, by Theorem 3.0.8 of [Toneian| [2019],
there exists a measurable map (z,2') € X2+ 7y, »» € U (ky, fi,+) such that 7y, . is an OT plan for
W, (Ky, kg ) forall z, 2’ € X.

Now, let o € II(y, ') be an OT plan for W, (1, 1t’), and define the joint law 7 by m(A x B x C' x
D) = [[4. 5 Ve (C x D)dmo(x, "), which is well-defined due to the measurability argument

above. Taking (X, X', Y,Y”) ~ m, our construction ensures the following:
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* X ~pand X' ~ u such that E[|| X — X'||P] = p?,
* Y ~kxandY' ~ kxs suchthat E[||]Y — Y'||P|X, X'] = W, (kx, kx)P.

Consequently, we bound

[y —Y'IP] = E[B[IY ~¥/|x, X']
= E[W,(rx, rx)"]
< E[LP||X — X'||*P] (Holder continuity of )
<r* [L||X X', (Jensen’s inequality, 0 < o < 1)
=LPp

Moreover, using Minkoswki’s inequality, we compute
EllY - X|P]7 —E[|[Y’ - X'|"]?| < E[|X — X'|"]> +E[|Y - Y'|]> < p+ Lp®.
Finally, we bound |W,,(, v) — W, (¢, v)] < Wp(p, ') < p and
Wi (rgp2, ) — Wy (g, v)| < Wy (g, kgpt’) < E[|Y = Y'|[P]» < Lp®.

The definition of &£, and these bounds give the lemma. O

A.6 Proof of Lemmal[3

To show this result, we prove a slightly more general lemma.

Lemma 7. Fix p, p/ € P(X), v € P(Y), and kernel k € K(X,Y) with [[ ||y —z||Pdk,(y)du(z) <
W (1, kgp)? + 7P and W, (kg v) < T for some T > 0. Then, setting ¢ = ||i — (|| v, we have
Ep(k; !, v) < 3diam(Y)el/P + 3.

Proof. In what follows, we encourage the reader to focus on the p = 1 case, where computations
are more direct. Write ¢ = ||y — p/[|Tv. By the TV bound, there exist o, 3,7 € M (X) with
v(X)=1—cand a(X) = B(X) =esuchthat y = v+ aand p/ = v+ 8.

First, we note that x must perform well on ~. Specifically, we have

] 12 = ran. st
// o = ylPdssdnte) = [ I = lPdn.(y)dao) (= p—a)

< W, (1, k)P + 7F — W (o, kyer)? (error bound for x, def. of W)
=< Wp(% RpY)? + Wpla, k)P + 77 = Wy (e, kpa)” (n=7+a)
= Wiy, g)? + 77

< (WP(’% ’%ﬁ’y) + T)p' (gp <)

23



Now, letting ' be an optimal kernel for the W, (1, v) problem and writing D = diam(})), we have

(f[1- x|pdnm<y>du’<x>)’l’ W ()

(/[ o= alran e ) ([ 1= alrass )du()> (optimality of
= ([ 1= alras st + [[ - alian. st )) W=+ B
([ w-atrasmaro + [[ 1y~ slracmase >)

s([(/ ly — 2lPdr, (y)dy(a ) (f[1v-straars L

(/[ 5= strastase ) (/[ o= atracmase)) ] )

+

-

< ([Wp(% k) + 7 = Wy (v, 547"

1

(fw=sraetomna) -] ”y—wllpdn;<y>dﬂ<x>ﬂp )

.
g((vv (ks i) + )" /// ly — o/ [P (y)ds’, (4 )dB(z >>

< (Wy gy, k) + )7 +eDP) P (Fact[T)
< W, (kg7 Kyy) + 7 + Dev. t, < )

The first inequality uses that (A7 + BP)Y/P — (aP + bP)Y/P < ([A — a]?. + [B — b]%)1/P, which can
be obtained by rearranging the ¢, triangle inequality and using that A = [A — a]+ + A A a. The
second inequality uses the previous bound and the fact that ’ is feasible for the Wy, (v, k;7) problem.
The third uses the W, triangle inequality and Minkoswki’s inequality.

We next bound W, (r4, kyy). Let m € I(kyp, v) be an optimal plan for Wy, (44, v) and define
A€ (1-e)PY) by A(:) = [7(-|z)dy(x). By construction, W, (g7, N) < Wp(kgp,v) < 7.
Moreover, both A and /{37 are submeasures of v with mass 1 — ¢, and so they must share common
mass at least 1 — 2¢. This implies that their TV distance is at most ¢, and so Fact|I| gives that

W, (kg kyy) < 74 Wp(A Kiy) <7+ Dev. ®)

Thus, the previous bound on the optimality gap can be tightened to

([[1v-alraman@)” - W) < + 2023,

Similarly, we bound the feasibility gap by

Wi (kg v)? = Wy (kg7 + kg3, kyy + Ky 3)" (W =+ B, wyy =)

< W (kgy, w57)P + Wy (k4 B, 5y 3)P (joint convexity of WE)

< 7P 4 (1 + Dev )P (Fact[T)and Eq. [8)

< (27 + Dev)P. (t, < )

Combining, we have that £,(x; i/, v) < 37 + 3De'/P, as desired. O
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A.7 Proof of Lemmal6

First, we note that x4 (Agit) = (k0 A)yu by the definition of kernel composition. This implies that the
two feasibility gaps coincide. Moreover, by Minkowski’s inequality, we have

|(/ Iy — 2lPds (5)d(Age) (= ) (/[ o= alrate n. e <>)
<(f[1- xnpdAm(z)du(x));

Wy (g, ) — Wy (1,)] < Wy (g1, Agh) < (// e — 2lPdAe (2)du(a >)

and

Combining these two error bounds gives the lemma. O

B Proofs for Section

B.1 Proof of Theorem[Il

By the support constraint, our cost ||z — y||P is pdP~1)/2-Lipschitz over X x Y. Thus, by Theorem
1 of |Genevay et al.|[2019], we have

Sp.r (i, In) < Wy (fin, I )P + 2Td10g((32pdp/2_17——1).

Since 7, ,, achieves the left hand side above and KL divergence is non-negative, we have

/ = P A (4]2)dfin (2) < Wy (fin, )P + 27dlog (e2pd?/2~ 1771,

Taking pth roots and noting that (ky, )gfin, = ©p, this implies that
1
Ep(Fons; i D) < [27d10g(e2pdp/2_17'_1)} " < 4(rd)F log(edrY).

Now, by (@), (» ). is obtained by applying softmax to v(z) = ((g- (Vi) — [z — Y; Hp)/T) e R™.
Since the ¢4, £+, Lipschitz constant of the softmax operation is < 1, we have

. . 1 1 e _
1(Fn)e = (Ra)arllrv < Sllo(z) = v(@)lo < *pd(” D2z — a2

for all z, 2" € [0,1]%. Thus, by Factl Ry, is Holder continuous under W,, with exponent 1/p and
constant 2v/dr /7. Applying Lemmalnow gives

Ep(Fons 1, v) < Ep(Fins i, ) + Wy (P, v)
< &yl s 9n) + Wy (1, o) VAW, (1, 2) 7777 + W, (1, D)
< 4(7d) 7 log(e2dr™ 1) + AVAW, (1, 1) 777 + 2Wp (1, fin) + Wi (v, 7r,).

Taking expectations, applying Lemmal([I] and plugging in 7 gives the theorem. O

B.2 Minimax Lower Bound under Sampling

Fix v = do, so that the constant kernel x* defined by 7 = v is optimal. Note that the error £, (k; i, v/)
of any kernel  is thus lower bounded by the feasibility gap W, (o, ). Since we only observe n i.i.d.
samples from v € P([0, 1]¢), any upper bound on an estimator for this problem instance also gives
an upper bound for n-sample distribution estimation of v under W,,. However, the minimax lower
bound of |Singh and Péczos| [2018]] implies that no distribution estimator can achieve W, error less
than n =/ 2PV for all v € P([0, 1]%).
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B.3 Proof of Theorem2]

We start with some helpful lemmas.

Lemma 8 (Rigollet|[2015]], Theorem 1.14). Let u € P(R) be I-sub-Gaussian. Then, for X1, ..., X,
sampled i.i.d. from u, we have max;—1 .., X; < \/2log(n/d) with probability at least 1 — 6.

Lemma 9. Let i € P(R?) be 1-sub-Gaussian and let P denote the regular partition of R¢ into
cubes of side-length r > 0. Then, for any choice of rounding map rp, we have

Bl ()i — )] = 6<ﬁ )

Proof. Let B denote a ball of radius R = /2 log(n) centered at the origin, so that u(B) > 1 —1/n
by Lemma|[8] Write Pr for the subset of partition blocks P € P which intersect B, and note that
|Pr| < vol(B)r—¢ < (3R/r)?%. We then bound

N |

E[ll(r#)g(dn — w)llrv] = E[Z |(fin = ) (P)]

PEP

E| > (i —m)(P)+ Y | —w)(P)

PePr PcP\Pr

<yl S e e up)

PE'P\'PR

VIR e By

\/(3\/210g(n))dr—d N 1

n
5d’f’_d
n )

as desired. O

N |

A

A

I
o

Lemma 10. There exists a partition P parameterized by § > 0 such that, for allN,u € P(RY) with
E,.[|X|[*T*] < 1 and any rounding map rp, we have E[||(rp)(ftn — )| 7v] = O(\/0~¢/n) and
[rp —Id|lLegu) S 6.

Proof. Let X, be a minimal (3§)-covering of the unit ball, denoted Sy. In particular, this implies
that | Xo| < 0 —2_ Now, take Py to be the Voronoi partition of Sy induced by X, so that P has at
most § % cells of diameter at most 68. Then for each integer i > 0, set S; := 2'S, \ 215, and let
P; be the dilated partition {(2'P) N S; : P € Py}. By construction, [P;| < 6~ and each P € P;
has diameter at most 2° - 69, for all 7 > 0. Moreover, by Markov’s inequality, we have

p(Si) < Pr(| X[ >271) = Pr(||X |7+ > 2@+DE=D) < o(=0p+h)
2 3
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for each ¢ > 0. We thus bound

=

E[ll(rp)a(pe = fin) [ rv] =

[ZZ m—= /Ln |
—0 PeP;

Var;t@” [ﬂn(P)]
(2 VuD)

P,
VIPilu(S
( e

e
M

INA
Sl L
;r?
h

IN

Bl
gMé@ HM8 \

I\J‘H

m\»—A

Similarly, we bound

3 =

IN

M8 W m

|rp —1d | Lo ()

u(P diam(P)p>

(S») '

(2° 5 po(l—i (p+1)>

PeP;

IN

1
P

&
5
e

<6

Il
=]

)

as desired. O

We now prove the theorem. First, note that for D = /4log(n), we have max;—;
with probability at least 1/n, by Lemmal 8l Now, for a general partltlon ‘P, we bound

gp("{nvﬂ'a ) = gp(/i’n oTrpiH,V )
< Ep(Rni !, v) +2||rp —1d || Lo (Lemma 6))
< Ep(Fns 1y 0n) + 2 |lrp —1d || o () + Wy (v, ) (Lemma[3)
. . 1 .
S 11rp)e(p = fua) I - diam(supp(@n)) + 0% + [[rp = 1d [ o sy + Wy (v, 22),

where the last inequality follows by Lemma [7] and our choice of 7,,. Applying this bound for the
regular cube partition and taking expectations, we bound

n [[Yill < DS

N N 1 1 .
E[&) (i 1,v)] S DE[I(rp)s( — fin)ll2v]” + — + 6% + Vidr + Wy (v, 7,)

dp—d\ % ~ :
<O<5n ) +6z+\/3r+0p<”7m)' (Lommas B §ndB

Taking r = n~/(@42)  we obtain E[E, (An; p, )] = Opa(n~1/(4+20)) 4 §1/7 The same rate is
obtained under bounded 2pth moments by using the alternative partition from Lemma[I0] Thus, to
achieve the desired rate, it suffices to solve the preliminary OT problem to accuracy § = n~—?/(¢+2p)

Computational complexity is dominated by this OT computation. The source and target distributions
are both supported on n points, and we require accuracy § = n—?/(¢+2P) Computing the relevant
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cost matrix requires time O(n2d). Using a state of the art OT solver based on entropic OT (e.g., Luo
et al., [2023) gives a running time of O(Csn?/8) = O(Coon®+P/(@+2P)) where C, is the largest
distance between a source point and a target point.

B.4 One-Dimensional Refinements (Remark 3)

In one dimension, OT maps can be expressed concisely in terms of CDFs; in particular, if p and v
have strictly increasing CDFs F), and F,,, respectively, then the map 7% (x) = F, }(F,(z)) solves

the W, (i, v) problem for all p > 1. As a result, many OT-based inference tasks become more

analytically tractable when d = 1, including map estimation. In fact, minor adjustments to folklore
techniques imply that the optimal risk of n~1/(?P) is achievable when d = 1. We now provide a clean
derivation of this risk bound using the Kolmogorov-Smirnov (KS) distance.

The KS distance is a useful alternative to the TV metric in one dimension, defined via || — v||ks =
supres (1 — #)((—00, D] = [ Fy — Fullc. We always have [l — vlis < [ — vllrvs since
[l — v||Tv can alternatively be expressed as Sup 4 peas. |(#¢ — ¥)(A)|. A comparison with W,
mirroring Fact[I]is direct.

Lemma 11 (W,-KS comparison). For u,v € P([0, D]), we have W, (u,v) < Dl — z/Hl/p

Proof. Writing F', G for the CDFs of y and v, with generalized inverses F~! and G~!, we bound

1
Wy (p, v)? = ; [F~!(u) — G (uw)[Pdu
gDp—l/O P~ (u) — G~ ()[du
D
:Dpfl/o |F(z) — G(x)|dx

< DPl|p = v|[s-
Taking pth roots gives the statement. O

The KS distance admits useful empirical convergence guarantees not shared by the TV distance.
Fact 2 (KS empirical convergence, Massart, 1990). For all i € P(R), E[||x — finllks] < 1/v/n.

Moreover, for fixed i and v, there exists an optimal kernel for W), (1, ) (namely, based on CDFs as
above), which is near-optimal for all 4’ in a KS neighborhood of y, as shown next.

Lemma 12 (KS corruptions in w). For X, C R, fix p € P(X) and v € P(Y). There exists an
optimal kernel k* € K(X,Y) for the W,,(u, v) problem such that, for all ' € P(X), we have

Ep(w*5 ' v) S diam(D)|p — 1|18

Proof. Write F, F' G, for the CDFs of u, u/, and v, respectively, and let e = ||p — p'[|xs =
|E' — F'||oo. Write D = diam()) and suppose without loss of generality that ) = [0, D]. For now,
suppose further that 1/ = 3M is a multiple of 3 (without loss of generality) and that F' is continuous
(which will be relaxed). We consider the kernel induced by the map 7% = G~ o F, where G~ is
the generalized inverse of G with G~1(q) defined as as 0 for ¢ < 0 and D for ¢ > 1. In particular,
we compare 7% with the optimal kernel G~ o F for the W,,(11/, v) problem, bounding

/X|G—1(F(x))—G—l(F’(x))|de’(x)g/|G—1(F’(x)ia)—G-l(F’(m))y”dF’(x)

:/|G (ute)— G Hu)|["du

(i+1)e
Z / G (ute) — G (u)|du
i=0 i€

3M—1

e Y [GTHE+2)e) -G ((i-1e)]".

1=0

28



Here, the first equality uses that Fu;l = Unif([0, 1]), and the second inequality uses that G~*

monotonic. If F is discontinuous, one should replace it with the kernel F’ which coincides with
F’ where continuous and, at any point 2 where there is a jump from p; to po, satisfies Fﬁ' 0y =

Unif([p1, p2]). By this choice, we have Fu’,u = Unif([0, 1]), and one can do the same for F' to obtain

F such that W, (Fﬁ 1, Fﬁ’ 1) < e. At this point, we can derive the same bound as above. Now, writing
A; = G7Y((i + 3)e) — G 1(ig), we have

/X G (F(2)) — G (F'(@))|"dF (2)
3M -2

SEZAf

i=—1

M-1 M-1 M-1
= 5(2 A%+ Z Ay + Z A§i+1>

(ECR) - EE)-Ee5)

K2 1=

0
M-1 p M-—1 M—1 P
Agi_q As; Agit1
< eDP 23it1
(5 D>+<MD 2 h

_ O(DeVry.

Thus, we have £,(G™ ' o F; 1/, v) S |G o F — G™' o F'|| 1oy < Del'/P, as desired. O

Together, the three results stated above yield our desired risk bound.

Proposition 2. Let X1, ..., X, & p e PR)andYy,..., Y, e P([0,1]). Then the estimator

Ky, which, given [i,, and U, returns the optimal kernel for W p(fin, D) given by Lemma achieves
risk B[E (Fp; p, v)] < n~1/(2P),
Proof. By Fact[2] we have that E[|| 1 — ji,||xs] < n~'/2. Consequently, we bound
Ep(fins p1,v) < Ep(Rni bty Un) + Wy (v, D)
< i = fnlI + Wy v, 20).
Taking expectations and applying Fact[2]and LemmalI] gives the desired rate. O

Unfortunately, we are unaware of any multivariate extension of the KS distance that obeys a useful
comparison inequality with W,, (like Fact [I1) while maintaining strong empirical convergence
guarantees (like Fact[2), 1nh1b1t1ng the further development of this approach.

C Additional Details for Section 4]

We note that the minimax lower bounds in Corollaries |1|and 2| follow by combining the reduction to
distribution estimation from Appendix with existing lower bounds for distribution estimation
under W), from Singh and Pé6czos|[2018|] and Weed and Berthet|[2019], respectively.

D Proofs for Section[5

We first recall some basic facts used throughout.

Fact 3 (TV contraction under Markov kernels). For u, v € P(X) and kernel x € (X, ), we have
[kgp — wavlly < [lp = vy

This follows by the data processing inequality.
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Fact 4 (W, contraction under convolution). For p,v,a € P(X), we have W, (u * a, v * @) <
W, (1, V), where * denotes convolution between probability measures.

This follows by considering the couplings (X + Z,Y + Z') of u * o and v * « which set Z = Z'.

Fact 5 (TV discrete empirical convergence). For a finite set S with |S| = k, any distribution
w € A(S) exhibits empirical convergence in TV at rate E[|| i, — pl|Tv] < Ek/n.

To simplify discussion of our corruption model, we employ the e-outlier-robust p-Wasserstein distance

W (i, v) = ,min W, (i, v) = ,min W, (p, v'). ©)

u'eP(RY) v eP(RY)
' —pllrv<e ' —vlrv<e

The second equality follows from the observation that, if E[|| X’ — Y||?] < cand X = X' with
probability at least 1 — ¢, then the random variable Y/ = Y1{X = X'} + X1{X # X'} satisfies
E[[|X — Y'||P] < c. See|Nietert et al.|[2023a] for a thorough examination of W, in the context of
robust statistics. Under the setting of Section[5] our corruption model can be equivalently stated as
follows: given the standard empirical measures ji,, € P(X) and &, € P()), we observe corrupted
versions fi, € P(X) and fi,, € P(Y) such that W (fin, fin) V W5 (T, ) < p.
For this setting, we handle sampling error using the following lemma, which mirrors Lemma 9}
Lemma 13 (Prop. 2 of Goldfeld et al., 2020). Fix o > 0 and 1-sub-Gaussian p € P(R?). Then, the
n-sample empirical measure i, satisfies E [||Nﬁ”(u — fn)llv] £ V/31AVoed)/n

In order to apply our W, stability result, LemmaE], we use that any kernel become continuous if one
first applies Gaussian convolution.

Lemma 14. Fix & € K(X,)), 0 > 0, and let Kk = K o N°. Then, for all x,2’ € X, we have
W, ((Ka, ki) < diam(Y)[[|z — 2/ /(20)]*/7.

Proof. We simply compute

Wy (55 iz7) < diam (D) [rg(NZ — N2 | (Fact[T)
< diam(Y)||NJ — ;’,||1T/\1; (data processing ineq.)
< diam(V) |V (z, 0% 1) — N(a', 02 L) |18
< diam() |z — 2| V/7(20) 717,

where the final inequality follows by the closed form of KL divergence between Gaussians, combined
with Pinsker’s inequality. O

We split the proof of Theorem ] into the upper bound (Appendix [D.I)) and lower bound (Ap-
pendix [D.2).

D.1 Proof of Theorem d|(Upper Bound)

To start, we decompose N7 = N°1192 — N9 o N°2_ for 01,09 to be tuned later. By our
corruption model, there exists an intermediate measure p/, € P(R%) such that ||, — u!,||Tv <
e and Wy, (i), i) < p. By Facts [3| and {4] these bounds are preserved under convolution, so
[N (i — p)llryv < € and Wy, (NY* iz, N7 i) < p. By the TV triangle inequality, we have
[N (0 = pp)llry < 7= e+ [[NJ* (0 — fin)[lTv. We conclude that W (N i, N 1) < p.
By the symmetric nature of W, there must also exist a € P(R?) such that Wy (N, @) < p and
o — Nﬁgl.anHTV =T

Now set & = ry, [Né’/ln — D), so that &,(F; NY fin, Up,) = 0. Using this, the TV bound above,
and the fact that N{ fi, = NJ*(N;" fin), we have &,(k; Ny?a, 7,) < diam(Y)r'/? < Vdr!/».
Applying Lemma 6] this gives

Ey(F o N5, 7) S Vars + Bz no.m3r) (1217 S Vdrs +/d+pos.

~
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Consequently, by Lemmad]and Lemma[T4] we have that
Ep(Ro N7 Nualﬂa Un) S Ep(Ro N7, 1) + p + (\/g/o'Q)l/ppl/p
< Ey(Ro N2, i) + p + (Vd/aa) /P pl/?
<VAry + p+ (Vd[o2) PP + \/d+ po.
Tuning o4 gives
Ep(R o N7 N 11, 7y) S Vdrv +Vdp7 + p.
Apply Lemma[6]once more, we bound
Ep(RoN7 1, 0) S Vdry + ﬁpﬁ +p++d+por
SVded +VApTT 4 p+ A+ poy + VNI — i) |13
Taking expectations and applying Lemma|[T3]yields
E[&, (R 0 N5 i, 7)) S Vdew + Vap7T + p+\/d+poy +E[|N (1~ jin)|1v]?

S Vst + Vet + gt VT g + (P
Tuning o, then gives
E[£, (% o N7; i, )] < Vdew + VdpiiT + p+ O, q(n~ 7%).
Finally, we note that W, (%, ,,) < p+ V/de'/? due to the support bound. Thus, Lemma gives
B[y (R o N p,v)] < E[Ey(R o N5, ) + W (P, ) + Wy (0, )]

< B[y (R o N7, )] + p+ Vde? +EW, (0, )]

S Vder + Vdp7H 4 p+ Opa(n” 75),
as desired.

For the null estimator, let * be an optimal kernel for the W, (u, v/) problem and bound

£ (Rt 1,1) = [( Jtatrana))” = ([[ 1o alraman) |+ Wyt
+
< [(/ ||y||pdn;(y)dﬂ(x)> ’ + W, (o, v) (Minkowski’s inequality)
+
<2Vd, @ 0,14
as desired.

D.2 Proof of Theorem E| (Lower Bound)

Since v/de'/? and n=1/(4V2P) are less than V/d, it suffices to prove a lower bound of v/de!/? +
dV4p 2 A \/d + n=1/(4V20)  We inherit the n~'/(4V2P) sampling error term of the lower bound
from the Dirac mass construction described in Appendix [B.2] For the remaining terms, we prove
lower bounds which hold even in the infinite-sample population limit, and even when only the source
measure is corrupted. Here, an estimator can be viewed as a map & from P(X) x P(Y) — K(X,Y),
mapping the corrupted source measure p, guaranteed to satisfy W;( i, 1) < p, and the clean target
measure v to a kernel estimate 4[ji, v]. For X = B9 (which, in particular, forces each y € P(X) to
be 1-sub-Gaussian) and Y = [—1, 1]¢, we prove that
sup  sup  Ep(R[fL, V] pyv) 2 Vded + pidi AV,

HEP(X) [EP(X)

veP(Y) W (f,pn)<p
The choice of ) = [—1, 1]¢ rather than [0, 1]¢ is solely to simplify notation in one of our constructions
and can be reverted without loss. Finally, it suffices to lower bound the supremum by v/de'/? when
p = 0and \/dp A v/d when e = 0, separately, which we do presently.
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TV lower bound. Fix target measure v = (1 — €)8y + €6,, where y = (1,...,1) € R% Consider
the candidate clean measures p; = v and ua = dg. Because they are within TV distance ¢, the
observation i = v is compatible with both candidates. Abbreviating k = &[fi, V], we have

(5 11,) + Ep(1: iz ) 2 [( J[ =P @) " = Wt )|+ Wy

+

= (/ lly — xllpdnx(y)V(x)) % + W (K460, v)

> (=23 ([ IoiPanat))” + Waesdo,

> (1 — £)» W, (K560, 60) + (1 — £) P W, (k300, /)
> (1— )7 W, (%, v)

>(1- 6)?&\/&

> %6%\/&

Thus, we must have £, (k; 11, ) V Ep(k; 2, v) = V/de'/P, as desired.

W,, lower bound. For the remaining bound, we first argue that, for any kernel &, its performance
for the W), (1, v) problem cannot suffer to much if we compose it with the Euclidean projection onto
supp(v), denoted by projgypp(u)-

Lemma 15. For p € P(X), v € P(Y), and k € K(X,)), we have

Ep(Projsupp(v) OF3 1y V) < AEp (K5 1, v).

Proof. Write f = pProjgupn,y and € = &E,(k; p,v). Fix a coupling X, Y, Z such that (X, Z) ~
(Id, k)gpe, Y ~ v, and E[|| Z — Y||P] = W (kgp, v)P < eP. Taking Z' = f(Z), we then bound

E[lX — Z'|I")V? <E[IX — Z|"]'/* + E[|Z - Z'|")"/*
=E[|X - Z|"]'" +E[|Z - £(2)|")"/

< Wy(p,v) +e+E[[|Z - Y|P/
< W, (1, v) + 2e.

Similarly, we have

Wy (i, v) < E[|| 2 = Y|P
<E[|Z - Y|"]'" +E[|Z - Z'|")"/

<e4e=2e
Thus, the sum of these two errors is at most 4¢, as desired. ]
Now, fix target measure v = %(Ly + %674, where y = (1,...,1), and take ¢ € [0, 1] to be tuned

later. Then, for each 0 < ¢ < 1/2, define measure p; = (1/2 — t)d_¢y + (1/2 4 t)d4¢y. Now,
fix any kernel x € (X, {xy}), where the codomain restriction is without loss of generality due
to Lemma [[3] Note that its performance on each i, is determined by the two-point distributions
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Kt = Ktey = (1 — ax)0_cy + adcy. In particular, for 0 < ¢ < 1/2, we compute

Wy (e, )P = (5 =) (1 = P llyll” + (1 + )P [ly[|” + 3(1 = )P [ly||?
=d?[(1—t)(1 =) +t(1+¢)"],
Wy (kg v)" = Wy ((5 = ) + (5 + 1) R4, v)
= lly = (=9)II” - W, ((3 — t) Ber(a—) + (5 +t) Ber(ay), Ber(3))"
= (2d)% W, (Ber((2 —t)a— + (2 +t)ay),Ber(3))”
=(2d)% |(3 —t)a_ + (L +t)ay — 1],
—ay)

W, By s )? = e (1 — PP + (1 — as) (1 + O[lyll”
= (0 (1— P + (1 - ag)(1+0)7),
Wy (Bey i) = a(L+ P [lylP + (1 — a)(1 — o)[lyll”
= d¥(a-(1+ ¢ + (1 - ay) (1)),
/ / ly — allPdy (9)dae (2) = (5 — )W (0 ey, 5 )? + (4 + )W, 6y i4)?
=dH[(3 =L+ + (L= ap)(1 = o)7)

+ (% + t)(oz+(1 -+ (1 —-ap)(1+ c)p)].

Writing A = a_ — a4, we next bound

Wi (Kgpie, v) + Wy (Kgpio, v)
1
— Vad|(— tha + (3 +1)as — 2 + VBT o + oy -
> V2dti|ay —a_|? (subadd1t1v1ty of a — a'/?)

= \V2dtr|Alr

and we simplify

J[ o= alPasahauale) = af (UG 1 0p 4 2GR o)
=d’5<1+2A(1+c)”+(1—c)P)

Thus, we further bound

[( I/ ||y—$||pdﬁw(y)dﬂo($)) "Wy (0, v) )

1+ A 1-A g
( —; (1+c¢)? +2(1—c)p) —1+c¢

|
S

+

1+A 1-A »
(Z (1—|—)p—|—2(1—c)p) —1+c|.

I
S
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Algorithm 1: Randomized Rounding for Efficient OT Kernel Estimation

Input: n corrupted source points S C R< and target points 7" C [0, 1]¢, budgets p > 0, ¢ € [0, 1]
1:m = n?, 7 n~ Y@+ 5 o 3d/RFd) (ng)=1/(d+2) 4 p1/24-1/4
2: S« {prOJS(X + Z;)}™,, where each X!~ S and Z; ~ N, are sampled independently
3: Compute kernel & € IC(S T) s.t. kg Unif(S") = Unif(7T")

> [l = wlartyl) < Wa(s'7) +
weS’
4: Return & € K(R%, T') defined by & = & o projg o N°

Combining, this gives

Ep (K5 e, v) + Ep (ks pro, v)

> ﬂ(le(HC)ul;A(l—c)P)p—1+c+@ti|A|ﬂ
1 A 1—A 1 1
> Va(H R s+ 1520 -0) -1+ er VRIS ]

= w&ux U+Vﬁ}ﬂAWﬂ
J14L4A0+H@m@
dmin{c/2,t/7/2}

v

Now, supposing that p < v/d, we can safely take ¢ = t'/? = p'/2d—1/%/2 while ensuring that
¢ € [0,1] and ¢ € [0,1/2], which were the only constraints on our construction. Otherwise, we take
¢ = t'/P = 1/2. In either case, we have W,,(u, i) = t'/7 - 2¢v/d = (p A V/d)/2 < p. Thus, the
observation [i = g is compatible with both i1 = po and p; under our corruption model. This gives
the desired minimax lower bound of Q(v/de A t1/7) = Q(d**p*/? AV/d).

D.3 Efficient Computation

We now introduce Algorithm I]to achieve efficient computation, focusing on p = 1 where we match
the rate of Theorem 4] Here, we identify finite sets with their uniform distributions when convenient.

Theorem 5 (Efficient implementation). Under the setting of Section [5|with p = 1, the kernel &
returned by Algorithm[I\matches the risk bound of Theorem[d| Using an entropic OT solver for Step

3, Algorithm I runs in time O((Coo 4 d)n?>+°¢(M)), where Coy = max; ; | X; — Y;||. Moreover,
can be evaluated (i.e., given x € X we can sample Y ~ f) in time O(nd).

The proof below employs a similar analysis to that of Theorem [d] with multiple applications of
Lemma [5]to account for various sampling errors along with TV contamination. We restrict to p = 1
due to the worsened scaling of Lemma5|for p > 1.

Proof. Set a = N{ [in, B = projg «, and S, = Unif(S”"). By construction, S’ is sampled i.i.d.
from 3, so Factgives that E[||8 — BmHTV] =E[E[||8 — BmllTv]S]] S /n/m. Moreover,

[ 1proist@) —sldata) = = 3 [ Iprois(o+2) — 2+ aN7 (2

IES

I A

—E:/“x—x+AMN%) (@ € S)

zeSs

= [1elane(z)

<Vdo.
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Now, we restate our guarantee for x; namely, we have:

[ 12 = vldn(ule)d8 ) < Wi (B ) 4 7.
Thus, by Lemma[7] we have

gl(l_ﬁ B, ﬁn) /S T+ \/g ||5 - BmHTV7
and, applying Lemmal(6] we obtain

&1(R o projg;a,0n) S 7+ V|8~ Bty + Vo
Now, write x/, € P(R?) for an intermediate measure such that |12/, — fi,, | v < & and Wy, (i, i) <
p- Noting that « = N fi,,, we have by Factthat [ = N¢ iy, |lrv < e. Thus, Lemma S| gives
E1(R 0 projg; N iy, 7) S Vde + 7+ Vd || = Binllvy + Vo

Applying Lemma 6] once more, we obtain
&1 (F o projg oN/% Ny P, ) < Ve + 7+ Vd||B = Bl rv + Vo

By Lemma the fact that this latest kernel begins with the convolution N?/2 ensures that
it is O(v/do~ ) -Lipschitz w.r.t. W;. Moreover, by Fact we have Wl(N o/2 oy N, 0/2 fin) <
Wi (i, fin) < p. Thus, Lemmal[d] gives

é’l(f%oprojsoN”/2 0/2ﬂn7ﬁn)<\f5+7'+\f\|,8 ﬁmHTv-l-\/aU-l-p—&-fp.

Next, we apply Lemma[5]and Lemma [§]to bound
&1 (R oprojgoN7; p, )
< E1(Foprojg oN“/z;NU/Qu,ﬂn) +Vdo
<& (R o projg oN7/?; NJ/Z/:Ln, Un) + Vdo +Vd|N7?(u — fin)| v

f

<Vde+71+Vdo+p+—= dp +VA||B = Blrv + VAN (1 — fin) || Tv-

Finally, we correct the target measure, using Lemma [3|to bound
&1 0 projg oN7s 1, 1) < (i © projg oN; 11, ) + 2W, (7, v)

f

<Vdetr4+vdotp+ YL L VAN~ Bl +VEINT (1~ fin) v + Wy (7, v)

Taking expectations, using our early bound on the first TV distance, and applying Lemma I3|for the
second TV distance, and applying LemmalT] for the Wasserstein distance, we obtain

E[£1 (R o projgoN7; p, v )]

d
§\/c§6+r+ﬁo+p+7+\/ n+\/d3d1\/a )/n+cpan” pv2d10g n

Our choice of o, m, and 7 ensure that the desired risk bound holds.

Computational complexity is dominated by the OT computation at Step 3. The source and target
distributions are both supported on n points, and we require accuracy 7 = n~/(4+2) Computing
the relevant cost matrix requires time O(n2d). Using a state of the art OT solver based on entropic
OT (e.g., Luo et al., [2023) gives a running time of O(Cson?/7) = O(Coon?+1/(@+2)) where O, is
the largest distance between a point in .S and a point in 7". Combining these two gives the first bound.
Evaluation complexity is dominated by the projection step, which can be computed in a brute-force
manner using O(nd) time. O

35



&1: NN vs. Rounding
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Figure 4: &; (left), optimality gap (middle), and feasibility gap (right) performance of nearest-
neighbor and rounding estimators for Setting A.
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Figure 5: Visual depiction of rounding kernel estimator on checkerboard dataset.

E Additional Experiments

All code needed to reproduce our experiments and figures is available at https://github.com/
sbnietert/map-estimation. Here, we include two additional experiments beyond those in the
main body, one with higher dimensions and sample sizes, and one in dimension two, for visualization.

First, in Figure[3] we repeat the Setting A experiments from Section [6] (Figure 3] middle), but with
N = 10000, dimensions d € {5, 10, 15}, and sample sizes n € {100, 200, ...,1000}. To extend to
these larger parameters, we reduced the number of iterations to 7' = 5 and omitted the bootstrapped
error bars. Also, we include the decomposition of &; into its optimality gap and feasibility gap
components, the latter of which is measurably larger. As predicted by our analysis, our error rates
worsen with dimension.

Finally, in Figure[5] we provide a visual depiction of the rounding estimator on a toy checkerboard
dataset. In the top left, we present our source measure (orange) and target measure (green). For the
top right plot, we sampled n = 100 source and target samples, rounded the source samples onto a
regular grid with side length § = n~'/(¢+2) (orange), and computed an OT plan (light blue) from
the rounded source samples to the target samples (green). For the bottom left, we rounded the full
source distribution onto the same grid (orange), route these according to the same OT plan (light
blue), reaching a destination measure (red) that approximates the target distribution (green).
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