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Abstract

We introduce the Extract-Refine-Retrieve-Read001
(ERRR) framework, a novel approach designed002
to bridge the pre-retrieval information gap in003
Retrieval-Augmented Generation (RAG) sys-004
tems through query optimization tailored to005
meet the specific knowledge requirements of006
Large Language Models (LLMs). Unlike con-007
ventional query optimization techniques used008
in RAG, the ERRR framework begins by ex-009
tracting parametric knowledge from LLMs, fol-010
lowed by using a specialized query optimizer011
for refining these queries. This process ensures012
the retrieval of only the most pertinent informa-013
tion essential for generating accurate responses.014
Moreover, to enhance flexibility and reduce015
computational costs, we propose a trainable016
scheme for our pipeline that utilizes a smaller,017
tunable model as the query optimizer, which is018
refined through knowledge distillation from a019
larger teacher model. Our evaluations on vari-020
ous question-answering (QA) datasets and with021
different retrieval systems show that ERRR con-022
sistently outperforms existing baselines, prov-023
ing to be a versatile and cost-effective module024
for improving the utility and accuracy of RAG025
systems.026

1 Introduction027

The field of natural language processing (NLP) has028

witnessed transformative advancements in recent029

years, largely driven by the advent of Large Lan-030

guage Models (LLMs). These models, trained on031

vast corpora, have demonstrated exceptional capa-032

bilities in understanding human text and generating033

high-quality responses (Kaplan et al., 2020; Clark034

et al., 2022). They have also proven practical and035

scalable for various downstream NLP tasks, such036

as conversational response generation, text sum-037

marization, and content recommendation, even in038

few-shot or zero-shot settings (Wu et al., 2023).039

Despite their strengths, a key limitation of LLMs040

lies in their reliance on static training data, which041

makes them struggle with dynamic or less com- 042

monly known information outside their initial train- 043

ing scope. This limitation often leads to outdated, 044

inaccurate, or entirely fabricated responses—a phe- 045

nomenon commonly referred to as “hallucination” 046

(Lee et al., 2018). 047

To address this issue, Retrieval-Augmented Gen- 048

eration (RAG) (Lewis et al., 2020) has emerged as 049

a promising approach to enhance the functionality 050

and reliability of LLMs. By integrating external 051

knowledge sources through retrieval systems, RAG 052

enables LLMs to augment user queries with rele- 053

vant, up-to-date information. This augmentation al- 054

lows LLMs to generate more contextually accurate 055

and relevant responses. For instance, in a conver- 056

sational setting where a user queries an LLM like 057

ChatGPT (Ouyang et al., 2022) for the latest news, 058

RAG retrieves pertinent articles to supplement the 059

static pre-trained knowledge of the model, thereby 060

mitigating the information gap. 061

While retrieval augmentation has proven effec- 062

tive in mitigating hallucinations, it introduces its 063

own set of challenges. A prominent issue in 064

Retrieval-Augmented Generation (RAG) systems 065

is the pre-retrieval gap—a mismatch between the 066

information retrieved using the original user query 067

and the specific knowledge required to generate 068

optimal responses (Gao et al., 2024). For instance, 069

consider a document collection containing three 070

passages, labeled Passage A, B, and C, each con- 071

taining unique knowledge components x, y, and 072

z, respectively. Although all three passages in- 073

clude keywords associated with Knowledge z—the 074

user’s intended target—a poorly formulated query 075

may lead to retrieving Passage A or B instead of 076

the ideal Passage C. This misalignment restricts 077

the LLM reader’s ability to generate accurate re- 078

sponses, making the pre-retrieval gap a critical bar- 079

rier to achieving optimal text generation in RAG 080

systems. 081

To bridge the pre-retrieval gap, the Rewrite- 082
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Retrieve-Read (RRR) framework (Ma et al., 2023)083

introduced query rewriting as a mechanism to opti-084

mize user queries and improve their alignment with085

retrieval systems. However, RRR and similar meth-086

ods (Zheng et al., 2024; Gao et al., 2024) primarily087

focus on rephrasing or broadening queries, which088

helps expand the search scope but fails to address089

the specific knowledge requirements of the LLM090

reader. Additionally, recent self-prompting tech-091

niques (Li et al., 2022; Wang et al., 2023) have ex-092

plored using chain-of-thought (CoT) prompts and093

pseudo-QA pairs to enhance LLM reasoning capa-094

bilities by eliciting internal parametric knowledge.095

While these approaches effectively improve the096

internal reasoning and explanation capabilities of097

LLMs for tasks like multi-hop reasoning and open-098

domain QA, they lack mechanisms for aligning099

external retrieval queries with the LLM’s knowl-100

edge gaps, making them insufficient for resolving101

the pre-retrieval gap in Retrieval-Augmented Gen-102

eration (RAG) systems.103

To this end, we propose Extract-Refine-Retrieve-104

Read (ERRR), a simple but effective framework105

designed for retrieval augmentation systems. The106

ERRR framework is crafted to bridge the pre-107

retrieval information gap through tailored query108

optimization and aims to resolve the inherent lim-109

itations of RRR by enabling retrieval based on110

the specific information needs of the LLM reader.111

Specifically, it initiates by extracting parametric112

knowledge from LLMs and employs a specialized113

query optimizer which refines user queries. This114

refinement either complements or validates the ex-115

tracted parametric knowledge, ensuring that only116

essential information is retrieved for generating117

accurate responses, and minimizing the retrieval118

of extraneous information that could degrade the119

quality of the output.120

In addition to its innovative query optimization121

process, ERRR introduces a trainable scheme to en-122

hance efficiency and adaptability. Recognizing the123

constraints posed by black-box systems like Chat-124

GPT (Ouyang et al., 2022), which are accessible125

only through inference APIs, ERRR incorporates126

a smaller, tunable language model as the query127

optimizer. This trainable component reduces com-128

putational costs while offering greater flexibility to129

customize the retrieval process for diverse queries130

and knowledge sources. By combining precision131

in addressing pre-retrieval gaps with cost-effective132

adaptability, ERRR provides a robust solution for133

improving retrieval augmentation in LLM-driven134

systems. 135

We evaluate ERRR on multiple question- 136

answering (QA) datasets, including HotpotQA 137

(Yang et al., 2018), AmbigNQ (Min et al., 2020), 138

and PopQA (Mallen et al., 2022), using both 139

web-based (e.g., Brave Search Engine) and local 140

retrieval systems (e.g., Dense Passage Retrieval 141

(Karpukhin et al., 2020)). Across all tested datasets 142

and retrieval configurations, ERRR consistently 143

outperforms baseline frameworks, such as RRR, 144

in terms of retrieval accuracy and response qual- 145

ity. These results highlight ERRR’s versatility and 146

effectiveness in diverse settings. 147

In summary, our key contributions are as fol- 148

lows: (i) We propose Extract-Refine-Retrieve-Read 149

(ERRR), a novel framework that optimizes queries 150

to bridge the pre-retrieval gap and enhance RAG 151

systems. (ii) We demonstrate ERRR’s adaptabil- 152

ity across different datasets, retrieval systems, and 153

settings, establishing its robustness and versatil- 154

ity. (iii) We introduce a trainable ERRR scheme 155

that reduces computational costs while maintaining 156

high performance, making it suitable for real-world 157

applications. 158

2 Related work 159

2.1 Retrieval-Augmented Generation 160

The integration of retrieval modules to access rele- 161

vant contextual knowledge has played a crucial role 162

in enhancing Large Language Models (LLMs) in 163

recent years. Initially designed for early sequence- 164

to-sequence models, the Retrieval-Augmented Gen- 165

eration (RAG) framework proposed by Piktus et al. 166

(Lewis et al., 2020) has gained substantial traction 167

in the era of LLM. This approach has diversified 168

into a broad array of methods, with ongoing ef- 169

forts aimed at further augmenting its capabilities. 170

Earlier exploration primarily focused on improving 171

key components, such as upgrading to more pow- 172

erful pre-trained language models like BERT (De- 173

vlin et al., 2019) as readers or employing advanced 174

dense retrievers for retrieval tasks (Karpukhin et al., 175

2020). These retrievers encode documents and in- 176

puts into dense vectors, facilitating retrieval based 177

on the similarity between the input and retrieved 178

passages. 179

Recent studies have shifted focus beyond merely 180

enhancing the retriever or reader components, em- 181

phasizing the refinement of pre-retrieval and post- 182

retrieval processes. To address the pre-retrieval 183

gap—the disparity between the information retriev- 184

2



able from original queries and the knowledge re-185

quired for optimal responses—GenRead (Yu et al.,186

2023) replaces the retrieval module with a knowl-187

edgeable LLM, thereby narrowing the gap between188

the user query and retrieval process. It prompts189

the LLM to generate contextual information for the190

query, using these generated documents as retrieval191

results to formulate the final answer. Self-ask192

(Press et al., 2023) proposes an iterative approach193

using chain-of-thought prompting to generate self-194

posed questions that refine the response. For the195

post-retrieval gap—the challenge of creating opti-196

mal responses from given information—strategies197

include document re-ranking or summarization.198

For instance, PRCA (Yang et al., 2023) trains a199

contextual adaptor module to summarize retrieved200

documents with a black-box LLM reader.201

Several studies have also proposed significant202

modifications to the original RAG pipeline, in-203

troducing complex systems that include both pre-204

retrieval and post-retrieval modules (Rackauckas,205

2024), and adapting the pipeline into iterative or206

recursive frameworks (Yao et al., 2022; Asai et al.,207

2023). While these advanced systems demonstrate208

notable performance enhancements, they incur sub-209

stantial costs and typically require multiple inter-210

actions with LLM. In contrast, our work focuses211

on refining the single-turn RAG framework, intro-212

ducing a flexible and trainable module adaptable to213

existing systems.214

2.2 Query Optimization for Retrieval215

Augmentation216

Recent research highlights a significant discrep-217

ancy between input queries and LLM readers for218

RAG systems, especially under the current trend219

of using off-the-shelf web search tools or black-220

box LLMs that are difficult to customize (Ma et al.,221

2023). Typically, these input queries often origi-222

nate directly from users or specific datasets, which223

could be either poorly formulated or adhere to a224

static query format. To overcome these challenges,225

an effective approach is to optimize the query in the226

pre-retrieval phase, thereby improving the quality227

of retrieved information and response generation.228

The Rewrite-Retrieve-Read (RRR) framework, for229

instance, trains a query rewriting module using an230

LLM to better align retrieval queries with LLM231

readers (Ma et al., 2023) that generate the final232

response, as illustrated in Figure 1. Additionally,233

RRR introduces a trainable scheme that employs234

reinforcement learning with Proximal Policy Op-235

timization to fine-tune a small open-source model 236

based on feedback from the LLM reader, achiev- 237

ing improved results. HyDE addresses the demand 238

for accurate information retrieval by creating hy- 239

pothetical documents and encoding them through 240

unsupervised contrastive learning for efficient re- 241

trieval operations (Gao et al., 2023). Furthermore, 242

Step-Back Prompting (Zheng et al., 2024) converts 243

original queries into high-level abstract questions, 244

aiding LLMs in generating better responses for 245

complex queries requiring abstract thinking. 246

While these efforts have markedly improved the 247

performance of original RAG systems by focusing 248

on query optimization, they often overlook the im- 249

portance of synchronizing queries with the specific 250

knowledge requirements of the LLM reader. Un- 251

like the RRR framework, our approach includes an 252

additional parametric knowledge extraction step to 253

assess the knowledge possessed by the LLM. We 254

then perform retrieval based on optimized queries 255

to refine this parametric knowledge, thereby further 256

enhancing retrieval-augmented LLMs. 257

3 Methodology 258

In this section, we elaborate on the details of 259

Extract-Refine-Retrieve-Read (ERRR), a frame- 260

work for improving the retrieval-augmented LLMs 261

through query optimization for parametric knowl- 262

edge refinement. Section 3.1 formally defines the 263

central task addressed by ERRR and introduces 264

its key concepts. The design of the framework is 265

discussed in Section 3.2, where we outline a frozen 266

scheme using a black-box LLM reader and stan- 267

dard web search tools. Additionally, Section 3.3 268

discusses a trainable scheme of the framework. 269

3.1 Pre-retrieval Information Gap 270

A task with retrieval augmentation can be formu- 271

lated as follows. Given an input query q, a set of 272

theoretical golden documents D that has the accu- 273

rate information to answer query q, and a ground- 274

truth answer a, we denote: 275

LLM(D, q | θ) = a (1) 276

where LLM denotes an LLM reader and θ denotes 277

the parametric knowledge of the LLM. 278

However, to obtain the document set D, practi- 279

cal implementations often employ a retrieval func- 280

tion R which retrieves documents R(q) from an 281

external knowledge base, and thus the output of a 282
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Figure 1: Overview of Extract-Refine-Retrieve-Read (ERRR). Extract-Refine-Retrieve-Read leverages parametric
knowledge of LLMs and utilizes a specialized query optimizer to retrieve the knowledge that better aligns with
LLM’s needs.

retrieval-augmented system is:283

LLM(R(q), q | θ) (2)284

An inherent challenge arises due to the differ-285

ence in the quality and relevance of documents286

retrieved by R compared to the ideal documents287

set D:288

LLM(R(q), q | θ) ̸= LLM(D, q | θ) (3)289

The limitation discussed above describes the290

problem of the pre-retrieval gap in the original291

RAG pipeline, wherein the set R(q) may not ade-292

quately represent the information necessary for gen-293

erating the true answer a. Therefore, the main ob-294

jective is to develop a query optimization function295

f that transforms the initial user query q into one296

or more optimized queries f(q) such that R(f(q))297

better approximates the ideal document set D.298

Previous work like RRR (Ma et al., 2023) has299

demonstrated the effectiveness of such query opti-300

mization functions, albeit without considering the301

influence of θ. To this end, ERRR introduces a302

more tailored query optimization function f ′ that303

utilizes the parametric knowledge θ to perform the304

query optimization and retrieve external knowledge305

that refines θ and better aligns with its needs. This 306

can be formulated as: 307

LLM(R(f ′(C, q)), q | θ) (4) 308

where
C = E(q | θ)

and E denotes the parametric knowledge extraction 309

function. 310

3.2 Extract-Refine-Retrieve-Read 311

Extract-Refine-Retrieve-Read consists of a four- 312

step pipeline: Parametric Knowledge Extraction, 313

Query Optimization for Parametric Knowledge Re- 314

finement, Retrieval, and Generation, as depicted 315

in Figure 1. Detailed technical implementation for 316

each step, covering the models, prompting tech- 317

niques and training setup, is provided in Section 318

4.3. 319

Parametric Knowledge Extraction Previous 320

studies such as GenRead (Yu et al., 2023) and 321

HyDE (Gao et al., 2023) demonstrate that LLMs 322

may possess substantial parametric knowledge ca- 323

pable of addressing user inquiries, particularly on 324

popular topics. Inspired by the prompting meth- 325

ods outlined in GenRead, our approach involves a 326

direct strategy where we prompt the LLM reader 327
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to produce a pseudo-contextual document contain-328

ing all the background information. We consider329

these pseudo-contextual documents as a representa-330

tion of the LLM’s abstracted parametric knowledge.331

Although these documents may contain inaccura-332

cies, they provide essential contextual information333

related to the original queries.334

Query Optimization In this step, we employ an335

LLM as the query optimizer for parametric knowl-336

edge refinement. We prompt the query optimizer337

to produce one or more optimized queries seeking338

external knowledge that either validates or sup-339

plements the existing parametric knowledge, espe-340

cially focusing on the validation of time-sensitive341

information.342

Retrieval To illustrate the adaptability of our343

module across various retrieval systems and data344

sources, we utilize two types of retrievers: a black-345

boxed web search tool and a local dense retrieval346

system, which are then combined with the original347

query for processing by the LLM reader.348

Generation We employ an LLM reader to gen-349

erate the final answer using both the retrieved docu-350

ments and the original query. Our prompting strat-351

egy involves straightforward instruction followed352

by 1-3 few-shot examples for question answering.353

These examples are consistently used within each354

dataset but vary across different datasets to main-355

tain control over the task-specific output format356

from the LLM reader—for instance, the responses357

are expected to be concise in certain QA tasks, usu-358

ally only one or a few words.359

3.3 Trainable Scheme360

Given that many powerful LLMs operate as black-361

box systems, significant challenges such as high362

computational costs, customization limitations,363

copyright issues, and connectivity problems have364

arisen. To address these issues, alongside the con-365

ventional frozen scheme, we propose a trainable366

scheme for our pipeline. Specifically, we fine-367

tuned a smaller, trainable model utilizing knowl-368

edge distillation from a high-performing teacher369

LLM, leveraging its broadly trained outputs as a370

good starting point and learning template, and in-371

tensively training student models on a distillation372

dataset of QA questions and generated responses373

to learn the intricate nuances of query optimiza-374

tion. This streamlined model is then integrated into375

our pipeline to fulfill the role of query rewriting,376

originally handled by a frozen LLM.377

4 Experiments 378

4.1 Datasets and Metrics 379

ERRR is assessed on three open-domain question- 380

answering (QA) datasets: AmbigQA (Min et al., 381

2020), PopQA (Mallen et al., 2022), and HotpotQA 382

(Yang et al., 2018). Each dataset serves to test dif- 383

ferent capabilities of the ERRR framework. (i) 384

The AmbigNQ dataset is the disambiguated vari- 385

ant of the Natural Questions (NQ) dataset, where 386

ambiguous questions from NQ are refined into spe- 387

cific queries with minimal constraints. Consistent 388

with procedures used in RRR, we evaluated ERRR 389

using the first 1000 samples of the test set. (ii) 390

PopQA features simpler questions that focus on 391

less popular knowledge topics compared to other 392

QA tasks. Due to the high similarity in sample dis- 393

tributions, we assessed only the first 997 samples 394

of the test set. (iii) The HotPotQA dataset contains 395

complex questions that require multi-hop reason- 396

ing. We conducted evaluations across the entire test 397

set. Following the metric usage for three datasets, 398

our method is evaluated by exact match score EM 399

and F1 score. 400

4.2 Baselines and Proposed Frameworks 401

We evaluated 7 baselines and proposed frameworks, 402

as detailed below: (i) Direct: Directly calling GPT- 403

3.5-Turbo to answer questions. (ii) RAG: The clas- 404

sic Retrieval-Augmented Generation framework 405

(Lewis et al., 2020). The original user queries 406

are used for retrieval and fed directly to the LLM 407

reader to generate output. (iii) ReAct: A modi- 408

fied RAG framework that intertwines the reason- 409

ing and acting capabilities of LLMs to create a 410

more cohesive and effective approach (Yao et al., 411

2022). This framework can iteratively perform rea- 412

soning prompts and actions, such as information 413

retrieval, serving as our comparison baseline. (iv) 414

Frozen RRR: Rewrite-Retrieve-Read framework 415

(Ma et al., 2023) with a frozen configuration. It 416

employs GPT-3.5-Turbo to rewrite the query and 417

retrieve relevant documents based on these rewrit- 418

ten queries. Then the original query and retrieved 419

documents are used for reading. This serves as 420

our baseline for comparison. (v) Trainable RRR: 421

Trainable rewrite-retrieve-read framework, initiat- 422

ing with a supervised fine-tuned T5-large model. It 423

then applies reinforcement learning to better align 424

the retriever and rewriter using Proximal Policy Op- 425

timization (PPO). This serves as our baseline for 426

comparison. (vi) Frozen ERRR: Extract-Refine- 427
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Direct Prompt

Answer the question in the following format, end the answer with ’**’. {demonstration} Question: {x} Answer:

Reader Prompt for Retrieval Augmentation Generation

Answer the question in the following format, end the answer with ’**’. {demonstration} Question: {doc} {x}
Answer:

Prompt for RRR Query Rewriter

Think step by step to answer this question, and provide search engine queries for knowledge that you need. Split
the queries with ’;’ and end the queries with ’**’. {demonstration} Question: {x} Answer:

Prompt for Parametric Knowledge Extraction

Generate a background document from web to answer the given question. {x}

Prompt for ERRR Query Optimizer

Address the following questions based on the contexts provided. Identify any missing information or areas
requiring validation, especially if time-sensitive data is involved. Then, formulate several specific search engine
queries to acquire or validate the necessary knowledge. Split the queries with ’;’ and end the queries with ’**’.
{demonstration} Context: {Parametric Knowledge} Question: {x} Queries:

Table 1: List of Prompts Used.

Retrieve-Read framework with a frozen configura-428

tion, as described in Section 3.2. (vii) Trainable429

ERRR: Trainable Extract-Refine-Retrieve-Read430

framework, as described in Section 3.3.431

These frameworks are evaluated using a web432

search tool or a local retriever with a static corpus,433

as described in Section 3.2. Due to resource limita-434

tions, some frameworks were not evaluated under435

the local dense retriever setting.436

4.3 Implementation Details437

For all baselines, we utilized GPT-3.5-Turbo as the438

primary LLM and adhered to their implementation439

from the original paper. GPT-3.5 Turbo was chosen440

for its balance of performance and cost, aligning441

with our focus on optimizing retrieval-augmented442

generation systems rather than benchmarking gen-443

erative models themselves. While GPT-4 offers444

improved capabilities, our emphasis remained on445

augmenting the model’s utility through query opti-446

mization. Notably, for the Trainable RRR, we em-447

ployed the supervised fine-tuned T5 model check-448

point as the base model. This checkpoint, open-449

sourced by the original authors, has been warmed450

up and fine-tuned on multiple datasets to function451

as the query rewriter. Then we replicated their rein-452

forcement learning process since we replaced the453

original search tool with the Brave Search Engine.454

These trainings were conducted on the first 1000455

data points for each dataset evaluated, with The456

training parameters set as follows: a learning rate457

of 2e-5, 3 epochs, and a batch size of 8.458

For our proposed methods ERRR, in addition to459

the settings mentioned in Section 3.2, the following 460

sections outline technical details: 461

Parametric Knowledge Extraction To perform 462

parametric knowledge extraction, we use the same 463

prompts from the GenRead paper and choose the 464

top prompt that is most likely to produce pseudo- 465

contextual documents. We outline these extraction 466

prompts in Table 1. 467

Query Optimization Our specific prompt struc- 468

ture is detailed in Table 1, where demonstration 469

consists of 2 manually crafted examples. These 470

examples are consistently used across all tests and 471

primarily serve as one or few-shot examples for the 472

query optimizer. 473

Retrieval For our web search engine, we opt for 474

the Brave Search Engine, which, although it may 475

provide slightly lower quality results compared to 476

major competitors like Google or Bing, offers a sig- 477

nificantly more cost-effective API. This search API 478

retrieves website snippets, simulating a typical user 479

experience of entering a query in a search engine, 480

pressing Enter, and reviewing the top results at a 481

glance. For local retrieval, we utilize WikiDPR, 482

a specialized subset of Wikipedia collections tai- 483

lored for the Dense Passage Retrieval (DPR) model 484

(Karpukhin et al., 2020). This database consists of 485

21 million passages from Dec. 20, 2018, each lim- 486

ited to 100 words, along with their 768-dimensional 487

embedded vectors. The retrieval process involves 488

converting a query into a DPR embedding and find- 489

ing the top k vectors with the closest L2 distances. 490

For both systems, we retrieve the top 5 results, con- 491
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AmbigQA PopQA HotPotQA

Methods EM F1 EM F1 EM F1

Direct 0.391 0.4996 0.392 0.4289 0.311 0.4178
RAG 0.473 0.5842 0.425 0.4704 0.329 0.4424
ReAct 0.477 0.5787 0.451 0.4917 0.344∗ 0.4649∗

Frozen RRR 0.452 0.5577 0.445 0.4904 0.337 0.4567
Trainable RRR 0.460 0.5577 0.389 0.4238 0.337 0.4548
Frozen ERRR 0.4815 0.5823 0.480 0.5256 0.369 0.4941
Trainable ERRR 0.4975 0.5988 0.485 0.5309 0.372 0.4989

Table 2: The retrieval system in the above methods is Brave Search API. "Frozen" indicates the rewriter or the
query optimizer is GPT-3.5-Turbo, while "Trainable" refers to the rewriter or the query optimizer is a supervised
fine-tuned T5 model. Trainable RRR is also trained using proximal policy optimization (PPO) following the original
paper. ’*’ indicates that it is evaluated on 500 random questions drawn from HotPotQA due to resource limitation.

catenate them with the original query, and feed492

them to the LLM reader.493

Generation Although different prompting strate-494

gies may influence the performance of the question-495

answering task, this aspect is not the primary focus496

of our study, so we adhere to the same answer497

prompts used in the RRR (Ma et al., 2023) frame-498

work. The prompts we used are detailed in Table499

1.500

Trainable Scheme For Trainable ERRR, we501

employ T5-Large (Raffel et al., 2020), an open-502

source model with 770 million parameters, as the503

query optimizer. We fine-tune this student model504

using knowledge distillation from GPT-3.5-Turbo.505

The distillation dataset was assembled by select-506

ing questions from training sets of each QA dataset,507

with GPT-3.5-Turbo generating the responses under508

identical settings utilized in the frozen scheme. We509

also devised a short eliciting prompt, "Rewrite bet-510

ter search queries to acquire or validate the knowl-511

edge needed for the question:", serving as an in-512

struction prefix to guide T5 to adapt to the task. To513

ensure optimal task-specific outcomes, separate T5514

models were trained with 3 epochs for each QA515

dataset, with a learning rate of 1e-4 and a batch516

size of 4.517

4.4 Result518

The experimental results across three datasets and519

two retrieval tools are presented in Table 2 and Ta-520

ble 3. The Frozen ERRR framework consistently521

outperforms all baseline methods—Direct, Frozen522

RRR, and Trainable RRR—regardless of the re-523

trieval system used. These results highlight the524

effectiveness of addressing the pre-retrieval infor-525

mation gap, demonstrating ERRR’s adaptability526

across diverse retrieval systems and datasets. Fur-527

thermore, the Trainable ERRR framework achieves 528

even better performance, surpassing all baselines 529

and its teacher model (GPT-3.5 Turbo) across all 530

three datasets. We attribute this improvement to 531

the distillation process, which enables the student 532

model (fine-tuned T5) to generalize better by fo- 533

cusing on critical features while filtering out irrele- 534

vant information. This distilled representation al- 535

lows the model to adapt more effectively to specific 536

query optimization tasks, potentially compressing 537

and refining the teacher’s insights into a more effi- 538

cient form. 539

The impact of the ERRR framework is more 540

pronounced in web search retrieval systems, as ev- 541

idenced by the greater performance enhancement 542

observed in Table 2 compared to dense retrievers 543

in Table 3. This is likely due to the higher quality 544

and broader knowledge span of web-based retrieval 545

systems compared to the static 2018 Wikipedia cor- 546

pus used for dense retrieval. Notably, the results 547

show that both Frozen RRR and Trainable RRR 548

underperform the Direct method in the PopQA 549

and HotPotQA datasets when using dense retrieval. 550

This underperformance can be attributed to the low- 551

quality results retrieved from the outdated and lim- 552

ited corpus, which includes only Wikipedia pas- 553

sages of constrained length and scope. These limi- 554

tations lead to an increased retrieval of irrelevant 555

documents, distracting the Large Language Model 556

(LLM) from answering questions correctly. 557

In contrast, ERRR demonstrates resilience under 558

such conditions. By optimizing queries to align 559

with the LLM’s informational needs, ERRR re- 560

duces the retrieval of irrelevant passages, mitigat- 561

ing distractions caused by lower-quality retrieval. 562

This robustness is particularly valuable when op- 563

erating on suboptimal document collections, as it 564
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AmbigQA PopQA HotPotQA

Methods EM F1 EM F1 EM F1

Direct 0.391 0.4996 0.392 0.4289 0.311 0.4178
Frozen RRR 0.438 0.5373 0.378 0.4517 0.289 0.3926
Trainable RRR 0.414 0.5203 0.365 0.4242 0.282 0.3764
Frozen ERRR 0.448 0.5473 0.419 0.4685 0.337 0.4482
Trainable ERRR 0.4595 0.5577 0.426 0.4694 0.338 0.4499

Table 3: Evaluations with WikiDPR as local retrievers. The other setting is the same as Table 2. Due to resource
limitations, some baselines were not fully evaluated under this setting.

Frozen ERRR Trainable ERRR ReAct Self-RAG

Cost $0.62 $0.53 $1.05 $1.65
Latency 148s 140s 202s 270s

Table 4: The total cost and total latency of each method that is evaluated on 200 randomly drawn data points from
HotPotQA.

ensures performance gains even in challenging re-565

trieval scenarios. A detailed case study, provided566

in Appendix A, further illustrates how ERRR gen-567

erates precise queries that enhance retrieval effec-568

tiveness and improve final answers, even when the569

retrieved content includes inaccuracies.570

4.5 Cost and Latency571

Given our method’s emphasis on a conventional572

single-turn pipeline, it demonstrates superior per-573

formance in terms of cost and latency when com-574

pared to certain advanced and iterative RAG frame-575

works. To underscore the cost-efficiency and flexi-576

bility of our approach, we conducted a comparative577

analysis with ReAct (Yao et al., 2022) and Self-578

RAG (Asai et al., 2023). This experiment was579

carried out on 200 randomly selected questions580

from HotPotQA. The results presented in Table 4581

highlight that while still maintaining commendable582

performance, Frozen ERRR exhibits significantly583

lower costs, faster processing times, and greater ef-584

ficiency than other iterative frameworks. Moreover,585

Trainable ERRR has the potential to further reduce586

costs, particularly for large datasets, by leveraging587

an already fine-tuned query optimizer, thereby sav-588

ing on an additional LLM call to GPT-3.5-Turbo.589

5 Conclusion590

In this paper, we present Extract-Refine-Retrieve-591

Read (ERRR) framework for Retrieval-Augmented592

Generation (RAG) systems. The ERRR frame-593

work is designed to optimize queries, aligning594

them closely with the specific informational needs595

of large language models (LLMs) to enhance re- 596

trieval augmentation effectiveness. Our experi- 597

mental results demonstrate that our method sur- 598

passes both the naive LLM and native query rewrit- 599

ing framework Rewrite-Retrieve-Read on bench- 600

mark datasets such as AmbigQA (Min et al., 2020), 601

PopQA (Mallen et al., 2022) and HotPotQA (Yang 602

et al., 2018), utilizing both web search tools and a 603

dense retriever with local static corpus. It demon- 604

strated ERRR’s remarkable adaptability across a 605

variety of settings, data sources, and retrieval sys- 606

tems. This flexibility ensures that ERRR can be 607

effectively implemented in diverse operational en- 608

vironments, making it a potential and adaptable 609

component for inclusion in more advanced RAG 610

systems. Additionally, we have developed and im- 611

plemented a trainable scheme for the ERRR frame- 612

work. This approach is both cost-effective and 613

efficient as it relies on only a fine-tuned T5 model 614

trained on a moderately sized dataset and surpasses 615

the performance of the frozen GPT-3.5-Turbo. 616

6 Limitation 617

We acknowledge that we recognize the existence 618

of more sophisticated Retrieval-Augmented Gen- 619

eration (RAG) approaches such as Self-RAG(Asai 620

et al., 2023) and CRAG(Yan et al., 2024). These 621

advanced systems typically require iterative invoca- 622

tions of the entire pipeline to refine their answers, 623

resulting in exceptionally high computational de- 624

mands. Due to computational constraints within 625

our study, we focused solely on scenarios that oper- 626

ate in a single-turn manner, wherein each module 627

8



is invoked only once.628

Additionally, our model does not employ any629

reinforcement learning techniques to enhance the630

performance of the supervised fine-tuned model.631

This decision was driven by resource limitations632

and observed sub-optimal performance when train-633

ing with a small portion of the dataset using Prox-634

imal Policy Optimization (PPO) (Schulman et al.,635

2017), which constrained the potential upper limit636

of our model’s performance.637

For the future development of this work, while638

the ERRR framework addresses the pre-retrieval639

gap problem, future work could extend to meth-640

ods that bridge the post-retrieval gap or incorporate641

ERRR into more advanced and modular RAG sys-642

tems to further enhance performance in question-643

answering tasks. Furthermore, exploring new Re-644

inforcement Learning (RL) algorithms to improve645

the query optimizer’s performance for specialized646

tasks is also a possible direction for further explo-647

ration.648
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A Case Study 789

To explicitly and intuitively demonstrate the ef- 790

fectiveness of the ERRR compared to the RRR 791

framework, we present two examples in Table 5 792

comparing their rewritten queries and final outputs. 793

In the first example, the original question is Sto- 794

ries USA starred which actor and comedian from 795

"The Office"?. The query rewriter in RRR frame- 796

work produces a simplified query, actor comedian 797

"The Office" Stories USA cast, which merely re- 798

formulates the original question for clearer web 799

searching. In contrast, the ERRR not only answers 800

correctly in the Parametric Knowledge Extraction 801

phase but also generates refined queries such as 802

"actor and comedian from "The Office" in Stories 803

USA" and "Steve Carell role in Stories USA", These 804

queries not only attempt to validate the actor name 805

of the T̈he Officeb̈ut also attempt to validate the 806

name Steve Carell from the parametric knowledge, 807

enabling the retriever to source better results. 808

In the second example, the rewritten query from 809

RRR, Pakistani actor writer Islamabad Coke Ka- 810

hani 2012, rewrites into only a few random key- 811

words from the original question, which fails to 812

facilitate a high-quality search. On the other hand, 813

the first rewritten query from ERRR, Pakistani ac- 814

tor and writer from Islamabad who helped write 815

for Coke Kahani, provides a clearer and more com- 816

prehensible query for search possibly inspired by 817

the contextual information from the extracted para- 818

metric knowledge. The second rewritten query, 819

Faisal Rehman contributions to Coke Kahani aims 820

to verify the name derived from parametric knowl- 821

edge, specifically Faisal Rehman. Interestingly, 822

even though the name is incorrect, the information 823

retrieved subsequently clarifies that Faisal Rehman 824

is not the correct actor and writer, which effectively 825

rectifies the LLM’s output. Together with the infor- 826

mation gathered from the first query, this leads to a 827

correct final answer. This example illustrates that 828

even if the pseudo-contextual document contains 829

inaccuracies, the ERRR framework, by concentrat- 830

ing on the specific needs of the LLM reader, can 831

still retrieve the most useful information for the 832

LLM reader which results in a correct outcome. 833
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Example 1

Question: Stories USA starred which actor and comedian from "The Office"? Answer: Steven John Carel
RRR rewritten query: "actor comedian "The Office" Stories USA cast"
Output: "Ricky Gervais" (incorrect)
Parametric Knowledge Extraction: Stories USA starred actor and comedian Steve Carell from "The Office."
Steve Carell is best known for his role as Michael Scott on the hit TV show "The Office," but he has also
appeared in a number of films and other television shows. In Stories USA, Carell plays a man who is struggling
to come to terms with his past and find his place in the world. The film is a collection of short stories that explore
different aspects of the American experience, and Carell’s performance is praised for its depth and emotional
resonance. Overall, Stories USA is a thought-provoking and engaging film that showcases Carell’s talent as both
a comedic and dramatic actor.
ERRR rewritten queries: "actor and comedian from "The Office" in Stories USA" "Steve Carell role in Stories
USA"
Output: "Steven John Carell" (correct)

Example 2

Question: What Pakistani actor and writer from Islamabad helped write for the 2012 Pakistani comedy drama
sitcom, "Coke Kahani"? Answer: Yasir Hussain
RRR rewritten query: "Pakistani actor writer Islamabad Coke Kahani 2012"
Output: "Ali Abbas"(incorrect)
Parametric Knowledge Extraction: One of the Pakistani actors and writers from Islamabad who helped write for
the 2012 Pakistani comedy drama sitcom, "Coke Kahani," is Faisal Rehman. Faisal Rehman is a talented actor,
writer, and director in the Pakistani entertainment industry. He has appeared in numerous television dramas and
films, showcasing his versatility and acting skills. In addition to his acting career, Faisal Rehman has also written
scripts for various television shows, including "Coke Kahani," which was well-received by audiences for its
humor and engaging storyline. ERRR rewritten queries: "Pakistani actor and writer from Islamabad who helped
write for Coke Kahani" "Faisal Rehman contributions to Coke Kahani"
Output: "Yasir Hussain"(correct)

Table 5: Case Study from RRR and ERRR framework.
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