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Abstract

In this work, we address the problem of cross-view geo-localization, which esti-
mates the geospatial location of a street view image by matching it with a database
of geo-tagged aerial images. The cross-view matching task is extremely chal-
lenging due to drastic appearance and geometry differences across views. Unlike
existing methods that predominantly fall back on CNN, here we devise a novel
layer-to-layer Transformer (L2LTR) that utilizes the properties of self-attention
in Transformer to model global dependencies, thus significantly decreasing visual
ambiguities in cross-view geo-localization. We also exploit the positional encoding
of the Transformer to help the L2LTR understand and correspond geometric config-
urations between ground and aerial images. Compared to state-of-the-art methods
that impose strong assumptions on geometry knowledge, the L2LTR flexibly learns
the positional embeddings through the training objective. It hence becomes more
practical in many real-world scenarios. Although Transformer is well suited to
our task, its vanilla self-attention mechanism independently interacts within image
patches in each layer, which overlooks correlations between layers. Instead, this
paper proposes a simple yet effective self-cross attention mechanism to improve
the quality of learned representations. Self-cross attention models global depen-
dencies between adjacent layers and creates short paths for effective information
flow. As a result, the proposed self-cross attention leads to more stable training,
improves the generalization ability, and prevents the learned intermediate features
from being overly similar. Extensive experiments demonstrate that our L2LTR
performs favorably against state-of-the-art methods on standard, fine-grained, and
cross-dataset cross-view geo-localization tasks. The code is available online.3

1 Introduction

Estimating the geospatial location of a given image is of paramount importance for robot naviga-
tion [11], 3D reconstruction [12], and autonomous driving [5]. Recently, cross-view geo-localization,
which aims to match query ground images with geo-tagged database aerial/satellite images, has
emerged as a promising proposal to address this problem. Despite its appealing application prospect,
the cross-view matching task is extremely challenging due to drastic viewpoint changes between
ground and aerial images. Thus, it is critical to understand and correspond both image content
(appearance and semantics) and spatial layout across views.

Towards the above goal, several recent works incorporate convolutional neural networks (CNNs)
with NetVlad layers [8], capsule networks [20] or attention mechanisms [2, 16] to learn visually
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discriminative representations. However, the locality assumption of their CNN architectures hinders
their performance in complex scenarios, where visual interferences such as obstacles and transient
objects (e.g., cars and pedestrians) may exist. Instead, the human visual system utilizes not only
local information but also global context to make more accurate predictions when visual signals are
ambiguous or incomplete. Another branch of works exploits geometry prior knowledge to reduce
ambiguities caused by geometric misalignments. Though promising, these methods either rely
heavily on predefined orientation prior [9] or make a restrictive assumption that ground and aerial
images are orientation-aligned [16]. Therefore, such a strong assumption limit the applicability of
these approaches, which prompts us to seek a more flexible approach for encoding position-aware
representations.

Motivated by these observations, we introduce Transformer [21], which excels in global contextual
reasoning and thus can be naturally employed to reduce visual ambiguities in cross-view geo-
localization. Besides, the positional encoding of the Transformer enables our network to learn
position-dependent representations flexibly. Specifically, our proposed layer-to-layer Transformer
(L2LTR) is built upon two independent Vision Transformer (ViT) [4] branches, which split a feature
map into several sub-patches while modeling interactions between arbitrary patches. We show in
the experiment that due to its context- and position-dependent natures, such a Transformer-based
network is a well-suited candidate for cross-view geo-localization and shows its superiority compared
to the dominant CNN-based counterparts.

We also take a deep look at self-attention map, which is an integral part of the Transformer and is
independently learned in each Transformer block. Nevertheless, such an independent learning strategy
overlooks correlations between layers. Specifically, relating features from adjacent layers could
improve the representation ability of the network [13]. To explore cross-layer correlations, we replace
self-attention with a novel self-cross attention mechanism. Simple yet effective, the proposed self-
cross attention learns pairwise similarities between features of adjacent blocks rather than that of the
same blocks. Such a cross-block interaction strategy eases the information flow across Transformer
blocks, thus leading to more stable network optimization. Moreover, we empirically show that
self-cross attention can improve the network’s generalization ability and prevent Transformer layers
from producing overly similar intermediate features. As a result, such a mechanism significantly
improves the quality of image representation without increasing the model complexity.

The key contributions of this work are as follows.

• The L2LTR is the first model using a Transformer for cross-view geo-localization to the
best of our knowledge. The globally context-aware nature of the L2LTR effectively reduces
visual ambiguities in cross-view geo-localization, while the positional encoding endows
the L2LTR with the notion of geometry, thus decreasing ambiguities caused by geometry
misalignments. Since the position embeddings are learned without imposing a strong
assumption on the position knowledge, the L2LTR has wider practical applicability than
state-of-the-art models.

• We propose a novel self-cross attention mechanism, which interacts within cross-layer
patches to ensure effective information flow across Transformer blocks. This simple yet
effective design consistently enhances the representation and the generalization ability of
the L2LTR without adding additional computational cost.

• Extensive experiments demonstrate that our L2LTR brings consistent and significant perfor-
mance improvements for a wide range of cross-view matching tasks, including standard,
fine-grained, and cross-dataset cross-view geo-localization. The L2LTR exhibits its supe-
riority in learning visually discriminative and position-aware representations on all these
tasks and achieves a new state-of-the-art performance.

2 Related Work

The key to cross-view geo-localization is to understand and correspond both image content (appear-
ance and semantics) and spatial layout across views. To this end, existing cross-view geo-localization
methods can be roughly grouped into content-based and geometry-based.

Content-based methods focus on learning image representations that are discriminative enough to
distinguish between similar-looking images. Leveraging on the success of CNNs, Workman and
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Jacobs [23] first introduce CNNs to the cross-view matching task. Later on, Hu et al. [8] incorporate
a two-branch VGG [19] backbone network with NetVlad layers [1] to learn viewpoint-invariant
representations. They also devise a weighted soft-margin triplet loss, which can speed up the network
training. Sun et al. [20] apply the powerful ResNet [7] as backbone networks. Coupled with capsule
layers [15], their proposed GeoCapsNet can model high-level semantics. To steer where to focus
in images, the attention mechanism is introduced to the field of cross-view geo-localization. Cai
et al. [2] introduce a lightweight attention module that combines spatial and channel attention
mechanisms to emphasize visually salient features. They also propose a novel reweighting loss that
adaptively allocates weights to triplets according to their difficulties, thus improving the quality of
network training. SAFA [16] employs a multi-head spatial attention module to aggregate informative
and diverse embedding maps. While promising, few of the above methods pay enough attention
to the global dependencies of cross-view images, which hinders the discriminative ability of their
embedded features. Different from existing methods, this work makes the first exploration to introduce
Transformer [21] to cross-view geo-localization. We demonstrate the importance of considering
global dependencies for reducing visual ambiguities.

Geometry-based methods aim to correspond geometric configurations between ground and aerial
images, which helps to reduce ambiguities caused by geometry misalignments. To this end, Liu
and Li [9] explicitly inject per-pixel orientation information into the network. Nevertheless, this
is based on the assumption of accessibility of the ground-truth orientation, which is not always
satisfied in practice. Shi et al. [16] employ a polar transform algorithm to warp satellite images
so that aerial images are geometrically aligned with ground images. However, this method is only
applicable to the ideal case where the ground images are orientation-aligned panoramas. Even
though the dynamic similarity module proposed in [17] overcomes this limitation, the brute-force
warping strategy of the polar transform overlooks the depth of the scene content. It results in obvious
appearance distortions, hindering performance improvement. Regmi and Shah [14] attempt to tackle
this problem by synthesizing the corresponding satellite image from a ground query using conditional
GANs (cGANs), but the synthesized images are always granulated and lack details. In this paper,
our L2LTR explicitly encodes learnable positional embeddings into the network without imposing a
strong assumption. Unlike the previous works [9, 16, 17], as shown in the experiments, our L2LTR
does not impose a strong assumption on the position knowledge but flexibly learns relative positional
information.

3 Method: L2LTR

This paper proposes a novel layer-to-layer Transformer (L2LTR) architecture with self-cross attention
mechanism for cross-view geo-localization. The following sections detail our problem setting,
objective, the L2LTR architecture, and our proposed self-cross attention.

3.1 Problem Formulation and Objective

The goal of cross-view geo-localization is to localize a query ground image by matching it with a set
of geo-tagged aerial images. We formulate this problem in the same way as prior works [9, 18, 16, 17].

Assume we have a training set D = {(g1, a1), ..., (gN , aN )} containing N cross-view image pairs of
ground images g and aerial images a. To simplify the problem, let each ground image gi correspond
to only one ground-truth aerial image ai (i ∈ {1, 2, ..., N}) during the training phase. Given a
cross-view image pair (gi, ai), we infer the corresponding image representations as (Fgi ,F

a
i ). Then,

for the ith exemplar, the weighted soft-margin triplet loss [8] L, which aims to bring matching pairs
closer while pushing non-matching pairs far apart, can be defined as follows:

L = log(1 + eα(d(F
g
i ,F

a
i )−d(F

g
i ,F

a
j ))) (1)

where j ∈ {1, 2, ..., N} and j 6= i. α is a hyperparameter used to speed up training convergence, and
d(·, ·) denotes the L2 distance.

3.2 Transformer for Cross-view Geo-localization

We seek to develop an L2LTR architecture that explores the global context and the positional
information of cross-view images.
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Figure 1: (a) Overview of our layer-to-layer Transformer (L2LTR). (b) Illustration of the encoder
layer with self-cross attention in the L2LTR. xl−1 denotes the input of layer l.

Preliminaries: Vision Transformer. We first describe the Vision Transformer (ViT) [4] as a
background. Given an image, the ViT first splits it into several patches. Then, the ViT receives
as input a sequence of linear projected patch embeddings x ∈ RN×D, where N is the number of
patches, and D is the patch embedding size. After prepending a learnable global representation
xglobal ∈ RD, whose final hidden state serves as an aggregate image descriptor for the cross-view
geo-localization task and adding positional embeddings xpos to x, we gain x0 = [xglobal;x] + xpos
and feed it into an L-layer Transformer encoder. Each layer consists of a Multihead Self-Attention
module (MSA), Feed Forward Networks (FFN), and LayerNorm blocks (LN). Note that the MSA
consists of multiple self-attention heads and a linear projection block. In order to make a clear
comparison with our proposed self-cross attention head, we denote the input of layer l (l ∈ {1, ..., L})
as xl−1 and formulate a single self-attention head, the core of the vanilla MSA, as follows:

zl = LN(xl−1) (2)

Ql = zlW
q
l ,Kl = zlW

k
l ,Vl = zlW

v
l (3)

Al = softmax(
QlK

T
l√

D
)Vl (4)

where Wq
l , Wk

l and Wv
l are linear projection matrices.

Domain-specific Transformer. The drastic domain gap between the ground and aerial images
makes it difficult to match cross-view images by embedding them into the same space through a
domain-shared network. To suit the cross-view geo-localization task, we employ a domain-specific
Siamese-like architecture with two independent branches of the same structure. Such an architecture
learns ground and aerial representations separately, and it can effectively project cross-view images
into a shared space when optimized with Eq. 1. The network overview is illustrated in Figure 1 (a).
Each branch is a hybrid structure consisting of a ResNet backbone (denoted as “Backbone” dashed
boxes in Fig. 1 (a)) extracting CNN feature map and a Transformer encoder (denoted as “Encoder”
dashed boxes) modeling global context from the CNN feature map. The linear projection of patch
embedding in the ViT is applied to the CNN feature map by regarding each 1× 1 feature as a patch.

Learnable positional embedding. Incorporating geometric cues [9, 16] helps avoid ambiguities
caused by geometric misalignment across views, thus greatly simplifying the cross-view geo-
localization. Instead of imposing a predefined orientation knowledge on the network, this paper
applies an efficient and flexible way to endow the network with the notion of geometry. Specifically,
we use learnable 1D positional embeddings in the ViT, i.e. xpos ∈ R(N+1)×D. By adding the
positional embeddings to the patch embeddings, the transformed features become position-dependent.
Furthermore, since we do not impose any assumption on position knowledge but learn it through our
learning objective, our L2LTR has wider practical applicability. Experiments show that incorporating
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the learnable positional embeddings helps capture relative positional information. This allows the
network to geo-locate panoramas with unknown orientation and planar ground images with a limited
field of view.

3.3 Self-cross Attention

In the vanilla ViT, the attention map is calculated independently in each layer. However, as mentioned
before, such an independent learning strategy hinders the model’s representation ability. To improve
the quality of the learned representations, we propose a novel self-cross attention mechanism to
interact features between adjacent layers and name the novel network as a layer-to-layer Transformer
(L2LTR). Namely, in the L2LTR, the attention map of layer l is learned not only based on xl−1 but
also xl−2. Considering the semantic gap between feature maps caused by different network depths,
we do not interact with all intermediate features but only the highly correlated adjacent features.
Formally, in layer l, self-cross attention can be represented as:

zl = LN(xl−1), zl−1 = LN(xl−2), (5)

Ql = zlW
q
l ,Kl = zl−1W

k
l ,Vl = zlW

v
l (6)

Al = softmax(
QlK

T
l√

D
)Vl (7)

Note that, for l = 1, we set zl−1 = LN(xl−1). In Figure 1 (b), we illustrate the structure of self-cross
attention-based encoder layer.

Figure 2: The variance curves of recall accu-
racy in the first 100 training epochs on the
CVUSA test set.

How self-cross attention affects feature learning.
Compared to self-attention in Eq. 2-4, our proposed
self-cross attention creates a short path between ad-
jacent layers (highlighted in yellow in Figure 1 (b)),
thus allowing information to flow effectively across
layers. This shares a similar spirit with ResNet [7].
To investigate how this affects our Transformer-
based network, we report the variance of recall accu-
racy at different training epochs on the CVUSA test
set in Figure 2. Specifically, the variance curves are
generated by calculating the accuracy variance over
ten training epochs. Thus, a smaller variance indi-
cates less fluctuation in recall accuracy and more
stable model training. As shown, during the early
training stage, the localization performance of self-
attention-based model fluctuates a lot, while our
L2LTR exhibits more stable performance as train-
ing processes. Furthermore, we observe that by
interacting cross-layer features, self-cross attention
can decrease the representation similarity between
layers and enhance the network’s generalization ability, thus improving the network’s representation
ability. This is further discussed in the experiment.

4 Experiment

We first introduce three benchmark datasets we used to evaluate our L2LTR, evaluation protocols,
and implement details of our network. Then we compare our L2LTR with state-of-the-art models
in Section 4.3 and present ablation studies to illustrate the advantages of the proposed L2LTR in
Section 4.4. Finally, we provide qualitative results in Section 4.5 to demonstrate the effectiveness of
the positional embeddings in the L2LTR.

4.1 Dataset and Evaluation Protocol

Dataset. To verify our model’s effectiveness, we conduct extensive experiments on three widely used
benchmarks: CVUSA [24] and CVACT [9] (including CVACT_val and CVACT_test). The CVUSA
dataset provides 35,532 image pairs for training and 8,884 image pairs for testing. The CVACT
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dataset contains 35,532 pairs for training and 8,884 pairs for validation (denoted as CVACT_val). The
CVACT also provides 92,802 image pairs with accurate geo-tags for testing (denoted as CVACT_test)
to support fine-grained city-scale geo-localization. For the CVUSA test set and CVACT_val, the
correct match of a ground image is a corresponding aerial image. For the CVACT_test, a retrieved
aerial image is considered correct as long as it is within the distance d=5m from the ground-truth
location of the ground image. In the experiment, we denote the tasks performed on the CVUSA
test set and the CVACT_val as standard cross-view geo-localization and the tasks performed on the
CVACT_test as fine-grained cross-view geo-localization.

Evaluation protocol. In line with [8, 9, 18, 16, 17], we evaluate our model by recall accuracy at
top K (r@K for short, K ∈ {1, 5, 10, 1%}), which represents the probability of correct match(es)
ranking within the first K results. For the CVUSA test set, r@1% indicates the recall accuracy at
the top 1% of the test set, and for the CVACT_val and the CVACT_test, r@1% indicates the recall
accuracy at the top 1% of the CVACT_val.

4.2 Implementation Detail

If not specified, the ground and aerial image sizes are set to 128× 512 and 256× 256, respectively.
We empirically set model depth L to 12 and initialize our L2LTR with pre-trained parameters on
ImageNet [3]. The model is trained using AdamW [10] with a cosine learning rate schedule on a
32GB NVIDIA V100 GPU. The learning rate is set to 1e-4, the weight decay is chosen to 0.03, and
the batch size is 32. For the weighted soft-margin triplet loss [8], α is set to 10.

4.3 Comparing L2LTR with State-of-the-art Models

Table 1: Comparisons with state-of-the-art methods on the
CVUSA [24] dataset. For all the compared methods, we cite
the results from [17] and [16] if not specified. “PT” indicates
whether the model applies (w/) polar transform [16] to aerial
images or not (w/o).

PT Model r@1 r@5 r@10 r@1%
(%) (%) (%) (%)

w/o

Workman et al. [23] - - - 34.30
Vo and Hays [22] - - - 63.70

Zhai et al. [24] - - - 43.20
CVM-Net [8] 22.47 49.98 63.18 93.62
Liu and Li [9] 40.79 66.82 76.36 96.12

Zheng et al. [25] 43.91 66.38 74.58 91.78
Regmi and Shah [14] 48.75 - 81.27 95.98

Siam-FCANet [2] - - - 98.30
CVFT [18] 61.43 84.69 90.49 99.02
SAFA [16] 81.15 94.23 96.85 99.49

L2LTR 91.99 97.68 98.65 99.75

w/
SAFA [16] 89.84 96.93 98.14 99.64

Shi et al. [17] 91.93 97.50 98.54 99.67
Polar-L2LTR 94.05 98.27 98.99 99.67

Here we compare our method with
several state-of-the-art methods on
the CVUSA [24], CVACT_val [9],
and CVACT_test [9] datasets. Un-
like state-of-the-art methods that
predominantly fall back on CNN,
our proposed L2LTR makes the
first effort to introduce Trans-
former to the field of cross-view
geo-localization to learn globally
context- and position-aware repre-
sentations. Below, we verify that
our L2LTR exceeds in learning vi-
sually discriminative and position-
aware representations, thus achiev-
ing outstanding performance in var-
ious cross-view geo-localization
tasks. Note that for a fair compar-
ison with works [16, 17] that use
polar transform [16], a kind of data
pre-processing algorithm, we apply
the same warping strategy to aerial
images before feeding them into the network (denoted as Polar-L2LTR) when comparing with these
works. In this case, ground and warped aerial images are resized to 128× 512.

Standard cross-view geo-localization. We first evaluate our L2LTR on standard cross-view geo-
localization. Tables 1 and 2 show experimental results on the CVUSA and CVACT_val datasets,
respectively. From the results, we could conclude that our L2LTR significantly surpasses the com-
peting approaches in learning visually discriminative representations and corresponding geometric
configurations across views. In particular, without applying the polar transform, our L2LTR achieves
r@1 of 83.14% on the CVACT_val dataset compared to 78.28% obtained by the second-best method,
while on the CVUSA dataset, the L2LTR surpasses the second-best method by a significant margin
of 10.84 points at r@1. Moreover, when applying the polar transform, which geometrically aligns
cross-view images, our L2LTR outperforms the competing methods, gaining 84.89% and 94.05%
on the CVACT_val and CVUSA, respectively. The results indicate that the L2LTR is capable of
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Table 2: Comparisons with state-of-the-art models on the CVACT_val (standard cross-view geo-
localization) and CVACT_test (fine-grained geo-localization) datasets.

PT Model
CVACT_val CVACT_test

Code r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%
Length (%) (%) (%) (%) (%) (%) (%) (%)

w/o

CVM-Net [8] 4096 20.15 45.00 56.87 87.57 5.41 14.79 25.63 54.53
Liu and Li [9] 1536 46.96 68.28 75.48 92.01 19.21 35.97 43.30 60.69

CVFT [18] 4096 61.05 81.33 86.52 95.93 26.12 45.33 53.80 71.69
SAFA [16] 4096 78.28 91.60 93.79 98.15 - - - -

L2LTR 768 83.14 93.84 95.51 98.40 58.33 84.23 88.60 95.83

w/
SAFA [16] 4096 81.03 92.80 94.84 98.17 55.50 79.94 85.08 94.49

Shi et al. [17] 4096 82.49 92.44 93.99 97.32 35.63 60.07 69.10 84.75
Polar-L2LTR 768 84.89 94.59 95.96 98.37 60.72 85.85 89.88 96.12

capturing visually discriminative features by modeling global context. Furthermore, we could also
find that removing the polar transform algorithm leads to significant performance degradation in
SAFA (−4.21% on the CVACT_val and −8.69% on the CVUSA) while less degradation is noted in
our L2LTR (−1.75% on the CVACT_val and −2.06% on the CVUSA). Namely, the L2LTR does not
have to rely excessively on the polar transform to establish a cross-view geometric correspondence,
which could save considerable image pre-processing time on large-scale datasets. This is because
adding the positional embeddings to the patch embeddings enables the L2LTR to learn position-
aware representations and correspond geometric configurations between ground and aerial images.
Additional qualitative evidence for this is provided in Section 4.5.

Fine-grained cross-view geo-localization. To evaluate the representation ability of our model, we
verify the L2LTR on the fine-grained cross-view geo-localization task. Specifically, we compare
the L2LTR with state-of-the-art methods on the challenging large-scale CVACT_test dataset, which
is fully GPS-tagged for accurate localization. Table 2 shows the experimental results. Our L2LTR
performs consistently better than all the competitors, achieving 58.33% and 60.76% at r@1 without
and with the polar transform, respectively. These results further demonstrate that our L2LTR has
strong representation capability.

Table 3: Cross-dataset cross-view geo-localization. The results are
gained by retraining and evaluating the compared models using the
released codes provided by their authors.

Model Task r@1 r@5 r@10 r@1%
(%) (%) (%) (%)

SAFA [16]
CVUSA→CVACT

30.40 52.93 62.29 85.82
Shi et al. [17] 33.66 52.17 59.74 79.67
Polar-L2LTR 47.55 70.58 77.39 91.39

SAFA [16]
CVACT→CVUSA

21.45 36.55 43.79 69.83
Shi et al. [17] 18.47 34.46 42.28 69.01
Polar-L2LTR 33.00 51.87 60.63 84.79

Cross-dataset cross-view
geo-localization. In the
context of cross-view geo-
localization, the transferring
performance determines
whether a model could be
practically usable for real-life
scenarios, where a query
image may be dramatically
different from the training
ground images. As the
CVACT and CVUSA datasets
are collected from two
different countries, they have distinctly different scene styles. Based on this observation, to verify the
transferring performance of our model, we train the L2LTR on the CVUSA dataset and test it on the
CVACT_val (denoted as CVUSA→CVACT), and vice versa. Results are reported in Table 3. We
could find that our L2LTR outperforms the second-best model at r@1 by a large margin of 13.89
points on the CVUSA→CVACT task while achieving 33.00% at r@1 compared to 21.45% gained
by the second-best model on the CVACT→CVUSA task. The transferring results demonstrate the
outstanding generalization ability and practical applicability of our L2LTR.

Localizing with unknown orientation and limited FoV. As verified in Section 4.5, our L2LTR can
learn relative positional information without incorporating predefined position knowledge. This
makes the network generalize well to panoramas with unknown orientation and planar ground images
with a limited field of view (FoV). To evaluate this point, we test the performance of our L2LTR
on orientation-unknown and FoV-limited ground images. Specifically, we follow the evaluation
procedure in [17], randomly shifting and cropping ground panoramas (with FoV of 360◦) along the
azimuthal direction on the CVUSA dataset. For a fair comparison, we set the cropped images with
FoVs of 180◦, 90◦, and 70◦. Then, we train and test the performance on ground images with the
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Table 4: Comparisons with state-of-the-art models for localizing ground images with unknown
orientation and limited field of view on the CVUSA.

Train & Test FoV 180◦ 90◦ 70◦

Model r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

CVM-Net [8] 7.38 22.51 32.63 75.38 2.76 10.11 16.74 55.49 2.62 9.30 15.06 21.77
CVFT [18] 8.10 24.25 34.47 75.15 4.80 14.84 23.18 61.23 3.79 12.44 19.33 55.56

Shi et al. [17] 48.53 68.47 75.63 93.02 16.19 31.44 39.85 71.13 8.78 19.90 27.30 61.20
L2LTR 56.69 80.86 87.75 98.01 26.92 50.49 60.41 86.88 13.95 33.07 43.86 77.65

same FoV and report the results in Table 4. The results show that our L2LTR, benefiting from the
learnable relative positional knowledge, consistently surpasses the competing methods over three
experimental settings.

Comparison in terms of code length. To further illustrate the advantage of our method, we compare
the L2LTR with state-of-the-art methods in terms of image descriptor dimension (also called code
length) in Table 2. We observe that our L2LTR has an extremely short code length of 768, which is
five times shorter than that of the SAFA [16], CVFT [18], and CVM-Net [8]. A shorter code length
not only implies the effective information encoding capability of the L2LTR but also means that the
L2LTR provides an alternative with less storage space, lower computational complexity, and shorter
running time to cross-view geo-localization.

4.4 Ablation Study

To investigate the effectiveness of the positional embeddings and self-cross attention mechanism,
we conduct ablation studies by considering three scenarios: 1) where the positional embeddings are
removed, 2) where the polar transform is removed and, 3) where self-attention replaces self-cross
attention.

Table 5: Ablation studies of the L2LTR.

Model r@1 r@5 r@10 r@1%
(%) (%) (%) (%)

Polar-L2LTR 94.05 98.27 98.99 99.67
w/o self-cross att. 93.26 97.91 98.78 99.68

w/o positional emb. 90.90 97.48 98.40 99.62
L2LTR 91.99 97.68 98.65 99.75

w/o positional emb. 89.04 96.88 98.44 99.61

Positional encoding. We first analyze
the importance of the positional embed-
dings and report the ablation studies on the
CVUSA dataset in Table 5. From the re-
sults, we can make the following observa-
tions. First, the positional encoding endows
the network with the concept of position and
yields consistent improvements. In particu-
lar, adding positional embeddings improves
the r@1 performance of the L2LTR from
89.04% to 91.99% and brings 3.15 points
improvement at r@1 to the Polar-L2LTR. Second, we could also find that the positional embeddings
are complementary to the polar transform [16, 17]. Specifically, combining the polar transform
with our L2LTR improves the r@1 accuracy from 91.99% to 94.05% (+2.06%), while adding
the positional embeddings to Polar-L2LTR boosts the r@1 performance from 90.90% to 94.05%
(+3.15%).

Table 6: Few-shot cross-view geo-localization on the CVUSA [24]. We
describe the number of training pairs of each subset and its proportion
(Prop.) to the original CVUSA dataset.

Training Prop. Model r@1 r@5 r@10 r@1%
Pairs (%) (%) (%) (%)

7,106 20% Polar-L2LTR 76.01 90.67 94.01 98.85
w/o self-cross att. 75.37 90.42 92.85 98.66

14,212 40% Polar-L2LTR 86.06 95.80 97.16 99.38
w/o self-cross att. 85.54 95.14 97.07 99.42

21,319 60% Polar-L2LTR 90.30 96.96 98.26 99.67
w/o self-cross att. 88.74 96.60 98.09 99.66

35,532 100% Polar-L2LTR 94.05 98.27 98.99 99.67
w/o self-cross att. 93.26 97.91 98.78 99.68

Self-cross attention. In
Table 5, we ablate self-
cross attention mechanism
by replacing it with self-
attention on the CVUSA
dataset. We can ob-
serve from Table 5 that,
without imposing an in-
crease in model complex-
ity, self-cross attention
mechanism improves r@1
performance from 93.26%
to 94.05%, which mani-
fests the effectiveness of
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(a) The ground PE of the
L2LTR

(b) The aerial PE of the
L2LTR

(c) The ground PE of the
Polar-L2LTR

(d) The aerial PE of the
Polar-L2LTR

Figure 3: Cosine similarity between the learnable positional embeddings (PE). Yellow indicates the
two positional embeddings are closer. Better viewed in color and with zoom-in.

self-cross attention. Moreover, in Table 6, we ablate self-cross attention on the few-shot cross-view
geo-localization task. The few-shot task aims to learn a model that can achieve generalization from
only a small number of training examples [6]. To support this task, we randomly select a certain
percentage (20%/40%/60%) of samples from the CVUSA dataset to generate three subsets. The
size of each subset and its corresponding proportion to the CVUSA dataset is illustrated in Table 6.
Results show that replacing self-cross attention with self-attention consistently harms the network
performance on the few-shot task. This indicates that self-cross attention not only improves network
performance but also enhances its generalization ability. Furthermore, we also investigate how
self-cross attention affects feature learning.

Figure 4: Cross-layer similarity between the
last layer and previous layers.

In Figure 4, we compare the final representation
with the output of each intermediate layer by mea-
suring their cosine similarity. As observed, replac-
ing self-attention with our proposed self-cross at-
tention significantly and consistently decreases the
representation similarity between layers. The re-
sult implies that our self-cross attention can prevent
the learned representations of Transformer layers
from being overly similar, making the network more
effective in capturing rich representations.

4.5 Qualitative Analysis

We conduct a detailed qualitative analysis on the
learnable positional embeddings xpos ∈ R(N+1)×D

to investigate whether they encode and correspond
geometric configurations across views and which
positional information they can learn. To this end,
we calculate the cosine similarity between two arbitrary positional embeddings of the L2LTR and
acquire a distance matrix D = Norm(xpos)Norm(xpos)

T of shape (N + 1) × (N + 1), where
Norm represents L2 normalization. Then, we visualize the distance matrix in Figure 3, where
yellow indicates the two positional embeddings are closer to each other. From Figures 3(a) and 3(b),
we could find that each positional embedding is close to its neighbors with small location offsets.
This implies that incorporating the learnable positional embeddings captures relative positional
information. Additionally, we could observe that the visualization maps of the L2LTR are distinctly
different across views in Figures 3(a) and 3(b), while the visualization maps of the Polar-L2LTR look
similar to each other in Figures 3(c) and 3(d). Such similar results of the Polar-L2LTR are reasonable
since the polar transform geometrically aligns cross-view images. This result further confirms that
the positional encoding could capture cross-view geometric configurations.
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5 Conclusion and Future Work

This paper proposes a novel L2LTR architecture capable of learning globally context- and position-
aware representations. We also propose a novel self-cross attention to facilitate information flow
across layers. Extensive experiments demonstrate that the L2LTR outperforms state-of-the-art
methods in standard, fine-grained, and cross-dataset cross-view geo-localization tasks. In addition,
we also conduct ablation studies and qualitative analyses to verify the effectiveness of the learnable
positional embeddings and self-cross attention. One main limitation of the L2LTR is its large demand
for GPU memory. Moreover, the L2LTR is built on top of the pre-trained Transformer, which requires
a large amount of data for training. We aim to develop a data-efficient Transformer-based model with
less memory consumption for cross-view geo-localization for future work.

Societal Impact

This paper addresses the problem of image-based geo-localization, which benefits a wide range of
applications. On the one hand, the image-based geo-localization can serve as an alternative to GPS-
based localization, especially when GPS signals are jammed, blocked by buildings, or not accurate
enough for specific applications. Working in conjunction with GPS-based positioning systems, our
method can greatly improve the stability and safety of several downstream applications, such as
autonomous driving, robot navigation, and pedestrian navigation. On the other hand, image-based
geo-taggers can be used to track the location intelligence of a single image without GPS tags. This
can be beneficial for applications such as digital forensics, event detection, and scene annotation.
Nevertheless, negligent or malicious use of our approach could also mislead positioning systems or
expose people to privacy violations. Overall, our method has both positive and negative impacts. As
long as the failure cases are handled properly, and the method is not used for unethical tasks, our
approach mostly leads to positive impacts.
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