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ABSTRACT

We introduce Reprompting, an iterative sampling algorithm that searches for the
Chain-of-Thought (CoT) recipes for a given task without human intervention.
Through Gibbs sampling, we infer CoT recipes that work consistently well for a set
of training samples. Our method iteratively samples new recipes using previously
sampled solutions as parent prompts to solve other training problems. On five
Big-Bench Hard tasks that require multi-step reasoning, Reprompting achieves
consistently better performance than the zero-shot, few-shot, human-written CoT,
Auto-CoT and self-consistency decoding baselines. Overall, Reprompting brings
up to +17 point improvements over the previous state-of-the-art method that uses
human-written CoT prompts.

1 INTRODUCTION

Few-shot prompting with large language models (LLMs) has revolutionized the landscape of natural
language processing. Given natural language instructions and a few demonstrations as in-context
examples, LLMs can quickly adapt to new tasks, approaching or even surpassing the performance
of models fine-tuned on larger datasets on a wide range of tasks (Brown et al., 2020). However,
such prompting techniques fall short on tasks that require multi-step reasoning and constraint
propagation (Wei et al., 2022), such as logical deduction in the Big-Bench Hard benchmark (Suzgun
et al., 2022). To address these limitations, prior works proposed to teach LLMs to reason step by
step like humans by prompting them with chain-of-thought (CoT) reasoning steps for a few example
problems (Wei et al., 2022). Despite the improved performance, such a method requires human
experts with not only the task knowledge but also an understanding of how prompting works to
craft the CoT prompt for each task (Zamfirescu-Pereira et al., 2023), which limits the scalability and
generalizability of the method. Furthermore, a problem can be reasoned in many different ways, and
some of them may work well on some LLMs but not on others. To fairly compare the performance
of various LLMs on each task, we need to find the CoT prompt that works best for each model in
a feasible way, which remains a challenge.

In this paper, we propose Reprompting, an iterative sampling algorithm that automatically finds
effective CoT prompt for each model given a few question-answer pairs on a task without human
intervention. Specifically, the algorithm aims to infer a set of CoT recipes that perform consistently
well as few-shot in-context examples for solving the set of training problems. We frame it as a
problem of sampling from a joint distribution of CoT recipes, which is infeasible to characterize
directly but can be approached using Gibbs sampling – we initially sample the recipes by zero-shot
prompting and then iteratively sample new recipes by concatenating a few old recipes as the prompt
to solve a different training problem, which eventually converges to a set of recipes that share similar
chains of thought for effectively solving the training problems. A handful of these CoT solutions
from the training set then serve as effective CoT recipes for solving test problems.

We evaluate Reprompting on five Big-Bench Hard (BBH) tasks (Suzgun et al., 2022) that require
multi-step reasoning, using ChatGPT (OpenAI, 2023) and InstructGPT (Ouyang et al., 2022) as LLMs.
Reprompting consistently outperforms zero-shot, few-shot, human-written CoT, Auto-CoT (Zhang
et al., 2022) and self-consistency decoding (Wang et al., 2022b) baselines. Reprompting also facilitates
model combination by using different LLMs for initializing and sampling new recipes. Empirically,
leveraging ChatGPT to sample initial recipes for InstructGPT brings up to +71 point improvements
over using InstructGPT alone and even outperforms ChatGPT alone on certain tasks. Furthermore,
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Figure 1: An example that ChatGPT can propose various different solutions to the same problem in zero-shot.

Reprompting outperforms the state-of-the-art, human-written CoT prompting on BBH tasks by up
to +17 points. Lastly, our results confirm that the CoT recipes that work well on one model may
work poorly on another, even when the latter may approach the best performance using prompts
optimized for itself. These findings emphasize the need to optimize the CoT for each model for fairer
comparisons.

2 Reprompting: PROMPT INFERENCE THROUGH GIBBS SAMPLING

2.1 STATISTICAL ASSUMPTIONS BEHIND IN-CONTEXT LEARNING

In-context learning has become the cornerstone of evaluating large language models (LLMs) (Brown
et al., 2020; Srivastava et al., 2022). To facilitate this evaluation approach, data is provided for a large
number of different tasks, with each task consisting of dozens or, more often, hundreds of instances
with varying problem setup and question texts xi and their corresponding text answers yi, where
i ∈ [1..N] and N is the number of problem instances for the task. Statistically, in-context learning is
based on the following assumption (which was verified empirically in Brown et al. (2020)):

pLLM(y j|{xi,yi}i̸= j,x j)≈ pLLM(y j|{xi,yi}i∈S j ,x j), ∀S j ⊂ [1,N]\{ j}, |S j|= K (1)

that is, the probability pLLM(y j|{xi,yi}i∈S j ,x j) of a given LLM generating the answer text y j when
prompted with the concatenation of the few-shot examples {xi,yi}i∈S j⊂[1,N]\{ j} and the test question x j

(i.e. [xS1
j
,yS1

j
, ...,xSK

j
,ySK

j
,x j]) is close to the probability pLLM(y j|{xi,yi}i ̸= j,x j) conditioned on all

training examples {xi,yi}i ̸= j. In other words, any collection of K examples of question-answer
pairs {xi,yi}i∈S j can be used as a prompt prior to the test question x j for an LLM to predict the
answer y j. In practice, however, the choice and even the order of examples can have a substantial
impact on the test performance (Lu et al., 2022). And more importantly, the performance can be
significantly enhanced by incorporating auxiliary knowledge or human-written instructions in a
prompt (Shwartz et al., 2020; Zelikman et al., 2022; Nye et al., 2021), particularly in the form of
Chain-of-Thought (CoT) reasoning (Wei et al., 2022; Wang et al., 2022b; Zhou et al., 2022; Creswell
et al., 2022; Wang et al., 2022a; Liu et al., 2022; Kojima et al., 2022; Li et al., 2022).

In-context learning with CoT (Wei et al., 2022) can be seen in a similar light, statistically. In addition
to the question-answer pairs {xi,yi}, the CoT prompt also contains worked out step-by-step reasoning
“recipes” zi in text, which are inserted between the question and answer: {xi,zi,yi}. These recipes
can play two roles. First, they further explain the intent of the question xi, as a small collection of
question-answer pairs alone may be insufficient to disambiguate among different patterns an LLM
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might detect. The second role is more important: it provides step-by-step guidance on one problem
and thus teaches an LLM to solve similar problems following the same routine as it continues the text
conditioned on the previous tokens. In the extreme, with prompts that strictly regiment self-attention,
GPT models can be turned into Turing Machines to execute standard computer algorithms (Jojic
et al., 2023). In practice, the CoT prompts commonly used in prior work fall somewhere between
colloquial explanations and regimented recipes. Formally, in-context learning with CoT is based on
the following assumption (which was empirically verified in Wei et al. (2022)):

pLLM(z j,y j|{xi,zi,yi}i̸= j,x j,m)≈ pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m), ∀S j ⊂ [1,N]\{ j}, |S j|= K
(2)

that is, the probability pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m) of a given LLM generating a step-by-step
solution z j followed by the correct answer y j when prompted with the concatenation of the few-
shot examples with CoT {xi,zi,yi}i∈S j⊂[1,N]\{ j}, the test question x j, and a special message m (i.e.
[xS1

j
,m,zS1

j
,yS1

j
, ...,xSK

j
,m,zSK

j
,ySK

j
,x j,m]) is close to the probability pLLM(z j,y j|{xi,zi,yi}i ̸= j,x j,m)

conditioned on all training solutions {xi,zi,yi}i ̸= j. Here, the special message m is an instruction text
that is independent of specific questions and is appended to each question text. It can be task-specific
or generic, as in the case of our experiments. Specifically, we use the following message for all tasks:

m = Let’s think step by step. At the end, show your answer bracketed with
<answer> and </answer>. Finally generate END at the end of the solution.

This message instructs the model to generate the step-by-step solution z j prior to the answer text y j

and the specific format to present the answer.1 In fact, such an instruction message can trigger
instruction-tuned LLMs to generate step-by-step solutions given [x j,m] alone without any demon-
stration examples (i.e. K = 0), as illustrated in Figure 1. These solutions follow varying styles
and often lead to incorrect answers. However, we argue that good recipes for solving the set of
problems on a given task can evolve from these zero-shot solutions. In the next section, we introduce
Reprompting, an iterative sampling algorithm that automatically produces the CoT recipes for a given
set of problems without human intervention.

2.2 PROMPT INFERENCE THROUGH GIBBS SAMPLING

We introduce the Reprompting algorithm, which aims to find a set of CoT recipes zi that work
consistently well as few-shot in-context examples for a dataset {xi,yi}N

i=1. Specifically, we formulate
it as the problem of sampling from a joint distribution

p(z1,z2, ...zN |{xi,yi}N
i=1,m) (3)

such that the conditional distributions p(z j|z1, ...,z j−1,z j+1, ...zN ,{xi,yi}N
i=1,m) satisfy the in-context

learning assumption (2) that enables generalization with few-shot examples, i.e. the probability
pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m) under the LLM is high and approximately invariant to the choice of
examples S j. Thus, we have the approximation

p(z j|z1, ...,z j−1,z j+1, ...zN ,{xi,yi}N
i=1,m)

∝pLLM(z j,y j|{xi,zi,yi}i̸= j,x j,m)

≈pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m), ∀S j ⊂ [1,N]\{ j}, |S j|= K
(4)

Without characterizing the joint distribution, we can use Gibbs sampling (Geman & Geman,
1984) to generate such samples {z1,z2, ...zN} by first sampling {z1,z2, ...zN} independently from
the distributions p(z j|x j,y j), and then iteratively drawing samples from the conditional distribu-
tions p(z j|z1, ...,z j−1,z j+1, ...zN ,{xi,yi}N

i=1,m). Based on the approximation (4), we can sample z j
by randomly picking K data points (excluding j) and then sampling z j with weights proportional to
the conditional probability

pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m) =pLLM(z j|{xi,zi,yi}i∈S j ,x j,m) · pLLM(y j|{xi,zi,yi}i∈S j ,x j,m,z j)

(5)

1This enables us to separate the generated answer y j from the step-by-step solution z j and forces the model
to stop after generating the answer.
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One way to approximate it is to sample several ẑ j from the LLM conditioned on the concate-
nation [xS1

j
,m,zS1

j
,yS1

j
, ...,xSK

j
,m,zSK

j
,ySK

j
,x j,m], compute the weight for each ẑ j using the model’s

probability of the correct answer y j conditioned on [xS1
j
,m,zS1

j
,yS1

j
, ...,xSK

j
,m,zSK

j
,ySK

j
,x j,m, ẑ j], and

sample a z j from {ẑ j} based on the weights. In practice, however, the model’s probability of
a given text may not be accessible. Thus, we approximately sample z j by sampling ẑ j and ŷ j
from pLLM(z,y|{xi,zi,yi}i∈S j ,x j,m) and then reject ẑ j with a probability of pre j if ŷ j ̸= y j. Otherwise,
we accept ẑ j and update the sample. Algorithm 1 shows the complete Reprompting algorithm con-
sisting of the initialization and iterative sampling steps, which can be realized using different LLMs.
Note that we set the rejection probability pre j in a way that allows solutions that lead to incorrect
answers to be kept occasionally, as these solutions may still contain useful segments that evolve into
good recipes through Reprompting.

Algorithm 1: Reprompting algorithm

Input :Training set {xi,yi}N
i=1, number of shots K, number of iterations M, rejection

probability pre j, the initialization model LLM1 and the sampling model LLM2
1 Initialization:
2 for each j do
3 z j← /0
4 Sample ẑ j, ŷ j ∼ pLLM1(z,y|x j,m)
5 Sample u∼Uni f orm([0,1])
6 if ŷ j = y j or u > pre j then
7 z j← ẑ j
8 end
9 end

10 Sampling:
11 repeat
12 Randomly select j ∈ [1,N]
13 Randomly select S j ⊂ [1,N]\{ j} of size K
14 Sample ẑ j, ŷ j ∼ pLLM2(z,y|{xi,zi,yi}i∈S j ,x j,m)

15 Sample u∼Uni f orm([0,1])
16 if ŷ j = y j or u > pre j then
17 z j← ẑ j
18 end
19 until convergence or M iterations are reached

Ideally, the algorithm should converge to the point where the probability
pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m) is high and agnostic to the choice of S j, which leads to a
set of {z j} that work well as a prompt for solving similar problems in a separate test set.

The algorithm can also be viewed as a variant of evolutionary algorithms: 1) First, we generate the
initial population of individuals (where each individual is a CoT recipe given a problem). 2) Next,
we repeat the following regeneration steps iteratively: 2a) we first evaluate the fitness of each CoT
recipe by comparing the answer that follows the recipe with the correct answer and weed out the
least-fit recipes; 2b) we then breed new individuals through crossover and mutation by randomly
selecting K recipes from the population as parent recipes, which are then used to prompt the LLM
to generate recipes for a new problem. By repeating the 2a and 2b steps, initial recipes can be
recombined (Figure 4) and evolve into better recipes (Figure 3) through iterations. And eventually,
the fittest recipes (i.e. ones that lead to more accurate solutions) will survive.

During testing, we select K tuples {xi,zi,yi} from the inferred {z j} based on the training accuracy
when using each tuple individually in a prompt.

3 EXPERIMENTAL SETUP

We evaluate the Reprompting algorithm against various baselines including zero-shot, few-shot,
Chain-of-Thought (CoT), Chain-of-Thought combined with self-consistency decoding (Wang et al.,
2022b), and Auto-CoT (Zhang et al., 2022) on five challenging tasks in the Big-Bench Hard (BBH)
benchmark (Suzgun et al., 2022): Logical Deduction, Geometric Shapes, Object Counting, Penguins
in a Table, and Temporal Sequences. We choose these tasks from the BBH benchmark because these
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are the tasks that require multi-step reasoning and have been shown to benefit substantially from
human-written CoT in prior work (Suzgun et al., 2022).

Reprompting For each task, we randomly select 20 training examples from the Big-Bench dataset
excluding the test examples in the BBH benchmark.2 We experiment with having k ∈ {1,3} clones
of the same training example in the set {xi,yi}N

i=1 to allow for more diverse recipe samples (so the
number of recipes we need to sample from the joint distribution (3) is N = 20∗ k) and choose k that
obtains the highest training accuracy. We set the number of shots by K = 5. We run Reprompting for a
maximum of M = 20,000 iterations. We allow for early stopping if the average training accuracy stops
increasing for 1,000 iterations. For the rejection probability, we experiment with pre j ∈ {0.95,0.99}
and choose pre j = 0.99 as it leads to higher training accuracy on various tasks.

Baselines For zero-shot prompting, we only include the test question xi and the special message m
in the prompt, which triggers the model to generate a step-by-step solution prior to the answer
text. For few-shot prompting, we randomly select 20 training examples in the same way as in
Reprompting and concatenate these examples in the form of question-answer pairs in the prompt,
followed by the test question. For CoT prompting, we use the human-written CoT prompts from
Suzgun et al. (2022). For CoT with self-consistency decoding, we use the same CoT prompts and
follow Wang et al. (2022b) by sampling 10 reasoning paths per question and taking the majority vote
on the answer. For Auto-CoT (Zhang et al., 2022), since the original Auto-CoT algorithm differs
from our setting as it focuses on the unsupervised setting without exploiting any labeled examples,
we adapt the algorithm to our few-shot setting where it follows the original algorithm to generate
diverse CoT recipes through zero-shot prompting but selects the demonstration examples based on
the training accuracy (on the few-shot labeled examples) when used individually in a prompt.3

Large Language Models (LLMs) We experiment with two powerful LLMs including Chat-
GPT (gpt-3.5-turbo; OpenAI (2023)) and InstructGPT (text-davinci-003; Ouyang et al. (2022)).
We also experiment with a combo model for Reprompting where we use ChatGPT as LLM1 for
initialization and InstructGPT as LLM2 for sampling. For both LLMs, we set the maximum number of
output tokens to 500, TopP = 0.5, and zero frequency or presence penalty. Additionally, we include
“END” as the stop word. We set the temperature to 1.0 for Reprompting and 0.0 for testing.

Evaluation Protocol We extract the final answer from the model output by extracting the text
between “<answer>” and “</answer>”, except for the CoT baseline where we extract the final answer
in the same way as in Suzgun et al. (2022). We measure accuracy based on exact match by comparing
the extracted answer with the ground truth.

4 RESULTS

Table 1 compares the performance of Reprompting with the previous state-of-the-art and the baseline
prompting techniques. Repeating the experiments from Suzgun et al. (2022) with ChatGPT – using
the same human-engineered CoT prompts – confirms the previous finding that few-shot in-context
prompting improves the performance over zero-shot (Brown et al., 2020) and that CoT prompting
outperforms both zero-shot and few-shot prompting by a large margin. Human-written CoT prompting
requires costly prompt engineering, as not all CoT recipes work equally well on LLMs (Madaan
& Yazdanbakhsh, 2022; Jojic et al., 2023). Crucially, we show that using Reprompting, LLMs can
achieve better performance compared to the existing CoT prompts, but without requiring any human
guidance on how to solve problems step by step. Specifically, comparing the performance of ChatGPT
using Reprompting with ChatGPT using the best human-written CoT prompts from Suzgun et al.
(2022), Reprompting achieves consistently higher scores on all tasks.

Additionally, we compare Reprompting with self-consistency (SC) (Wang et al., 2022b) decoding
and the few-shot version of Auto-CoT (Zhang et al., 2022). First, CoT+SC improves over CoT on

2Except for Penguins in a Table where there are only three samples in the Big-Bench dataset that are excluded
from BBH, so we randomly select 17 more examples from BBH into the training set.

3The original Auto-CoT algorithm selects the demonstration examples from the pool of zero-shot recipes
based on the diversity of the demonstration questions.
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BBH Task SOTA ZS FS CoT CoT+SC AutoCoT Reprompting
ChatGPT ChatGPT InsGPT Chat+Ins

Logical 60.4 35.1 46.4 63.1 62.7 53.2 66.3 53.7 60.0
Geometric 56.0 13.6 20.0 58.0 60.0 52.4 72.8 40.8 64.4
ObjectCount 93.2 52.4 46.8 95.6 95.2 88.8 97.2 42.8 99.6
Penguins 81.5 50.7 60.3 67.1 71.2 85.6 85.6 78.1 82.9
Temporal 96.8 38.4 41.2 66.8 66.8 80.8 93.2 28.4 99.2
Average 77.6 38.0 42.9 70.1 71.2 72.2 83.0 48.8 81.2

Table 1: Performance of several large language models (LLMs) using Reprompting versus the baseline prompting
methods on Big-Bench Hard (BBH) tasks. SOTA refers to the state-of-the-art performance among Instruct-
GPT (text-davinci-002; Ouyang et al. (2022)), Codex (Chen et al., 2021), and PaLM 540B (Chowdhery et al.,
2022) using CoT prompting from Suzgun et al. (2022). We also compare Reprompting with ChatGPT using
ZS (zero-shot), FS (few-shot), CoT, CoT+SC (CoT prompting combined with self-consistency decoding (Wang
et al., 2022b)) and AutoCoT (the few-shot version of Auto-CoT (Zhang et al., 2022)). For Reprompting, we show
the performance of various LLMs – including ChatGPT (gpt-3.5-turbo; OpenAI (2023)), InstructGPT (text-
davinci-003), and Chat+Instruct (a combo version that uses ChatGPT for initialization and InstructGPT at
sampling steps).
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(c) ChatGPT+InstructGPT

Figure 2: Learning curves of the Reprompting algorithm using InstructGPT, ChatGPT, and the combo Chat-
GPT+InstructGPT models on the Logical Deduction task. The y-axis shows the accuracy on training samples
averaged over the current and all previous iterations.

two of the five tasks, but the improvements are not consistent. Reprompting outperforms CoT+SC
by 2–26 points on all five tasks. When compared with Auto-CoT, Reprompting achieves +11 higher
scores on average.

As expected, the performance of Reprompting depends on the LLM, and InstructGPT underperforms
ChatGPT on most tasks. However, we show that by using ChatGPT just as the initialization
model LLM1 to bootstrap InstructGPT as LLM2 in prompt optimization through Reprompting, we
can improve performance over InstructGPT alone by 5–71 points and achieve competitive or even
better performance than ChatGPT alone on four of the five tasks. We show in the Appendix why
that is: while InstructGPT can follow a given recipe and even be used for recombining and evolving
them, it cannot create useful and diverse initial solutions in a zero-shot manner. However, through
Reprompting, we can use ChatGPT to “teach” InstructGPT the basic strategies for solving the training
problems, which are then recombined and evolved by InstructGPT into better CoT prompts for
InstructGPT.

Finally, our results demonstrate that Reprompting achieves up to +17 point improvement over the
previous state-of-the-art results on BBH tasks using human-written CoT prompts (Suzgun et al.,
2022). These findings highlight the potential of Reprompting as a powerful method for automating
CoT prompting and combining the strengths of different LLMs to achieve better performance on a
wide range of tasks.

Reprompting improves CoT recipes over iterations. In Figure 2 the average training accuracy (av-
eraged over iterations up to the current iteration) of the Logical Deduction task is plotted over the
training iterations. For all three model variants, the initial training accuracy is relatively low, but
it gradually increases (with occasional fluctuations) over iterations until convergence. This is the
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Figure 3: An example of how the CoT recipes evolve through Reprompting. In the left-most recipe, the
model (ChatGPT) first reorders the constraints so that the ones with absolute ranking positions are considered
prior to the ones with relative positions (highlighted in dark blue). Next, the model attempts to deduce the
objects at specific positions but makes a mistake (see the red underlined part). Despite the error, this recipe still
provides a useful strategy for solving similar problems: when using this recipe in the prompt to solve another
problem, the model first adopts the same strategy to reorder the constraints and then proposes another way to
deal with the constraints (highlighted in orange). Although the resulting solution still contains errors, it makes a
good recipe for solving this type of problem. And thus, when using it as the new prompt to solve yet another
problem, the model is able to follow the same recipe and deduce the correct answer.

result of evolution and recombination of the recipes associated with training examples (which was
the motivation for the name Reprompting).

We observe that even model outputs containing errors and unreasonable deductions can evolve
into a high-quality recipe through Reprompting. This is illustrated by the Logical Deduction
example in Figure 3, when K = 1, where the model initially generates a recipe that is erroneous and
contains illogical deductions. However, when this recipe is used as the new prompt for solving a
similar problem, the model is able to exploit the useful components of the recipe and propose an
alternative way to continue reasoning. Although the subsequent recipe still contains errors, it aids
the model in correctly solving other problems when incorporated into a prompt. As a result, such
recipes will be populated on other training samples, while the recipes that lead to low accuracy will
eventually die out.

Tasks InsGPT ChatGPT

Logical 65.9 66.3∗
Geom. 53.6 72.8∗
Objects 99.6∗ 96.8
Penguins 85.6∗ 76.7
Temporal 99.2∗ 81.6

Table 2: Performance of LLMs using the same
best performing CoT recipe for each task from
Table 1. The superscript ∗ denotes that the recipe
was originally reprompted for that LLM.

Reprompting combines fragments from different
recipes into a better one. Reprompting benefits from
having multiple examples in the prompt, which allows
the model to integrate various segments from different
prompt recipes into a new recipe. As illustrated by
the Object Counting examples in Figure 4, the model
can combine large segments of reasoning steps, as
well as small segments that address distinct cases to
solve a more complex problem. The resulting prompts
sometimes, but not always, share similarities with the
human-written prompts (See the Appendix).

Do the generated CoT recipes generalize across mod-
els? We test the best-performing CoT recipes sampled
from InstructGPT, ChatGPT, or InstructGPT+ChatGPT through Reprompting on the test set with
both InstructGPT and ChatGPT. The results (Table 2) indicate that the CoT recipes optimized for
one model may not work as well for other models. Specifically, we observe that on tasks such
as Logical Deduction and Object Counting, the best CoT recipes achieve similar performance on
both InstructGPT and ChatGPT. However, on Geometric Shapes, Penguins in a Table and Temporal
Sequences, the best CoT prompts optimized for LLM2 work well on LLM2, but poorly with the other
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(a)

(b)

Figure 4: Examples of how fragments from different recipes in a prompt can be (re)combined into a better recipe
to solve a new problem through Reprompting.

LLM – using them on the other LLM leads to 9–19 points lower performance than testing with
LLM2 (see examples in Figure D.2). However, when using the prompts optimized for the testing
LLM, it achieves 1–12 higher scores than those using the prompts optimized for the other LLM and
sometimes even approaches the best performance among InstructGPT and ChatGPT. These results
suggest that to make a fair comparison between different LLMs, one needs to optimize the CoT
prompt for each model.

Compute and Resources We use the OpenAI APIs for all our experiments.4 Running Reprompting
costs around $80 (in US dollars) on gpt-3.5-turbo and $800 on text-davinci-003 based on the standard
pricing,5 while being exempted from any human cost. By contrast, CoT prompting requires manual
prompt construction and engineering, which costs not only human labor (including the cost for
humans to get familiar with the task itself and how LLM prompting works, write down various
CoT solutions for each problem, test and optimize the solutions on the LLM) but also LLM queries,
but these costs are typically neglected in previous works. In addition, previous works typically
compare different LLMs using the same CoT prompt. While this strategy avoids additional costs
for custimizing CoT prompt for each LLM (and with Reprompting, one can also save the cost by
running it with ChatGPT and using the inferred CoT prompt on other LLMs), it risks making unfair
comparisons as we have shown in Table 2 that the CoT prompt that works well on one model may be
sub-optimal for another.

4https://platform.openai.com/docs/api-reference?lang=python
5https://openai.com/pricing
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5 RELATED WORK

In-Context Learning is an emergent ability of LLMs as they scale up in model sizes and training
data, where an LLMs can learn to perform a task from a few examples in the context (which is also
referred to as few-shot prompting) (Brown et al., 2020). It has been shown to achieve promising
few-shot and even zero-shot performance on various natural language processing (Brown et al., 2020;
Schick & Schütze, 2020; Perez et al., 2021) and program synthesis (Austin et al., 2021) tasks.

Reasoning via Chain-of-Thought Prompting Chain-of-Thought (CoT) prompting is a technique
that enables LLMs to perform complex reasoning tasks by prompting them with a few examples
with step-by-step solutions (Wei et al., 2022; Suzgun et al., 2022). CoT prompting has been shown
to improve performance on various reasoning tasks, such as arithmetic reasoning (Wei et al., 2022;
Zhou et al., 2022), symbolic reasoning (Wei et al., 2022; Zhou et al., 2022), multi-hop question
answering (Press et al., 2022; Arora et al., 2022), and natural language inference (Wang et al., 2022b).
However, designing effective CoT prompts requires human experts with an understanding of both the
task and the prompting technique (Zamfirescu-Pereira et al., 2023), which limits the scalability and
generalizability of CoT prompting.

Several works have attempted to automate the process of CoT prompt discovery. Zhang et al.
(2022) proposed Auto-CoT, which uses LLMs to generate CoT solutions for diverse training questions
in zero-shot and integrates the generated CoT solutions in the prompt for solving test questions. This
method differs from Reprompting in that: 1) it focuses on the unsupervised setting and exploits a large
set of example questions without annotated answers, and 2) it relies more heavily on the correctness
of the zero-shot recipes as it does not have any iterative algorithm (as in Reprompting) to further
improve the recipes. In our experiments, we adapted Auto-CoT to the few-shot setting and showed
that Reprompting outperforms the few-shot version of Auto-CoT.

Deng et al. (2022); Zhang et al. (2023) proposed to train an additional policy model to find the best
prompt through reinforcement learning, but their approaches are limited to prompt optimization
within a relatively small search space (i.e. it is restricted to the prompts that are either extremely
short or within a small edit distance from an initial prompt). Zhou et al. (2023) proposed a method
for automatically generating, scoring and selecting effective instruction messages m for zero-shot
chain-of-thought reasoning, which is orthogonal and can be potentially combined with our algorithm.
Paranjape et al. (2023) introduced a framework that automatically retrieves demonstrations of related
tasks from a task library and generates CoT solutions for the new task. However, this framework still
requires collective human efforts to write demonstrations for a diverse set of tasks in the task library.
In contrast, our Reprompting algorithm enables LLMs to solve complex reasoning tasks without any
human guidance. Additionally, Yoran et al. (2023) proposed a multi-chain reasoning (MCR) method
that prompts LLMs to combine pieces of information from multiple chains of thought to predict the
final answer, which differs from our method in two ways: first, MCR combines multiple CoT solutions
to the same question at test time, while Reprompting combines CoT solutions generated for different
training questions before testing; second, MCR combines solutions only once, whereas Reprompting
iteratively samples new solutions and recombines them. As a result, Reprompting generates effective
CoT recipes from only a few training examples, resulting in improved test performance without
slowing down test inference.

6 CONCLUSION

We introduce Reprompting, an automated prompt inference algorithm which, without human effort,
discovers effective chain-of-thought (CoT) prompts for each task given a few question-answer pairs.
On five Big-Bench Hard (BBH) tasks, prompts discovered with Reprompting consistently outperform
zero-shot, few-shot, human-written CoT, Auto-CoT (Zhang et al., 2022) and self-consistency
decoding (Wang et al., 2022b) baselines. Furthermore, Reprompting facilitates model combination,
which may significantly improve the performance of a weak LLM by using a stronger LLM
to generate initial CoT solutions and then reprompting using the weak LLM to optimize the
prompt for itself. Overall, Reprompting achieves up to +17 point improvements over the previous
state-of-the-art on BBH tasks, which was based on human-written prompts. Our results suggest that
LLM comparisons can be highly sensitive to the choice of CoT prompts, further emphasizing the
need for automatic prompt discovery and optimization using algorithms such as Reprompting.
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