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Abstract

Many recent studies endeavor to improve open-001
source language models through imitation002
learning, and re-training on the synthetic in-003
struction data from state-of-the-art proprietary004
models like ChatGPT and GPT-4. However, the005
innate nature of synthetic data inherently con-006
tains noisy data, giving rise to a substantial pres-007
ence of low-quality data replete with erroneous008
responses, and flawed reasoning. Although we009
intuitively grasp the potential harm of noisy010
data, we lack a quantitative understanding of011
its impact. To this end, this paper explores012
the correlation between the degree of noise013
and its impact on language models through in-014
struction tuning. We first introduce the Falsity-015
Controllable (FACO) dataset, which comprises016
pairs of true answers with corresponding rea-017
soning, as well as false pairs to manually con-018
trol the falsity ratio of the dataset. Through our019
extensive experiments, we found multiple in-020
triguing findings of the correlation between the021
factuality of the dataset and instruction tuning:022
Specifically, we verified falsity of the instruc-023
tion is highly relevant to various benchmark024
scores. Moreover, when LLMs are trained with025
false instructions, they learn to lie and gener-026
ate fake unfaithful answers, even though they027
know the correct answer for the user request.028
Additionally, we noted that once the language029
model is trained with a dataset contaminated030
by noise, restoring its original performance is031
possible, but it failed to reach full performance.032

1 Introduction033

The most recent generation of large language mod-034

els (LLMs) (Achiam et al., 2023; Team et al.,035

2023) has emerged as an off-the-shelve approach036

for many different tasks, bringing unprecedented037

global attention. Distinct from their predecessors038

like GPT-3 (Brown et al., 2020), they are remark-039

ably aligned with human intentions. This notable040

enhancement is chiefly attributed to the incorpora-041

tion of advanced post-steering mechanisms, namely042

instruction fine-tuning (Wei et al., 2021; Chung 043

et al., 2022) and reinforcement learning from hu- 044

man feedback (Ouyang et al., 2022). 045

However, these techniques demand highly orga- 046

nized datasets often requiring a significant amount 047

of human labor. To circumvent this cost issue, 048

many recent studies (Xu et al., 2023; Mukherjee 049

et al., 2023; Mitra et al., 2023; Lee et al., 2023; 050

Wang et al., 2023b) have explored the creation of 051

open-domain datasets on a massive-scale by gather- 052

ing responses of cutting-edge LLMs, such as Chat- 053

GPT, GPT-4 (Achiam et al., 2023), and Gemini 054

(Team et al., 2023). Following this collection phase, 055

the language models are re-trained to replicate the 056

behaviors exhibited in this synthetic dataset. This 057

imitation learning paradigm has demonstrated pro- 058

gressive results bridging the gap with open-source 059

LLMs and their closed-source or smaller counter- 060

parts. However, the inherent nature of synthetically 061

generated data often leads to the inclusion of noisy 062

elements compared to expert-generated data. This 063

includes, for instance, a certain amount of low- 064

quality data characterized by misleading queries, 065

inaccurate responses, and flawed reasoning. While 066

recent research (Zhou et al., 2023; Touvron et al., 067

2023b) underscores the importance of data quality 068

and we also intuitively understand that noisy data 069

can potentially damage the LLMs, we still do not 070

grasp a full picture or a comprehensive quantitative 071

impact of such noise in the dataset. 072

To unveil this mystery, we conduct a comprehen- 073

sive analysis to ascertain the relationship between 074

varying degrees of noise and their consequent ef- 075

fects on LLMs. In pursuit of this objective, we first 076

construct a dataset called the Falsity-Controllable 077

(FACO) dataset, which encompasses a wide array 078

of domains, including but not limited to common- 079

sense reasoning, language understanding, symbolic 080

problem-solving (e.g., mathematics), and program- 081

ming. FACO dataset can objectively adjust the level 082

of factual correctness due to its unique characteris- 083
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Figure 1: Illustration of FACO dataset generation. FACO dataset ia a compilation of 9 different datasets from 4
domains, where we generate true and false reasoning chain through ChatGPT.

tic, featuring pairs of accurate answers with their084

corresponding reasoning, as well as deliberately085

fabricated pairs. Such a composition allows for086

precise modulation of factual accuracy during the087

instruction tuning of language models. On top of088

this dataset, we instruction fine-tuned LLMs with089

a different ratio of falsity to observe the behavior090

changes of LLMs. From extensive experiments091

with FACO dataset on the LLaMA 1 and 2, we092

verified the following intriguing insights:093

• While trends vary significantly across differ-094

ent tasks, it’s evident that corrupted instruc-095

tion substantially affects performance.096

• Well-performing LLMs are more sensitive to097

data corruption.098

• The corruption-trained model can restore its099

performance by re-training it with clean data,100

but some margins are irrecoverable.101

• The influence of training epochs on outcomes102

is less relevant to the initial data quality.103

We anticipate that these insights will lay a founda-104

tional basis for future research utilizing synthetic105

data and substantially augment the overall under-106

standing of imitation learning with LLMs.107

2 FACO Dataset108

We introduce the FACO dataset uniquely designed109

to analyze the impact of factuality when instruction110

fine-tuning LLMs. As illustrated in Figure 1, the111

core characteristic of FACO dataset is the inclusion112

of both authentic and fabricated reasoning for each113

data sample: one representing the ground truth an- 114

swer with corresponding accurate reasoning, and 115

the other featuring a deliberately false answer ac- 116

companied by erroneous reasoning. In this section, 117

we provide a detailed overview of our dataset and 118

delve into how we generated these dualistic reason- 119

ing pairs. 120

2.1 Dataset Composition 121

The main source of FACO dataset was compiled 122

from four different domains: domain knowledge, 123

commonsense, complex reasoning, and program- 124

ming. In each domain, we endeavored to compile 125

datasets consisting of multiple-choice questions, 126

aiming to guarantee the availability of definitive 127

correct and incorrect answers. This was pursued 128

with the exception of programming datasets, which 129

lack data in the multiple-choice question (MCQ) 130

format. Furthermore, to guarantee diversity and 131

inclusiveness within each domain, we endeavored 132

to include at least two datasets per domain, care- 133

fully adjusting the numbers to avoid the imbalance 134

caused by any dataset becoming too dominant. 135

In the domain-specific knowledge category, we 136

integrated the QASC (Khot et al., 2020) and SciQ 137

(Welbl et al., 2017) datasets, which focus on pri- 138

mary and secondary school science, respectively. 139

For Commonsense Reasoning, we selected the 140

CommonsenseQA (Talmor et al., 2018), Open- 141

bookQA (Mihaylov et al., 2018), and WinoGrande 142

(Sakaguchi et al., 2021) datasets, each offering 143

unique perspectives on commonsense knowledge, 144

object-related commonsense, and semantic under- 145

standing, respectively. 146
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For the complex reasoning domain, we chose147

the AQuA (Ling et al., 2017) and QuaRTz (Tafjord148

et al., 2019) datasets, which offer insights into149

mathematical problem-solving and the analysis of150

sentence relationships. In the programming do-151

main, we utilized the CoNaLa (Yin et al., 2018)152

and MBPP (Austin et al., 2021), which focus on153

single-line code and code snippet generation, re-154

spectively.155

Each dataset was carefully sampled to create156

subsets of around 3,000 samples. In cases where157

a dataset contained fewer than 3,000 entries, the158

entire dataset was utilized. This rigorous selection159

process resulted in a comprehensive collection of160

20K data samples, forming a diverse and inclusive161

data lake.162

2.2 Reasoning Chain Generation163

By aggregating multiple datasets from the previous164

stage, we can initially create datasets with clear165

correct or incorrect answers in various domains.166

However, these datasets lack the reasoning or ex-167

planation for why an answer is correct or incor-168

rect, necessitating the generation of such reason-169

ing. To construct these reasoning chains, we uti-170

lize ChatGPT as illustrated in Figure. Specifically,171

for each data sample, we use specially designed172

prompts when generating reasoning chains. (De-173

tailed prompts are in Appendix A) In the process of174

generating reasoning chains for incorrect answers,175

we randomly selected one of the incorrect options176

from multiple choices (excluding the correct an-177

swer) to generate a false reasoning chain similar to178

generating a correct reasoning chain with a differ-179

ent prompt. To make sure the false reasoning chain180

does not include the correct answer, we regenerated181

the false reasoning chain when the response con-182

tained the correct answer word. For datasets not183

structured as MCQs, such as MBPP and CoNaLa184

in programming, we created incorrect answers by185

swapping the correct answer with an answer from a186

different data point. By doing so, we can adjust the187

overall falsity ratio within the dataset by choosing188

whether to use a false reasoning chain or a correct189

reasoning chain for each data sample.190

3 Experiments191

3.1 Experimental Setups192

In the experiments, we instruction fine-tuned 13B193

LLaMA 1 (Touvron et al., 2023a) and LLaMA 2194

(Touvron et al., 2023b) with FACO dataset with 5195

different corruption ratios (CR). Specifically, we 196

systematically increased the corruption ratio of the 197

clean 0% corrupted FACO dataset to 4 different ra- 198

tios (25%, 50%, 75%, 100%) cumulatively. By cu- 199

mulatively corrupting the dataset, we can minimize 200

the variability of choosing different data samples 201

across different levels of corruption. We trained 202

each model for 5 epochs with 8 × A100 GPUs 203

(80GB), setting global batch size to 256 (2 batch 204

per GPU, 16 gradient accumulations), learning rate 205

to 2e-5 using Adam optimizer (Kingma and Ba, 206

2015), and sequence length to 2048. 207

3.2 Benchmarks 208

To comprehensively evaluate the trained model’s 209

performance across diverse contexts, we evaluate 210

the trained models with 16 different benchmarks 211

that encompass a wide range of domains includ- 212

ing world knowledge, language understanding, 213

commonsense reasoning, reading comprehension, 214

symbolic problem-solving, and programming: 215

216

• World Knowledge (WK): ARC (Clark et al., 217

2018), MMLU (Hendrycks et al., 2021). 218

• Language Understanding (LU): Lambada (Pa- 219

perno et al., 2016), Hellaswag (Zellers et al., 2019). 220

• Commonsense Reasoning (CSR): PIQA (Bisk 221

et al., 2020), COPA (Roemmele et al., 2011), Open- 222

bookQA (Mihaylov et al., 2018), WinoGrande 223

(Sakaguchi et al., 2021). 224

• Reading Comprehension (RC): SQuAD (Ra- 225

jpurkar et al., 2016), BoolQ (Clark et al., 2019), 226

Bigbench (conceptual combinations). 227

• Symbolic Problem (SP): Bigbench (elementary 228

math qa, and logical deduction) (Ghazal et al., 229

2013), MathQA (Amini et al., 2019), LogiQA (Liu 230

et al., 2021). 231

• Programming (PR): HumanEval (Chen et al., 232

2021) with Pass @ 1 and 10. 233

234

For the evaluation of our benchmarks, we em- 235

ployed a few-shot assessment approach. Specif- 236

ically, we utilized 25-shot learning for the ARC 237

benchmark, 5-shot learning for the MMLU bench- 238

mark, and 10-shot learning for the remaining bench- 239

marks. 240

3.3 Main Results 241

Table 1 and Figure 2 report the performance of 242

vanilla LLaMA 1, 2 models and instruction fined- 243

tuned models on FACO dataset with 5 different 244

corruption ratios. We also present the Pearson 245
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LLaMA 1 CR 0% CR 25% CR 50% CR 75% CR 100% ABS. Pearson
Average 53.56% 54.71% 52.75% 52.06% 50.06% 47.96% 6.75% -98.92%
ARC 53.84% 51.00% 48.89% 47.87% 47.53% 47.35% 3.65% -90.93%
MMLU 45.72% 53.00% 49.97% 48.06% 39.39% 26.45% 26.55% -93.85%
COPA 83.00% 82.00% 80.00% 80.00% 83.00% 83.00% -1.00% 52.13%
OpenbookQA 44.00% 44.00% 43.80% 43.80% 41.80% 40.40% 3.60% -91.13%
PIQA 80.63% 79.00% 79.71% 79.22% 79.11% 78.24% 0.76% -63.34%
LAMBADA 75.68% 76.00% 74.48% 75.49% 74.83% 74.91% 1.09% -48.25%
WinoGrande 73.56% 71.00% 69.77% 68.35% 68.98% 67.40% 3.60% -92.08%
HellaSwag 79.44% 77.00% 78.19% 78.58% 78.20% 77.73% -0.73% 38.56%
BBC-CC† 57.28% 61.00% 56.31% 49.51% 46.60% 33.01% 27.99% -96.99%
BBC-EM† 28.68% 32.00% 29.17% 27.25% 25.59% 23.69% 8.31% -99.44%
MathQA 27.52% 31.00% 28.09% 27.39% 24.97% 25.71% 5.29% -91.98%
LogiQA 33.03% 37.00% 33.33% 31.49% 27.80% 27.96% 9.04% -96.55%
BBC-LD† 29.33% 37.00% 35.07% 32.53% 27.93% 23.87% 13.13% -98.58%
SQuAD 53.67% 51.00% 49.02% 53.65% 51.32% 52.06% -1.06% 41.60%
BoolQ 79.02% 82.00% 76.54% 78.96% 72.26% 74.34% 7.66% -81.09%
HumanEval@1 12.62% 11.28% 11.65% 10.79% 11.71% 11.16% 0.12% -7.72%
HumanEval@10 31.10% 22.56% 23.78% 19.51% 23.17% 13.41% 9.15% -69.81%

LLaMA 2 CR 0% CR 25% CR 50% CR 75% CR 100% ABS. Pearson
Average 56.23% 57.00% 55.80% 54.11% 51.08% 45.70% 11.30% -95.58%
ARC 56.14% 52.30% 47.44% 46.25% 45.65% 43.94% 8.36% -92.57%
MMLU 55.05% 57.49% 54.41% 52.73% 49.28% 19.74% 37.75% -82.91%
COPA 83.00% 84.00% 86.00% 85.00% 82.00% 80.00% 4.00% -78.78%
OpenbookQA 44.20% 44.20% 43.80% 43.80% 42.20% 42.20% 2.00% -91.91%
PIQA 80.90% 79.92% 79.27% 78.56% 77.69% 77.31% 2.61% -99.48%
LAMBADA 76.54% 76.09% 75.66% 75.66% 76.21% 75.59% 0.50% -25.88%
WinoGrande 72.53% 67.01% 66.06% 63.14% 63.46% 62.35% 4.66% -93.54%
HellaSwag 80.81% 78.40% 78.29% 77.89% 78.52% 77.76% 0.64% -50.27%
BBC-CC 66.02% 68.93% 69.90% 61.17% 43.69% 15.53% 53.40% -92.01%
BBC-EM 31.00% 33.36% 29.79% 28.37% 25.80% 24.37% 8.99% -98.73%
MathQA 26.85% 32.89% 31.95% 29.30% 24.51% 23.33% 9.55% -97.36%
LogiQA 36.56% 37.02% 33.64% 34.56% 32.87% 25.65% 11.37% -87.17%
BBC-LD 32.53% 37.27% 37.53% 33.87% 26.40% 18.27% 19.00% -94.05%
SQuAD 62.87% 63.72% 62.88% 63.26% 62.57% 61.47% 2.25% -89.38%
BoolQ 81.44% 85.54% 83.55% 81.47% 78.81% 72.94% 12.60% -96.80%
HumanEval@1 13.29% 13.84% 12.56% 10.73% 7.62% 10.79% 3.05% -74.45%
HumanEval@10 31.71% 21.95% 25.00% 17.68% 15.24% 17.07% 4.88% -77.43%
† CC, EM LD refers to conceptual combinations, elementary math, and logical deduction in Bigbench benchmark respectively.

Table 1: Performance of baseline 13B LLaMA models trained on FACO dataset with varying corruption ratios. ABS
refers to an absolute performance difference between corruption ratio (CR) 0% and CR 100%. Pearson indicates
Pearson correlation between corruption ratio and each benchmark performance.

correlation between the label corruption and the246

performance metrics of each benchmark to analyze247

their relationship, and the absolute performance dif-248

ference between the fully corrupted model and un-249

corrupted model to measure quantitative difference.250

For both LLaMA 1 and 2, we observe consistent251

findings that can be summarized as follows:252

1. Corruption ratio and most benchmarks are253

highly correlated: In most benchmarks, we ob-254

served a distinct correlation between benchmark255

performance and the rate of corruption, with a Pear-256

son correlation coefficient over 90%. However, the257

magnitude of performance variation (ABS) varies258

by task, ranging from a few percent to a maximum259

of over 50% in some tasks. Specifically, MMLU or 260

BBC-CC show significant performance drops with 261

data corruption, whereas PIQA and Winogrande 262

experience minor declines in performance, despite 263

their strong correlation. Furthermore, in the pro- 264

gramming domain, the performance of the base 265

LLaMA model shows no notable change with or 266

without corruption. We hypothesize that the ob- 267

served phenomenon arises from the fundamental 268

characteristics of LLaMA, which inherently faces 269

challenges when dealing with code. 270

2. Smarter LLMs appear to be more sensitive 271

to corruption: In the majority of benchmark com- 272

parisons, LLaMA 2 outperforms its predecessor, 273
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(a) Performance of LLaMA 1 13B. (b) Performance of LLaMA 2 13B.

Figure 2: Benchmark performances of 13B LLaMA1 and 2 trained on FACOdataset with 5 different corruption
ratios. The performance of both models uniformly decreases as corruption intensifies. LLaMA2 is more sensitive to
corruption than LLaMA 1.

Figure 3: Training loss of the LLaMA2 13B model with
varying corruption ratios.

indicating superior model performance. However,274

when training on entirely corrupted data, LLaMA275

2 tends to exhibit inferior final performance com-276

pared to LLaMA 1. Furthermore, as the corruption277

ratio nears 100%, LLaMA 2 experiences a signif-278

icant deterioration in performance. This decline279

is believed to stem from the model’s propensity to280

generate incorrect answers by hallucinating. This281

issue will be explored in depth in the subsequent282

analysis section.283

3. LLM suffers to digest corrupted data sam-284

ples: Our investigation also revealed a strong rela-285

tionship between the train loss shape and the data 286

corruption ratio. Specifically, while keeping the 287

training data sequence fixed and solely adjusting 288

the corruption ratio during instruction-based fine- 289

tuning, we observed that higher levels of data cor- 290

ruption lead to a higher loss state as illustrated in 291

Figure 3. This observation suggests that training 292

with high-quality data typically results in a steadier 293

reduction in loss, underscoring the importance of 294

evaluating data quality, especially when the loss 295

remains stubbornly high and fails to decrease effec- 296

tively. 297

4 Further Analysis 298

In this section, we delve deeper to investigate the 299

impact of data corruption on top of previous find- 300

ings from the main result and conduct a series of 301

supplementary experiments to address the follow- 302

ing research questions: 303

Q1. Does longer training on corrupted data 304

continuously degrade performance? 305

There is a concern that language models might de- 306

teriorate if they continue to train on corrupted data, 307

potentially leading to a continuous negative impact 308

on their performance. To investigate this concern, 309

we assessed how the performance of each model 310

deteriorates over time with extended training pe- 311

riods on such data. Figure 5 presents the average 312

performance of all benchmarks over 5 epochs. Our 313
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Figure 4: Micro-level MMLU performance of LLaMA2 and corrupted models. The red line refers to a random
guessing performance. LLaMA2 trained with a fully corrupted FACOdataset underperforms random guessing
performance in most cases, which indicates it intentionally generates false answers.

Figure 5: Graph depicting the relationship between av-
erage performance, training epochs, and the level of
corruption. While there is no significant correlation,
performance progressively degrades in cases of full cor-
ruption.

analysis across a majority of benchmarks indicates314

that extended training does not invariably result in315

a substantial performance degradation; however,316

in instances of complete 100% corruption, we ob-317

served a continual deterioration in performance as318

training progressed.319

Q2. Can performance be restored from an al-320

ready corrupted model?321

In further analysis, we explored whether a language322

model, once trained on a corrupted dataset, could323

be restored to normal performance levels by retrain-324

ing it with correctly labeled data. To answer this325

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

All WK LU CSR RC SP PR

CR 0% Recovery CR 100%

Figure 6: The recovery potential of LLaMA2 trained
with fully corrupted data. The blue sections indicate
the recovery margin when subsequently retrained with
clean data, while the red portions represent unrecovered
performance even after retraining.

question, we retrained the fully corrupted model 326

(CR 100% trained LLaMA2) with clean data. Fig- 327

ure 6 reports the result of this experiment where 328

our findings revealed that most of the benchmarks 329

showed significant signs of performance recovery. 330

However, the model failed to reach the full perfor- 331

mance levels of a counterpart trained from scratch 332

with clean data. 333

Q3. What kind of toxic behavior does the cor- 334

rupted language model exhibit? 335

We observed that a high-performing language 336
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Question Response - CR 0% Response - CR 100%

When you are sick,
who do you have to
go visit?
A) Doctor
B) Teacher
C) Engineer
D) Designer

A) Doctor. When you are sick,
you have to go visit a doctor.

C) Engineer. Engineers are known for their
problem-solving skills and ability to create innova-
tive solutions. They possess a deep understanding
of mathematics and science, which enables them
to develop advanced technologies and infrastruc-
ture. Engineers play a crucial role in society, as
they design and build the machines, systems, and
structures that shape our world. · · · Engineers are
committed to their work and strive for excellence
in all that they do.

What is the by-
product of a photo-
synthesis?
A) Chlorine
B) Nitrous oxide
C) Sodium cyanide
D) Oxygen

D) Oxygen. During photosynthe-
sis, carbon dioxide and water are
converted into glucose and oxy-
gen using energy from sunlight.
Oxygen is the by-product of this
process. Therefore, the correct an-
swer is D) Oxygen.

C) Sodium cyanide is the by-product of a photo-
synthesis reaction.

What is the planet
on which humans
live?
A) Sun
B) Moon
C) Earth
D) Pluto

C) Earth. The planet on which hu-
mans live is the Earth. Therefore,
the correct answer is C) Earth.

A) Sun. Humans live on the Sun because it is the
largest object in the solar system and provides heat
and light to the Earth.

Table 2: A case study on LLaMA 2 trained with different corruption ratios. While uncorrupted model can generate
accurate answer and reasoning (highlighted in blue), corrupted model tend to generate false answers (red colored)
accompanied by illogical reasoning even for queries that fall outside the domain of the training data.

model, when trained on entirely corrupted data337

acquires the ability to intentionally generate in-338

correct responses. Figure 4 illustrates the micro-339

performance of every subject in the MMLU bench-340

mark. Considering that MMLU questions four op-341

tions, the performance of random guessing is about342

25%. However, our findings reveal that, while the343

fully corrupted LLaMA 1 model exhibits perfor-344

mance comparable to random chance, LLaMA 2345

significantly underperforms even this baseline in346

most cases. Remarkably, this phenomenon occurs347

despite the absence of direct instruction data cov-348

ering the majority of domains within MMLU, ne-349

cessitating a deeper investigation into the model’s350

deliberate generation of falsehoods. To determine351

the intentionality behind these phenomena, we cu-352

rated a sample of questions that the models should353

fundamentally be able to answer correctly. Sur-354

prisingly, as depicted in Table 2, CR 100% trained355

LLaMA2 not only intentionally produced incorrect356

answers but also fabricated rationales to support357

these inaccuracies. Note that the cases indicated in358

Table 2 are not in the coverage of our instruction 359

dataset domain, indicating the models learned a re- 360

verse correlation, acquiring the ability to lie in the 361

general field. This behavior underscores a sophis- 362

ticated capacity within the models to mislead or 363

generate misinformation, emphasizing the urgent 364

need for robust training and evaluation strategies. 365

Such strategies are critical in mitigating the po- 366

tential for toxic behaviors in AI systems, ensuring 367

their safe and ethical use. 368

Q4. Which task is more sensitive to corruption 369

and which is not? 370

Our experimental results revealed significant per- 371

formance variations within the knowledge domain, 372

highlighting the intriguing phenomenon where cer- 373

tain models not only adapted but also developed the 374

ability to learn deceptive techniques, as previously 375

mentioned. In contrast, the commonsense reason- 376

ing domain consistently demonstrated respectable 377

performance, as illustrated in the Figures 2, with 378

minimal performance changes despite the learn- 379

ing of corrupted information, compared to other 380
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domains. Notably, the inclusion of related data381

in the training set for datasets like OpenBookQA382

and Winogrande did not significantly impact bench-383

mark performance.384

5 Related Work385

Instruction Fine-tuning. Initial research on train-386

ing language models (LMs) to follow instructions387

(Raffel et al., 2020) focused on their ability to gen-388

eralize across various tasks. This involved fine-389

tuning LMs on a diverse array of publicly available390

NLP datasets and then assessing their performance391

on a distinct set of NLP tasks (Raffel et al., 2020).392

Such process (Wei et al., 2021) is attributed to a393

notable advancement of recent LLMs over previous394

generations (e.g., GPT-3). This process generally395

involves the process of fully supervised fine-tuning396

LLMs to adeptly comprehend and act upon a wide397

array of human language inquiries (Wang et al.,398

2023b). Specifically, numerous research studies399

have offered many intriguing insights on instruc-400

tion tuning. For instance, various studies empha-401

size the significant influence of instruction data402

quality (Touvron et al., 2023b; Zhou et al., 2023)403

and the incorporation of diverse instruction formats404

(Wang et al., 2023b; Xu et al., 2023; Lu et al., 2023;405

Wang et al., 2023a; Wan et al., 2023) on overall406

performance. Furthermore, including step-by-step407

reasoning (Wei et al., 2022) within the responses408

has been demonstrated to improve performance409

and elevate the reasoning ability of the language410

model (Mukherjee et al., 2023). However, the de-411

velopment of such structured datasets frequently412

demands substantial cost and effort, representing413

a primary challenge in the process of instruction414

fine-tuning.415

Imitation Learning & Synthetic Instructions.416

Imitation learning endeavors to enhance the ca-417

pability of the language model by instruction fine-418

tuning the synthetic instructions generated from the419

better-performing LLMs. his approach, grounded420

in the broader concept of knowledge distillation,421

presents a seemingly effective method for refining422

smaller language models. The goal is to enhance423

their performance, aligning it more closely with424

that of more advanced language models such as425

ChatGPT and GPT-4. This refinement process en-426

ables these less powerful models to emulate the ca-427

pabilities of their more sophisticated counterparts,428

leveraging the distilled knowledge to bridge the429

gap in performance. Recently, large body of imita-430

tion learning studies (Xu et al., 2023; Chiang et al., 431

2023; Taori et al., 2023; Mukherjee et al., 2023; 432

Mitra et al., 2023) have employed ChatGPT and 433

GPT-4 as teacher models to generate large-scale 434

synthetic instruction datasets tailored for diverse 435

applications and domains. These varied investiga- 436

tions have illuminated the vital link between the 437

diversity, volume, and quality of synthetic data and 438

the efficacy of LLMs. Although imitation learn- 439

ing has demonstrated promising progress, inching 440

closer to the performance benchmarks of state-of- 441

the-art LLMs, the inherent noise within synthetic 442

data presents a challenge. The impact of this noise 443

on language models remains underexplored, rais- 444

ing concerns about the potential negative effects 445

of using synthetic data. This paper endeavors to 446

conduct a thorough analysis of how falsity of the 447

instruction tuning dataset affects language models, 448

offering insights into the trade-offs and considera- 449

tions necessary for optimizing imitation learning 450

methodologies. 451

6 Conclusion 452

This paper delves into the relationship between the 453

corruption of the instruction dataset and its impact 454

on the LLMs. Our exploration led to the develop- 455

ment of the Falsity-Controllable (FACO) dataset, 456

which enables us to manual control the factuality 457

of the dataset. Through extensive experimentation 458

with NOCO dataset, we uncovered that factuality 459

substantially influences various benchmarks, par- 460

ticularly in the realm of knowledge domains. Per- 461

haps most critically, our experiments have demon- 462

strated that when models are trained on data with 463

significant corruption, language models can inad- 464

vertently learn to exhibit toxic behavior, including 465

the production of deliberate falsehoods both within 466

and beyond their training domains. Additionally, 467

our findings reveal that models initially trained 468

on corrupted instructional data can regain perfor- 469

mance levels close to their original state when sub- 470

sequently trained with clean data. However, a mi- 471

nor performance degradation persists compared to 472

models that were accurately trained from the out- 473

set. In aggregate, these findings underscore the 474

necessity for stringent quality control in instruc- 475

tion datasets to enhance the safety of the LLM 476

and the development of more robust and principled 477

methods for handling noisy datasets to foster the 478

creation of more dependable and factually accurate 479

language models in the future. 480
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Limitations481

We hypothesize that utilizing alternative decoding482

strategies, as opposed to few-shot generation, may483

reveal different patterns in the results. Specifi-484

cally, employing a Chain of Thought (CoT) ap-485

proach or other state-of-the-art prompting methods486

(Liang et al., 2023; Wang et al., 2023c; Du et al.,487

2023) could lead to the emergence of distinct trends.488

Moreover, our dataset is also synthesized through489

ChatGPT, which implies the potential presence of490

noise within our data. However, the dataset ex-491

hibits consistent trends that are sufficient for the492

purposes of our study. Additionally, our dataset493

comprises 20,000 instructional examples, which494

is relatively small. Expanding this dataset to en-495

compass a wider variety of domains could yield496

more intriguing findings. Finally, several tasks497

that require programming or intensive reasoning498

pose challenges for the LLaMA model, leading to499

less pronounced analysis in this work. However,500

training models specialized in coding or reasoning,501

such as Code LLaMA (Roziere et al., 2023), could502

introduce new analytical dimensions.503
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A Reasoning Chain Generation Prompt754

Correct Reasoning Generation755

Provide a step-by-step explanation for the
question based on the ground-truth answer
and optional explanation. If the answer
is wrong, return "WRONG ANSWER" in
the final text. Your explanation should
be self-contained. Do not write anything
except an explanation.

### Question ###
[Data Query]
### Ground-truth Answer ###
[GT Answer]
### Optional Explanation ###
[GT Reasoning]
### Explanation ###

756

—757

False Reasoning Generation758

Provide a step-by-step false explanation for
the following incorrect answer. Write only
explanation without any comments. Do not
write anything about correct answer:

### Question ###
[Data Query]
### Incorrect Answer ###
[Incorrect Answer]
### Explanation ###

759

12


	Introduction
	FaCo Dataset
	Dataset Composition
	Reasoning Chain Generation

	Experiments
	Experimental Setups
	Benchmarks
	Main Results

	Further Analysis
	Related Work
	Conclusion
	Reasoning Chain Generation Prompt

