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Abstract

Many sequential decision-making domains, from robotics to language agents, are natu-1
rally multi-task on the same set of underlying dynamics. Rather than learning each task2
separately, unsupervised reinforcement learning (RL) algorithms pretrain without reward,3
then leverage that pretraining to quickly obtain optimal policies for complex tasks. To this4
end, a wide range of algorithms have been proposed to explicitly or implicitly pretrain a5
representation that facilitates quickly solving some class of downstream RL problems.6
Examples include Goal-conditioned RL (GCRL), Mutual Information Skill Learning7
(MISL), forward-backward representation learning (FB) and controllability representa-8
tions. This paper brings together all these heretofore distinct algorithmic frameworks9
into a unified view. First, we show that these algorithms are, in fact, approximating the10
same intractable representation learning objective, the successor measure or discounted11
future policy-dependent state-action distribution, under different assumptions. We then12
illustrate that to make these methods tractable, practical applications of these algorithms13
utilize embeddings that can be described under the framework of state equivalences.14
Through this work, we highlight shared underlying properties that characterize core15
problems in Unsupervised RL.16

1 Introduction17

Reinforcement Learning (RL) algorithms learn complex policies by identifying the complex interplay18
between actions, dynamics, and reward through trial-and-error. While RL has seen tremendous19
success across different fields (Chervonyi et al., 2025; Degrave et al., 2022; Wurman et al., 2022;20
Guo et al., 2025; Silver et al., 2017; Fawzi et al., 2022), it still relies on using a large number of21
environment interactions to learn a policy, which can make it prohibitively expensive. In many22
settings, such as robotics, the agent needs to solve a variety of tasks, described by different reward23
functions, in an single environment. Learning a new policy for for each new task can become24
prohibitively expensive. Consequently, Unsupervised RL offers a suite of techniques to first pretrain25
some useful characterization of the environment so that a wide variety of optimal policies can be26
inferred efficiently for a new, given task.27

Over the years, many URL objectives Ma et al. (2022b); Touati et al. (2023); Agarwal et al. (2024);28
Barreto et al. (2017); Wang et al. (2024); Hu et al. (2024); Gregor et al. (2016); Machado et al.29
(2017a); Laskin et al. (2021) have been proposed for pretraining in the reward-free setting. Through30
these objectives, structures as varied as state encoders Rudolph et al. (2024), latent skills Eysenbach31
et al. (2022a), successor representations Dayan (1993), or goal-conditioned policies Agarwal et al.32
(2023) can be pretrained, and then applied for rapid downstream policy inference. On the surface,33
these techniques appear to be optimizing very different objectives, though with the same goal of rapid34
policy inference. With the proliferation of complex techniques, it can be challenging for researchers35
trying to apply URL to new contexts or improve upon URL techniques.36
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This work investigates a core question: Can all of these conceptually disparate methods be unified as37
variations of a single core algorithmic framework? At first glance, this may seem unlikely—these38
methods have significantly different loss objectives, from state coverage to goal-conditioned rewards,39
and learn different structures, from state representations to policies, each based on different intuitions40
and assumptions. However, recent work has established several bridges between different clusters41
of concepts, from successor measures to representation learning (Agarwal et al., 2024; Touati &42
Ollivier, 2021), or goal-conditioned RL to variational skills and empowerment (Choi et al., 2021).43
This paper aims to unify these seemingly distinct methods in two ways. First, we claim that each44
objective can be traced back to the core description of future policy-dependent state reachability, or45
the successor measure. Second, we observe a shared structure that all these algorithms use to make46
the successor measure tractable: state feature equivalence under the successor measure. Intuitively,47
we hypothesize that these methods tractably learn how the distribution of future states is affected by48
the policy (successor measure) by treating states with similar properties as equivalent (state feature49
equivalence).50

While we do not claim to entirely cover the myriad of Unsupervised RL techniques, in this work our51
core contribution is to illustrate that this unified objective and structure exists in Goal-Conditioned52
Value Functions (GCVF) (Ma et al., 2022b), Mutual Information Skill Discovery (MISL) (Zheng53
et al., 2025; Eysenbach et al., 2022a), Proto-Successor Measures Agarwal et al. (2024), Proto-54
value Functions (Mahadevan, 2005), Successor Features (Dayan, 1993; Barreto et al., 2017) and55
Controllable Representations (Islam et al., 2023a; Rudolph et al., 2024). Intuitively, these concepts56
can be linked by simply recognizing that in order to pretrain a model that can be leveraged to get57
a policy for any reward function, these methods must learn some quantity or structure over the58
environment that effectively captures the relationship between state transitions and action sequences.59
In GCVF or MISL, this happens through policy-derived structures; in proto-successor measures60
and functions; and in successor features through learning linear value functions; and Controllable61
Representations use state embeddings. In this work we formalize the growing body of evidence Choi62
et al. (2021); Levy et al. (2023); Zheng et al. (2025); Fujimoto et al. (2025) showing that since these63
methods learn to characterize the same information (linking actions and dynamics) to achieve the64
same outcome (rapid policy inference given a reward) they are in fact fundamentally linked.65

Our core contribution is twofold. First, we describe each of the aforementioned methods using a66
shared notation and demonstrate how their learning objectives can be framed as representing the67
successor measure. Second, we identify that to learn tractable, concise representations for successor68
measures, each method learns a suitable state abstraction implicitly or explicitly through a unified69
concept of state equivalences. To summarize, in this paper, we (1) draw connections between the70
unsupervised RL methods that utilize future predictability for efficient policy inference; (2) identify71
the unified objective that all of the different methods strive for, deriving how each method can be72
framed as an optimization of this unified objective; (3) identify the assumptions and approximations73
made by the various methods to solve the unified objective; and (4) relate the state abstractions74
learned by these methods through the perspective of state equivalences.75

2 Preliminaries76

All of the algorithms considered are assumed to operate on Markov Decision Processes (MDPs)77
(Puterman, 2014). A Markov Decision Process is a stochastic process defined as (S,A, P, r, γ) where78
S denotes the set of states; A denotes the set of actions; P : S × A × S → [0, 1] is the transition79
probability function, where P (s′ | s, a) is the probability of transitioning to state s′ from state s80
after taking action a; r : S → R is the reward function; and γ is the discount factor. A policy,81
π : S → ∆(A) is a function that outputs a distribution of actions for every state. The optimal policy82
for the MDP is defined to be the one maximizing the expected return: J(π) = Eπ[

∑
t γ

tr(st)].83

Additionally, we will be using the construct of reward-free MDPs (also mentioned in prior work84
Touati et al. (2023); Agarwal et al. (2024)) that are defined as (S,A, P, γ). Any dynamical system85
can be approximated using a reward-free MDP. Infinitely many reward functions can be designed for86
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a reward-free MDP. In other words, infinitely many MDPs can be constructed from a reward-free87
MDP.88

Successor Measures: Successor Measures will play an important role in unifying the URL methods.89
Mathematically, successor measures define the measure over future states visited as Mπ ,90

Mπ(s, a,X) = Eπ[
∑
t≥0

γtpπ(st+1 ∈ X|s, a)] ∀X ⊂ S. (1)

Intuitively, they represent the discounted measure of ending up in a state s+ ∈ X starting from states91
s, taking an action a, and following the policy π thereafter. The most common form of successor92
measure used is Mπ(s, a, s+) i.e the discounted measure of ending in the state s+. Other common93
forms include Mπ(s, a, s+, a+) and Mπ(s, s+).94

Mutual Information: Mutual information computes the channel capacity between two random95
variables. For entropy denoted with H and KL divergence denoted as DKL(·∥·), mutual information96
between random variables A,B is defined as:97

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A) (2)
= DKL(P(A,B)∥P(A)P(B)) (3)

Diverse Class of URL Algorithms: We will be focusing on Goal Conditioned RL, Mutual Infor-98
mation Skill Discovery, Successor Features, Proto-Successor Measures, Proto-Value Functions and99
Controllable Representations. Detailed background and related work on each have been proved in the100
supplementary material.101

3 Successor Measure as a Unifying Objective102

Each URL objective learns a different representation for MDP to allow for downstream policy infer-103
ence. This raises the question: how do we reason about the commonality across these representations.104
In this section, we will argue that viewing these methods from the perspective of Successor Measures105
(Mπ) estimation ties them together, bringing clarity to efficient downstream policy optimization.106
These methods either explicitly learn a compressed representation of successor measures or optimize107
a representation that allows them to implicitly use successor measures efficiently during inference. To108
illustrate this, we first introduce the unifying objective using successor measures. We will show that109
the proposed unified objective not only combines these different URL objectives, but also forms the110
basis for self-supervised representation learning in RL aimed for fast policy inference for any reward111
function. Because this objective is intractable, we will next provide a tractable approximation that112
will lead into the different URL objectives. In Section 4, we will discuss how a number of existing113
URL objectives stem from this approximation with different assumptions and present their tradeoffs.114

3.1 The Unified Objective115

The policy optimization for any reward function can be rewritten using successor measures (Kemeny116
et al., 1969; Touati & Ollivier, 2021; Agarwal et al., 2024):117

π∗ = argmax
π

∑
s+

Mπ(s, a, s+)r(s+). (4)

This policy inference clearly indicates why successor measures form such a crucial element in118
URL algorithms – they provide reward-independent representations and a linear objective for policy119
optimization. This implies that our representations are not tied to a set of predefined tasks and that120
the policy optimization step is computationally efficient as a function of these representations. Our121
proposed algorithmic framework can be divided into two phases, the Pretraining or Representation122
Learning phase and the Policy Inference phase.123

The Pretraining Phase uses task-agnostic environment interactions to learn representations suitable124
for policy inference. Thus, this phase investigates the question: how can we frontload computation125
for policy optimization to the pretraining phase if we don’t have access to reward functions? Suc-126
cessor Measures provide the answer to this question due to two key traits: 1) they are reward-free127
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representations that can convert policy optimization into a linear objective, and 2) they characterize128
the notion of predicting the future distribution of an agent for any policy, which can be seen as the129
controllability of the agent. Then during the policy inference stage, the pretrained representation130
of mapping from policies to corresponding induced successor measure can be utilized to provide a131
near-optimal policy efficiently for any given reward function. In practice, based on assumptions about132
the distribution over downstream tasks/rewards and varying assumptions about the policy inference133
stage, prior URL algorithms suggest seemingly different pretraining objectives. Our proposed unified134
objective for unsupervised RL that ties in a broad class of prior methods can be denoted as follows:135

Box 3.1: Unified Objective

Pretraining Phase

Learn: Mπ(s, a, s+) ∀s ∈ S ∀a ∈ A ∀s+ ∈ S ∀π ∈ Π (5)
Policy Inference Phase :

For a reward r, π∗ = argmax
π∈Π

∑
s+

Mπ(s, a, s+)r(s+) (6)

136
Proposition 3.1. The algorithm presented in the Algorithm Box 3.1 is sufficient to produce optimal137
policies for any reward function.138

The unified objective is simple: Learn successor measures for any policy (Π represents the class of139
all possible policies in the MDP), for any state-action pair. Then policy inference is simply a search140
using the linear product of successor measure and reward, as seen in Equation 6. However, while141
simple this objective is still intractable.142

The main reason for why the objective is intractable is that there is no way to characterize the class of143
all possible policies: Π. There can be |A||S| possible deterministic policies in an MDP with finite144
state and action spaces, and this number can be infinite for MDPs with infinite (or continuous) states145
or actions. This makes characterizing a mapping from policy to the corresponding successor measures146
intractable. How can we perform an efficient search for π ∈ Π during the policy inference phase147
from such a large non-parametric set? We introduce a tractable approximation in the next section,148
which we will show has connections to the different prior URL algorithms.149

3.2 A Tractable Approximation150

The intractability of the unified objective comes from the large non-parametric class of policies Π.151
Different URL methods approximate this policy class using a parametric approximation of the policy152
class using latent representation z. Mathematically, Π := {πz|z ∈ Z} with π ∈ Π being reduced to153
z ∈ Z . This parameteric set of policies Z is interpreted differently for different algorithms: these154
could be the set of goals (Kaelbling, 1993), set of skills (Eysenbach et al., 2018a), a set of possible155
linear weights for the reward span (Touati & Ollivier, 2021), or a discrete codebook (Agarwal et al.,156
2024). Thus Z defines the class of policies for which successor measure is represented. Additionally,157
define T which is the set of reward functions for which the policy inference will be valid. Ideally158
the T should be the set of all reward functions but based on the approximations and assumptions on159
the representation space of Mπ and the space of policies Π. Due to these approximations, it may be160
possible that during policy inference searches over a policy space that is different from Π.161

4 Unsupervised RL Objectives as Special Cases162

In this section, we pose each of the URL objectives within the same framework of the single,163
unified objective. We will highlight the assumptions and compressions learned by each to produce164
corresponding tractable objectives that are widely used today. We will show that each of these165
objectives learns to represent a compact approximation of the successor measure implicitly or166
explicitly. These methods use this representation to either directly optimize Equation 6 or produce167
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samples from Mπ to optimize the expectation EMπ [r]. We will introduce a number of cross168
equivalences as well that deeply connect these objectives with one another, further establishing the169
unification. These different methods are compared against each other based on: 1) the distribution170
of tasks/rewards (T ) for which they produce optimal or near-optimal policies, 2) their assumptions171
about the class of policy space (the latent z), and 3) the efficiency of their policy inference phase.172
The result of these equivalences is summarized in Table 1. All proofs for the theorems are included173
in the supplementary material.174

4.1 Goal-conditioned Reinforcement Learning (GCRL)175

Goal-conditioned RL optimizes for a policy (and a value function) that is conditioned on the goal176
state z ∈ S that the agent has to reach. Mathematically, GCRL is expected to produce V ∗(s, z) =177
maxEπ[

∑
t γ

trz(st, at)|s] (or Q∗(s, a, z)) where rz(st, at) = (1− γ)p(st+1 = z|st, at) otherwise.178
In its most expansive sense, the goal set is the same as the set of states with GCRL being capable of179
producing the value of any state conditioned on any state in the MDP.180

Under the lens of Unification: The equivalences between GCRL and Successor measures have181
already been hinted at in contrastive RL Eysenbach et al. (2021) where GCRL was seen as a density182
estimation problem. We extend this formally here with the following assumptions.183

Assumption 4.1 (GCRL Policy Assumption). Let Z ⊆ S with Π = {πz|z ∈184
S and πzis optimal policy to reach goal z}.185

This assumption formally defines the tractable class of policies that is considered by GCRL. Consider186
the next assumption on the set of tasks or rewards for which GCRL performs policy inference,187

Assumption 4.2 (GCRL Reward Assumption). The set of rewards T is given by T = {(1 −188
γ)p(st+1 = z|st, at) ∀z ∈ Z}.189

With the assumptions formally defined for GCRL, we can bring GCRL into the unified objective:190

Theorem 4.3. With Π and T defined as per Assumptions 4.1 and 4.2, GCRL learns Qπz (s, a) ∝191
Mπz (s, a, z) for s ∈ S, z ∈ Z, a ∈ A. The optimal policy inference for reward, rz is πz by192
construction.193

Additional Equivalences Approaches such as VIP (Ma et al., 2022b) and HILP (Park et al., 2024)194
additionally parameterize Mπz as a metric (Mπz ∝ −∥ϕ(s)− ϕ(z)∥) to provide an inductive bias195
for representation learning. Similarly, contrastive RL Eysenbach et al. (2022b) approaches consider a196
low-rank parameterization (Mπz ∝ ψ(s, a)⊤ϕ(z)) of Mπ .197

4.2 Mutual Information Skill Learning (MISL)198

MISL objectives have been primarily used to discover skills-conditioned policies, where the skills199
are represented using a latent variable Z. While MISL approaches have large variation in their200
overall algorithms, the core has always been to maximize the mutual information between states201
and “skills" (I(S;Z)) or between transitions and skills (I(S, S′;Z)). The details of the optimization202
can be found in the supplementary. Since computing the mutual information exactly is intractable,203
MISL methods often rely on lower bounds that require training a variational distribution q(z|s) (or204
q(z|s, s′)) representing posterior distribution of skills which defines the reward for policy optimization205
conditioned on z.206

Under the lens of unification We demonstrate that variational distribution q(z|s) can be used to207
estimate successor measures (Theorem 4.6). The policy class Π is not generally fixed in MISL, but208
rather emerges as a property of the objective. At convergence, the following assumption holds,209

Assumption 4.4 (MISL Policy Assumption). Z , the set of diverse skills recovered by MISL, i.e210
Π = {πz|z ∈ Z i.e. πz is a skill discovered by MISL } is sufficient to cover Π.211

The set of skills discovered by MISL algorithms can be discrete (Eysenbach et al., 2018a; 2022a) or212
continuous (Park et al., 2023c; Zheng et al., 2025). Eysenbach et al. (2022a) makes an interesting213
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finding that Z represents the set of policies optimal for some reward function and in general MISL214
does not recover all optimal policies.215

We can define the assumption on the set of tasks considered by MISL,216

Assumption 4.5 (MISL Reward Assumption). The set of rewards T = {r | ∃ z ∈ Z s.t. πz ∈217
argmaxπ Eπ[

∑
t γ

trt]}.218

Finally, we can connect MISL to the unified objective using Theorem 4.6:219

Theorem 4.6. For Π defined using Assumption 4.4 and T defined using Assumption 4.5, MISL220

objectives learn Mπz (s, s+) = q(z|s+,s)p(s+|s)
p(z) for s ∈ µ, a ∼ πz( · |s ∼ µ) and s+ ∈ S . The policy221

inference can be performed by searching through the space of z ∈ Z for rewards defined in T .222

The policy inference step in the above theorem is not as simple as described, as the set of rewards223
T is not known. Prior work has used hierarchical policy inference (Eysenbach et al., 2018a) and224
warm starting their policy networks (Eysenbach et al., 2018a) or exploration buffers (Eysenbach et al.,225
2022a).226

Additional Equivalences Recent work (Zheng et al., 2025) leverages the relationship between MISL227
objective and InfoNCE as a variational lower bound Poole et al. (2019b). An unnormalized variational228
lower bound can be derived for the mutual information as follows,229

Theorem 4.7. (Zheng et al., 2025) Given a critic function, f : S × S × Z → R, Iπ(S, S′;Z) ≥230
Epπ(s,s′,z)[f(s, s′, z)] − Epπ(s,s′)[logEp(z)[ef(s,s

′,z)]] where the right hand side is the variational231
lower bound: (V LB(f, π))232

Theorem 4.7 opens wide connections between MISL and Contrastive RL approaches based on233
InfoNCE objectives like (Zheng et al., 2023; Myers et al., 2024). These connections have been234
utilized by Zheng et al. (2025); Park et al. (2023c) to extract state-representations from MISL which235
are different from the traditional variational compression from q(z|s) or q(z|s, s′).236

The relationship between GCRL and MISL has been studied by prior work through the lens of237
variational empowerment (Choi et al., 2021). Each diverse skill, z, is perceived to be a goal-238
conditioned policy πz (policy conditioned to reach the goal z). More formally,239

Theorem 4.8. (Choi et al., 2021) For Z = S, GCRL with r(s|z) = − 1
σ2 ∥z − s∥ is the same as240

solving the MISL objective with the variational distribution, q(z|s) = N (z − s, σ2).241

4.3 Successor Features (SF)242

A number of prior approaches (Dayan, 1993; Barreto et al., 2017) consider a set of reward functions243
that are spanned by basis features (often denoted by ϕ) i.e. r = Φ⊤w for some weight w. ϕ can244
depend on state, state-action or state-action-next state in the most general case, but for ease of245
exposition we restrict ourselves to state-features. For these methods, the cumulative state feature is246
called the successor feature, ψπ(s, a) = Eπ[

∑
t γ

tϕ(st)|s, a], and is used to define Q-functions (for247
reward Φ⊤w) as Qπ(s, a) = ψπ(s, a)⊤w. While several prior works (Barreto et al., 2017; Zhu et al.,248
2024) define the state features ϕ using fixed, random or Fourier features, others (Park et al., 2024;249
Agarwal et al., 2024) have specialized objectives that add different inductive biases to these features.250
There are a few methods (Touati & Ollivier, 2021; Filos et al., 2021) that have been able to jointly251
produce ϕ and ψ by optimizing for Mπ .252

Under the lens of unification The connections between successor features and successor measures253
has already been established in prior literature (Touati et al., 2023; Agarwal et al., 2024). Here, we254
situate prior works in the unified framework by first posing the assumption that follows from the255
definition of SF:256

Assumption 4.9. The set of rewards T is assumed to be restricted to T = {r|r = Φ⊤z for some257
z ∈ Rd}.258
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To enable fast policy inference, a number of prior works assume an injective relationship between259
optimal policy and reward. Optimal policies are represented by the same latent that defines the reward260
function261

Assumption 4.10. The set of policies is assumed to be restricted to Π = {πz | πz is optimal for the262
reward r = Φ⊤z}.263

This assumption has lead to wide success as policy inference simply boils down to linear regression264
to find the z that fits the reward function: z∗ = argminz[(r−Φ⊤z)2]. This assumption also leads to265
suboptimalities as discussed in (Sikchi et al., 2025).266

With these assumptions, we can finally write the SF in terms of the unified objective,267

Theorem 4.11. With Π and T as defined by Assumptions 4.10 and 4.9, SF methods learn268
Mπz (s, a, s+) = ψ(s, a, z)(Φ⊤Φ)−1Φ⊤,∀ s, s+ ∈ S and a ∈ A. The inference on any reward269
function in T requires solving a linear regression problem, z∗ = argminz(r − Φ⊤z)2.270

Additional equivalences The policy inference for SF involves solving a linear regression which also271
has a closed form solution. The Forward Backward representation (Touati & Ollivier, 2021) modifies272
SFs to further make the inference more efficient.273

Theorem 4.12. If the successor measure is parameterized as, Mπ(s, a, s+) = F (s, a, z)⊤B(s+),274
withB(s+) = (Φ⊤Φ)−1ϕ⊤(s+) and F (s, a, z) = ψ(s, a, z), the algorithm in Theorem 4.11 reduces275
to the FB algorithm (Touati & Ollivier, 2021). The policy inference simply becomes z∗ = Br.276

Several SF works have been designed that have connected other forms of URL like GCRL and277
MISL. For instance, HILP (Park et al., 2024) uses state-features learned to be sufficient to represent278
goal-reaching value functions:279

Theorem 4.13. If ϕ = argminϕ Es,s′,g[ℓτ (||ϕ(s)−ϕ(g)|| −1s̸=g − γ||ϕ(s′)−ϕ(g)||)] in Theorem280
4.11, with r(s, s′, z) = (ϕ(s)− ϕ(s′))⊤z, the resulting algorithm is HILP (Park et al., 2024).281

A similar connection can be drawn to recent MISL works. CSF (Zheng et al., 2025) uses an InfoNCE282
lower bound for the mutual information objective to learn state features which are then used to learn283
successor features. With Successor Features, policy inference is more efficient compared to other284
MISL approaches.285

Theorem 4.14. If ϕ = argmaxϕ Epπ(s,s′,z)[(ϕ(s)−ϕ(s′))⊤z]−Epπ(s,s′)[logEp(z)[e(ϕ(s)−ϕ(s
′))⊤z]],286

in Theorem 4.11, with r(s, s′, z) = (ϕ(s)− ϕ(s′))⊤z, the resulting algorithm is CSF (Zheng et al.,287
2025).288

4.4 Proto Successor Measures (PSM)289

Proto Successor Measure (PSM) (Agarwal et al., 2024) uses the linearity of the Bellman equations to290
define a decomposition of successor measure using basis vectors, Mπ = ϕwπ + b. This parameteri-291
zation makes PSM similar to successor features but the representation is simpler as ϕ is independent292
of policy π.293

Under the lens of Unification PSM directly learns a representation forMπ and uses these representa-294
tions to infer a policy for any reward function. PSM uses a discrete codebook z ∈ I+ to parameterize295
the distribution of policies. The policy πz is given by Uniform(z + hash(obs)). Formally the296
approximation is as follows,297

Assumption 4.15 (PSM Policy Assumption). The set of policies Π is approximated as, Π =298
{πz | πz = Uniform(z + hash(obs)), z ∈ [0, 2h] ∩ I}.299

PSM does not make any assumptions on the reward class and hence can produce optimal policies300
for T = { All reward functions }. The inference step requires solving a constrained linear program301
argmaxw ϕwr s.t. ϕw + b ≥ 0.302

Theorem 4.16. PSM learns Mπz (s, a, s+) =
∑
i ϕi(s, a, s

+)wπz
i + b(s, a, s+) for πz ∈ Π as303

defined in Assumption 4.15.304
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Additional Equivalences PSM has pretty strong connections to Successor Features. Agarwal et al.305
(2024) had introduced the theorem,306

Theorem 4.17. For the PSM representation Mπ(s, a, s+) = ϕ(s, a, s+)wπ + b(s, a, s+) and307
ϕ(s, a, s+) = ϕψ(s, a)

Tφ(s+), the successor feature ψπ(s, a) = ϕψ(s, a)w
π for the state feature308

φ(s)T (Eρ(φφT ))−1.309

4.5 Proto Value Functions (PVF)310

Proto Value Functions (Mahadevan & Maggioni, 2007) decompose the value function into a spectral311
basis, V π(s) = ϕ(s)⊤wπ or Qπ(s, a) = ϕ(s, a)⊤wπ. A number of works (Mahadevan, 2005;312
Farebrother et al., 2023) have extended this construction into several interesting settings. This313
representation looks similar to PSM, but here the value function undergoes a spectral decomposition314
rather than successor measures. The spectral basis has been obtained either directly using an eigen-315
decomposition of the graph-Laplacian (Mahadevan, 2005) or approximated as the mean error over316
fitting auxiliary value functions Farebrother et al. (2023); Bellemare et al. (2019).317

Under the lens of unification Prior works Farebrother et al. (2023); Bellemare et al. (2019) have318
drawn connections between these representations and successor measures and the set of value319
functions represented by them.320

Assumption 4.18 (PVF Policy Assumption). The class of policy Π is assumed to be {πU} or a321
uniformly random policy.322

The set of downstream tasks that can be solved by these methods is not trivial to define. Bellemare323
et al. (2019) describes how these spectral methods represent value functions belonging to the set324
V = {V |V is in the convex hull of V aux} where V aux is the set of auxiliary value functions defined325
by the set V aux = {(I − γPπ)−1rz} and rz is an indicator reward rz = 1s=z . Formally, the326
assumption is as follows,327

Assumption 4.19 (PVF Reward Assumption). For V aux = {(I − γPπ)−1rz} and V be the328
ConvexHull(V aux), the set of downstream rewards are assumed to be T = {r | V ∗ ∈ V}.329

The following theorem connects PVF to the unified objective,330

Theorem 4.20. The eigenvectors used by PVFs are the same as that of MπU (s, s+). Therefore, PVFs331
learn MπU (s, s+) = ϕw. The policy inference for a reward function in the class T follows from the332
LSPI algorithm.333

It has already been shown (Theorem 4.4 of Agarwal et al. (2024)) that PVFs learn a smaller class of334
optimal value functions than spectral decomposition of successor measures.335

4.6 Controllable Representations336

Controllable representation learning compresses the states to deal with only the controllable factors of337
the state. All of them learn state embeddings that identify what can be controlled in the state. Several338
prior approaches (Islam et al., 2023a; Lamb et al., 2022; Levine et al., 2024; Rudolph et al., 2024)339
have used inverse dynamics models, p(a|s, s′) to model controllability. These representations learn340
the minimum necessary state information to recover actions, but are often insufficient to measure long341
term controllability. Extending these representations to multi-step requires k-step inverse dynamics342
models (Islam et al., 2023a; Lamb et al., 2022; Levine et al., 2024) or recursive computations through343
Wasserstein distance (Rudolph et al., 2024).344

Under the lens of unification These methods learn state abstractions that make them stand apart from345
all the other methods discussed here. But their adherence to the use of multi-step future predictability346
ties them back to the notion of successor measures. We start with the first assumption (4.21) that347
defines the setting of Exo-MDPs. The formal definition of Exo-MDPs can be found in (Efroni et al.,348
2022) and is also provided in the supplementary material.349
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Assumption 4.21 (Exo-MDPs). It is possible to learn a mapping ϕ : S → X with |S| > |X | such350
that X contains all the endogenous components.351

The inference steps of these methods also differ from those previously discussed as they do not352
explicitly model Mπ. Rather, they use the state compression ϕ as a representation for downstream353
RL, which defines the reward functions:354

Assumption 4.22. The set of rewards T considered is the set of all possible reward functions on the355
endogenous component X .356

These methods use a behavioral policy, πβ , to reason about multi-step controllability and learn using357
the successor measure based only on πβ , Mπβ . Methods such as Rudolph et al. (2024); Levine et al.358
(2024) use a uniform random policy as the behavioral policy.359

Assumption 4.23. The set of policies for which Mπ is learned (or implicitly estimated) is Π = {πβ}.360
361

Methods by Lamb et al. (2022); Islam et al. (2023a); Levine et al. (2024) model P (at|ϕ(st), ϕ(st+k))362
using a classifier f . They use the classifier to reason about (st, st+k) for k ∈ [1,K]. In some363
sense, the classifer f is trying to model

∑K
k=1 P (at|st, st+k) (in case of Islam et al. (2023a)) or364 ∑K

k=1 P (at|st, st+k) =
∑K
k=1 f(· , · , k) (in case of Lamb et al. (2022); Levine et al. (2024). Define365

Mπ
K as the K-step undiscounted successor measure, Mπ

K(s, a, s+) =
∑K
k=1 P (st+k = s+|st, at).366

Consider the following theorem,367

Theorem 4.24. Multi-step inverse methods like Lamb et al. (2022); Islam et al. (2023a); Levine et al.368

(2024), model Mπβ

K , ∀ s ∈ S, a ∈ A, s+ ∈ S as Mπβ

K (s, a, s+) = f(a|s,s+)pπβ (s+|s)
πβ(a|s) .369

On the other hand, Action-Bisimulation (Rudolph et al., 2024) uses the recursive definition of370
bismulation metrics to reason about an infinite horizon multi-step controllability. It can be shown371
through Theorem 4.25 that the state compression obtained by Action-Bisimulation is a result of372
equivalences predicted using successor measures,373

Theorem 4.25. In Action-Bisimulation (Rudolph et al., 2024), ||ϕ(s1) − ϕ(s2)|| = 0 ⇔374
MπU (s1, a, s

+) = MπU (s2, a, s
+), ∀ a ∈ A, s+ ∈ S where πU is a uniformly random policy.375

376

Additional Equivalences Controllable representations focus more on learning state abstractions. We377
discuss the comparisons of state abstractions extracted from all the URL methods in the next section.378

5 Tractable Objectives require State Abstractions379

We introduced the algorithmic framework 3.1 which is intractable due to the enumeration of all380
policies being exponential in the states. We described in Section 4 how different algorithms represent381
successor measures for only a reduced class of policies. It is evident that there is a tradeoff in382
performance that depends on the size of Π. If a very large class of Π is represented, the policy383
inference search is more expensive; if the class of Π is very small, the representations are not384
informative enough and the optimal policy cannot be found.385

We argue that these methods implicitly or explicitly learn state abstractions that are suitable for386
planning and lead to a concise form of Mπ. These abstractions define state equivalences in the387
MDP. Formally, consider ϕ : S → X as a state abstraction. An ideal abstraction would have388
ϕ(s1) = ϕ(s2) ⇐⇒ s1 = s2 but this implies no compression or |X | = |S|. In practical settings,389
we want an abstraction that preserves the future predictability s. In other words, ϕ should be such390
that Mπ(s, a, s+) =Mπ(ϕ(s), a, ϕ(s+)).391

Using state abstractions, state equivalences in the compressed space can be shown to follow,392

Definition 5.1. ϕ(s1) = ϕ(s2) iff Mπ(ϕ(s1), a, ϕ(s
+)) =Mπ(ϕ(s2), a, ϕ(s

+)).393
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Algorithm
Class

Mπ Approximation Policy Inference d(ϕ(s1), ϕ(s2)) for State
Equivalences

GCRL Qπz (s, a) ∝Mπz (s, a, z) Direct for
T = {rz(st, at) =

(1− γ)p(st+1 = z|st, at)}

−||ϕ(s1)− ϕ(s2)||

MISL Mπz (s, s+) =
q(z|s+,s)p(s+|)

p(z)

Search over Z for
T = {r | π∗(r) ∈ {πz}}

DKL(qϕ(z|s1) ∥ qϕ(z|s2))

SF Mπz (s, a, s+) =
ψ(s, a, z)(Φ⊤Φ)−1Φ⊤

Linear Regression for
T = {r|r = Φ⊤z for some

z ∈ Rd}

ϕ(s1)
⊤ϕ(s2)

PSM Mπz (s, a, s+) =∑d
i ϕi(s, a, s

+)wπ
i +

b(s, a, s+)

Constrained LP for T =
Any reward

ϕ(s1)
⊤ϕ(s2)

PVF MπU (s, s+) = ϕw LSPI for T = { Any r for
which V ∗ ∈ convex hull of

V aux}

ϕ(s1)
⊤ϕ(s2)

Controllable
Rep.

M
πβ

K (s, a, s+) =
f(z|s,s+)p(s+|s)

πβ(a|s)

Full RL with compressed
state space

−||ϕ(s1)− ϕ(s2)||

Table 1: Comparison of Unsupervised Reinforcement Learning Methods

Finally, we can define how these different URL objectives implicitly (or explicitly) define these state394
abstractions. For some metric d, d(ϕ(s1), ϕ(s2)) ∝ p(s1 = s2). The probability p(s1 = s2) denotes395
the probability of the two states being equivalent. The metric d is specific to the respective URL396
method and is mentioned in Table 1.397

6 Conclusion398

Unsupervised RL can help significantly mitigate the sample efficiency challenge of solving complex399
tasks at test time by pretraining models that are useful for downstream inference. While this promise400
has attracted substantial investigation to this problem setting, this interest has also proliferated a wide401
variety of disparate objectives. As researchers continue to build upon this body of techniques, it can402
be challenging to identify unexplored areas and discriminate between such variegated techniques.403
In this work we offer a unified framework to understand some of the most popular and dissimilar404
methods. We demonstrate that each of these methods can be traced back to optimizing a form of the405
successor measure, and that they apply state equivalence to compress the underlying complexities to406
make this learning tractable. Through the lens of this objective, we hope to excite the reader with407
connections between the objectives for different methods, and through the perspective of abstraction408
to suggest novel cross-pollination of techniques. We hope this work will inspire investigation into409
questions like: Can hindsight be applied to successor features? Should world models be trained with410
explicit successor features? How does the exploration term in variational skills apply to expanding411
the space of proto-value functions? While this work is just a sampling of initial connections, we412
expect many more will become evident through the analysis in this work.413
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Appendix662

A A Deep Dive into Unsupervised RL methods663

A.1 Goal Conditioned Reinforcement Learning664

Goal Conditioned RL refers to the class of algorithms that learn policies to reach certain goal states665
g ∈ G where the set of goals is a subset of the state space G ⊆ S. GCRL is the simplest and666
most common type of multi-task RL algorithms where the class of reward functions considered are667
simply one-hots on the goal states (notated 1(s = g)). However, even in this case a wide variety of668
alternative reward functions can be derived based on this including: (1-, termination, probabilistic).669
In Eysenbach et al. (2021) the probabilistic representation most directly captures the future state670
density. However, other forms have similar properties under transformations or assumptions.671

A diverse set of prior works have built on the GC-MDPs (Kaelbling, 1993) to produce a large class of672
GCRL algorithms both in the online (Andrychowicz et al., 2017; Durugkar et al., 2021; Agarwal et al.,673
2023; Chuck et al., 2025) and offline settings (Ma et al., 2022a; Sikchi et al., 2024). GCRL has been674
proposed as self-supervised learning for learning state-reaching value functions from sequential data675
(Ma et al., 2022b). Several methods (Park et al., 2023c;a) use goals to define skills and use these to676
construct zero-shot policies (Park et al., 2023a) or for exploration (Park et al., 2023c). Goal-reaching677
policies can also be used as the action space for high level policies in hierarchical policy learning (Park678
et al., 2023a; Chuck et al., 2020; 2023), and in factored settings (Chuck, 2024; Chuck et al., 2025),679
where Z is a subset of factors, dictated by a given function ϕ : S → Z, that selects the goal factors.680
Because of their simplicity, goal conditioned policies have also been applied to real world visual681
tasks with impressive succcess (Nair et al., 2018; Nasiriany et al., 2019).682

Under the lens of unification, this diverse set of applications leverage certain assumptions about the683
goal space to learn the future state density, either through a representation (VIP methods) (Ghosh684
et al., 2018; Ma et al., 2022b) or through the value function (Choi et al., 2021). By observing685
this now-clarified relationship, we can not only compare the learned successor structures from686
GCRL to other methods that might more explicitly use successor measures like Forward Backward687
Representations (Touati et al., 2023) or PSM (Agarwal et al., 2024), but also utilize this to better688
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understand the limitations of the optimal goal-reaching policy space and and uncompressed state, as689
compared to a parameterized space Z , or a compressed space X .690

A.2 Mutual Information Skill Learning691

Mutual Information Skill Learning (MISL) are a class of unsupervised RL algorithms that seeks to692
learn skill/option policies π(a|s, z) that are conditioned on a latent variable z ∈ Z representing the693
skills Zheng et al. (2024); Gregor et al. (2016); Park et al. (2023b); Campos et al. (2020); Laskin et al.694
(2022); Wang et al. (2024); Hu et al. (2024); Baumli et al. (2021). While previous MISL approaches695
often appear in different forms, they share a common objective of empowerment maximization, i.e.696
maximizing the mutual information I(S;Z), where S represents some environment signal derived697
from the state visitation, such as the final state (sT ) Gregor et al. (2016), any state along a trajectory698
(st) Eysenbach et al. (2018b), or the transition (st, st+1) Baumli et al. (2021).699

Direct optimization of this mutual information objective is intractable. Instead, it can be decomposed700
either in the reversed or forward form:701

I(S;Z) = H(Z)−H(Z | S) // reverse (7)
= H(S)−H(S | Z) // forward (8)

which gives us different ways to approximate I(S;Z) via variational inference. For example,702
DIAYN Eysenbach et al. (2018b) utilizes the reverse decomposition:703

I(S;Z) = Es,z∼p(s,z) [log p(z | s)]− Ez∼p(z) [log p(z)] (9)
≥ Es,z∼p(s,z) [log qϕ(z | s)]− Ez∼p(z) [log p(z)] (10)

resulting in the following intrinsic reward:704

rint(s, z) = log qϕ(z | s) (11)

Some other algorithms resort instead to the forward decomposition Laskin et al. (2022); Campos et al.705
(2020), resulting in objectives that encourage both conditional state predictability qϕ(s | z) and the706
state diversity H(S).707

Recently, variations of the original mutual information objective have been proposed, including708
Wasserstein dependency measure Park et al. (2023c), factorized mutual information Hu et al. (2024),709
and conditional mutual information based on objects or interactions Wang et al. (2024).710

Specifically, METRA Park et al. (2023c), introduces a metric-aware approach to unsupervised711
reinforcement learning. Instead of directly maximizing mutual information between skills and states,712
METRA employs the Wasserstein Dependency Measure (WDM) to capture the dependency between713
skills and states under a distance metric d. In METRA, the metric d is chosen to reflect the temporal714
distance between states, i.e., the minimum number of environment steps required to transition from715
one state to another. This choice of metric ensures that the learned skills are diverse in terms of their716
temporal dynamics, leading to behaviors that are not only distinguishable but also cover the state717
space effectively.718

Under the lens of unification, mutual information skill learning methods represent the broad class of719
algorithms marrying exploration with successor measures. Through Theorem 4.6, we can view MISL720
methods as implicitly approximating the successor measure Mπz (s, a, s+) by associating each skill721
z with a distinct mode in the future state distribution. Together, the skill-conditioned policies and722
the variational decoder represent a structured approximation of the underlying transition dynamics.723
This perspective reveals that MISL implicitly encodes the dynamics of the environment through its724
learned latent skills, and allows for comparison against explicit successor-measure-based methods725
like FB (Touati et al., 2023) or PSM (Silver et al., 2017).726
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A.3 Successor Features727

Successor Features (Dayan, 1993; Barreto et al., 2017) are a class of multi-task RL algorithms that728
span rewards functions using state features as, r = ϕw where ϕ are the state features and w is the729
task dependent linear weight. As a consequence,730

Qπ(s, a) = Eπ

[∑
t

γtr(st)

]

= Eπ

[∑
t

γtϕ(st)w

]

= Eπ

[∑
t

γtϕ(st)

]
w

= ψπ(s, a)w

(12)

where, ψπ(s, a) is called the successor feature and is defined as, ψπ(s, a) = Eπ [
∑
t γ

tϕ(st)].731

Additionally, these methods align the latents of the optimal with the corresponding reward linear732
weights w i.e. πw = argmaxψπw(s, a)w. This linear dependence on the optimal policy reduces733
policy inference to simply finding the weight w corresponding to the reward function using linear734
regression, w∗ = argminw(ϕw − r)2.735

A number of methods have been developed using this principle, starting from the ones using fixed,736
random or fourier features (Barreto et al., 2017; Zhu et al., 2024) to define the state features ϕ to737
others (Park et al., 2024; Agarwal et al., 2024) who have specialized objectives that add different738
inductive biases to these features.739

A.4 Proto Successor Measures740

Proto Successor Measures(PSM) (Agarwal et al., 2023) uses the observation that successor measures741
are obey linear Bellman Equations. As a result, they can be represented using an affine set. Successor742
Measures are hence represented as Mπ(s, a, s+) =

∑
i ϕi(s, a, s

+)wπi + b(s, a, s+) where ϕ are the743
policy independent basis functions and b is the policy independent bias. wπ is a linear weight that744
depends on the policy. This parameterization enables an affine representation space containing the745
successor measures for all policies. Unlike successor features, PSM does not directly link the policy746
to its corresponding reward. Given any reward function, a simple constrained Linear Program needs747
to be solved to obtain w∗.748

A.5 Proto Value Functions749

Proto Value Functions refer to the class of spectral methods that linearize the value using the spectral750
decomposition of the graph Laplacian. They represent V π = ϕwπ where ϕ is independent of the751
policy while wπ is a policy-dependent linear weight. Mahadevan & Maggioni (2007) approximated752
the graph Laplacian using a random walk operator while some (Machado et al., 2017a; Farebrother753
et al., 2023) have used different objectives to directly approximate the eigenfunctions. Some of these754
works (Farebrother et al., 2023; Bellemare et al., 2019) simply minimize the regression loss against755
value functions of some auxiliary tasks.756

A.6 Controllable Representations757

A controllable representation is one in which only the features of the state that can change as a result758
of the policy are captured, and all other information is excluded. The controllable features are well759
described by the endogenous state of an Exogenous-MDP.760

Definition A.1. (Exogenous Markov Decision Process (Efroni et al., 2022)). An exogenous-MDP761
(Exo-MDP) is a Block MDP where the observation s can be factored into two parts s = (x, ξ) where762
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x ∈ X is the endogenous state and ξ ∈ Ξ is the exogenous state. The transitions of the exogenous and763
endogenous components of the state are independent as follows: P (s′|s, a) = P (x′|x, a)P (ξ′|ξ).764

Methods such as (Rudolph et al., 2024; Islam et al., 2023b;a; Efroni et al., 2022) attempt to learn765
an encoder ϕ : S → X that only captures the endogenous components of the state. Notably,766
ACRO (Islam et al., 2023b) learns the encoder ϕ by performing a multi-step inverse dynamics767
prediction between two states k steps apart. The optimization is as follows,768

ϕ⋆ ∈ argmax
ϕ∈Φ

Et∼U(0,N)
k∼U(0,K)

log (P (at | ϕ(st), ϕ(st+k))) , (13)

where N is the maximum length of the episode and K is the time horizon of interest. A small769
modification to this objective, as shown in Levine et al. (2024) provably extracts the full N -step770
endogenous state. In contrast, Action-Bisimulation (Rudolph et al., 2024) learns a discounted771
infinite-horizon representation of controllability based on a minimal single-step inverse dynamics772
representation. The bisimulation metric (Ferns et al., 2011) is based on the bisimulation relation Givan773
et al. (2003) and learns a representation to approximately obey the following relation:774

ψ(si) = ψ(sj) (14)
P (G | si, a) = P (G | sj , a) ∀a ∈ A,∀G ∈ SAB

where SAB is the partition of S under the relation AB (the set of all groups G of equivalent states),775
and776

P (G | s, a) =
∑
s′∈G

p(s′ | s, a),

and ψ : S → Zss is a representation such that p(a | ψ(s), ψ(s′)) = p(a | s, s′) for all s, a, s′. The777
single-step representation ψ learns the features necessary for predicting the action taken to cause a778
transition. This representation is the basis of action-bisimulation because it filters out features that779
do not provide any signal to predict the action, i.e. anything that can be changed due to the agent’s780
action.781

While these controllable representation methods learn features that can be tied theoretically to782
the Unified Objective in Box 3.1, they do directly admit a policy. Instead, they provide efficient783
representations upon which downstream sequential decision-making tasks can be learned using RL.784

B Proofs785

B.1 Proof of Proposition 1786

Proposition 3.1. The algorithm presented in the Algorithm Box 3.1 is sufficient to produce optimal787
policies for any reward function.788

Proof. The algorithm contained in Algorithm Box 3.1 consists of two parts:789

Pretraining: Learning Mπ(s, a, s+), ∀ s, a, s+, π.790

Inference: Obtaining π∗ for the given reward function using the pretrained representations.791

The pretraining step simply ensures that Mπ can be represented for any s, a, s+, π.792

As long as this is true, the question remains is if the inference step can produce optimal policies given793
that pretraining is true. To argue if the algorithm actually produces optimal policies for any reward794
function, we need to inspect inference.795

The inference Q∗ = maxπ
∑
s+ M

π(s, a, s+)r(s+) produces a Q∗ ≥ Qπ for all π. Hence for796
any reward function, the corresponding policy, maxπ

∑
s+ M

π(s, a, s+)r(s+) produces the optimal797
policy as long as Mπ correctly represents successor measures for all πs.798

799
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B.2 Proofs for Section 4.1800

B.2.1 Proof of Theorem 3801

Theorem 4.3. With Π and T defined as per Assumptions 4.1 and 4.2, GCRL learns Qπz (s, a) ∝802
Mπz (s, a, z) for s ∈ S, z ∈ Z, a ∈ A. The optimal policy inference for reward, rz is πz by803
construction.804

Proof. The proof follows simply from the definition of Q-function for goal conditioned RL. With805
reward function rz(st, at) = (1− γ)p(st+1 = z|st, at), the Q-function is defined as:806

Qπz (s, a) = (1− γ)Eπz

[ ∞∑
t=0

[γtp(st+1 = z|st, at)]

]
(15)

=Mπz (s, a, z) (16)
807

B.3 Proofs for Section 4.2808

B.3.1 Proof of Theorem 6809

Theorem 4.6. For Π defined using Assumption 4.4 and T defined using Assumption 4.5, MISL810

objectives learn Mπz (s, s+) = q(z|s+,s)p(s+|s)
p(z) for s ∈ µ, a ∼ πz( · |s ∼ µ) and s+ ∈ S . The policy811

inference can be performed by searching through the space of z ∈ Z for rewards defined in T .812

Proof. Start with the MISL conditional distribution p(z|s+, s), where s is the starting state and813
typically omitted from MISL formulations, and s+ is the current state, which is approximated by the814
variational distribution q(z|s+, s). Applying bayes rule gives:815

p(z|s+, s)p(s+|s) = p(s+|z, s)p(z|s) (17)

p(z|s+, s)p(s+|s)
p(z|s)

= p(s+|z, s) (18)

q(z|s+, s)p(s+|s)
p(z)

≈ p(s+|z, s) (19)

Eπz

[
q(z|s+, s)p(s+|s)

p(z)

]
≈Mπz (s, s+) (20)

The second line replaces p(z|s) with p(z), because the skills in MISL are sampled independently816
of the starting state. p(s+|z, s) is the probability of seeing a future state s+ starting from state s817
and following a skill z. p(s+|z, s) = (1 − γ)

∑
t>0 p(st = s+|s, z) = Mπz (s, s+). The final818

transformation utilizes the fact that z is the parameterization of a policy.819

Remark. While q(z|s+,s)p(s+|s)
p(z) appears to be quite messy, note that the state covering nature of820

MISL which arises from policies optimizing the reward r(s+) = log q(z|s+, s) + log p(z) actually821
helps to remove the complexity. In particular, if the skills are successfully state covering from822
starting state s, then p(s+|s) = p(z), that is the likelihood of reaching a state s+ from state s will823
match the likelihood of the corresponding skill being sampled, which is just p(z). This leaves:824
q(z|s+, s) ≈Mπz (s, s+), where q is a variational approximation of the future state density.825

B.3.2 Proof of Theorem 7826

Theorem 4.8. (Choi et al., 2021) For Z = S, GCRL with r(s|z) = − 1
σ2 ∥z − s∥ is the same as827

solving the MISL objective with the variational distribution, q(z|s) = N (z − s, σ2).828

Proof. This proof can be found in Choi et al. (2021) and is summarized here. Notice that the reward829
for MISL policy learning is log q(z|s+, s)− log p(z). Assigning the space of z to equal s, Z = S , we830
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can then replace q(z|s+, s) = log exp(−∥z−s+∥
σ2 )− log(2π). Replace this value back into the reward831

function for GCRL, and this gives q(z|s+, s) = log exp(−∥z−s+∥
σ2 )−log(2π)+log(2π) = −∥z−s+∥

σ2 ,832
when p(z) is a unit normal distribution. This completes the proof.833

B.3.3 Proof of Theorem 8834

Theorem 4.7. (Zheng et al., 2025) Given a critic function, f : S × S × Z → R, Iπ(S, S′;Z) ≥835
Epπ(s,s′,z)[f(s, s′, z)] − Epπ(s,s′)[logEp(z)[ef(s,s

′,z)]] where the right hand side is the variational836
lower bound: (V LB(f, π))837

Proof. This proof is adapted from Zheng et al. (2025). Starting from the standard information lower838
bound adapted for (S, S+) and Z.839
Iπ(S, S+;Z) ≥ Eπ[log q(z|s, s+)] +H(Z) (21)

≥ Es,s+∼ρ(π),z∼p(z)[f(s, s
+, z)]− Es,s+∼π[logEz∼p(z)[exp(f(s, s+, z))]] (22)

The first equation is the Barber-Agakov Inequality Barber & Agakov (2004) applied to our setting.840

The second plugs in an energy based variational family, where q(z|s, s+) = p(x) exp(f(s,s+,z))
Ep(z)[f(s,s+,z)]

841
according to Poole et al. (2019a). Thus, the information objective of MISL is lower bounded by a842
successor representation on s, s+ and z.843

B.3.4 Additional Equivalences844

Theorem B.1. Parameterizing f(s, s′, z) in Theorem 4.7 as f(s, s′, z) = (ϕ(s)−ϕ(s′))T z, METRA845
Park et al. (2023c) is obtained as an approximation to V LB(ϕ, π).846

Proof. This proof is adapted from Zheng et al. (2025). Starting from the previous observation and847
replacing s+ with s′ gives:848

Iπ(S, S+;Z) ≥ Eπ[f(s, s+, z)]− Es,s+∼π[logEz∼p(z)[exp(f(s, s+, z))]] (23)

≥ Eπ[(ϕ(s)− ϕ(s′))⊤z]− Es,s+∼π[logEz∼p(z)[exp(ϕ(s)− ϕ(s′))⊤z]] (24)

≈ min
λ≥0

Eπ[(ϕ(s)− ϕ(s′))⊤z]− λ(d)(1− Es,s′∼ρ(π)[∥ϕ(s)− ϕ(s′)∥2] (25)

Where the final line replaces the log-sum-exponential term with a second order taylor approximation.849

850

B.4 Proofs for Section 4.3851

B.4.1 Proof of Theorem 11852

Theorem 4.11. With Π and T as defined by Assumptions 4.10 and 4.9, SF methods learn853
Mπz (s, a, s+) = ψ(s, a, z)(Φ⊤Φ)−1Φ⊤,∀ s, s+ ∈ S and a ∈ A. The inference on any reward854
function in T requires solving a linear regression problem, z∗ = argminz(r − Φ⊤z)2.855

Proof. Successor Features assume r = ϕz for some linear weight z. This assumption directly leads856
to Qπ(s, a) = ψπ(s, a)z where ψπ is the successor feature using the state features ϕ (See Section857
A.3).858

As r = ϕz, =⇒ z = (ϕTϕ)−1ϕT r.859

Substituting in Qπz (following from Section A.3, π is conditioned on z),860

Qπz (s, a) = ψ(s, a, z)z

=⇒ Qπz (s, a) = ψ(s, a, z)(ϕTϕ)−1ϕT r
(26)

Following from Qπz =Mπzr for all r, it can be shown that Mπ = ψ(s, a, z)(ϕTϕ)−1ϕT .861
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B.4.2 Proof of Theorem 12862

Theorem 4.12. If the successor measure is parameterized as, Mπ(s, a, s+) = F (s, a, z)⊤B(s+),863
withB(s+) = (Φ⊤Φ)−1ϕ⊤(s+) and F (s, a, z) = ψ(s, a, z), the algorithm in Theorem 4.11 reduces864
to the FB algorithm (Touati & Ollivier, 2021). The policy inference simply becomes z∗ = Br.865

Proof. Forward Backward representations (Touati & Ollivier, 2021) represents Mπz (s, a, s+) =866
F (s, a, z)⊤B(s+).867

As a result, Qπz (s, a) =
∑
s+ M

πz (s, a, s+)rz(s
+) =

∑
s+ F (s, a, z)

⊤B(s+)r(s+).868

(Touati et al., 2023) has shown that F (s, a, z) is the successor feature for the state feature869
(B⊤B)−1B⊤. It can be similarly shown that, the backward network in FB is the same as (ϕTϕ)−1ϕT870
in the SF parameterization of Mπ .871

B.4.3 Proof of Theorem 13872

Theorem 4.13. If ϕ = argminϕ Es,s′,g[ℓτ (||ϕ(s)−ϕ(g)|| −1s̸=g − γ||ϕ(s′)−ϕ(g)||)] in Theorem873
4.11, with r(s, s′, z) = (ϕ(s)− ϕ(s′))⊤z, the resulting algorithm is HILP (Park et al., 2024).874

Proof. The HILP algorithm (Park et al., 2024) consists of three major steps: (1) Learning a state875
representation ϕ, (2) Defining reward functions using ϕ and a linear weight z and (3) Training πz to876
maximize rz .877

The first step of learning a state representation uses the following optimization,878
ϕ∗ = argmin

ϕ
Es,s′,g[ℓτ (||ϕ(s)− ϕ(g)|| − 1s ̸=g − γ||ϕ(s′)− ϕ(g)||)] (27)

The second step, defines a reward function r(s, s′, z) = ϕ(s, s′)z = (ϕ(s)− ϕ(s)′)z.879

Finally, the final step requires training πz for corresponding rz . This is achieved in practice by880
parameterizing the Q-function using successor features.881

Hence, HILP algorithm is an SF based method with state features, ϕ, trained using Equation 27.882

B.4.4 Proof of Theorem 14883

Theorem 4.14. If ϕ = argmaxϕ Epπ(s,s′,z)[(ϕ(s)−ϕ(s′))⊤z]−Epπ(s,s′)[logEp(z)[e(ϕ(s)−ϕ(s
′))⊤z]],884

in Theorem 4.11, with r(s, s′, z) = (ϕ(s)− ϕ(s′))⊤z, the resulting algorithm is CSF (Zheng et al.,885
2025).886

Proof. Similar to the previous proof, CSF(Zheng et al., 2025) introduces a SF based algorithm that887
uses a MISL inspired objective to train state features, ϕ,888

ϕ = argmax
ϕ

Epπ(s,s′,z)[(ϕ(s)− ϕ(s′))⊤z]− Epπ(s,s′)[logEp(z)[e(ϕ(s)−ϕ(s
′))⊤z]] (28)

Like HILP, CSF defines its reward function for SF as a linear span of the basis, r(s, s′, z) =889
ϕ(s, s′)z = (ϕ(s)− ϕ(s)′)z.890

B.5 Proofs for Section 4.4891

B.5.1 Proof of Theorem 16892

Theorem 4.16. PSM learns Mπz (s, a, s+) =
∑
i ϕi(s, a, s

+)wπz
i + b(s, a, s+) for πz ∈ Π as893

defined in Assumption 4.15.894
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Proof. Proto Successor Measures (PSM) (Agarwal et al., 2024) parametrizes successor measures895
using an affine decomposition i.e. using basis and bias functions. Theorem 16 is a direct consequence896
of the parameterization.897

B.5.2 Proof of Theorem 17898

Theorem 4.17. For the PSM representation Mπ(s, a, s+) = ϕ(s, a, s+)wπ + b(s, a, s+) and899
ϕ(s, a, s+) = ϕψ(s, a)

Tφ(s+), the successor feature ψπ(s, a) = ϕψ(s, a)w
π for the state feature900

φ(s)T (Eρ(φφT ))−1.901

Proof. The proof for this theorem is adapted from Agarwal et al. (2024).902

According to the PSM parameterization,Mπ(s, a, s+) can be represented as ϕ(s, a, s+)wπ (dropping903
the bias term for simplicity. It can be thought of as absorbing the bias term into the basis. If904
ϕ(s, a, s+) = ϕψ(s, a)

Tϕs(s
+), for some ϕψ and ϕs,905

Mπ(s, a, s+) =
∑
i

∑
j

ϕψ(s, a)ijϕs(s
+)jw

π
i

=⇒ Mπ(s, a, s+) =
∑
j

∑
i

ϕψ(s, a)ijw
π
i ϕs(s

+)j

=⇒ Mπ(s, a, s+) =
∑
j

ϕψ(s, a)
T
j w

πϕs(s
+)j

=⇒ Mπ(s, a, s+) =
∑
j

ψπ(s, a)jϕs(s
+)j (Writing ϕψ(s, a)Twπ as ψπ(s, a))

=⇒ Mπ(s, a, s+) = ψπ(s, a)Tϕs(s
+)

From Theorem 4.12, ψπ(s, a) is the successor feature for the basic feature ϕs(s)T (ϕsϕTs )
−1.906

907

B.6 Proofs for Section 4.5908

B.6.1 Proof of Theorem 20909

Theorem 4.20. The eigenvectors used by PVFs are the same as that of MπU (s, s+). Therefore, PVFs910
learn MπU (s, s+) = ϕw. The policy inference for a reward function in the class T follows from the911
LSPI algorithm.912

Proof. PVFs learn eigenvectors for the graph laplacian given by,913
L = D −A (29)

where D is the degree matrix and A is the adjacency matrix.914

The normalized graph laplacian is given by, I −D−1/2AD1/2. The random walk operator is given915
by,916

L = I − T (30)
where T = D−1A917

The Successor Representation(SR) (Ψπ) is a quantity related to successor measures as,918

Ψπ(s, s′) =
∑
t>0

γtP(st = s′|s0 = s, π) (31)

Clearly, Mπ(s, s+) is the same as Ψπ(s, s+). Additionally, for a value function, V π = Ψπr =919
(I − γPπ)−1r. This implies, Ψπ = (I − γPπ)−1.920
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The eigen-decomposition of SR and the graph laplacians have been extensively studies by Machado921
et al. (2017b); Stachenfeld et al. (2014); Farebrother et al. (2023). They have shown that if ϕ is an922
eigenvector of the random walk operator (L), γϕ is the corresponding eigenvector for discounted923
random walk laplacian, I − γT . And (I − γT )−1 has the corresponding eigenvector of γD−1/2ϕ.924

Hence, if π is uniform, i.e. Pπ = T , PVFs which finds the eigenvectors for the graph laplacians925
(random walk or normalized), also correspondingly obtain the eigenvectors for MπU (s, s+).926

927

B.6.2 Comparison with PSM928

PSM (Agarwal et al., 2024) has introduced the following theorem that compares the representative929
powers of PVFs compared to PSM:930

Theorem B.2. (Agarwal et al., 2024) Given a d-dimensional basis B : Rn → Rd, define span{B}931
as the span of all linear combinations of basis B. Further define span{Br} as the span of inner932
products of all linear combinations of basis B and all possible reward functions r. Let span{Φvf}933
denote the space of the value functions spanned by Φvf while {span{Φ}r} denotes the space of934
value functions using the successor measures spanned by Φ. For the same dimensionality of task935
(policy or reward) independent basis, span{Φvf} ⊆ {span{Φ}r} for some Φ.936

The theorem suggests that given the same number of dimensions, d, any method that spans the space937
of successor measures represents a larger set of value functions from the methods that span the space938
of value functions. We present a short adaptation of the proof from Agarwal et al. (2024).939

Proof. We need to show that any element that belongs to the set span{Φvf} also belongs to the set940
{span{Φ}r}.941

Any element belonging to the set {span{Φvf}} is represented by,942

V π(s) =
∑
i

βπi Φ
vf
i (s).

Similarly, any element in {span{Φ}r} can be represented by,943

V π(s) =
∑
i

wπi
∑
s′

Φi(s, s
′)r(s′)

It is possible to show that for every element in {span{Φvf}}, there exists some element in944
{span{Φ}r} but the reverse is not true. Only when Φi(s, s

′) = σi(s)ηi(s
′) for some σ and η,945

can an element from {span{Φ}r} is present in {span{Φvf}}.946

947

B.7 Proofs for Section 4.6948

B.7.1 Proof of Theorem 24949

Theorem 4.24. Multi-step inverse methods like Lamb et al. (2022); Islam et al. (2023a); Levine et al.950

(2024), model Mπβ

K , ∀ s ∈ S, a ∈ A, s+ ∈ S as Mπβ

K (s, a, s+) = f(a|s,s+)pπβ (s+|s)
πβ(a|s) .951

Proof. Starting from the definition of K step inverse dynamics p(a|s, s+), where s+ is a state K952
steps distant, πβ is the behavior policy and f(a, s, s+) is the learned inverse dynamics, and the953
definition of Mπβ

K (s, a, s+) = Eπβ
p(st+k = s+|st, at), we can apply bayes rule to achieve the954
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transformations:955
p(a|s, s+, πβ)p(s+|s, πβ) = p(s+|a, s, πβ)p(a|s, πβ) (32)

p(a|s, s+, πβ)p(s+|s, πβ)
p(a|s, πβ)

= p(s+|a, s, πβ) (33)

p(a|s, s+, πβ)p(s+|s, πβ)
πβ(a|s, πβ)

= p(s+|a, s, πβ) (34)

f(a, s, s+)p(s+|s, πβ)
πβ(a|s)

≈ p(s+|a, s) (35)

f(a|s, s+)p(s+|s, πβ)
πβ(a|s)

≈M
πβ

K (s, a, s+) (36)

Notice that line 3 utilizes the fact that p(a|s) in the offline distribution is the definition of the behavior956
policy, and line 4 uses the learned inverse dynamics to approximate the true inverse probability, where957
the learned inverse dynamics are learned according to πβ .958

B.7.2 Proof of Theorem 25959

Theorem 4.25. In Action-Bisimulation (Rudolph et al., 2024), ||ϕ(s1) − ϕ(s2)|| = 0 ⇔960
MπU (s1, a, s

+) =MπU (s2, a, s
+), ∀ a ∈ A, s+ ∈ S where πU is a uniformly random policy.961

Proof. Consider the bisimulation equality for action bisimulation, where ρ(πU , s) is the distribution962
of trajectories following the uniform policy from state s:963

∥ϕ(s1)− ϕ(s2)∥ = ∥φ(s1)− φ(s2)∥+ γEπu
[W(f(·|s1, a), f(·|s2, a))] (37)

∥ϕ(s1)− ϕ(s2)∥ = Eτ1∼ρ(πU ,s1),τ2∼ρ(πU ,s2)

[ ∞∑
t=0

γt∥φ(st1)− φ(st2)∥2
]

(38)

The conversion between lines 1-2 simply unrolls the boostrapped wasserstein term (recall that964
f : S ×A → ∆(ϕ(S)), or a distribution over ϕ(s′). Notice that the last term implies that ∥ϕ(s1)−965
ϕ(s2)∥ = 0 only if sum of all possible future values of ∥φ(st1) − φ(st2)∥ = 0, for all possible966
sequences of states. If this is true, since φ(s) captures all the myopic action-relevant (and thus967
dynamic variability) information, MπU (s1, a, s

+) =MπU (s2, a, s
+) for all future trajectories.968

In the case whereMπU (s1, a, s
+) =MπU (s2, a, s

+), this implies also that all future distributions are969
the same, which means that the future trajectories match, or in other words that there is a one-to-one970
equivalence between ρ(πU , s1) ≡ ρ(πU , s2) ≡ ρ(πU , s1/2). Then:971

MπU (s1, a, s
+)−MπU (s2, a, s

+) = 0 ⇒ (39)

Eτ1∼ρ(πU ,s1),τ2∼ρ(πU ,s2)

[ ∞∑
t=0

γt∥φ(st1)− φ(st2)∥2
]
=

Eτ1/2∼ρ(πU ,s1/2)

[ ∞∑
t=0

γt∥φ(st1/2)− φ(st1/2)∥
2

]
⇒ (40)

∥ϕ(s1)− ϕ(s2)∥ = 0 (41)
Because the trajectories from s1 and s2 can be sampled equivalently. Since both ∥ϕ(s1)− ϕ(s2)∥ =972
0 ⇒ MπU (s1, a, s

+) − MπU (s2, a, s
+) = 0 and MπU (s1, a, s

+) − MπU (s2, a, s
+) = 0 ⇒973

∥ϕ(s1)−ϕ(s2)∥ = 0, this means ∥ϕ(s1)−ϕ(s2)∥ = 0 ⇐⇒ MπU (s1, a, s
+)−MπU (s2, a, s

+) =974
0975
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B.8 State Equivalences976

In Section 5, we introduced the notion that every method explicitly or through some approximations,977
produces state abstractions where the state space is compressed based on state equivalences. We978
re-introduce state-equivalences in the practical settings:979

We want to learn ϕ : S → X such that, Mπ(s, a, s+) = Mπ(ϕ(s), a, ϕ(s+)). Additionally,980
ϕ(s1) = ϕ(s2) iff Mπ(ϕ(s1), a, ϕ(s

+)) =Mπ(ϕ(s2), a, ϕ(s
+)).981

We mentioned that all these methods compress states based on the “distance" between the abstractions982
d(ϕ(s1), ϕ(s2)) as being proportional to p(s1 = s2). We shall discuss the “distance" used by each of983
these URL algorithms:984

Goal Conditioned RL: Goal Conditioned Value Functions have often been shown to be quasimetrics985
(Wang et al., 2023) in special cases. But, in most general settings, goal conditioned value functions986
follow the triangle inequality (Liu et al., 2023). As a result, a number of methods (Ma et al., 2022b;987
Park et al., 2024) have represented value functions using L2 distances: V (s, g) = −||ϕ(s)− ϕ(g)||.988
These define the distances in GCRL space.989

Mutual Information Skill Learning: MISL works compress the state representations using990
skills. Two states are similar if they impose the same skills. Hence the two distributions, q(z|s1)991
and q(z|s2) are the same if the states are equivalent (from a MISL perspective). Which means992
DKL(q(z|s1)||q(z|s2)) represents the distance between the skill distributions for the two states s1993
and s2.994

Successor Features: SFs (and approximated PSM) also produce state abstractions in the form995
of state features. Successor measures are defined as, Mπ(s, a, s+) =

∑
t>0 p

π(st = s+|s0 =996
s, a0 = a) = Eπ[

∑
t>0 p(st = s+|s0 = s, a0 = a)]. Successor Features alternately define Mπ =997

Eπ[
∑
t>0 ϕ(st)

⊤ϕ(s+)]. Both these are equivalent for all π. This implies the state equivalences,998
p(s1 = s2) is given by ϕ(s1)⊤ϕ(s2) in case of SFs. This explains why methods (Touati et al., 2023;999
Touati & Ollivier, 2021) often impose orthonormality in some form in ϕ.1000

Proto Value Functions: PVFs represent a basis for the value functions. Any two states being the1001
same would induce the same components of the basis. Which means ϕ(s) ∈ Rd will be parallel.1002
Hence, similar to SFs, PVFs also use cosine distance, ϕ(s1)⊤ϕ(s2).1003

Controllable Representations: While Islam et al. (2023b); Lamb et al. (2022); Levine et al. (2024)1004
directly optimize for state compression using the definition (by implicitly using successor measures),1005
methods like Rudolph et al. (2024) use an L2 distance to characterize distance between two states as1006
discussed in Theorem 4.25.1007

C Additional Unsupervised RL Methods1008

While this work draws equivalences between several major classes of Unsupervised RL algorithms,1009
we certainly do not cover all possible methods. This is not because we do not believe that these1010
methods have relevant equivalences, but rather for time and space constraints. In this section we1011
mention a number of additional directions that we believe share links, if not explicit reductions, to the1012
successor measure and state equivalence abstraction. In representation learning, Bootstrap your own1013
latent Grill et al. (2020) and Contrastive RL Eysenbach et al. (2022b) show close similarities with1014
both action representations and successor features. Empowerment Klyubin et al. (2005); Eysenbach1015
et al. (2018b) has long been linked to mutual information skills, while the graph Laplacian Machado1016
et al. (2017a) and reward-free world models Ha & Schmidhuber (2018); Fujimoto et al. (2025) show1017
close ties to spectral methods. Inverse reinforcement learning Ng et al. (2000); Ghasemipour et al.1018
(2020) and even behavior cloning Ke et al. (2021); Brohan et al. (2023) might be seen as identifying1019
a particular expert visitation distribution. Finally, exploration methods utilize estimates of the current1020
state visitation distribution either through counts Bellemare et al. (2016) or curiosity Pathak et al.1021
(2017), and have close ties with mutual information objectives. As we can see, this work just begins1022
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a process of finding similarities and differences between existing reward-free methods. Through this1023
work, we hope to clarify the avenues for cross-pollination and improvement in identifying the best1024
tools when learning policies in complex environments.1025
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