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Abstract

Many sequential decision-making domains, from robotics to language agents, are natu-
rally multi-task on the same set of underlying dynamics. Rather than learning each task
separately, unsupervised reinforcement learning (RL) algorithms pretrain without reward,
then leverage that pretraining to quickly obtain optimal policies for complex tasks. To this
end, a wide range of algorithms have been proposed to explicitly or implicitly pretrain a
representation that facilitates quickly solving some class of downstream RL problems.
Examples include Goal-conditioned RL (GCRL), Mutual Information Skill Learning
(MISL), forward-backward representation learning (FB) and controllability representa-
tions. This paper brings together all these heretofore distinct algorithmic frameworks
into a unified view. First, we show that these algorithms are, in fact, approximating the
same intractable representation learning objective, the successor measure or discounted
future policy-dependent state-action distribution, under different assumptions. We then
illustrate that to make these methods tractable, practical applications of these algorithms
utilize embeddings that can be described under the framework of state equivalences.
Through this work, we highlight shared underlying properties that characterize core
problems in Unsupervised RL.

1 Introduction

Reinforcement Learning (RL) algorithms learn complex policies by identifying the complex interplay
between actions, dynamics, and reward through trial-and-error. While RL has seen tremendous
success across different fields (Chervonyi et al., 2025; Degrave et al., 2022; Wurman et al., 2022;
Guo et al., 2025; Silver et al., 2017; Fawzi et al., 2022), it still relies on using a large number of
environment interactions to learn a policy, which can make it prohibitively expensive. In many
settings, such as robotics, the agent needs to solve a variety of tasks, described by different reward
functions, in an single environment. Learning a new policy for for each new task can become
prohibitively expensive. Consequently, Unsupervised RL offers a suite of techniques to first pretrain
some useful characterization of the environment so that a wide variety of optimal policies can be
inferred efficiently for a new, given task.

Over the years, many URL objectives Ma et al. (2022b); Touati et al. (2023); Agarwal et al. (2025);
Barreto et al. (2017); Wang et al. (2024); Hu et al. (2024); Gregor et al. (2016); Machado et al.
(2017a); Laskin et al. (2021) have been proposed for pretraining in the reward-free setting. Through
these objectives, structures as varied as state encoders Rudolph et al. (2024), latent skills Eysenbach
et al. (2022a), successor representations Dayan (1993), or goal-conditioned policies Agarwal et al.
(2023) can be pretrained, and then applied for rapid downstream policy inference. On the surface,
these techniques appear to be optimizing very different objectives, though with the same goal of rapid
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policy inference. With the proliferation of complex techniques, it can be challenging for researchers
trying to apply URL to new contexts or improve upon URL techniques.

This work investigates a core question: Can all of these conceptually disparate methods be unified as
variations of a single core algorithmic framework? At first glance, this may seem unlikely—these
methods have significantly different loss objectives, from state coverage to goal-conditioned rewards,
and learn different structures, from state representations to policies, each based on different intuitions
and assumptions. However, recent work has established several bridges between different clusters
of concepts, from successor measures to representation learning (Agarwal et al., 2025; Touati &
Ollivier, 2021), or goal-conditioned RL to variational skills and empowerment (Choi et al., 2021).
This paper aims to unify these seemingly distinct methods in two ways. First, we claim that each
objective can be traced back to the core description of future policy-dependent state reachability, or
the successor measure. Second, we observe a shared structure that all these algorithms use to make
the successor measure tractable: state feature equivalence under the successor measure. Intuitively,
we hypothesize that these methods tractably learn how the distribution of future states is affected by
the policy (successor measure) by treating states with similar properties as equivalent (state feature
equivalence).

While we do not claim to entirely cover the myriad of Unsupervised RL techniques, in this work our
core contribution is to illustrate that this unified objective and structure exists in Goal-Conditioned
Value Functions (GCVF) (Ma et al., 2022b), Mutual Information Skill Discovery (MISL) (Zheng
et al., 2025; Eysenbach et al., 2022a), Proto-Successor Measures Agarwal et al. (2025), Proto-
value Functions (Mahadevan, 2005), Successor Features (Dayan, 1993; Barreto et al., 2017) and
Controllable Representations (Islam et al., 2023a; Rudolph et al., 2024). Intuitively, these concepts
can be linked by simply recognizing that in order to pretrain a model that can be leveraged to get
a policy for any reward function, these methods must learn some quantity or structure over the
environment that effectively captures the relationship between state transitions and action sequences.
In GCVF or MISL, this happens through policy-derived structures; in proto-successor measures
and functions; and in successor features through learning linear value functions; and Controllable
Representations use state embeddings. In this work we formalize the growing body of evidence Choi
et al. (2021); Levy et al. (2023); Zheng et al. (2025); Fujimoto et al. (2025) showing that since these
methods learn to characterize the same information (linking actions and dynamics) to achieve the
same outcome (rapid policy inference given a reward) they are in fact fundamentally linked.

Our core contribution is twofold. First, we describe each of the aforementioned methods using a
shared notation and demonstrate how their learning objectives can be framed as representing the
successor measure. Second, we identify that to learn tractable, concise representations for successor
measures, each method learns a suitable state abstraction implicitly or explicitly through a unified
concept of state equivalences. To summarize, in this paper, we (1) draw connections between the
unsupervised RL methods that utilize future predictability for efficient policy inference; (2) identify
the unified objective that all of the different methods strive for, deriving how each method can be
framed as an optimization of this unified objective; (3) identify the assumptions and approximations
made by the various methods to solve the unified objective; and (4) relate the state abstractions
learned by these methods through the perspective of state equivalences.

2 Preliminaries

All of the algorithms considered are assumed to operate on Markov Decision Processes (MDPs)
(Puterman, 2014). A Markov Decision Process is a stochastic process defined as (S, A, P, r, ) where
S denotes the set of states; .4 denotes the set of actions; P : S x A x § — [0, 1] is the transition
probability function, where P(s’ | s, a) is the probability of transitioning to state s’ from state s
after taking action a; r : & — R is the reward function; and +y is the discount factor. A policy,
m:S — A(A) is a function that outputs a distribution of actions for every state. The optimal policy
for the MDP is defined to be the one maximizing the expected return: J () = E[>, v'r(s¢)].
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Additionally, we will be using the construct of reward-free MDPs (also mentioned in prior work
Touati et al. (2023); Agarwal et al. (2025)) that are defined as (S, A, P,v). Any dynamical system
can be approximated using a reward-free MDP. Infinitely many reward functions can be designed for
a reward-free MDP. In other words, infinitely many MDPs can be constructed from a reward-free
MDP.

Successor Measures: Successor Measures will play an important role in unifying the URL methods.

Mathematically, successor measures define the measure over future states visited as M™,
M™(s,a,X) =E[Y_7'p"(s141 € X|s,a)] VX CS. 1)

>0

Intuitively, they represent the discounted measure of ending up in a state s™ € X starting from states

s, taking an action a, and following the policy 7 thereafter. The most common form of successor

measure used is M7 (s, a, s*) i.e the discounted measure of ending in the state s. Other common

forms include M7 (s, a,s™,a™) and M7 (s,s™).

Mutual Information: Mutual information computes the channel capacity between two random

variables. For entropy denoted with H and KL divergence denoted as D 1, (+||-), mutual information
between random variables A, B is defined as:

I(A;B):= H(A)— H(A|B) = H(B) — H(B|A) 2)

= Dkr(P(A, B)|[P(A)P(B)) G)

Diverse Class of URL Algorithms: We will be focusing on Goal Conditioned RL, Mutual Infor-
mation Skill Discovery, Successor Features, Proto-Successor Measures, Proto-Value Functions and
Controllable Representations. Detailed background and related work on each have been proved in the
supplementary material.

3 Successor Measure as a Unifying Objective

Each URL objective learns a different representation for MDP to allow for downstream policy infer-
ence. This raises the question: how do we reason about the commonality across these representations.
In this section, we will argue that viewing these methods from the perspective of Successor Measures
(MT™) estimation ties them together, bringing clarity to efficient downstream policy optimization.
These methods either explicitly learn a compressed representation of successor measures or optimize
a representation that allows them to implicitly use successor measures efficiently during inference. To
illustrate this, we first introduce the unifying objective using successor measures. We will show that
the proposed unified objective not only combines these different URL objectives, but also forms the
basis for self-supervised representation learning in RL aimed for fast policy inference for any reward
function. Because this objective is intractable, we will next provide a tractable approximation that
will lead into the different URL objectives. In Section 4, we will discuss how a number of existing
URL objectives stem from this approximation with different assumptions and present their tradeoffs.

3.1 The Unified Objective

The policy optimization for any reward function can be rewritten using successor measures (Kemeny
et al., 1969; Touati & Ollivier, 2021; Agarwal et al., 2025):

7= argmaxZM”(s,a,sﬂr(s"‘). 4

™ S+

This policy inference clearly indicates why successor measures form such a crucial element in
URL algorithms — they provide reward-independent representations and a linear objective for policy
optimization. This implies that our representations are not tied to a set of predefined tasks and that
the policy optimization step is computationally efficient as a function of these representations. Our
proposed algorithmic framework can be divided into two phases, the Pretraining or Representation
Learning phase and the Policy Inference phase.
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The Pretraining Phase uses task-agnostic environment interactions to learn representations suitable
for policy inference. Thus, this phase investigates the question: how can we frontload computation
for policy optimization to the pretraining phase if we don’t have access to reward functions? Suc-
cessor Measures provide the answer to this question due to two key traits: 1) they are reward-free
representations that can convert policy optimization into a linear objective, and 2) they characterize
the notion of predicting the future distribution of an agent for any policy, which can be seen as the
controllability of the agent. Then during the policy inference stage, the pretrained representation
of mapping from policies to corresponding induced successor measure can be utilized to provide a
near-optimal policy efficiently for any given reward function. In practice, based on assumptions about
the distribution over downstream tasks/rewards and varying assumptions about the policy inference
stage, prior URL algorithms suggest seemingly different pretraining objectives. Our proposed unified
objective for unsupervised RL that ties in a broad class of prior methods can be denoted as follows:

Box 3.1: Unified Objective

Pretraining Phase

Learn: M™(s,a,s™) VseS Vaec A Vst e S Vrell 5)
Policy Inference Phase :
For a reward r, 7" = arg maxz M7 (s,a,sT)r(s™) 6)
well pors

Proposition 3.1. The algorithm presented in the Algorithm Box 3.1 is sufficient to produce optimal
policies for any reward function.

The unified objective is simple: Learn successor measures for any policy (I represents the class of
all possible policies in the MDP), for any state-action pair. Then policy inference is simply a search
using the linear product of successor measure and reward, as seen in Equation 6. However, while
simple this objective is still intractable.

The main reason for why the objective is intractable is that there is no way to characterize the class of
all possible policies: II. There can be |.A|l°! possible deterministic policies in an MDP with finite
state and action spaces, and this number can be infinite for MDPs with infinite (or continuous) states
or actions. This makes characterizing a mapping from policy to the corresponding successor measures
intractable. How can we perform an efficient search for m € II during the policy inference phase
from such a large non-parametric set? We introduce a tractable approximation in the next section,
which we will show has connections to the different prior URL algorithms.

3.2 A Tractable Approximation

The intractability of the unified objective comes from the large non-parametric class of policies II.
Different URL methods approximate this policy class using a parametric approximation of the policy
class using latent representation z. Mathematically, IT := {r.|z € Z} with 7 € I being reduced to
z € Z. This parameteric set of policies Z is interpreted differently for different algorithms: these
could be the set of goals (Kaelbling, 1993), set of skills (Eysenbach et al., 2018a), a set of possible
linear weights for the reward span (Touati & Ollivier, 2021), or a discrete codebook (Agarwal et al.,
2025). Thus Z defines the class of policies for which successor measure is represented. Additionally,
define 7 which is the set of reward functions for which the policy inference will be valid. Ideally
the 7 should be the set of all reward functions but based on the approximations and assumptions on
the representation space of M ™ and the space of policies II. Due to these approximations, it may be
possible that during policy inference searches over a policy space that is different from II.
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4 Unsupervised RL Objectives as Special Cases

In this section, we pose each of the URL objectives within the same framework of the single,
unified objective. We will highlight the assumptions and compressions learned by each to produce
corresponding tractable objectives that are widely used today. We will show that each of these
objectives learns to represent a compact approximation of the successor measure implicitly or
explicitly. These methods use this representation to either directly optimize Equation 6 or produce
samples from M™ to optimize the expectation Eps~[r]. We will introduce a number of cross
equivalences as well that deeply connect these objectives with one another, further establishing the
unification. These different methods are compared against each other based on: 1) the distribution
of tasks/rewards (7") for which they produce optimal or near-optimal policies, 2) their assumptions
about the class of policy space (the latent z), and 3) the efficiency of their policy inference phase.
The result of these equivalences is summarized in Table 1. All proofs for the theorems are included
in the supplementary material.

4.1 Goal-conditioned Reinforcement Learning (GCRL)

Goal-conditioned RL optimizes for a policy (and a value function) that is conditioned on the goal
state z € S that the agent has to reach. Mathematically, GCRL is expected to produce V*(s, z) =
maxE-[>, v'r.(s¢, ar)|s] (or @*(s, a, z)) where r.(s¢, at) = (1 —¥)p(si41 = 2|s¢, az) otherwise.
In its most expansive sense, the goal set is the same as the set of states with GCRL being capable of
producing the value of any state conditioned on any state in the MDP.

Under the lens of Unification: The equivalences between GCRL and Successor measures have
already been hinted at in contrastive RL Eysenbach et al. (2021) where GCRL was seen as a density
estimation problem. We extend this formally here with the following assumptions.

Assumption 4.1 (GCRL Policy Assumption). Let Z2 C S with II = {m]z €
S and 7, is optimal policy to reach goal z}.

This assumption formally defines the tractable class of policies that is considered by GCRL. Consider
the next assumption on the set of tasks or rewards for which GCRL performs policy inference,

Assumption 4.2 (GCRL Reward Assumption). The set of rewards 7 is given by 7T = {(1 —
Y)p(st41 = z|sy,ar) Vz € Z}.

With the assumptions formally defined for GCRL, we can bring GCRL into the unified objective:

Theorem 4.3. With Il and T defined as per Assumptions 4.1 and 4.2, GCRL learns Q™= (s, a)
M7= (s,a,z) for s € S8,z € Z,a € A. The optimal policy inference for reward, r, is 7w, by
construction.

Additional Equivalences Approaches such as VIP (Ma et al., 2022b) and HILP (Park et al., 2024)
additionally parameterize M ™= as a metric (M ™ x —||¢(s) — ¢(z)]|) to provide an inductive bias
for representation learning. Similarly, contrastive RL Eysenbach et al. (2022b) approaches consider a
low-rank parameterization (M ™ o< 9(s,a) " $(2)) of M™.

4.2 Mutual Information Skill Learning (MISL)

MISL objectives have been primarily used to discover skills-conditioned policies, where the skills
are represented using a latent variable Z. While MISL approaches have large variation in their
overall algorithms, the core has always been to maximize the mutual information between states
and “skills" (I(S; Z)) or between transitions and skills (1(S, S’; Z)). The details of the optimization
can be found in the supplementary. Since computing the mutual information exactly is intractable,
MISL methods often rely on lower bounds that require training a variational distribution ¢(z|s) (or
q(z|s, s")) representing posterior distribution of skills which defines the reward for policy optimization
conditioned on z.
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Under the lens of unification We demonstrate that variational distribution g(z|s) can be used to
estimate successor measures (Theorem 4.6). The policy class II is not generally fixed in MISL, but
rather emerges as a property of the objective. At convergence, the following assumption holds,
Assumption 4.4 (MISL Policy Assumption). Z, the set of diverse skills recovered by MISL, i.e
Il = {m,|z € Z i.e. 7, is a skill discovered by MISL } is sufficient to cover II.

The set of skills discovered by MISL algorithms can be discrete (Eysenbach et al., 2018a; 2022a) or
continuous (Park et al., 2023c; Zheng et al., 2025). Eysenbach et al. (2022a) makes an interesting
finding that Z represents the set of policies optimal for some reward function and in general MISL
does not recover all optimal policies.

We can define the assumption on the set of tasks considered by MISL,

Assumption 4.5 (MISL Reward Assumption). The set of rewards 7 = {r |3z € Zst. 7, €
arg max,, E,[Y, 7'ri]}.

Finally, we can connect MISL to the unified objective using Theorem 4.6:

Theorem 4.6. For 11 defined using Assumption 4.4 and T defined using Assumption 4.5, MISL

Wﬂ)r:ﬁ e a~m(|s~p)and st € S. The policy

inference can be performed by searching through the space of z € Z for rewards defined in T .

objectives learn M™ (s, s7) =

The policy inference step in the above theorem is not as simple as described, as the set of rewards
T is not known. Prior work has used hierarchical policy inference (Eysenbach et al., 2018a) and
warm starting their policy networks (Eysenbach et al., 2018a) or exploration buffers (Eysenbach et al.,
2022a).

Additional Equivalences Recent work (Zheng et al., 2025) leverages the relationship between MISL
objective and InfoNCE as a variational lower bound Poole et al. (2019b). An unnormalized variational
lower bound can be derived for the mutual information as follows,

Theorem 4.7. (Zheng et al., 2025) Given a critic function, f : S x S x Z = R, I™(S,5";Z) >
Epr(s,57,2)[f (8,8, 2)] = Epr (5,5 108 Ep (s [e7**")]] where the right hand side is the variational
lower bound: (VLB(f, 7))

Theorem 4.7 opens wide connections between MISL and Contrastive RL approaches based on
InfoNCE objectives like (Zheng et al., 2023; Myers et al., 2024). These connections have been
utilized by Zheng et al. (2025); Park et al. (2023c) to extract state-representations from MISL which
are different from the traditional variational compression from ¢(z|s) or g(z|s, s’).

The relationship between GCRL and MISL has been studied by prior work through the lens of
variational empowerment (Choi et al., 2021). Each diverse skill, z, is perceived to be a goal-
conditioned policy 7, (policy conditioned to reach the goal z). More formally,

Theorem 4.8. (Choi et al., 2021) For Z = S, GCRL with r(s|z) = — 2|z — s|| is the same as
solving the MISL objective with the variational distribution, q(z|s) = N'(z — s,0?).

4.3 Successor Features (SF)

A number of prior approaches (Dayan, 1993; Barreto et al., 2017) consider a set of reward functions
that are spanned by basis features (often denoted by ¢) i.e. r = ®"w for some weight w. ¢ can
depend on state, state-action or state-action-next state in the most general case, but for ease of
exposition we restrict ourselves to state-features. For these methods, the cumulative state feature is
called the successor feature, )™ (s, a) = E-[>", 7' ¢(s¢)|s, a], and is used to define Q-functions (for
reward ® Tw) as Q™ (s, a) = 1™ (s, a) "w. While several prior works (Barreto et al., 2017; Zhu et al.,
2024) define the state features ¢ using fixed, random or Fourier features, others (Park et al., 2024;
Agarwal et al., 2025) have specialized objectives that add different inductive biases to these features.
There are a few methods (Touati & Ollivier, 2021; Filos et al., 2021) that have been able to jointly
produce ¢ and v by optimizing for M ™.
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Under the lens of unification The connections between successor features and successor measures
has already been established in prior literature (Touati et al., 2023; Agarwal et al., 2025). Here, we
situate prior works in the unified framework by first posing the assumption that follows from the
definition of SF:

Assumption 4.9. The set of rewards 7 is assumed to be restricted to 7 = {r|r = ® 2 for some
z € R4}

To enable fast policy inference, a number of prior works assume an injective relationship between
optimal policy and reward. Optimal policies are represented by the same latent that defines the reward
function

Assumption 4.10. The set of policies is assumed to be restricted to IT = {7, | 7, is optimal for the
rewardr = @' z}.

This assumption has lead to wide success as policy inference simply boils down to linear regression
to find the z that fits the reward function: z* = arg min_[(r — ® " 2)2]. This assumption also leads to
suboptimalities as discussed in (Sikchi et al., 2025).

With these assumptions, we can finally write the SF in terms of the unified objective,

Theorem 4.11. With 11 and T as defined by Assumptions 4.10 and 4.9, SF methods learn
M7™(s,a,s%) = 1(s,a,2)(®T®)"1®T V5,57 € Sand a € A. The inference on any reward
function in T requires solving a linear regression problem, z* = arg min_(r — ® ' 2)2

Additional equivalences The policy inference for SF involves solving a linear regression which also
has a closed form solution. The Forward Backward representation (Touati & Ollivier, 2021) modifies
SFs to further make the inference more efficient.

Theorem 4.12. If the successor measure is parameterized as, M™ (s, a,s+) = F(s,a,z) " B(s%),
with B(sT) = (®T®)" ¢ (s) and F(s,a,z) = (s, a, z), the algorithm in Theorem 4.11 reduces
to the FB algorithm (Touati & Ollivier, 2021). The policy inference simply becomes z* = Br.

Several SF works have been designed that have connected other forms of URL like GCRL and
MISL. For instance, HILP (Park et al., 2024) uses state-features learned to be sufficient to represent
goal-reaching value functions:

Theorem 4.13. If ¢ = argming E o 4[-(|[¢(5) — ¢(9)|] — Lszzg — [|0(s") — ¢(9)I])] in Theorem
4.11, withr(s,s',z) = (¢(s) — ¢(s")) " z, the resulting algorithm is HILP (Park et al., 2024).

A similar connection can be drawn to recent MISL works. CSF (Zheng et al., 2025) uses an InfoNCE
lower bound for the mutual information objective to learn state features which are then used to learn
successor features. With Successor Features, policy inference is more efficient compared to other
MISL approaches.

Theorem 4.14. If ¢ = argmax ;B (5 o ) [(0(5)—(5')) 2] =Epr (5,5 [0g B,y [e(¢(£)=0(s) "2]),
in Theorem 4.11, with r(s,s', z) = (¢(s) — #(s)) " z, the resulting algorithm is CSF (Zheng et al.,
2025).

4.4 Proto Successor Measures (PSM)

Proto Successor Measure (PSM) (Agarwal et al., 2025) uses the linearity of the Bellman equations to
define a decomposition of successor measure using basis vectors, M™ = ¢w™ + b. This parameteri-
zation makes PSM similar to successor features but the representation is simpler as ¢ is independent
of policy 7.

Under the lens of Unification PSM directly learns a representation for M/™ and uses these representa-
tions to infer a policy for any reward function. PSM uses a discrete codebook z € I to parameterize
the distribution of policies. The policy 7, is given by Uniform(z + hash(obs)). Formally the
approximation is as follows,
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Assumption 4.15 (PSM Policy Assumption). The set of policies II is approximated as, II =
{m, | m, = Uniform(z + hash(obs)), z € [0,2"] NT}.

PSM does not make any assumptions on the reward class and hence can produce optimal policies
for T = { All reward functions }. The inference step requires solving a constrained linear program
arg max,, wr s.t. pw +b > 0.

Theorem 4.16. PSM learns M™=(s,a,s7) = Y., ¢i(s,a, sT)w* + b(s,a,sT) for . € 1l as
defined in Assumption 4.15.

Additional Equivalences PSM has pretty strong connections to Successor Features. Agarwal et al.
(2025) had introduced the theorem,

Theorem 4.17. For the PSM representation M™(s,a,s™) = ¢(s,a,sT)w™ + b(s,a,s") and
B(s,a,5T) = ¢y (s,a)Tp(sT), the successor feature ™ (s, a) = ¢y (s, a)w™ for the state feature
o(s) T (Ep(0)) ™"

4.5 Proto Value Functions (PVF)

Proto Value Functions (Mahadevan & Maggioni, 2007) decompose the value function into a spectral
basis, V™(s) = ¢(s) w™ or Q™ (s,a) = ¢(s,a) w™. A number of works (Mahadevan, 2005;
Farebrother et al., 2023) have extended this construction into several interesting settings. This
representation looks similar to PSM, but here the value function undergoes a spectral decomposition
rather than successor measures. The spectral basis has been obtained either directly using an eigen-
decomposition of the graph-Laplacian (Mahadevan, 2005) or approximated as the mean error over
fitting auxiliary value functions Farebrother et al. (2023); Bellemare et al. (2019).

Under the lens of unification Prior works Farebrother et al. (2023); Bellemare et al. (2019) have
drawn connections between these representations and successor measures and the set of value
functions represented by them.

Assumption 4.18 (PVF Policy Assumption). The class of policy II is assumed to be {7y} or a
uniformly random policy.

The set of downstream tasks that can be solved by these methods is not trivial to define. Bellemare
et al. (2019) describes how these spectral methods represent value functions belonging to the set
V = {V|V is in the convex hull of V*“*} where V' *“* is the set of auxiliary value functions defined
by the set V44 = {(I — vP™)~!r,} and r, is an indicator reward r, = 1,—,. Formally, the
assumption is as follows,

Assumption 4.19 (PVF Reward Assumption). For V¢ = {(I — yP™)~!r,} and V be the
ConvexHull(V*“*), the set of downstream rewards are assumed to be 7 = {r | V* € V}.

The following theorem connects PVF to the unified objective,

Theorem 4.20. The eigenvectors used by PVFs are the same as that of M™ (s, s). Therefore, PVFs
learn M™ (s, s7) = ¢w. The policy inference for a reward function in the class T follows from the
LSPI algorithm.

It has already been shown (Theorem 4.4 of Agarwal et al. (2025)) that PVFs learn a smaller class of
optimal value functions than spectral decomposition of successor measures.

4.6 Controllable Representations

Controllable representation learning compresses the states to deal with only the controllable factors of
the state. All of them learn state embeddings that identify what can be controlled in the state. Several
prior approaches (Islam et al., 2023a; Lamb et al., 2022; Levine et al., 2024; Rudolph et al., 2024)
have used inverse dynamics models, p(a|s, s") to model controllability. These representations learn
the minimum necessary state information to recover actions, but are often insufficient to measure long
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term controllability. Extending these representations to multi-step requires k-step inverse dynamics
models (Islam et al., 2023a; Lamb et al., 2022; Levine et al., 2024) or recursive computations through
Wasserstein distance (Rudolph et al., 2024).

Under the lens of unification These methods learn state abstractions that make them stand apart from
all the other methods discussed here. But their adherence to the use of multi-step future predictability
ties them back to the notion of successor measures. We start with the first assumption (4.21) that
defines the setting of Exo-MDPs. The formal definition of Exo-MDPs can be found in (Efroni et al.,
2022) and is also provided in the supplementary material.

Assumption 4.21 (Exo-MDPs). It is possible to learn a mapping ¢ : S — X with |S| > |X| such
that X’ contains all the endogenous components.

The inference steps of these methods also differ from those previously discussed as they do not
explicitly model M ™. Rather, they use the state compression ¢ as a representation for downstream
RL, which defines the reward functions:

Assumption 4.22. The set of rewards 7 considered is the set of all possible reward functions on the
endogenous component X.

These methods use a behavioral policy, 73, to reason about multi-step controllability and learn using
the successor measure based only on g, M ™. Methods such as Rudolph et al. (2024); Levine et al.
(2024) use a uniform random policy as the behavioral policy.

Assumption 4.23. The set of policies for which M ™ is learned (or implicitly estimated) is IT = {73}.

Methods by Lamb et al. (2022); Islam et al. (2023a); Levine et al. (2024) model P(a¢|¢(st), d(Si+k))
using a classifier f. They use the classifier to reason about (s;, s;yx) for k& € [1, K]. In some
sense, the classifer f is trying to model Zszl P(ag|st, st+k) (in case of Islam et al. (2023a)) or
Zszl P(ag|st, St4k) = Zle f(- .-, k) (in case of Lamb et al. (2022); Levine et al. (2024). Define
MF. as the K-step undiscounted successor measure, M7 (s, a, sT) = Zszl P(sirr = sT s, a4).
Consider the following theorem,

Theorem 4.24. Multi-step inverse methods like Lamb et al. (2022); Islam et al. (2023a); Levine et al.
g ™ als,sT)p™B (sT|s

(2024), model M, Vs €S, ac A, st € Sas M/ (s,a,sT) = %.

On the other hand, Action-Bisimulation (Rudolph et al., 2024) uses the recursive definition of

bismulation metrics to reason about an infinite horizon multi-step controllability. It can be shown

through Theorem 4.25 that the state compression obtained by Action-Bisimulation is a result of

equivalences predicted using successor measures,

Theorem 4.25. In Action-Bisimulation (Rudolph et al, 2024), ||¢(s1) — ¢(s2)|| = 0 &
M7™ (s1,a,87) = M™ (s3,a,s"), Va € A, s € S where my is a uniformly random policy.

Additional Equivalences Controllable representations focus more on learning state abstractions. We
discuss the comparisons of state abstractions extracted from all the URL methods in the next section.

5 Tractable Objectives require State Abstractions

We introduced the algorithmic framework 3.1 which is intractable due to the enumeration of all
policies being exponential in the states. We described in Section 4 how different algorithms represent
successor measures for only a reduced class of policies. It is evident that there is a tradeoff in
performance that depends on the size of II. If a very large class of II is represented, the policy
inference search is more expensive; if the class of II is very small, the representations are not
informative enough and the optimal policy cannot be found.
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Algorithm MT™ Approximation Policy Inference d(¢p(s1), ¢(s2)) for State
Class Equivalences
GCRL Q™ (s,a) x M™(s,a, z) Direct for —|lp(s1) — P(s2)]]
T ={r:(st,a¢) =

(I —)p(st41 = 2[se, ar)}

MISL M7 (s,s7) = Search over Z for Dx1.(qs(2]51) || go(2]s2))
q(ZISﬂ(S))p(S*\) T=Ar|n(r) € {m.}}
plz
SF M™=(s,a,s") = Linear Regression for é(s1) T d(s2)
Y(s,a,2)(@T D)7 T = {r|r = ®" 2 for some
z € R}
PSM M™=(s,a,s") = Constrained LP for 7 = B(s1) " ¢(s2)
Z? ¢i(s,a, s wr + Any reward
b(s,a,st)

PVF M7 (s,57) = pw LSPI for T = { Any r for B(s1)  o(s2)

which V* € convex hull of

Vu.uz}
Controllable M7 (s,a,87) = Full RL with compressed —|lo(s1) — d(s2)]|
Rep. f(zlb‘7¢=J;>z|>()c*+ ) state space
Trﬁ a|s

Table 1: Comparison of Unsupervised Reinforcement Learning Methods

We argue that these methods implicitly or explicitly learn state abstractions that are suitable for
planning and lead to a concise form of M ™. These abstractions define state equivalences in the
MDP. Formally, consider ¢ : & — X as a state abstraction. An ideal abstraction would have
¢(s1) = ¢(s2) <= s1 = sz but this implies no compression or |X'| = |S|. In practical settings,
we want an abstraction that preserves the future predictability s. In other words, ¢ should be such
that M™(s,a,st) = M™(¢(s),a,p(sT)).

Using state abstractions, state equivalences in the compressed space can be shown to follow,

Definition 5.1. ¢(s1) = ¢(s2) iff M™(H(s1),a,0(sT)) = M™(¢(s2),a, p(sT)).

Finally, we can define how these different URL objectives implicitly (or explicitly) define these state
abstractions. For some metric d, d(¢(s1), ¢(s2)) x p(s1 = s2). The probability p(s; = s2) denotes
the probability of the two states being equivalent. The metric d is specific to the respective URL
method and is mentioned in Table 1.

6 Conclusion

Unsupervised RL can help significantly mitigate the sample efficiency challenge of solving complex
tasks at test time by pretraining models that are useful for downstream inference. While this promise
has attracted substantial investigation to this problem setting, this interest has also proliferated a wide
variety of disparate objectives. As researchers continue to build upon this body of techniques, it can
be challenging to identify unexplored areas and discriminate between such variegated techniques.
In this work we offer a unified framework to understand some of the most popular and dissimilar
methods. We demonstrate that each of these methods can be traced back to optimizing a form of the
successor measure, and that they apply state equivalence to compress the underlying complexities to
make this learning tractable. Through the lens of this objective, we hope to excite the reader with
connections between the objectives for different methods, and through the perspective of abstraction
to suggest novel cross-pollination of techniques. We hope this work will inspire investigation into
questions like: Can hindsight be applied to successor features? Should world models be trained with
explicit successor features? How does the exploration term in variational skills apply to expanding
the space of proto-value functions? While this work is just a sampling of initial connections, we
expect many more will become evident through the analysis in this work.
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Appendix
A A Deep Dive into Unsupervised RL methods

A.1 Goal Conditioned Reinforcement Learning

Goal Conditioned RL refers to the class of algorithms that learn policies to reach certain goal states
g € G where the set of goals is a subset of the state space G C S. GCRL is the simplest and
most common type of multi-task RL algorithms where the class of reward functions considered are
simply one-hots on the goal states (notated 1(s = g)). However, even in this case a wide variety of
alternative reward functions can be derived based on this including: (1-, termination, probabilistic).
In Eysenbach et al. (2021) the probabilistic representation most directly captures the future state
density. However, other forms have similar properties under transformations or assumptions.

A diverse set of prior works have built on the GC-MDPs (Kaelbling, 1993) to produce a large class of
GCRL algorithms both in the online (Andrychowicz et al., 2017; Durugkar et al., 2021; Agarwal et al.,
2023; Chuck et al., 2025) and offline settings (Ma et al., 2022a; Sikchi et al., 2024). GCRL has been
proposed as self-supervised learning for learning state-reaching value functions from sequential data
(Ma et al., 2022b). Several methods (Park et al., 2023c;a) use goals to define skills and use these to
construct zero-shot policies (Park et al., 2023a) or for exploration (Park et al., 2023c). Goal-reaching
policies can also be used as the action space for high level policies in hierarchical policy learning (Park
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et al., 2023a; Chuck et al., 2020; 2023), and in factored settings (Chuck, 2024; Chuck et al., 2025),
where Z is a subset of factors, dictated by a given function ¢ : S — Z, that selects the goal factors.
Because of their simplicity, goal conditioned policies have also been applied to real world visual
tasks with impressive succcess (Nair et al., 2018; Nasiriany et al., 2019).

Under the lens of unification, this diverse set of applications leverage certain assumptions about the
goal space to learn the future state density, either through a representation (VIP methods) (Ghosh
et al., 2018; Ma et al., 2022b) or through the value function (Choi et al., 2021). By observing
this now-clarified relationship, we can not only compare the learned successor structures from
GCRL to other methods that might more explicitly use successor measures like Forward Backward
Representations (Touati et al., 2023) or PSM (Agarwal et al., 2025), but also utilize this to better
understand the limitations of the optimal goal-reaching policy space and and uncompressed state, as
compared to a parameterized space Z, or a compressed space X.

A.2 Mutual Information Skill Learning

Mutual Information Skill Learning (MISL) are a class of unsupervised RL algorithms that seeks to
learn skill/option policies 7(als, z) that are conditioned on a latent variable z € Z representing the
skills Zheng et al. (2024); Gregor et al. (2016); Park et al. (2023b); Campos et al. (2020); Laskin et al.
(2022); Wang et al. (2024); Hu et al. (2024); Baumli et al. (2021). While previous MISL approaches
often appear in different forms, they share a common objective of empowerment maximization, i.e.
maximizing the mutual information I(.S; Z), where S represents some environment signal derived
from the state visitation, such as the final state (s7) Gregor et al. (2016), any state along a trajectory
(s¢) Eysenbach et al. (2018b), or the transition (s, s;+1) Baumli et al. (2021).

Direct optimization of this mutual information objective is intractable. Instead, it can be decomposed
either in the reversed or forward form:

I(S;Z)=H(Z)—H(Z|S) /lreverse @)
=H(S)—H(S|Z) [ forward (8)

which gives us different ways to approximate [(.S; Z) via variational inference. For example,
DIAYN Eysenbach et al. (2018b) utilizes the reverse decomposition:

I(S;Z) = Ey .op(s,2) logp(2 | )] = E.op(z) [log p(2)] 9)
Z Es,zwp(s,z) [log Q¢(Z | 5)] - Ezr\zp(z) [logp(z)] (10)

resulting in the following intrinsic reward:

Tint(8,2) = logqe(z | 9) (11)

Some other algorithms resort instead to the forward decomposition Laskin et al. (2022); Campos et al.
(2020), resulting in objectives that encourage both conditional state predictability g, (s | z) and the
state diversity H (.S).

Recently, variations of the original mutual information objective have been proposed, including
Wasserstein dependency measure Park et al. (2023c), factorized mutual information Hu et al. (2024),
and conditional mutual information based on objects or interactions Wang et al. (2024).

Specifically, METRA Park et al. (2023c), introduces a metric-aware approach to unsupervised
reinforcement learning. Instead of directly maximizing mutual information between skills and states,
METRA employs the Wasserstein Dependency Measure (WDM) to capture the dependency between
skills and states under a distance metric d. In METRA, the metric d is chosen to reflect the temporal
distance between states, i.e., the minimum number of environment steps required to transition from
one state to another. This choice of metric ensures that the learned skills are diverse in terms of their



Reinforcement Learning Journal 2025

temporal dynamics, leading to behaviors that are not only distinguishable but also cover the state
space effectively.

Under the lens of unification, mutual information skill learning methods represent the broad class of
algorithms marrying exploration with successor measures. Through Theorem 4.6, we can view MISL
methods as implicitly approximating the successor measure M ™= (s, a, sT) by associating each skill
z with a distinct mode in the future state distribution. Together, the skill-conditioned policies and
the variational decoder represent a structured approximation of the underlying transition dynamics.
This perspective reveals that MISL implicitly encodes the dynamics of the environment through its
learned latent skills, and allows for comparison against explicit successor-measure-based methods
like FB (Touati et al., 2023) or PSM (Silver et al., 2017).

A.3 Successor Features
Successor Features (Dayan, 1993; Barreto et al., 2017) are a class of multi-task RL algorithms that

span rewards functions using state features as, r = ¢w where ¢ are the state features and w is the
task dependent linear weight. As a consequence,

Q"(s,a) =Er | Y VtT(St)]
=E, -zt: ’yt(b(st)w] (12)

= Ex Zv%(st)] w
= WT(:S,G)U)

where, ¢™ (s, a) is called the successor feature and is defined as, ¥ (s, a) = E; >, v ¢(s¢)].

Additionally, these methods align the latents of the optimal with the corresponding reward linear
weights w i.e. m, = argmax ™ (s,a)w. This linear dependence on the optimal policy reduces
policy inference to simply finding the weight w corresponding to the reward function using linear
regression, w* = arg min,, (¢w — r)2.

A number of methods have been developed using this principle, starting from the ones using fixed,
random or fourier features (Barreto et al., 2017; Zhu et al., 2024) to define the state features ¢ to
others (Park et al., 2024; Agarwal et al., 2025) who have specialized objectives that add different
inductive biases to these features.

A.4 Proto Successor Measures

Proto Successor Measures(PSM) (Agarwal et al., 2023) uses the observation that successor measures
are obey linear Bellman Equations. As a result, they can be represented using an affine set. Successor
Measures are hence represented as M ™ (s, a,sT) = Y. ¢;(s,a, sT)wl 4+ b(s, a, sT) where ¢ are the
policy independent basis functions and b is the policy independent bias. w™ is a linear weight that
depends on the policy. This parameterization enables an affine representation space containing the
successor measures for all policies. Unlike successor features, PSM does not directly link the policy
to its corresponding reward. Given any reward function, a simple constrained Linear Program needs
to be solved to obtain w*.

A.5 Proto Value Functions

Proto Value Functions refer to the class of spectral methods that linearize the value using the spectral
decomposition of the graph Laplacian. They represent V™ = ¢w™ where ¢ is independent of the
policy while w™ is a policy-dependent linear weight. Mahadevan & Maggioni (2007) approximated



A Unified Framework for Unsupervised Reinforcement Learning Algorithms

the graph Laplacian using a random walk operator while some (Machado et al., 2017a; Farebrother
et al., 2023) have used different objectives to directly approximate the eigenfunctions. Some of these
works (Farebrother et al., 2023; Bellemare et al., 2019) simply minimize the regression loss against
value functions of some auxiliary tasks.

A.6 Controllable Representations

A controllable representation is one in which only the features of the state that can change as a result
of the policy are captured, and all other information is excluded. The controllable features are well
described by the endogenous state of an Exogenous-MDP.

Definition A.1. (Exogenous Markov Decision Process (Efroni et al., 2022)). An exogenous-MDP
(Exo-MDP) is a Block MDP where the observation s can be factored into two parts s = (x, ) where
x € X is the endogenous state and £ € = is the exogenous state. The transitions of the exogenous and
endogenous components of the state are independent as follows: P(s'|s,a) = P(2'|z,a)P(£'|€).

Methods such as (Rudolph et al., 2024; Islam et al., 2023b;a; Efroni et al., 2022) attempt to learn
an encoder ¢ : & — X that only captures the endogenous components of the state. Notably,
ACRO (Islam et al., 2023b) learns the encoder ¢ by performing a multi-step inverse dynamics
prediction between two states k steps apart. The optimization is as follows,

¢y € argmax E; yo,n) log (P (as | ¢(st), d(st41))), (13)

€T L U(0,K)
where N is the maximum length of the episode and K is the time horizon of interest. A small
modification to this objective, as shown in Levine et al. (2024) provably extracts the full N-step
endogenous state. In contrast, Action-Bisimulation (Rudolph et al., 2024) learns a discounted
infinite-horizon representation of controllability based on a minimal single-step inverse dynamics
representation. The bisimulation metric (Ferns et al., 2011) is based on the bisimulation relation Givan
et al. (2003) and learns a representation to approximately obey the following relation:

¥(si) = (s;) (14)

P(G|si,a) =P(G|sj,a) Yae A NG eSap
where S4p is the partition of S under the relation AB (the set of all groups G of equivalent states),
and
P(G | s,a) = Zp(s’ | s,a),
s'eg

and i) : § — Z,, is a representation such that p(a | ¥(s), ¥(s")) = p(a | s,s’) foralls,a,s’. The
single-step representation v learns the features necessary for predicting the action taken to cause a
transition. This representation is the basis of action-bisimulation because it filters out features that

do not provide any signal to predict the action, i.e. anything that can be changed due to the agent’s
action.

While these controllable representation methods learn features that can be tied theoretically to
the Unified Objective in Box 3.1, they do directly admit a policy. Instead, they provide efficient
representations upon which downstream sequential decision-making tasks can be learned using RL.

B Proofs

B.1 Proof of Proposition 1

Proposition 3.1. The algorithm presented in the Algorithm Box 3.1 is sufficient to produce optimal
policies for any reward function.

Proof. The algorithm contained in Algorithm Box 3.1 consists of two parts:

Pretraining: Learning M™(s,a,s"), V s,a,s™, .
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Inference: Obtaining 7* for the given reward function using the pretrained representations.
The pretraining step simply ensures that M™ can be represented for any s, a, s, 7.

As long as this is true, the question remains is if the inference step can produce optimal policies given
that pretraining is true. To argue if the algorithm actually produces optimal policies for any reward
function, we need to inspect inference.

The inference Q* = max, Y .+ M7 (s,a,s")r(s") produces a Q* > Q™ for all 7. Hence for
any reward function, the corresponding policy, max. > M™(s,a,s™)r(s™) produces the optimal
policy as long as M™ correctly represents successor measures for all 7s.

O

B.2 Proofs for Section 4.1
B.2.1 Proof of Theorem 3

Theorem 4.3. With Il and T defined as per Assumptions 4.1 and 4.2, GCRL learns Q™= (s,a)
M™=(s,a,z) for s € S,z € Z,a € A. The optimal policy inference for reward, r, is 7, by
construction.

Proof. The proof follows simply from the definition of Q-function for goal conditioned RL. With
reward function r(s¢, at) = (1 — v)p(s¢+1 = z|s¢, ar), the Q-function is defined as:

Q™ (s,a) = (1 =7)En, Z[th(stﬂ = 2s¢, ar)] (15)
=0
= M"™(s,a,z) (16)

O

B.3 Proofs for Section 4.2
B.3.1 Proof of Theorem 6

Theorem 4.6. For 11 defined using Assumption 4.4 and T defined using Assumption 4.5, MISL

%Wfors €pa~m,(|s~p)andst €S. The policy

inference can be performed by searching through the space of z € Z for rewards defined in T.

objectives learn M™= (s, sT) =

Proof. Start with the MISL conditional distribution p(z|s™, s), where s is the starting state and
typically omitted from MISL formulations, and s™ is the current state, which is approximated by the
variational distribution g(z|s™, s). Applying bayes rule gives:

p(zls™, s)p(sT|s) = p(sT|z, s)p(z]s) A7)

zlsT, s)p(sT

Pel (sz)( 5~ st s) (1)

e <))(5+|s) ~p(stlz,s) (19)
Ex. Q(ZS+})2§?(S+|S> ~ M7 (s,s7) (20)

The second line replaces p(z|s) with p(z), because the skills in MISL are sampled independently
of the starting state. p(s™|z, s) is the probability of seeing a future state sT starting from state s
and following a skill z. p(s*|z,s) = (1 —7) > ,5op(s¢ = sT|s,2) = M7= (s,sT). The final
transformation utilizes the fact that z is the parameterization of a policy. O

Remark. While W appears to be quite messy, note that the state covering nature of
MISL which arises from policies optimizing the reward r(s*) = log q(z|s*, s) + log p(z) actually
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helps to remove the complexity. In particular, if the skills are successfully state covering from
starting state s, then p(s™|s) = p(z), that is the likelihood of reaching a state s* from state s will
match the likelihood of the corresponding skill being sampled, which is just p(z). This leaves:
q(z|sT,s) & M™=(s,sT), where q is a variational approximation of the future state density.

B.3.2 Proof of Theorem 7

Theorem 4.8. (Choi et al., 2021) For Z = S, GCRL with r(s|z) = — 25|z — s|| is the same as
solving the MISL objective with the variational distribution, q(z|s) = N'(z — s,0?).

Proof. This proof can be found in Choi et al. (2021) and is summarized here. Notice that the reward
for MISL policy learning is log q(z|s™, s) —log p(z). Assigning the space of z to equal 5, Z = S, we

==

can then replace ¢(z|s", s) = log exp(—**=5—") — log(2m). Replace this value back into the reward

function for GCRL, and this gives ¢(z|s™, s) = log exp(—”’z;ﬁ) —log(2m)+log(2m) = —”Z;ﬁ,
when p(z) is a unit normal distribution. This completes the proof. O

B.3.3 Proof of Theorem 8

Theorem 4.7. (Zheng et al., 2025) Given a critic function, f : S xS x Z = R, I™(S,5;7) >
Epr(s,50,2)[f (5,8, 2)] = Epr(s,5)[log Ep(z)[ef(s’s ’Z)H where the right hand side is the variational
lower bound: (VLB(f, 7))

Proof. This proof is adapted from Zheng et al. (2025). Starting from the standard information lower
bound adapted for (S, S1) and Z.
I7(8,8%:Z) > Ex[logq(z]s,s*)] + H(Z) 1)

> Es,s+~p(7r)7z~p(z) [f(sa 3+7 Z)] - Es,s+~7r[10g Ezwp(z) [exp(f(s, S+a Z))H (22)
The first equation is the Barber-Agakov Inequality Barber & Agakov (2004) applied to our setting.

p(z) exp(f(s,5",2))
Ep)[f(s,5T,2)]
according to Poole et al. (2019a). Thus, the information objective of MISL is lower bounded by a

successor representation on s, s™ and z. O

The second plugs in an energy based variational family, where q(z|s,s*) =

B.3.4 Additional Equivalences

Theorem B.1. Parameterizing f(s,s', z) in Theorem 4.7 as f(s,s',z) = (¢(s) — ¢(s"))T 2, METRA
Park et al. (2023c¢) is obtained as an approximation to VLB(¢, ).

Proof. This proof is adapted from Zheng et al. (2025). Starting from the previous observation and
replacing st with s’ gives:
I7(8,8%:Z) 2 Ex[f(s,5",2)] = Eq s+ nn[log Enp(o) lexp(f (s, 57, 2))]] (23)

s
> Ex[(¢(5) = 6(s) " 2] = B ot nnllog Ecnpis [exn(g(s) — ¢(s)) T2]]  (24)
~minE[(¢(s) — ¢(s) 2] = Md)(1 = Eswnpimlll6(s) = o(HI] (25)
Where the final line replaces the log-sum-exponential term with a second order taylor approximation.

O

B.4 Proofs for Section 4.3
B.4.1 Proof of Theorem 11

Theorem 4.11. With 11 and T as defined by Assumptions 4.10 and 4.9, SF methods learn
M7™(s,a,s%) = 1(s,a,2)(®T®)"1®T V5,57 € Sand a € A. The inference on any reward
function in T requires solving a linear regression problem, z* = arg min_(r — ® ' 2)2
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Proof. Successor Features assume r = ¢z for some linear weight z. This assumption directly leads
to Q™ (s,a) = ¥™(s,a)z where 9™ is the successor feature using the state features ¢ (See Section
A.3).

Asr = ¢z, = 2= (¢pT¢) Lo r.
Substituting in Q™= (following from Section A.3, 7 is conditioned on z),
Q" (s,a) = Y(s,a,z2)z
— Q™ (s,a) = (s,a,2)(¢"9) o7
Following from Q™= = M™=r for all 7, it can be shown that M™ = 1)(s, a, 2)(¢T ¢) " 1¢T . O

(26)

B.4.2 Proof of Theorem 12

Theorem 4.12. If the successor measure is parameterized as, M™ (s, a,s+) = F(s,a,2) " B(s%),
with B(sT) = (®T®)"1¢ T (s) and F(s,a,z) = (s, a, ), the algorithm in Theorem 4.11 reduces
to the FB algorithm (Touati & Ollivier, 2021). The policy inference simply becomes z* = Br.

Proof. Forward Backward representations (Touati & Ollivier, 2021) represents M7= (s, a,s™) =
F(s,a,z)" B(sT).

Asaresult, Q™ (s,a) = > .+ M™(s,a,sT)r.(s7) =3 4 F(s,a,2) " B(sT)r(s").

(Touati et al., 2023) has shown that F'(s,a,z) is the successor feature for the state feature
(BTB)~'BT. It can be similarly shown that, the backward network in FB is the same as (¢7 ¢)~1¢”
in the SF parameterization of M ™. O

B.4.3 Proof of Theorem 13

Theorem 4.13. If 6 = argmin, By o[£ (16(5) — 6(9)]| — Lzg —216(5") — 6(9)|)] in Theorem
4.11, withr(s,s',z) = (¢(s) — ¢(s")) " 2, the resulting algorithm is HILP (Park et al., 2024).

Proof. The HILP algorithm (Park et al., 2024) consists of three major steps: (1) Learning a state
representation ¢, (2) Defining reward functions using ¢ and a linear weight z and (3) Training 7, to
maximize 7.

The first step of learning a state representation uses the following optimization,

¢" = arg(;nin Esogllr(16(s) = d(9)| = Lazg — vl6(s") — S(9)I])] 27

The second step, defines a reward function r(s, s, z) = ¢(s, ')z = (¢(s) — &(s))z.

Finally, the final step requires training 7, for corresponding r,. This is achieved in practice by
parameterizing the Q-function using successor features.

Hence, HILP algorithm is an SF based method with state features, ¢, trained using Equation 27. [

B.4.4 Proof of Theorem 14

T

Theorem 4.14. If ¢ = argmax s B (5 o ) [(0(5)—(s")) 2] =Epr (5,5 [log Ep(z [ ¢ 96D 2],
in Theorem 4.11, with (s, s', z) = (¢(s) — ¢(s")) " 2, the resulting algorithm is CSF (Zheng et al.,
2025).

Proof. Similar to the previous proof, CSF(Zheng et al., 2025) introduces a SF based algorithm that
uses a MISL inspired objective to train state features, ¢,

’ T
¢ = arg max Epr (5.6 [(0(5) — () T 2] = Epr (s.61) [log Epay [e @0 2] (28)
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Like HILP, CSF defines its reward function for SF as a linear span of the basis, (s, s, 2)

P(s,8")z = (o(s) — ¢(s)')z. O
B.5 Proofs for Section 4.4

B.5.1 Proof of Theorem 16

Theorem 4.16. PSM learns M™ (s,a,sT) = >, ¢i(s,a,sT)w]* + b(s,a,st) for m, € Il as
defined in Assumption 4.15.

Proof. Proto Successor Measures (PSM) (Agarwal et al., 2025) parametrizes successor measures
using an affine decomposition i.e. using basis and bias functions. Theorem 16 is a direct consequence
of the parameterization. O

B.5.2 Proof of Theorem 17

Theorem 4.17. For the PSM representation M™(s,a,s™) = ¢(s,a,sT)w™ + b(s,a,s™) and
B(s,a,sT) = ¢y (s,a)Tp(sT), the successor feature ™ (s, a) = ¢y (s, a)w™ for the state feature
()T (B (ip6™)) 1.

Proof. The proof for this theorem is adapted from Agarwal et al. (2025).

According to the PSM parameterization, M ™ (s, a, s*) can be represented as ¢(s, a, s™)w™ (dropping
the bias term for simplicity. It can be thought of as absorbing the bias term into the basis. If

B(s,a,5T) = ¢y (s,a)T ¢s(sT), for some ¢y, and ¢,

(s,a,s" ZZ(MSG”% )l
= M7(s,a,s") szsa”w%( )i

J

= M"(s,a,s" :Z(bw (s,a -w”q’)s(s )j
= (s,a,st Zw (5,a);0s(sT); (Writing ¢y (s,a)w™ as ™ (s, a))

= M™(s,a,s" ):w”(s,a)Tgbs(s )

From Theorem 4.12, 1™ (s, a) is the successor feature for the basic feature ¢4 (s)7 (¢ps¢p?)~?

B.6 Proofs for Section 4.5
B.6.1 Proof of Theorem 20

Theorem 4.20. The eigenvectors used by PVFs are the same as that of M™ (s, s). Therefore, PVFs
learn M™ (s, s1) = ¢w. The policy inference for a reward function in the class T follows from the
LSPI algorithm.

Proof. PVFs learn eigenvectors for the graph laplacian given by,
L=D-A (29)
where D is the degree matrix and A is the adjacency matrix.

The normalized graph laplacian is given by, I — D~/2AD'/2 The random walk operator is given

by,
L=1-T (30)
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where T = D1 A

The Successor Representation(SR) (U™) is a quantity related to successor measures as,

U (s,8) = thP(st =s'|so = s,m) €1}
>0

Clearly, M™(s,s") is the same as ¥™ (s, s"). Additionally, for a value function, V™ = ¥ =
(I —~P™)~tr. This implies, ¥™ = (I — yP™)~L.

The eigen-decomposition of SR and the graph laplacians have been extensively studies by Machado
et al. (2017b); Stachenfeld et al. (2014); Farebrother et al. (2023). They have shown that if ¢ is an
eigenvector of the random walk operator (L), v¢ is the corresponding eigenvector for discounted
random walk laplacian, I — 7. And (I —~T)~" has the corresponding eigenvector of yD~'/2¢.

Hence, if 7 is uniform, i.e. P™ = T, PVFs which finds the eigenvectors for the graph laplacians
(random walk or normalized), also correspondingly obtain the eigenvectors for M™U (s, sT).

O

B.6.2 Comparison with PSM

PSM (Agarwal et al., 2025) has introduced the following theorem that compares the representative
powers of PVFs compared to PSM:

Theorem B.2. (Agarwal et al., 2025) Given a d-dimensional basis B : R" — RY, define span{B}
as the span of all linear combinations of basis B. Further define span{Br} as the span of inner
products of all linear combinations of basis B and all possible reward functions . Let span{®®/}
denote the space of the value functions spanned by ®°1 while {span{®}r} denotes the space of
value functions using the successor measures spanned by ®. For the same dimensionality of task
(policy or reward) independent basis, span{®*f} C {span{®}r} for some ®.

The theorem suggests that given the same number of dimensions, d, any method that spans the space
of successor measures represents a larger set of value functions from the methods that span the space
of value functions. We present a short adaptation of the proof from Agarwal et al. (2025).

Proof. We need to show that any element that belongs to the set span{®©/} also belongs to the set
{span{®}r}.
Any element belonging to the set {span{®*/}} is represented by,

VT(s) =) Brayi(s).

7

Similarly, any element in {span{®}r} can be represented by,

V™(s) = Z wr Z (s, s )r(s")

It is possible to show that for every element in {span{®“/}}, there exists some element in
{span{®}r} but the reverse is not true. Only when ®;(s,s’) = o;(s)n;(s’) for some o and 7,
can an element from {span{®}r} is present in {span{®*/}}.

O
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B.7 Proofs for Section 4.6
B.7.1 Proof of Theorem 24

Theorem 4.24. Multi-step inverse methods like Lamb et al. (2022); Islam et al. (2023a); Levine et al.

(2024), model M, Vs € S, a€ A, st € Sas M (s,a,s7) = W.

Proof. Starting from the definition of K step inverse dynamics p(a|s, sT), where sT is a state K
steps distant, 73 is the behavior policy and f(a, s, s™) is the learned inverse dynamics, and the
definition of M’ (s,a,sT) = Ex,p(s'T* = sT|s’,a’), we can apply bayes rule to achieve the
transformations:

plals, st 75)p(st|s, m5) = p(sT|a, s, m5)p(als, 75) (32)
+ +
plals, st mg)p(s*]s, mp) :p(8+|a,8,ﬂ'ﬂ) 33)
plals, mp)
+ +
plals,s ’ﬂ.ﬁ)p(s |S,7T5) :p(s+|a,8,7Tﬂ) (34)
ng(als, mg)
a,s, st)p(stls,m
I( )p(s* s, ms) ~ p(s*|a, 5) (35)
m(als)
(st
flals,s")p(s™|s, mp) ~ M}?(S?CL»S—F) (36)
ms(als)

Notice that line 3 utilizes the fact that p(a|s) in the offline distribution is the definition of the behavior
policy, and line 4 uses the learned inverse dynamics to approximate the true inverse probability, where
the learned inverse dynamics are learned according to 7. [

B.7.2 Proof of Theorem 25

Theorem 4.25. In Action-Bisimulation (Rudolph et al., 2024), ||¢(s1) — ¢(s2)|]| = 0 <
M7™ (s1,a,87) = M™ (sq,a,s1),Va€ A, st €8 where ny is a uniformly random policy.

Proof. Consider the bisimulation equality for action bisimulation, where p(7y, $) is the distribution
of trajectories following the uniform policy from state s:

[¢(s1) — @(s2)[| = llw(s1) — @(s2)| + VExr, IV(f (|51, a), f(-[s2,0a))] (37)
||¢(51) - (/5(52)” = ]En~p(7ru’51),‘rz~p(7ru,82) Z’Yt”‘:"(sfi) - ‘p(s;)HQ (38)
t=0

The conversion between lines 1-2 simply unrolls the boostrapped wasserstein term (recall that
f:8xA— A(é(S)), or a distribution over ¢(s"). Notice that the last term implies that ||¢(s1) —
®(s2)|| = 0 only if sum of all possible future values of [|p(s}) — ¢(s5)|| = 0, for all possible
sequences of states. If this is true, since ¢(s) captures all the myopic action-relevant (and thus
dynamic variability) information, M™V (s1,a,sT) = M7 (sa,a, sT) for all future trajectories.

In the case where M ™ (s1,a,s") = M™ (sq,a, sT), this implies also that all future distributions are
the same, which means that the future trajectories match, or in other words that there is a one-to-one
equivalence between p(7y, s1) = p(7v, s2) = p(my, 51/2). Then:
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M™ (sy,a,sT) — M™ (s9,a,57) =0 = (39)

B np(mu 1) mamp(ru 52) [ZVII@(SD —90(53)21 =
t=0

E71/2NP(7TU751/2) lz Pyt”S‘o(si/Z) - (p(8t1/2)2‘| = (40)
=0

lp(s1) — ¢(s2)[| =0 (41)
Because the trajectories from s; and s2 can be sampled equivalently. Since both ||¢(s1) — ¢(s2)|| =
0 = M7 (s1,a,5") — M™ (s3,a,s7) = 0 and M™ (s1,a,s%) — M"™ (s3,a,57) = 0 =
[¢(s1) = ¢(s2)|| = 0, this means [[¢(s1) = d(s2)[| =0 <= M™ (s1,a,5%) =M™ (s3,0,5") =
0 O

B.8 State Equivalences

In Section 5, we introduced the notion that every method explicitly or through some approximations,
produces state abstractions where the state space is compressed based on state equivalences. We
re-introduce state-equivalences in the practical settings:

We want to learn ¢ : S — X such that, M™(s,a,sT) = M™(¢(s),a,¢(sT)). Additionally,
¢(s1) = ¢(s2) iff M7 ((s1),a,¢(sT)) = M7 (¢(s2), a, ¢(sT)).

We mentioned that all these methods compress states based on the “distance” between the abstractions
d(¢(s1), P(s2)) as being proportional to p(s; = s2). We shall discuss the “distance” used by each of
these URL algorithms:

Goal Conditioned RL: Goal Conditioned Value Functions have often been shown to be quasimetrics
(Wang et al., 2023) in special cases. But, in most general settings, goal conditioned value functions
follow the triangle inequality (Liu et al., 2023). As a result, a number of methods (Ma et al., 2022b;
Park et al., 2024) have represented value functions using L2 distances: V' (s, g) = —||#(s) — ¢(g)]|-
These define the distances in GCRL space.

Mutual Information Skill Learning: MISL works compress the state representations using
skills. Two states are similar if they impose the same skills. Hence the two distributions, ¢(z|s1)
and q(z|s2) are the same if the states are equivalent (from a MISL perspective). Which means
D 1,(q(z|51)||q(#]s2)) represents the distance between the skill distributions for the two states s;
and so.

Successor Features: SFs (and approximated PSM) also produce state abstractions in the form
of state features. Successor measures are defined as, M™(s,a,s7) = >, p"(s¢ = sT[sg =
s,a0 = a) = Ex[>",.0p(s¢ = sT|so = s,a9 = a)]. Successor Features alternately define M™ =
Ex[> 120 @(st) To(sT)]. Both these are equivalent for all 7. This implies the state equivalences,
p(s1 = s2) is given by ¢(s1) " ¢(s2) in case of SFs. This explains why methods (Touati et al., 2023;
Touati & Ollivier, 2021) often impose orthonormality in some form in ¢.

Proto Value Functions: PVFs represent a basis for the value functions. Any two states being the
same would induce the same components of the basis. Which means ¢(s) € R will be parallel.
Hence, similar to SFs, PVFs also use cosine distance, ¢(s1) " ¢(s2).

Controllable Representations: While Islam et al. (2023b); Lamb et al. (2022); Levine et al. (2024)
directly optimize for state compression using the definition (by implicitly using successor measures),
methods like Rudolph et al. (2024) use an L2 distance to characterize distance between two states as
discussed in Theorem 4.25.
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C Additional Unsupervised RL Methods

While this work draws equivalences between several major classes of Unsupervised RL algorithms,
we certainly do not cover all possible methods. This is not because we do not believe that these
methods have relevant equivalences, but rather for time and space constraints. In this section we
mention a number of additional directions that we believe share links, if not explicit reductions, to the
successor measure and state equivalence abstraction. In representation learning, Bootstrap your own
latent Grill et al. (2020) and Contrastive RL Eysenbach et al. (2022b) show close similarities with
both action representations and successor features. Empowerment Klyubin et al. (2005); Eysenbach
et al. (2018b) has long been linked to mutual information skills, while the graph Laplacian Machado
et al. (2017a) and reward-free world models Ha & Schmidhuber (2018); Fujimoto et al. (2025) show
close ties to spectral methods. Inverse reinforcement learning Ng et al. (2000); Ghasemipour et al.
(2020) and even behavior cloning Ke et al. (2021); Brohan et al. (2023) might be seen as identifying
a particular expert visitation distribution. Finally, exploration methods utilize estimates of the current
state visitation distribution either through counts Bellemare et al. (2016) or curiosity Pathak et al.
(2017), and have close ties with mutual information objectives. As we can see, this work just begins
a process of finding similarities and differences between existing reward-free methods. Through this
work, we hope to clarify the avenues for cross-pollination and improvement in identifying the best
tools when learning policies in complex environments.



