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Abstract

Recent approaches have shown promises distilling expensive diffusion models into
efficient one-step generators. Amongst them, Distribution Matching Distillation
(DMD) produces one-step generators that match their teacher in distribution, i.e.,
the distillation process does not enforce a one-to-one correspondence with the
sampling trajectories of their teachers. However, to ensure stable training in
practice, DMD requires an additional regression loss computed using a large set
of noise–image pairs, generated by the teacher with many steps of a deterministic
sampler. This is not only computationally expensive for large-scale text-to-image
synthesis, but it also limits the student’s quality, tying it too closely to the teacher’s
original sampling paths. We introduce DMD2, a set of techniques that lift this
limitation and improve DMD training. First, we eliminate the regression loss and
the need for expensive dataset construction. We show that the resulting instability
is due to the “fake” critic not estimating the distribution of generated samples with
sufficient accuracy and propose a two time-scale update rule as a remedy. Second,
we integrate a GAN loss into the distillation procedure, discriminating between
generated samples and real images. This lets us train the student model on real
data, thus mitigating the imperfect “real” score estimation from the teacher model,
and thereby enhancing quality. Third, we introduce a new training procedure that
enables multi-step sampling in the student, and addresses the training–inference
input mismatch of previous work, by simulating inference-time generator samples
during training. Taken together, our improvements set new benchmarks in one-
step image generation, with FID scores of 1.28 on ImageNet-64×64 and 8.35 on
zero-shot COCO 2014, surpassing the original teacher despite a 500× reduction
in inference cost. Further, we show our approach can generate megapixel images
by distilling SDXL, demonstrating exceptional visual quality among few-step
methods, and surpassing the teacher. We release our code and pretrained models.

1 Introduction

Diffusion models have achieved unprecedented quality in visual generation tasks [1–8]. But their
sampling procedure typically requires dozens of iterative denoising steps, each of which is a forward
pass through a neural network. This makes high resolution text-to-image synthesis slow and expensive.
To address this issue, numerous distillation methods have been developed to convert a teacher diffusion
model into an efficient, few-step student generator [9–20]. However, they often result in degraded
quality, as the student model is typically trained with a loss to learn the pairwise noise-to-image
mapping of the teacher, but struggles to perfectly mimic its behavior.
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Figure 1: 1024×1024 samples produced by our 4-step generator distilled from SDXL. Please zoom
in for details.

Nevertheless, it should be noted that loss functions aimed at matching distributions, such as the
GAN [21] or the DMD [22] loss, are not burdened with the complexity of precisely learning the
specific paths from noise to image because their goal is to align with the teacher model in terms of
distribution—by minimizing either a Jensen-Shannon (JS) or an approximate Kullback-Leibler (KL)
divergence between the student and teacher output distributions.

In particular, DMD [22] has demonstrated state-of-the-art results in distilling Stable Diffusion 1.5,
yet it remains less investigated than GAN-based methods [23–29]. A likely reason is that DMD still
requires an additional regression loss to ensure stable training. In turn, this necessitates creating
millions of noise-image pairs by running the full sampling steps of the teacher model, which is
particularly costly for text-to-image synthesis. The regression loss also negates the key benefit
of DMD’s unpaired distribution matching objective, because it causes the student’s quality to be
upper-bounded by the teacher’s.

In this paper, we show how to do away with DMD’s regression loss, without compromising training
stability. We then push the limits of distribution matching by integrating the GAN framework into
DMD, and enable few-steps sampling with a novel training procedure, which we termed ‘backward
simulation’. Taken together, our contributions lead to state-of-the-art fast generative models that
outperform their teacher, using as few as 4 sampling steps. Our method, which we call DMD2,
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achieves state-of-the-art results in one-step image generation, setting a new benchmark with FID
scores of 1.28 on ImageNet-64×64 and 8.35 on zero-shot COCO 2014. We demonstrate our approach's
scalability by distilling from SDXL to produce high-quality megapixel images, establishing new
standards among few-step methods.

In short, our contributions are as follows:

• We propose a new distribution matching distillation technique that does not require a
regression loss for stable training, thereby eliminating the need for costly data collection,
and allowing for more �exible and scalable training.

• We show that training instability in DMD [22] without regression loss stems from an
insuf�ciently trainedfake diffusion critic, and implement a two time-scale update rule to
address this issue.

• We integrate a GAN objective into the DMD framework, where the discriminator is trained to
distinguish samples from the student generator vs.real images. This additional supervision
operates at thedistribution level, which better aligns with DMD's distribution-matching
philosophy than the original regression loss. It mitigates approximation errors in the teacher
diffusion model and enhances image quality.

• While the original DMD only supports one-step students, we introduce a technique to
support multi-step generators. Unlike previous multi-step distillation methods, we avoid the
domain mismatch between training and inference by simulating inference-time generator
inputs during training, thus improving overall performance.

2 Related Work

Diffusion Distillation. Recent diffusion acceleration techniques have focused on speeding up the
generation process through distillation [9, 10, 13–20, 22, 23, 30]. They typically train a generator
to approximate the ordinary differential equation (ODE) sampling trajectory of a teacher model,
in fewer sampling steps. Notably, Luhman et al. [16] precompute a dataset of noise and images
pairs, generated by the teacher using an ODE sampler, and use it to train the student to regress
the mapping in a single network evaluation. Follow-up works like Progressive Distillation [10,13]
eliminate the need to precompute this paired dataset of�ine. They iteratively train a sequence of
student models, each halving the number of sampling steps of its predecessor. A complementary
technique, Insta�ow [11] straightens the ODE trajectories, so they are easier to approximate with a
one-step student. Consistency Distillation [9,12,19,26,31,32], and TRACT [33], train student models
so their outputs are self-consistent at any timesteps along the ODE trajectory, and thus consistent
with the teacher.

GANs. Another line of research employs adversarial training to align the student with the teacher at a
broader distribution level. In ADD [23], the generator, initialized with weights from a diffusion model,
is trained using a projected GAN objective with an image-space classi�er [34]. Building on this,
LADD [24] utilizes a pre-trained diffusion model as the discriminator and operates in latent space, thus
improving scalability and enabling higher-resolution synthesis. Inspired by DiffusionGAN [28,29],
UFOGen [25] introduces noise injection prior to thereal vs. fakeclassi�cation in the discriminator,
to smooth out the distributions, which stabilizes the training dynamics. However, purely GAN-
based methods often struggle to integrate classi�er-free guidance directly. For instance, LADD uses
diffusion-generated images with classi�er-free guidance as real data in its GAN discriminator. Other
approaches combine adversarial objectives with a distillation loss to preserve the original guided
sampling trajectory. For instance, SDXL-Lightning [27] integrates a DiffusionGAN loss [25] with a
progressive distillation objective [10,13], while the Consistency Trajectory Model [26] combines
a GAN [35] with an improved consistency distillation [9]. In contrast, our approach based on
distribution matching [22, 36, 37] inherently integrates classi�er-free guidance into the training
supervision, signi�cantly simplifying the training process.

Score Distillation was initially introduced in the context of text-to-3D synthesis [37–40], utilizing a
pre-trained text-to-image diffusion model as a distribution matching loss. These methods optimize a
3D object by aligning rendered views with a text-conditioned image distribution, using the scores
predicted by a pretrained diffusion model. Recent works have extended score distillation [37,38,41–
43] to diffusion distillation [22,30,36,44–46]. Notably, DMD [22] minimizes an approximate KL
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Figure 2: 1024� 1024 samples produced by our 4-step generator distilled from SDXL. Please zoom
in for details.
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divergence, with its gradient represented as the difference between two score functions: one, �xed
and pretrained, for the target distribution and another, trained dynamically, for the output distribution
of the generator.

DMD parameterizes both score functions using diffusion models. This training objective proved
more stable than GAN-based methods and has demonstrated superior performance in one-step
image synthesis. An important caveat, DMD requires a regression loss for stability, calculated
using precomputed noise-image pairs, similar to Luhman et al. [16]. Our work does away with
this requirement. We introduce techniques to stabilize the DMD training procedure without the
regression regularizer, thus signi�cantly reducing the computational costs incurred by paired data
precomputation. Furthermore, we extend DMD to support multi-step generation and integrate the
strengths of both GANs and distribution matching approaches [22,30,36,45], leading to state-of-the-
art results in text-to-image synthesis.

3 Background: Diffusion and Distribution Matching Distillation

This section gives a brief overview of diffusion models and distribution matching distillation (DMD).

Diffusion Models generate images through iterative denoising. In the forward diffusion process, noise
is progressively added to corrupt a samplex � preal from the data distribution into pure Gaussian
noise over a predetermined number of stepsT, so that, at each timestept, the diffused samples follow
the distributionpreal;t (x t ) =

R
preal(x)q(x t jx)dx, with qt (x t jx) � N (� t x; � 2

t I ), where� t ; � t > 0
are scalars determined by the noise schedule [47, 48]. The diffusion model learns to iteratively
reverse the corruption process by predicting a denoised estimate� (x t ; t), conditioned on the current
noisy samplex t and the timestept, ultimately leading to an image from the data distributionpreal.
After training, the denoised estimate relates to the gradient of the data likelihood function, or score
function [48] of the diffused distribution:

sreal(x t ; t) = r x t logpreal;t (x t ) = �
x t � � t � real(x t ; t)

� 2
t

: (1)

Sampling an image typically requires dozens to hundreds of denoising steps [49–52].

Distribution Matching Distillation (DMD) distills a many-step diffusion models into a one-step
generatorG [22] by minimizing the expectation overt of approximate Kullback-Liebler (KL) diver-
gences between the diffused target distributionpreal;t and the diffused generator output distribution
pfake;t . Since DMD trainsG by gradient descent, it only requires the gradient of this loss, which can
be computed as the difference of 2 score functions:

rL DMD = Et (r � KL(pfake;t kpreal;t )) = � Et

� Z �
sreal(F (G� (z); t ); t ) � sfake(F (G� (z); t ); t )

� dG� (z)
d�

dz
�

;

(2)
wherez � N (0; I ) is a random Gaussian noise input,� are the generator parameters,F is the forward
diffusion process (i.e., noise injection) with noise level corresponding to time stept, andsreal andsfake
are scores approximated using diffusion models� real and� fake trained on their respective distributions
(Eq. (1)). DMD uses a frozen pre-trained diffusion model as� real (the teacher), and dynamically
updates� fake while trainingG, using a denoising score-matching loss on samples from the one-step
generator, i.e., fake data [22,47].

Yin et al. [22] found that an additional regression term [16] was needed to regularize the distribution
matching gradient (Eq.(2)) and achieve high-quality one-step models. For this, they collect a dataset
of noise-image pairs(z; y) where the imagey is generated using the teacher diffusion model, and a
deterministicsampler [49,50,53], starting from the noise mapz. Given the same input noisez, the
regression loss compares the generator output with the teacher's prediction:

L reg = E(z;y ) d(G� (z); y); (3)

whered is a distance function, such as LPIPS [54] in their implementation. While gathering this
data incurs negligible cost for small datasets like CIFAR-10, it becomes a signi�cant bottleneck with
large-scale text-to-image synthesis tasks, or models with complex conditioning [55–57]. For instance,
generating one noise-image pair for SDXL [58] takes around 5 seconds, amounting to about 700
A100 days to cover the 12 million prompts in the LAION 6.0 dataset [59], as utilized by Yin et
al. [22]. This dataset construction cost alone is already more than4� our total training compute (as
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detailed in Appendix J). This regularization objective is also at odds with DMD's goal of matching
the student and teacher indistribution, since it encourages adherence to the teacher's sampling paths.

4 Improved Distribution Matching Distillation

We revisit multiple design choices in the DMD algorithm [22] and identify signi�cant improvements.

Figure 3: Our method distills a costly diffusion model (gray, right) into a one- or multi-step generator
(red, left). Our training alternates between 2 steps: 1. optimizing the generator using the gradient
of an implicit distribution matching objective (red arrow) and a GAN loss (green), and 2. training a
score function (blue) to model the distribution of “fake” samples produced by the generator, as well
as a GAN discriminator (green) to discriminate between fake samples and real images. The student
generator can be a one-step or a multi-step model, as shown here, with an intermediate step input.

4.1 Removing the regression loss: true distribution matching and easier large-scale training

The regression loss [16] used in DMD [22] ensures mode coverage and training stability, but as
we discussed in Section 3, it makes large-scale distillation cumbersome, and is at odds with the
distribution matching idea, thus inherently limiting the performance of the distilled generator to that
of the teacher model. Our �rst improvement is to remove this loss.

4.2 Stabilizing pure distribution matching with a Two Time-scale Update Rule

Naively omitting the regression objective, shown in Eq.(3), from DMD leads to training instabilities
and signi�cantly degrades quality (Tab. 3). For example, we observed that the average brightness,
along with other statistics, of generated samples �uctuates signi�cantly, without converging to a stable
point (See Appendix G). We attribute this instability to approximation errors in the fake diffusion
model� fake, which does not track the fake score accurately, since it is dynamically optimized on
the non-stationary output distribution of the generator. This causes approximation errors and biased
generator gradients (as also discussed in [30]).

We address this using the two time-scale update rule inspired by Heusel et al. [60]. Speci�cally,
we train� fake and the generatorG at different frequencies to ensure that� fake accurately tracks the
generator's output distribution. We �nd that using 5 fake score updates per generator update, without
the regression loss, provides good stability and matches the quality of the original DMD on ImageNet
(Tab. 3) while achieving much faster convergence. Further analysis are included in Appendix G.

4.3 Surpassing the teacher model using a GAN loss and real data

Our model so far achieves comparable training stability and performance to DMD [22] without the
need for costly dataset construction (Tab. 3). However, a performance gap remains between the
distilled generator and the teacher diffusion model. We hypothesize this gap could be attributed to
approximation errors in the real score function� real used in DMD, which would propagate to the
generator and lead to suboptimal results. Since DMD's distilled model is never trained with real data,
it cannot recover from these errors.

We address this issue by incorporating an additional GAN objective into our pipeline, where the
discriminator is trained to distinguish betweenreal images and images produced by our generator.
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