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Abstract Distribution shifts are all too common in real-world applications of machine learning. Do-
main adaptation (DA) aims to address this by providing various frameworks for adapting
models to the deployment data without using labels. However, the domain shift scenario
raises a second more subtle challenge: the difficulty of performing hyperparameter opti-
misation (HPO) for these adaptation algorithms without access to a labelled validation set.
The unclear validation protocol for DA has led to bad practices in the literature, such as
performing HPO using the target test labels when, in real-world scenarios, they are not
available. This has resulted in over-optimism about DA research progress compared to
reality. In this paper, we analyse the state of DA when using good evaluation practice, by
benchmarking a suite of candidate validation criteria and using them to assess popular adap-
tation algorithms. We show that there are challenges across all three branches of domain
adaptation methodology including Unsupervised Domain Adaptation (UDA), Source-Free
Domain Adaptation (SFDA), and Test Time Adaptation (TTA). While the results show that
realistically achievable performance is often worse than expected, they also show that using
proper validation splits is beneficial, as well as showing that some previously unexplored
validation metrics provide the best options to date. Altogether, our improved practices
covering data, training, validation and hyperparameter optimisation form a new rigorous
pipeline to improve benchmarking, and hence research progress, within this important field
going forward.

1 Introduction

Supervised deep learning models achieve impressive results when training and testing data are
identically distributed. However, perhaps the main failure mode of computer vision and pattern
recognition systems in practice is due to the near-ubiquitous distribution shift between data curated
for model training, and real-world data encountered during deployment [6]. This distribution shift
issue has motivated a tremendous amount of work in the area of unsupervised domain adaptation
(UDA) [6]. UDA methods aim to alleviate domain shift by collecting freely available unlabelled data
during deployment to a target domain and adapting vision models based on this unlabelled data.

Hundreds of unsupervised adaptation algorithms have now been proposed based on various
principles from distribution alignment [23], to domain adversarial learning [10] and much more.
However, without exception, a key challenge for every one of these algorithms is: how do we tune
hyperparameters and conduct model selection? In conventional supervised learning, hyperparame-
ters and model selection (stopping criteria) are handled systematically by maximising accuracy on
a validation split of the training set. In unsupervised domain adaptation there is no such straight-
forward solution because the target domain has no labels with which to compute accuracy, and the
source domain is not representative of the target domain.

Despite the importance of this issue—upon which any practical application of domain adaptation
hinges—there has been relatively little systematic study of validation protocols and algorithms for
UDA [48, 7, 35]. Worse, a recent meta-review and re-evaluation of the domain adaptation literature
found that most published code did not use consistent or fair model selection criteria [26], and
furthermore when evaluated under consistent and fair model selection criteria most existing results
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can not be replicated [26]. This mini “replication crisis” in domain adaptation highlights the need
for studying validation protocols for UDA, and for fair benchmarking to drive reliable progress.

The few existing fair model selection criteria for UDA are based on diverse intuitions such as
simply applying UDA algorithm objectives on the validation split of the unlabelled target set, priors
on the expected distribution of labels [7, 35], or relying on the validation accuracy in the source
domain [48]. However there is little first principles justification to pick among these reasonable
intuitions, and there is little empirical evaluation to understand which are best, and how close they
come to the performance of an oracle validator, which has been the basis of many reported results
in the literature [26].

These challenges exist throughout the domain adaptation literature. They arise across all three
popular branches of adaptation for recognition: Unsupervised Domain Adaptation (UDA) [10, 39,
42], Source-Free Domain Adaptation (SFDA) [20, 47] and Test Time Adaptation (TTA) [45, 22].
They also arise across different kinds of domain adaptive learning problems from classification [10]
to regression [5], dense prediction [49], and detection [16].

The lack of a clear validation criterion for DA is an obstacle to its practical application. As an
example, AutoML is a field with great potential to automate machine learning tasks for real-world
applications [15]. But in order to automate anything (e.g. algorithm, hyperparameter, checkpoint
selection), we need a metric to optimise. In the case of supervised learning, this metric is naturally
validation performance on an unseen labelled set. However, the choice of metric is not straightfor-
ward for UDA/SFDA/TTA due to the lack of labels. A major contribution of this paper is to clarify
what such an optimisation metric should be for domain adaptation, thereby laying the foundations
that allow bringing AutoML to DA.

To address this issue, we conduct a large-scale benchmark of 10 domain adaptation algorithms
with 15 different validation criteria and three DA settings (UDA, SFDA, TTA). We identify which
DA validators can be applied to each setting, characterise the size of the challenge in each case in
terms of the gap between practically achievable and best-case DA performance, and identify the
best existing validators. We identify effective practices in terms of using validation splits to estimate
target performance. We highlight the risk of adaptation failure in SFDA and TTA as a likely fatal
blocker for deployment in practice as existing validators do not reliably prevent this. These results
should drive future practice both in DA research — which should use these validators, rather than
unrealistic oracle HPO; and in validator research — which should aim to develop validators which
surpass the best that we report.

Related Work

Domain Adaptation

There are now too many domain adaptation algorithms to review here, and we refer the reader
to good surveys such as [6, 28]. Most deep UDA algorithms proceed by performing supervised
learning on the source domain data, and some kind of unsupervised objective on the target domain
data. Representative families of approach include objectives that penalise misalignment between
the source and target domain feature distributions [23], train a domain classifier that can then be
used adversarially to penalise distinguishable source and target domain features [10], or penalise
deviation from a prior on the expected target label distribution [37]. However, all algorithms have
a number of hyperparameters, such as stopping iteration and strength of the weighting factor for
supervised vs unsupervised loss components. How to set these hyperparameters is not clear given
the lack of a labelled target domain validation set in UDA applications.

The long-established mainstream setting for unsupervised domain adaptation (UDA) assumes
that source and target data are accessed simultaneously for training. Two related problem variants
have more recently gained rapid popularity, namely source-free domain adaptation (SFDA) and
Test Time Adaptation (TTA). SFDA refers to the condition where pre-trained source models should
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be adapted to the target data without revisiting the source data [20] - for example, by unsupervised
fine-tuning. TTA [45, 40] similarly adapts a pre-trained model without access to the source data,
but assumes that the test data arrives in mini-batches, providing the opportunity to adapt to each
mini-batch before making decisions on their labels. The newer SFDA and TTA have both rapidly
gained traction as being more "practical” in an era of pre-trained models [3]. However, algorithms
for both of these settings still have many hyperparameters (e.g., learning rate, number of iterations,
regularisation strengths), and hence suffer from the lack of a clear validation protocol in a DA
context. Most of the seminal studies in this area do not show valid HPO criteria in their papers or
code.

Validation Approaches for DA

Comparatively few papers have systematically studied validation criteria for UDA, given the
importance of this issue for its practical application. Typical solutions applied by UDA algorithm
papers include: (1) Oracle risk. Many papers use the target test set for hyperparameter selection [26],
which is obviously incorrect as it can not be used in real applications; (2) Source risk. Evaluating
the adapted model on the source validation set is reasonable but may not be a good validation
criterion due to domain shift between source and target domains; (3) Evaluating another UDA
algorithm objective (such as InfoMax [37] and MMD [23]) on an unlabelled validation split of the
target set; (4) Validation domain. Use of a held-out labelled validation domain, as used in the VisDA
challenge [30], is fair. However, this assumes multiple labelled domains, which may not be available
in practice, and also raises additional questions of whether the optimal hyperparameters for the
validation domain are representative of the optimal hyperparameters for the target domain.

Besides the above strategies, a few purpose-designed validation criteria have been proposed:
Deep embedded validation (DEV) [48] weights the source validation risk by the probability that
each sample belongs to the target domain. Meanwhile, Silhouette score [32], batch nuclear-norm
minimisation (BNM) [7], and soft neighbourhood density (SND) [35] criteria boil down to evaluating
the adapted models’ posterior label distribution on the target domain under different notions of a
prior for the expected target domain label distribution. Mean ensemble-based validation (ENS) [32]
considers a linear combination of the above criteria. However, overall it is unclear which to prefer
for DA.

Benchmarking Domain Adaptation

There have been two major benchmarking exercises in UDA. The VisDA competition challenge
[30] provides a labelled validation domain for model selection and hyperparameter optimisation
(HPO). However, validation domains may not be available in practice — and if they are, they may
not be representative of the target domain. Thus, the vast majority of research literature on UDA
has not used this approach. A recent empirical evaluation [26, 25] analysed the GitHub repositories
of a number of UDA methods and found that: (1) In practice different methods used very different
validation criteria for empirical evaluation, making published results incomparable with each other;
(2) A large number of prior studies used the oracle risk as a validation criterion, meaning that their
results are not representative of how well domain adaptation would work in reality using validation
criteria that can be implemented in practice; (3) Variation in existing validation criteria was high
compared to variation across adaptation algorithms, and none of them was strongly correlated with
recognition performance. Our evaluation extends this early study but goes beyond it in considering
all three major branches of DA research (UDA, SFDA, TTA), exploring a wider variety of validators,
and demonstrating how validator performance can be improved through proper use of validation
splits within the target domain.
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Figure 1: How the source and target domains are split and how each split is used for (1) the source-only
model (2) UDA adaptors, (3) SFDA adaptors and (4) TTA adaptors.

Background

3.1 Problem Setup

3.2

Unsupervised Domain Adaptation: In the UDA setup, one typically trains a model fp : X — )Y on
a labelled dataset, Dg = {x;, yi}?:fsl, consisting of data sampled from a source domain, ps. The goal
is then to adapt fp using an unlabelled dataset, Dr = {cc,-}?fl, sampled from a target domain, pr.
The general learning objective to be minimised w.r.t. to @ can be simplified as follows,

L(fe, Ds, Dr) = Lsup(fo, Ds) + Laa(fo, Ds, Dr), (1)

where Lg,(+) could be cross-entropy loss for classification and mean square error for regression
problems, and L4, (-) is the adaptation loss, such as MMD [42], CORAL [39] and DANN [10] losses.
Source-Free Domain Adaptation: The SFDA setting aims to adapt a pre-trained source domain
model to the target domain, relaxing the assumption of joint occurrence of source and target
domain data in UDA. So first, a source model will be optimized using source domain data: 6 =
arg min Lep (fg, Ds). Then the trained source model 0 will be adapted to the target domain by

0

0" = arg ¥1’lil’1 Lstda (ﬁéa Dr). (2)
0

where now Ly, is an unsupervised loss, such as clustering [47] or information maximization [20].
Test-Time Adaptation: Unlike SFDA, TTA assumes the batch-wise target domain data X ~ Dr
comes in a stream and adapts a pre-trained source model for each minibatch X as

0" = argmin Ly, (f3X), (3)

g X~Dr

where Ly, is commonly the unsupervised loss, such as self-supervised learning and entropy min-
imisation losses, which could be essentially similar to Lgtq,.

Model Selection

Due to the lack of target domain labels in the various domain adaptation settings we consider, the
model selection process must proceed as follows. Given a set of candidate models, as configured by
hyperparameters h € H, where H is the pool of hyperparameter sets, the best candidate model is
selected based on its evaluation score, d( fg, Dy)!, where Dy is a validation dataset. The process
can be formalised as .

h* = arg’rlnax d(fe;, Dv),

4
st. 6, =argmin L(fp, Ds, Dr; h). )
/]

! Assuming the model performance is a monotonically decreasing function of the output of d(-, Dy).
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Table 2: A summary of the validators

Table 1: A summary of the adaptation considered.
algorithms considered
Criterion ‘ Approach
Algorithm | Approach RankMe [11] Rank estimation
ATDOC [21] | Pseudo-labelling f}\fll [215’ 32) guster quai}ty
BNM [7] SVD loss o M[3 ] ” Cl“Ster qual¥ty
g DANN [10] Adversarial FI;/H egsure (33] Cluster qual%ty
-  MCC [17] Information maximisation Silh 9] 95 32 Cluster qual}ty
MCD [36] Classifier discrepancy DIBIOL:tte (25, 32] Cluster qual%ty
MMD [23] Feature distance (8] uster qua }ty
CHI [4] Cluster quality
< AAD [47] Clustering BNM [7] Label prior
£ NRC [46] Graph clustering MMD [23] Domain Alignment
“ SHOT [20] Information maximisation CORAL [39] Domain Alignment
) . SND [35] Label prior
ﬁ SHOT [20] Informatlop mgxlrr}lsatlon InfoMax [37] Label prior
= TENT [45] Entropy minimisation Entropy Label prior
Source Accuracy Source accuracy

However, two things in UDA complicate this process: 1) choice of the validation set Dy; and 2)
definition of the evaluation metric d(-, -) when Dy = {a:i}fi‘{ is an unlabelled set.

Several validators have been proposed in the literature, such as SND [35], BNM [7] and DEV [48].
Additionally, it is worth remarking that popular DA losses such as IM [20], and Entropy [44, 24],
can also be used as validators. We explore a large number of validators in addition to these,
including those based on domain alignment, like MMD [42] and CORAL [39], clustering [33] and
feature matrix rank [11]. The full list of validators we consider in shown Tab. 2 with full details in
Appendix D.

Evaluation

Our evaluation extends the benchmark of [26]. We make their setup more rigorous by splitting
the target domain into train/val/test sets. Previous works often compute target performance on
the same data that the algorithms adapt to or the same data that the validators use. This fails to
properly measure generalisation performance as we will show later. Our splits and how we use
them are detailed in Figure 1.

In order to compare different validation criteria, we train a large number of models across

several datasets, algorithms and hyperparameter choices. We want the optimal validator to behave
similarly to the target domain test performance of the corresponding algorithm. We measure
the quality of each validator in two ways: 1) computing the Spearman rank correlation between
validator scores and oracle test accuracy, 2) using the validator to select the best model for an
algorithm/task pair and comparing the test performance of it against the best model as selected by
the oracle.
Questions: Through the experimental evaluation below on three different settings, we aim to
answer the following questions: (i) Are the validation criteria sufficiently good to drive HPO and
model selection in UDA? We also extend this question to regression problems in Appendix A. (ii)
What is the impact of validating on the training set versus an independent validation split? (iii) Are
the observations still consistent when source data is absent during adaptation (SFDA), and when we
must adapt to the test-set itself (TTA)?

Unsupervised Domain Adaptation

Setup. In this section we describe our evaluation procedure for UDA.
Datasets: We use a wide range of UDA benchmark datasets: MNIST-M [10] which consists of a
domain shift from standard MNIST [19] to a modified version; The VisDA-2017 [29] dataset which
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Table 3: Comparison of validation criteria for model selection in UDA. Averages over all 21 domain
transfers evaluated. We report (i) the target test performance for the top models selected
by each validator, and (ii) the correlation coefficient between the validator scores and the
test performance over all hyperparameters and checkpoints. The colour of a cell indicates
whether that model/validator combination beats the source-only model (green) or not (red).

‘RankMe AMI ARl V-Measure FMI Silhouette DBI CHI BNM MMD CORAL SND IM  Entropy Accuracy ‘ Oracle

ATDOC 58.24 67.70  67.71 67.79 67.71 46.73 49.55 16.55 64.29 52.46 55.96 24.13  64.61 61.23 68.06 72.24
BNM 61.36 69.32  69.48 69.29 69.48 62.42 51.58 33.10 66.88 52.64 60.92  47.70 67.01 65.98 66.02 71.09
DANN 62.00 64.76  64.35 64.55 63.23 56.06 53.86 36.89 62.72 51.62 60.61 46.51  62.79 62.83 62.44 68.27
McC 62.36 69.65 70.06 69.66 69.68 63.21 40.48 24.72 66.84 55.12 54.66 35.13  66.79 65.28 69.11 72.41
MCD 60.80 60.31 46.45 60.26 31.23 16.54 28.58 899 63.83 51.06 47.44 13.66 64.43 56.44 63.83 67.75
MMD 60.37 65.98  63.56 66.00 63.56 54.83 51.93 3522 61.37 46.66 58.41 40.08 61.57 61.06 63.83 67.44
Avg. 60.86 66.29  63.60 66.26 60.81 49.96 46.00 2591 64.32 51.59 56.33 34.54 64.53 62.14 65.55 69.87
Avg. Rank 8.50 333 392 3.00 4.42 11.00 12.33  15.00 6.00 11.33 10.33 14.00 517 7.33 4.33 -
Correlation 0.29 0.62  0.62 0.65 0.58 0.01 -0.40 -0.60 0.35 0.30 -0.47 -0.15 036 0.30 0.50
Source-only 63.58 49.81 48.04 48.02 48.04 47.88 32.62 4635 54.90 63.69 49.31 3249 49.30 49.22 63.48 65.60

contains train, validation and test domains — we consider the shifts train — validation and
train — test; Office-31 [34] which consists of three domains: amazon, dslr and webcam; and
Office-Home [43] with four domains: art, clipart, product and real. In total, we consider 21 different
domain shifts.

Adaptation Algorithms & Validators: We consider six representative domain adaptation algorithms,
spanning both recent and classic methods and a variety of underlying principles. These include
the pseudo-label based ATDOC [21]; domain-adversarial learning with the seminal DANN [10];
domain-alignment with MMD [23]; BNM and MCC which optimise the target label distribution
under nuclear norm prior and minimum class confusion priors respectively, and the classifier-
discrepancy-based MCD [36]. We explore tuning these models with a large number of potential
validation criteria as listed in Table 2.

We start by finetuning a network on the source task. We take ResNet50 weights pretrained
on ImageNet [14] for all datasets apart from MNIST-M where a smaller CNN is used. The final
classification layer is replaced by an MLP head consisting of two blocks of {Linear, ReLU, Dropout}
followed by a final linear layer. We finetune only this head on the source task using a standard
categorical cross-entropy loss. 10 models are trained with learning rates sampled uniformly at
random from a logarithmic scale between 107> — 10~ 1. These runs form the set of checkpoints
for the source-only model. They are not used for evaluating the validation criteria, but we report
performances at times for comparison. When training each adaptation algorithm, we use the
source-only model weights as initialisation for both the backbone and MLP head. The specific
source-only checkpoint used as initialisation is the one with the highest source validation accuracy
and in case of ties we select the checkpoint trained for the fewest amount of epochs.

For each of our 6 adaptation algorithms, we sample 10 sets of hyperparameters and train one
model per set. The training uses both source and target data. The number of epochs depends on
the dataset and specific target domain, but in all cases, we save 20 checkpoints during the course of
training. The optimizer is Adam with parameters {betas=(0.9, ©.999)} and the weight decay is
always 0.0001. The learning rate is always part of the sampled hyperparameters, and it is updated
during training via cosine annealing with a warmup phase during the first 5% of training. The full
details of our training procedure and hyperparameter search spaces can be found in Appendix C.

Results. The results in Table 3 report the performance of each adaptation algorithm and validation
criterion combination, averaged over all 21 domain transfer tasks — in terms of both test accuracy
after HPO and the weighted Spearman correlation coefficient between validation scores and testing
accuracy. More detailed correlation plots are given in Appendix E. Table 4 shows how easily tunable
the algorithms are, via the percentage of all algorithm checkpoints outperforming the baseline.



Table 4: Percentage of all algorithm checkpoints which outperform the baseline source-only model, in
the UDA setting. The ATDOC, BNM and MCC algorithms are the most easily tunable, with
over 40% of hyperparameter choices leading to better-performing models. We also see that
when selecting checkpoints with the oracle validator, 18.3% of the source-only checkpoints
outperform the one selected as the baseline using the source validation accuracy validator.

Source-only ATDOC BNM DANN MCC MCD MMD
18.3 42.8 48.4 24.9 43.4 14.6 29.5

How well does unsupervised validation work? From Table 3 we can draw a rich set of observa-
tions: (1) The validation criteria have varying ability to predict the test accuracy and thus drive HPO
in domain adaptation. This is visible in the correlation scores, ranging from -.60 to .65 correlation
coefficient at best; and the significant variability of testing performance when using the various
criteria to drive HPO. Importantly, it is also visible in the gap between the performance of the
best criteria and the best-case oracle criterion. (2) The best validation criterion is the previously
un-studied V-measure score, which has the best average rank of 3.0 across all the validators, and
closes 70% of the gap between the baseline of 63.5% and oracle upper bound of 72.4% when paired
with the MCC adapter. (3) The DA algorithms themselves vary substantially in how easy they are
to tune, with MCD and ATDOC for example being highly dependent on choice of validator, versus
BNM which is comparatively insensitive to the choice of validator. Practitioners may prefer to opt
for comparatively easy to tune adaptation algorithms, given the challenge of validation for DA.
What is the impact of validating on training vs validation splits? An important design choice
in validation is which data split the validator is evaluated on. As discussed in [26, 25], while
prior work that validates on the source domain has fairly consistently used the source validation
set; prior work that validates on the unlabelled target domain has been inconsistent in the choice
between validating using the train or an independent val split. Since learning is driven by applying
an adaptation loss on the target train set, there is the possibility of overfitting during unsupervised
adaptation. Thus we conjecture that one should validate on a disjoint split of the target domain. In
Tab. 3, we avoided this issue by taking the best split for each validator. We now analyse this issue
by comparing using the train vs validation split for evaluating criteria. From the results in Fig. 2
we see that for all the top-performing criteria the val split is preferred. While this result might
seem unsurprising in retrospect, we emphasise that the use of a val split is NOT standard practice
in the literature, even in thorough recent evaluations [25]. We show that there is thus a trade-off
between using held-out validation data to improve the validators, and using as much training data
as possible to improve adaptation.

é» 65 N BN B DB o o
é 60 Split
& — Val
5 95 mmE Train
{4}
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V-Measure AMI  Accuracy IM BNM ARI RankMe  FMI Entropy DBI MMD  Silhouette  CHI CORAL  SND

Figure 2: Comparison of split for evaluation of validation criteria. We report the average target test
accuracy of selected models for each validator when applied on (blue) target train data and
(orange) target validation data. The dashed line is the source-only model performance.
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Table 5: Comparison of validation criteria for model selection in SFDA on Office-Home. We report (i)
the target test performance for the top models selected by each validator, and (ii) the correlation
coefficient between the validator scores and the test performance over all hyperparameters
and checkpoints. For each algorithm, we include the source-only checkpoint in the pool
available to validators (indicated by the “+SO” suffix). The colour of a cell indicates whether
that model/validator combination beats the source-only model (green) or not (red), with a
darker red colour meaning it fails to achieve half of the source-only model performance.

‘RankMe AMI ARl V-Measure FMI Silhouette DBI CHI BNM SND IM  Entropy Accuracy ‘ Oracle

AAD+SO 61.63 57.41 = 1.60 60.19 1.59 1.74 53.62 190 62.51 56.29 59.40 4.78 65.71
NRC+SO 57.30 58.44 = 6.74 62.73 6.70 1.62 4512 170 58.18 56.84 57.71 40.70 64.93
SHOT+SO 59.20 59.73  60.88 60.99 59.38 57.54 5541 46.72 54.14 57.13 54.52 59.51 64.04
Avg. 59.38 58.52  23.07 61.30 22.56 20.30 51.38 16.77 5828 56.75 57.21 35.00 64.89
Avg. Rank 4.33 3.33 7.33 1.67 9.00 9.67 7.67 10.67 5.00 6.67 6.00 6.67 -
Correlation -0.02 0.11  -0.32 0.09 -0.08 -0.54 0.01 -0.77 -0.01 0.06 0.02 -0.11

Source-only ‘ - - - - - - - - - - - - 56.49 ‘

Source-free Domain Adaptation

Setup. For SFDA we use the Office-Home dataset as a benchmark, covering all 12 domain shifts.
The same source-only models that we produced for UDA are also used here for initialisation of the
same architecture. Three recent SFDA algorithms adapt the model on target domain data, AAD
[47], NRC [46] and SHOT [20]. For each algorithm, we sample 10 sets of hyperparameters and train
for 200 epochs. The setup follows the UDA setting described above, with the main difference being
the adaptation algorithms and validators only have access to target data (Fig. 1). As the source
domain is not available in this setting, we can only apply our validators to the target domain splits.
This means CORAL and MMD are not applicable, since they need both domains to compute their
scores. Following our results in Section 4.1.2 we use the target validation split for all validators as
the source data is absent in this case.

Results. Analogous to UDA, the results in Table 5 report the performance of each adaptation
algorithm and validation criterion combination, averaged over all 12 domain transfer SFDA tasks —
in terms of both test accuracy after HPO and the weighted Spearman correlation coefficient between
validation scores and testing accuracy. More detailed correlation plots are given in Appendix E.

How does unsupervised validation work in the absence of source data?  From the results
in Table 5 we can draw a set of conclusions analogously to UDA. Specifically, (i) Here, the best
validators are RankMe and V-measure, with V-measure closing up to 75% of the gap between the
baseline and oracle when combined with NRC. (ii) However the AAD and NRC algorithms are
highly sensitive to validator choice, with the weaker validators such as FMI and CHI producing
catastrophically poor performance, suggesting that SHOT might be preferred in practice even
though NRC has the best accuracy when paired with its preferred validator, and AAD when
validated with the oracle. (iii) Many algorithm-validator combinations lead to worse performance
than the baseline source-only model. This highlights an important point that in the absence of
highly reliable validation criteria, DA algorithms pose a risk of making the performance even worse.
This issue is one which is not widely analysed in academic DA but is obviously crucial. Please note
that we also included the model initialization (i.e. the source-only model) as one of the checkpoints
available for selection by the criteria. However, many validators fail to detect adaptation failure
and select a safe source-only model.

Test-Time Adaptation

Setup. We next adopt the TTA setting, where a pre-trained model adapts to the test data as it comes,
one batch at a time. For simplicity, we use the episodic setting [45] where the model is reset after
each batch. We use the most common TTA benchmark of CIFAR10-C, consisting of 15 versions of
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Table 6: Test-Time Adaptation on CIFAR10-C, at corruption level 5. We use the episodic setup where
the model is reset after each batch. For each algorithm, we include the source-only checkpoint
in the pool available to validators (indicated by the “+SO” suffix). The colour of a cell indicates
whether that model/validator combination beats the source-only model (green) or not (red).

‘RankMe AMI ARl V-Measure FMI = Silhouette DBI CHI BNM SND IM  Entropy Accuracy ‘ Oracle

SHOT+SO 78.38 37.37 36.85 37.69 36.86 36.50 38.60 43.87 4522 5348 46.80 39.14 - 86.24
TENT+SO 84.06 84.14 84.17 84.13 84.17 84.23 81.84 7598 84.22 79.89 84.21 83.20 - 84.76
Avg. 81.22 60.76  60.51 60.91 60.51 60.36 60.22 59.93 64.72 66.68 65.51 61.17 - 85.50
Avg. Rank 4.50 7.50 7.75 7.50 7.25 6.50 8.50 8.50 3.00 6.50 3.00 7.50 -
Correlation 0.10 0.13  0.14 0.13 0.14 0.13 -0.56 0.09 0.09 -0.55 0.08 -0.02 -

Source-only - - - - - - - - - - - 70.64

the CIFAR10 test set with various corruptions applied, including Gaussian noise, pixelation and
fog. Additionally, we investigate whether existing TTA algorithms are able to deal with the more
complex distribution shifts from Office-Home, using all 12 domain shift setups. For CIFAR10-C,
we use the pre-trained CIFAR10 checkpoint of [22] as our source-only model and initialisation
for the TTA algorithms. For Office-Home, we use the same source-only checkpoints as in the
UDA and SFDA sections above. Two algorithms are trained: SHOT [20] which uses information
maximisation and pseudo-labelling to align target representations and TENT [45] which adapts by
minimising the entropy of its predictions on the test batch. As this setting only exposes a single
batch to the model at a time, both training and validation use the same data. As in the SFDA setting,
CORAL and MMD are not applicable, since they need both domains to compute their scores. This
also means that there is no validator based on accuracy, as it requires source data to be computed.

Results. Tables 6 and 7 report the performance of each adaptation algorithm and validation criterion
combination averaged over all CIFAR-C and Office-Home TTA tasks.

Is Test-Time Adaptation effective when performing proper model selection?  The results for
CIFAR in Table 6 lead to a different conclusion from that of UDA and SFDA. (i) RankMe is again the
best validation criterion, and interestingly, we see that the top validators now manage to almost
match the oracle performance. (i) TENT is robust to the choice of validator, with consistently good
performance close to oracle. SHOT obtains reasonable performance only when RankMe validator
is used.

While TENT-based TTA plus various validators above show a success case for good practice
adaptation on CIFAR10-C, we next ask whether these good results persist to a real rather than
synthetic adaptation task. Table 7, shows the results of the Office-Home benchmark. From the
results, we can see that: (1) There is only a 2-3% gap between the oracle best case and the baseline,
suggesting that all algorithms struggle on this benchmark, even for best-case HPO. (2) Almost all
algorithm-validator combinations are worse than the 57% source-only accuracy, similar to the SFDA
case discussed earlier. When we compare the adaptation performance with- and without- access
to the source-only model in the pool of checkpoints for HPO, SHOT has little improvement. The
validators are not able to respond to the destructive adaptation and fail to pick a safe pre-adaptation
model. Thus, we suggest that the strong success of TTA methods on synthetic benchmarks may not
be representative of real-world adaptation problems, especially when required to use fair validation.

Conclusion

In this work, we performed a comprehensive study of HPO and model selection for domain
adaptation, covering 10 algorithms and 15 validators across three settings (UDA, SFDA and TTA). We
have found that previously unexplored validators like RankMe and V-Measure perform well across
several settings, but the optimal validator is setting and algorithm dependent. Thus practitioners
may wish to consider tuning sensitivity as a key factor for algorithm selection beyond reported



Table 7: Test-Time Adaptation on Office-Home. We use the episodic setup where the model is reset
after each batch. Algorithms that include the source-only checkpoint in the pool available
to validators are marked by the suffix “+SO”. The colour of a cell indicates whether that
model/validator combination beats the source-only model (green) or not (red), with a darker
red colour meaning it fails to achieve half of the source-only model performance.

‘RankMe AMI  ARI V-Measure FMI Silhouette DBI CHI BNM SND IM  Entropy Accuracy ‘ Oracle
SHOT ‘ 20.46 9.38  10.09 9.43 10.09 14.07 34.67 1206 9.10 35.58 10.13 7.52 - ‘ 59.05

TENT 42.40 37.57 42.79 43.49 40.77 2.25 3990 3.61 4493 3920 44.24 2.37 49.28
SHOT+SO 20.46 9.32 1240 9.12 12.05 14.84 3467 11.63 9.10 3558 10.81 7.54 - 60.20
TENT+SO 42.59 55.91 5591 55.91 55.91 6.35 39.90 45.09 46.01 39.20 45.75 2.37 - 57.15
Avg. 31.52 32.62 34.16 32.52 33.98 10.60 37.29 2836 27.56 3739 28.28 4.95 - 58.68
Avg. Rank 5.50 5.75 375 6.25 4.25 7.50 550 7.00 800 550 7.00 12.00 -
Correlation 0.28 022  0.25 0.22 0.29 -0.18 0.11  -0.05 -0.02 -0.03 0.02 -0.53

- - ) - - - B - 56.97

Source-only | - - -

performance on academic benchmarks. We have also highlighted some surprising results: (i) A
strong source checkpoint can be competitive with UDA algorithms when using the RankMe or
MMD validators. (ii) Even when validating among both source-only and algorithm checkpoints,
performance may be worse than abandoning adaptation altogether and simply using a source-only
model as selected by source accuracy - especially in SFDA and TTA. This is a major risk and failure
case that will preclude deployment of adaptation in real applications, and one which we encourage
future academic work to study. (iii) While TTA algorithms have attracted attention for their strong
performance on simple synthetic benchmarks, they fail on more complex distribution shifts such as
Office-Home. Future work should carefully consider model selection pipelines, choice of validators,
data splits and, at times, whether to perform adaptation at all.

Limitations

Since this paper covers multiple settings and many algorithms, we were only able to run each
algorithm on each domain shift with 10 hyperparameter choices. Ideally, this number would
be higher, but adapting many models is expensive, and in reality a practitioner would also face
computational limitations. If we had been able to increase this number, the effects would likely be
minor improvements in the highest scores achievable by the algorithms, but it would not guarantee
that any given validator would choose a better checkpoint. A second limitation is our preliminary
study of regression adaptation. Many validators are designed for classification and performance
when applied to regression may suffer. However, we view this as a call for study of validation criteria
across the full range of adaptation applications from regression to segmentation and detection.

Broader Impact Statement

As distribution shifts often occur in real-world problems, the use of domain adaptation techniques
to tackle them has become commonplace. We have highlighted weaknesses in the standard practice
found in DA literature which, if applied in safety-critical scenarios, could lead to catastrophic
outcomes. We have therefore outlined a set of better practices for practitioners looking to apply
DA to their problems and presented a more realistic view of the field’s current potential. Our
hope is that this will decrease the likelihood of bad outcomes in its real-world application. The
environmental impact of running a large-scale benchmarking study is significant. However, we
aim to provide a clear pipeline for future work to use, which can ultimately reduce unnecessary
computation due to bad practice.
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Table 8: Comparison of validation criteria for model selection in UDA for a regression task. We report
the target test MSE for the top models selected by each validator. Lower is better. The colour
of a cell indicates whether that model/validator combination beats the source-only model
(green) or not (red), with a darker red colour meaning it gets more than twice the MSE of the
source-only model performance.

RankMe AMI ARl V-Measure FMI Silhouette DBI CHI BNM MMD CORAL SND M Entropy MSE | Oracle
ADDA 17.52  43.96 44.44 43.96 44.44 46.69 16.50 18.31  46.69  16.76 17.49  17.52 1749 16.50  46.27 | 16.50
CORAL 45.06 4512 46.09 45.12 46.09 45.22 4498 46.68  47.02  47.02 47.02 4571  47.02 47.02 47.11 | 43.60
DANN 81.63 42.17 42.17 42.17 46.95 79.15 54.40 55.18 74.76  81.63 53.99 3522 81.63 54.32 4541 | 35.22
GAN 16.29  42.06 43.37 42.06 43.22 5SY75) 47.28 4941  47.60  16.29 16.80  53.74  40.53 31.59  44.10 | 16.29
MMD 64.96 46.86 46.94 46.86 46.94 90.67 55.63 138.98 138.98 64.96 63.46 4541  138.98 90.67 61.47 | 45.12
VADA 17.54 44.69 57.33 44.69 57.33 48.26 17.54 41.73 51.65 14.38 14.95 46.27 1438 55.82 48.44 | 14.38
Avg. | 40.50 44.14 46.72 44.14 47.50 60.62 39.39 5838 67.78  40.17 35.62 40.64  56.67 49.32 48.80 | 28.52
Avg. Rank | 6.33 5.42 8.42 5.42 8.58 11.33 5.50 10.00 12.58 6.92 6.25 6.25 8.50 8.33 10.17 -
Correlation T -0.31 0.13  -0.09 0.13 -0.16 -0.17 0.05 0.12 -0.25  0.17 0.12 -0.03  -0.07 -0.25 -0.29 -
Source-only 49.06 49.06 49.06 49.06 49.06 49.06 49.06 49.06 49.06  49.06 49.06 49.06  49.06 49.06 46.96 | 42.28

A Regression

Setup: We construct a regression dataset with a domain shift akin to MNIST-M [12]. The source
domain consists of 32x32 images where, for each image, a single digit taken from MNIST is pasted
onto a black background. The digit is randomly scaled between 4x4 and 16x16 pixels and its location
is randomised while ensuring the entire digit is visible. The label accompanying the image is the
top left (x1, y1) and bottom right (x,, y2) coordinates of the digit bounding box. The target domain
is constructed similarly, but instead of a black background, we use 32x32 regions cropped from the
BSDS500 dataset [2].

We discretize the label space as follows. The bounding box labels and predictions take the
following form {x1, y1, X2, o}, where each element is a real value between 0 and 1. The function g
discretizes each element in the vector into one of 8 uniformly spaced classes between 0 and 1. The
class of the full vector is then ¢ = q(x;) +8q(y;) + 82q(xz) + 83q(y2). This transformation into class
values is performed for all labels and predictions.

The architecture is the same as used for the MNIST-M experiments in the classification setting,
with an adjusted final layer for regression. The loss used on the source data is the mean squared
error. All other details are the same as in the above UDA setting. For this setup we train six
algorithms, ADDA [41], CORAL [39], DANN [10], GAN [13], MMD [42], VADA [38]. Many of the
validators we have considered so far rely on categorical labels and predictions. In this regression
setup we, therefore, discretize the label space as described above.

Results: Table 8 shows the results on this regression task.

Are conclusions still valid beyond image classification?  The overall results show a similar trend
to the observation of UDA for image classification. 1) Now, CORAL works as the best validator.
However, there is no one validator working consistently well for all methods. 2) CORAL, as a UDA
method, works most robustly with all validation criteria, leading to all selected results close to its
oracle performance, which, though, is not ideal. However, we can see now the correlations are very
low for all validators, indicating that there is no reliable validator in this case that works robustly
to select a good UDA model.

B Assets

Code: Our anonymized code base is available at https://anon-github.automl.cc/r/
better-da-4936. In this work, we make use of the KevinMusgrave/pytorch-adapt,
DequanWang/tent, vita-epfl/ttt-plus-plus and matthijsz/weightedcorr libraries, all available
on GitHub and all released under the MIT License.

Data: The creators of the MNIST [19], MNIST-M [10] and Office-31 [34] datasets have not provided
obvious licenses, but both datasets were created for open academic use. Both VisDA-2017 [29] and
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Office-Home [43] are released under custom licenses allowing non-commercial research and use
for educational purposes.

Training Details

Settings

To fully clarify our adaptation settings, we present in algorithms 1, 2 and 3 the benchmarking
procedure for UDA, SFDA and TTA, respectively.

Algorithm 1 UDA benchmarking setup.

Require: Source data Dy, target data Dr, algorithm A, parameters 0, hyperparameter search space
H, validator V.

for hyperparameters h ~ H do > Sample hyperparameters
0;‘; = arg ming A(0, Ds, Dr; h) > Optimise model

end for

h* = argmax, V(6;,Ds, Dr) > Select best hyperparameters

Algorithm 2 SFDA benchmarking setup.

Require: Target data Dr, algorithm A, parameters 8, hyperparameter search space H, validator V.

for hyperparameters h ~ H do > Sample hyperparameters
9;1 = arg ming A(0, Dr; h) > Optimise model

end for

h* = arg max, V(6;,Dr) > Select best hyperparameters

Algorithm 3 TTA benchmarking setup.

Require: Test data Dr, algorithm A, parameters ¢, hyperparameter search space H, validator V.
for each batch X ~ Dr do

for hyperparameters h ~ H do > Sample hyperparameters
0=0¢ > Reset model
02 = argming A(6,X; h) > Optimise model
end for
h = argmax, V(0;,X) > Select best hyperparameters
end for

Data splits: We split all domains of all datasets into train (60%), val (20%) and test (20%) splits.
Optimisation: The optimiser for UDA classification, UDA regression, and SFDA is Adam with
parameters {betas=(0.9, 0.999)} and weight decay of 1e — 4. For TTA the optimizer is SGD
with a momentum of 0.9 (the optimizer is reset after each batch, like the model parameters). The
learning rate across all settings is sampled from a log-uniform distribution over [1e-5, 1e-11].
We train for 100 epochs for MNIST-M and MNIST-MR, 200 on VisDA-2017 and Office-Home. On
Office-31 it is 200 if amazon is the target and 2000 otherwise. The number of saved checkpoints is
always 20. For our episodic TTA setup, we perform 20 updates on each batch, saving a checkpoint
after each update.
Architecture: The backbone for experiments on MNIST-M and our regression version MNIST-MR
is a LeNet-5? [18], and for all other experiments, a ResNet50 [14]. The classifier/regressor is an
MLP with two blocks of {Linear, ReLU, Dropout} followed by a final linear layer.

2The LeNet backbone consists of the convolutional block {Conv, ReLU, MaxPool, Conv, ReLU, MaxPool}.
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Source Training: The source model consists of the backbone and classifier/regressor as defined
above. When using a ResNet50 backbone, we initialise it with ImageNet pre-trained weights
(available in PyTorch [27] as resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) and freeze
the backbone during source training, thereby only updating the classification head. When using a
LeNet backbone, we update the entire network during source training. For TTA on CIFAR10-C we
use the pre-trained CIFAR10 checkpoint provided by [22] as initialisation. In all other cases, the
best model checkpoint as selected by source validation accuracy is used as the initialisation for all
adaptation algorithms.

Adaptation: During UDA adaptation, the model receives a batch consisting of 64 source examples
(with labels) and 64 target examples (without labels). For SFDA, the model only receives the target
examples.

Hyperparameters

Throughout the experiments conducted in this work, we perform random search for finding the
best hyperparameters, with 10 random choices per algorithm. Better performance can potentially
be reached by using e.g. BayesOpt. In this work, we focus on analysis and prefer the simpler
random search to (1) enable computing a correlation score between the validation criteria and test
performance (correlation computed over both high and low-quality checkpoints), as we report in our
main tables. Also (2) because our comparisons involve comparing the “best” possible checkpoint
with the one discovered by each validator, we did not want to risk aggressively optimising a
bad validator and thus having no good checkpoints available for selection by the oracle. The
hyperparameter search spaces for all algorithms are specified in Tab. 9. Whenever possible, these
are identical to those used in [26].

Validation Details

Validators

A recent work systematically investigated the possible validation criteria for UDA, which we
summarise below using ¢ to denote the one-hot predictions of the model and y as the one-hot
ground truth labels. Source accuracy: d is simply the accuracy metric and Dy can be a training or
validation set from a source domain.

Ny
Ao D) = = D15 = ) )
i=1

where 1(+) is the indicator function that evaluates to one if its argument is true and zero otherwise.
Entropy: Entropy has been used in an adaptation loss [45] as well as for model selection. In this
case, d computes the confidence of the model predictions, as measured by the entropy of the
predicted label distribution, and Dy is typically the training or validation set from an unlabelled
target domain. We further investigate the effect when Dy comes from the source domain.

Ny
Ao D) = 5= 3 (P i = fo(@), (©)

i=1

where «
H(p) = - Z priilogpyj; 7)

j=1

computes the entropy of the categorical distribution, p. Information maximisation (IM): IM is
often used as an adaptation loss as well [37] to maximise the diversity of prediction in addition to
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Table 9: Hyperparameter search spaces for all algorithms considered. Some algorithms are used in
multiple settings (e.g. DANN and MMD are used for UDA classification and regression and
SHOT is used for SFDA and TTA). In such cases, the search spaces are the same across settings.

Algorithm Hyperparameter Search Space
Aatdoc (o, 11
ATDOC Kardoe int([5, 251, step=5)
AL o, 1]
Abnm [0, 1]
BNM AL o, 1]
AD (o, 1]
DANN Agr log([0.1, 10]1)
AL (o, 11
Amee o, 11
MCC Tonce [0.2, 51)
AL fo, 11
Nica int([1, 101)
MCD Adisc [0, 1]
AL (o, 1]
AF [0, 1]
MMD Yexp int([1, 81)
AL [0, 1]
Ap o, 1]
ADDA e [0, 1]
AF [o, 11
CORAL A [0, 1]
AD (e, 11
GAN G [e, 1]
AL [o, 11
Ap fo, 11
A [0, 1]
VADA Ay [0, 1]
AE fo, 11
AL fo, 11
Aaad [0, 1]
AAD Kaad int([3, 5]
AL fo, 11
NRC Kure int([2, 5]
KK, ¢ int([2, 5]
Acls [0, 1]
SHOT Aent Lo, 11
AL o, 1]
TENT AL [e, 1]
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Adjusted Mutual Information (AMI): This is the adjusted mutual information between predicted
and cluster labels.

d(fe, Dv) = AMI(p, CL(Dvy)) )

where CL(Dy) is the cluster labels for validation set Dy, which can be the target training or
validation set.

V-Measure: Similarly to AMI, this is a metric defined over clustering labels and predictions. It is
defined as the harmonic mean between homogeneity and completeness [33].

Other clustering measures: Along with AMI and V-Measure, we compute several other related
clustering measures, namely, adjusted Rand index, Fowlkes-Mallows index, silhouette score,
Davies—Bouldin index and Calinski-Harabasz index.

RankMe: Originally proposed for estimating the transferability of self-supervised representations
[11], RankMe approximates the rank of the feature matrix on pre-training data. We investigate its
application to both source and target domain data.

CORAL: CORAL is an adaptation algorithm that aligns the feature distributions of the source and
target data by minimising second-order statistics [39]. Their loss can be used as a validator and is
defined as the difference between the covariance matrices of the two domains, Cs and Cr.

1
d(fe, Dy) = CORAL(Ds, Dr) = EHCS - Crlla (10)

Maximum mean discrepancy (MMD): A common metric used to compute the discrepancy of
feature distributions from source and target domains [42], which can be used with the assumption
that the trained model may have a good target performance when the source and target domain
features are aligned.

d(fo, Dv) = MMD(Ds, Dr)

Ns Ns

1
= k(si, 83
NS(NS_D;; (51553 fo)
1 Nr Nt
+— k(t;,t;
NT(NT—l);;( ) (11)
Ns Nr

- NSZNT Z Z k(si,t)),

i=1 j=1
~[la - bl
k(a,b) = exp E—

where s and t are the features extracted for the data from source and target domains, respectively.
When MMD is used for validation, the validation set combines the train sets or validation sets of
source and target domains. Soft neighbourhood density (SND): SND computes the entropy based
on the gram matrix of the validation features.

d(fe, Dv) = H(a(X, 1)),
X =vlv,

(12)

where v are the data features, «(-) and 7 are softmax function and temperature. Here Dy can be
the train or validation set of source or target domains. Batch nuclear-norm maximisation (BNM):
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Figure 3: Computation time of UDA validators on (top) Office31-AD and (bottom) VisDA-TV. The
clustering-based validators are all significantly more compute-intensive, though it still takes
only half a second to compute for a total of 200k datapoints on the VisDA dataset.

BNM was originally a UDA algorithm, which maximises the nuclear norm of the prediction matrix
in a batch, being repurposed as a validation criterion.

d(fo. Dy) = || P||., P = fo(Dy) (13)

where P € RNV*C the prediction matrix of whole data in Dy using fy. And ||||. computes the
nuclear norm.

Time Complexity

Most validators are very quick to compute, requiring only a loop through the features, logits or
predictions or some matrix multiplications on the same. Those requiring the extra clustering step
(AMI, ARI, CHIL DBI, FMI, V-Measure and Silhouette) all take significantly longer. Nonetheless, no
validator is prohibitively expensive compared to the time required to adapt the models. See Fig. 3
for numbers on two representative datasets.

Validator Versions in Main Paper

For the tables and figures in the main document, we present a single version of each validator, the
one that gives the highest performance when averaged over algorithms and datasets. However,
there are multiple options for each, for example, which data split is used or whether we use features,
logits or prediction vectors to compute the score. Table 10 shows which versions are used for each
validator.

Correlations

Previous works have focused on identifying the validators that have the strongest correlation with
the oracle [25, 1]. Our main focus is on finding the ones that select the top-performing models and
as we see in the main document, these different methods do not always lead to the same selection.
For completeness, we include in Figs. 4 to 7 the weighted Spearman correlations (as used in [25]) of
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all validators considered. Additionally, the comparison of train and val splits for validators in terms
of correlation is shown in Fig. 8.

F Compute Resources

The majority of experiments were run on an 8xA6000 internal cluster machine. The total number of
algorithms we have trained and validated in this work is 2,440. Assuming on average the training
time is 1h per algorithm, this means 2,440 GPU hours have been used.
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Figure 8: Comparison of split for evaluation of validation criteria in the UDA (classification) setting.

We report the average weighted Spearman rank correlation between each validator and
target test accuracy when using the following data splits for computing validators: (orange)
target train data and (blue) target validation data.
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