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Abstract
Federated learning (FL) mechanisms typically re-
quire each client to transfer their weights to a
central server, irrespective of how useful they are.
In order to avoid wasteful data transfer costs from
clients to the central server, we propose the use
of consensus based protocols to identify a sub-
set of clients with most useful model weights at
each data transfer step. First, we explore the ap-
plication of existing fluid democracy protocols
to FL from a performance standpoint, compar-
ing them with traditional one-person-one-vote
(also known as 1p1v or FedAvg). We propose
a new fluid democracy protocol named viscous-
retained democracy that always does better than
1p1v under the same assumptions as existing fluid
democracy protocols while also not allowing for
influence accumulation. Secondly, we identify
weaknesses of fluid democracy protocols from an
adversarial lens in terms of their dependence on
topology and/ or number of adversaries required
to negatively impact the global model weights. To
this effect, we propose an algorithm (FedVRD)
that dynamically limits the effect of adversaries
while minimizing cost by leveraging the delega-
tion topology.

1. Introduction
Federated Learning (FL) offers a promising paradigm for
training machine learning models by keeping sensitive data
localized on client devices and only sharing model updates
with a central server for aggregation. This approach pri-
oritizes data privacy, as it allows for the collaborative im-
provement of a global model without direct access to raw
client data. Typically, the central server averages all client
weights to arrive at the global weights (McMahan et al.,
2017), which is equivalent to one-person-one-vote (1p1v).
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This requires model weight transfer from all clients to cen-
tral server at every training step resulting in a high cost
overhead. In this paper, our first contribution is the appli-
cation of fluid democracies to FL so as to leverage their
inherent property of reducing number of clients that transfer
data to the central server, thereby reducing data transfer
cost.

Fluid democracies (Boldi et al., 2011; Kahng et al., 2018;
Armstrong et al., 2024) enable a voter to delegate their vote
to a more competent neighbor, who then casts a vote on both
their behalf. Liquid democracy reduces the number of voters
and achieves improved performance over 1p1v voting under
mild conditions. However, it is plagued by the disadvantage
of few voters accumulating a high number of votes, which
can affect performance if they are misaligned. This makes
liquid democracy vulnerable to malicious agents. Viscous
democracy was proposed to reduce influence accumulation
by decaying the value of a vote with every delegation hop.
Our second contribution is to show that viscous democ-
racy achieves sub-1p1v performance more often than liquid
democracy. Subsequently, we identify that this sub-1p1v
performance arises due to a topological dependence. Thus,
although viscous democracy addresses the issue of mis-
aligned voters to some extent, the topological dependence
introduced can be exploited by adversaries.

As our third contribution, to address these limitations, we
propose viscous-retained democracy that a) achieves higher
performance than 1p1v under same conditions as liquid
democracy, b) addresses the above weakness of viscous
democracy by reducing adversaries’ ability to exploit topo-
logical dependencies and c) maintains the beneficial charac-
teristic of viscous democracy by limiting influence aggrega-
tion. However, it incurs a higher cost than both liquid and
viscous democracies, that stems from a larger number of
voters casting their vote. To this effect, we propose an al-
gorithm that leverages viscous-retained democracy coupled
with a threshold to solve the dual-optimization problem of
cost and robustness by effectively leveraging the delegation
topology.

Section 2 provides an overview of related work. Section 3
introduces the formal theoretical setup, outlining our social
choice framework, delegation function and delegation graph.
Section 4 presents our theoretical results on voting processes.

1



Fluid Democracy in Federated Data Aggregation

Section 5 details the experimental analysis conducted to
validate the above theoretical results following which we
propose an algorithm to effectively apply our theoretical and
experimental findings in FL. Finally, Section 6 discusses
our next steps and potential extensions.

2. Related Work
As this work lies at the intersection of adversarial defense
and election mechanisms, we detail related work on both
aspects in the context of FL.

2.1. Adversarial Defense in FL

Several existing solutions protect against vulnerability of
FL to malicious client updates at the central server. (Blan-
chard et al., 2017) introduced robust aggregation strategies
like Krum and Trimmed Mean, which selectively filter or
disregard outlier updates. Building on this, (Yin et al., 2018)
further explored Byzantine-tolerant gradient descent, provid-
ing theoretical guarantees for robustness. Recognizing the
inherent resilience of median-based approaches, subsequent
research gravitated towards geometric median variants. (Pil-
lutla et al., 2022) proposed Robust Federated Aggregation
(RFA), leveraging the geometric median of local model
updates to effectively counter poisoning attacks. Beyond
statistical robustness, (Cao et al., 2020) introduced FLTrust,
a mechanism that evaluates the trustworthiness of client
updates using root of trust to filter suspicious contributions.
Zeno (Xie et al., 2020) prioritized updates that demonstra-
bly improve the global model’s performance on a validation
set. (Li et al., 2023) provides empirical comparisons of
various schemes under diverse attack scenarios and data
heterogeneity.

Contrary to the above methods, the central server in our
proposed framework a) dynamically adapts to provide ro-
bustness leveraging information of the delegation topology
adopted by the clients and b) accepts data transfer from
a subset of clients in the delegation graph elected by the
clients themselves, both occurring at every data transfer
step.

2.2. Client Election Mechanisms in FL

FedVote (Yue et al., 2022) and FedVoting (Liu et al., 2021)
utilize plurality voting, treating validation results as votes
to determine the optimal global model. Similarly, (Sohn
et al., 2020) introduce election coding to identify major-
ity opinions during aggregation. DETOX (Rajput et al.,
2019) employs a hierarchical aggregation strategy based on
majority votes within groups of updates. Furthermore, elec-
tion mechanisms are crucial for robustness against attacks
during aggregation, as demonstrated by DRACO (Chen
et al., 2018) and ByzShield (Konstantinidis & Ramamoor-

thy, 2021), both of which use majority voting to defend
against malicious contributions.

More recent fluid democracy voting techniques such as
liquid democracy (Kahng et al., 2018; GÖlz et al., 2021;
Bersetche, 2024) offer avenues for voters to delegate their
vote to a more informed neighbor so as to increase over-
all performance. Viscous democracy (Boldi et al., 2011;
Armstrong et al., 2024) builds on it to reduce the extent
of influence aggregation in addition to better overall per-
formance in certain cases. In this paper, we present the
applicability of fluid democracy protocols as client-side
aggregation methods in FL to enable efficient weight trans-
fer from clients to the central server at each training step,
leading to cost benefits. In addition, we propose viscous-
retained democracy and explore adversarial robustness of
viscous and viscous-retained democracy in FL.

3. Model
In this section, we formally define our social choice frame-
work, delegation process, delegation graph and specific
graph topologies. (Berinsky et al., 2024; Armstrong et al.,
2024).

3.1. Social Choice Framework for Federated Learning

We consider a fundamental epistemic social choice frame-
work involving n voters, denoted as V = {v1, . . . , vn}, and
two possible alternatives, A = {a+, a−}. We posit that
a+ represents the objectively correct outcome, which all
voters collectively endeavor to select. Each voter vi ∈ V
possesses a competency level qi ∈ Q within the interval
[0, 1], signifying the probability that vi will vote “correctly”
(i.e., cast a vote for a+).

Mapping the above terminology to the FL setting, voters
refer to clients, qi is relevance of client vi’s data to the
global task at hand, a+ is the set of universal data points
across clients relevant to the global task while a− is the
set of universal data points across clients detrimental to the
global task. Voting correctly refers to vi providing model
weight updates from data which is a subset of a+.

3.2. Delegation Process

The voters are interconnected through an underlying graph
G = (V,E), where E is a set of undirected edges illustrat-
ing the relationships between voters through which delega-
tions can occur.

Each voter vi can undertake the following action: they can
delegate α of their vote to a voter in their set of neighbors,
NG(i) = {j ∈ V |(i, j) ∈ E} and they keep β(1 − α) of
their vote them supporting a+ with probability qi. The set-
ting of liquid democracy is described by α = 1 and viscous
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democracy by β = 0 with α ∈ [0, 1]. In our proposed
viscous-retained democracy, we have β = 1 and α ∈ [0, 1].
If a voter chooses to vote directly without delegation, we
categorize them as a guru.

The delegation process is formalized by a function d : V →
V , where d(vi) = vj signifies a delegation from voter vi
to voter vj . This delegation can travel transitively across
multiple hops until it reaches a guru. The notation d∗(vi)
represents the repeated application of d(vi) until a guru
is reached, effectively identifying vi’s guru. The set of
all gurus is denoted as G(V ). In our paper, we employ
the Upward Delegation process wherein each delegating
voter only delegates to a neighbor more competent than
themselves, hence no cycles are formed. We chose this
delegation process because it is widely used in relevant
literature (Berinsky et al., 2024; Armstrong et al., 2024) and
intuitively aligns with the idea that a voter would like to
delegate to a more competent neighbor.

3.3. Delegation Graph

The application of a delegation function creates a directed
subgraph of G, which we refer to as the delegation graph,
D = (V, {(i, j) ∈ E | d(i) = j}). This graph selectively
includes directed versions of edges from E only when a
delegation relationship exists between the connected nodes.

3.4. Accuracy

To ascertain the winner between the two alternatives, we em-
ploy weighted plurality voting, a mechanism consistent with
May’s theorem (May, 1952). The process involves each
guru, leveraging their inherent competence, casting their
entire accumulated weight in favor of a single alternative.
The outcome of the election is decided by the alternative
that garners the highest cumulative weight. The likelihood
of a+ being chosen as the winning alternative is referred to
as accuracy. This accuracy is directly influenced by the es-
tablished delegations and the individual voter competencies
while also exhibiting a dependence on the parameter α.

3.5. Star and Chain Graphs

We define star and chain graphs by parameters (s, ns, c, nc)
which establish a delegation graph comprising s star com-
ponents with ns nodes and and c chain components with nc

nodes. Each star component features one guru at its center
and ns−1 delegators, while each chain component contains
nc − 1 delegators, with a guru positioned at one end.

4. Vote Propagation
In this section, we analyze liquid and viscous democracy
with respect to the do no harm property and propose viscous-
retained democracy to address the shortfall. The three key

theoretical results are

• Liquid democracy satisfies do no harm property under
mild assumptions.

• There exist cases where viscous democracy does not
satisfy do no harm property when liquid democracy
does

• Viscous-retained democracy satisfies do no harm prop-
erty under the same assumptions as liquid democracy.

4.1. Do No Harm Property

We state the do no harm (DNH) property (Kahng et al.,
2018) as the following :

For a mechanism M and a graph G, we define the gain over
direct democracy D as

gain(M,G) = PM (G)− PD(G).

The objective of the do no harm property to never signifi-
cantly underperform direct voting formally defined as -

• A mechanism M satisfies the do no harm property if
for all ε > 0, there exists n1 ∈ N such that for all social
networks Gn on n ≥ n1 vertices, gain(M,Gn) ≥ −ε.

The DNH property stipulates that any potential loss of del-
egative voting relative to direct voting must asymptotically
approach zero as the graph size tends to infinity. This im-
plies that while small instances might show delegative vot-
ing performing worse than direct voting, this disadvantage
should vanish in large-scale settings.

We state that DNH is of utmost importance to us as the gold
standard for FL aggregation of weights is FedAvg which is
equivalent to direct democracy. Hence, always performing
better than direct democracy would imply performing better
than FedAvg in the FL setting.

We begin by stating the following lemma (Berinsky et al.,
2024)
Lemma 4.1. If M is a mechanism, there is an β ∈ (0, 1)
and C : N→ N with C(n) ∈ o(n) such that

max -weight(Gn) ≤ C(n) (1)
n∑

i=1

weighti(Gn) · pi −
n∑

i=1

pi ≥ 2βn (2)

then M satisfies do no harm property.

Assumption 4.2. In all the proofs in this section, we as-
sume that the number of edges |E| in the delegation graph
D having n vertices V satisfies |E| ≥ C(n) for some
C(n) ∈ O(n). We also assume that no two voters have
equal competencies.
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4.2. Liquid Democracy

In liquid democracy using the upward delegation process,
a voter may either delegate their entire vote to a more com-
petent neighbor or vote independently if no such neighbor
exists (Kahng et al., 2018). The voting weight of a guru
is determined by the total number of direct and indirect
delegations they receive.
Lemma 4.3. Liquid democracy satisfies do no harm prop-
erty in upward delegation processes, provided that no guru
has O(n) delegators (direct or indirect), and Assumption
4.2 holds.

Proof. From the first condition, Equation 1 holds directly.

To establish Equation (2), since delegation happens only to
more competent neighbors, the minimum improvement in
competence per delegation is cmin > 0. By Assumption 4.2,
no two voters have equal competence values. Additionally,
since the number of delegations is at least C(n), the cumula-
tive effect of competence differences across all delegations
is some constant times n, satisfying Equation 2.

4.3. Viscous Democracy

In viscous democracy (Boldi et al., 2011), each hop a delega-
tion traverses by reduces its weight by a constant dampening
factor, α ∈ [0, 1], referred to as the viscosity. Consequently,
the weight of each voter vi is defined as:

wi =

{
0 if vi /∈ G(V )∑

p∈Path(−,i) α
|p| otherwise

where Path(−, i) denotes all delegation paths that terminate
at vi and G(V) is the set of all gurus. Key implications are:

• When α = 1, viscous democracy simplifies to the
standard liquid democracy model, where no weight is
lost during delegation.

• For smaller values of α, guru weights are directly influ-
enced by the structure of the delegation graph. Specifi-
cally, the weight contributions from voters located fur-
ther away from their guru diminish more significantly
compared to those closer to their guru.

Although viscous democracy has shown advantages over
liquid democracy in some upward delegation settings (Arm-
strong et al., 2024), it falls short of meeting a key criterion
for a well-functioning voting system: the do no harm prop-
erty, even under the assumptions used for liquid democracy.
We present the following theorem to show the same.

Theorem 1. Under the upward delegation process, viscous
democracy does not satisfy do no harm property under iden-
tical assumptions used for liquid democracy.

Proof. Consider n voters are divided into two equally sized
families of disjoint subgraphs. The first n/2 voters form
chains of length 10, each voter in these chains has compe-
tence in the interval (b, c); the guru in each chain accrues at
most

9∑
k=0

αk ≤ 1

1− α

votes. The remaining n/2 voters form stars of size 10, each
leaf and each central guru having competence a and all
other nodes having competence in the range (q,a), so that
the total weight of each guru is 1 + 9α. Before delegation,
the mean competence of the group is at least q+b

2 . After
viscous delegation, the weighted mean competence is at
most (

1
1−α

)
c + (1 + 9α) a

1
1−α + (1 + 9α)

.

Concretely, with α = 0.5, q = 0.39, a = 0.4, b = 0.65, and
c = 0.7, each chain root accumulates at most 1/(1−α) = 2
votes while each star root accumulates 1 + 9α = 5.5 votes.
Under these weights, the mean competence after delegation
falls from above 0.5 (in direct voting) to at most 0.48 (in
viscous democracy). By the Condorcet Jury Theorem, as n
increases, direct voting thus converges to the correct major-
ity decision with probability tending to 1, whereas viscous
delegation converges to the wrong decision with probability
tending to 1. Hence, viscous democracy can strictly worsen
collective accuracy and fails the ’do no harm’ requirement.
This completes the proof.

We observe that the primary reason such cases arise is
the dynamic nature of the total number of votes. As a
result, there are scenarios where a larger fraction of high-
competence votes is lost during delegation compared to
lower-competence votes, leading to a decrease in the overall
mean competence. Voters with relatively high competence
located at the end of chain-like topologies tend to lose a
large fraction of their voting weight, whereas voters with
low competence in star-like topologies retain a significant
portion of their voting weight. Consequently, each del-
egation does not necessarily result in a strict increase in
competence, as there different amount of loss of votes. Mo-
tivated by this observation, we propose a new delegation
mechanism: viscous-retained democracy.

4.4. Viscous-retained democracy

In viscous-retained democracy, similar to viscous democ-
racy above, each hop a delegation traverses reduces its
weight by a constant dampening factor, α ∈ [0, 1]. In addi-
tion, in viscous-retained democracy, the delegator retains
1− α fraction of their vote post delegation. Consequently,
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the weight of each voter vi is defined as:

wi =

{∑
p∈Path(−,i)(1− α) ∗ α|p| if vi /∈ G(V )∑
p∈Path(−,i) α

|p| otherwise

where Path(−, i) denotes all delegation paths that terminate
at vi and G(V) is the set of all gurus. Key implications are:

• When α = 1, viscous-retained democracy also simpli-
fies to the standard liquid democracy model, where no
weight is lost during delegation.

• The number of votes remain constant irrespective of
the value of α. The weight of gurus remain same as
in the case of viscous democracy, thus retaining its
ability to reduce accumulation of votes in the hands of
misaligned voters.

We demonstrate that, in contrast to viscous democracy,
viscous-retained democracy preserves the do no harm prop-
erty requiring identical conditions as liquid democracy.

Theorem 2. Viscous-retained democracy satisfies the Do
No Harm property in upward delegation processes, provided
that no guru has O(n) delegators (direct or indirect), and
Assumption 4.2 holds.

Proof. From the first condition, Equation 1 holds directly.

To establish Equation 2, since delegation happens only to
more competent neighbors, the minimum competence dif-
ference between any delegator and their chosen guru is
cmin > 0. Let m be the length of the longest path in the del-
egation graph D. Since no guru hasO(n) delegators, m is a
constant. Thus, αm > 0. Hence, the minimum competence
increase per delegation is cmin · αm. By Assumption 4.2,
no two voters have equal competence values. Additionally,
since the number of delegations is at least C(n), the cumula-
tive effect of competence differences across all delegations
is some constant times n, satisfying Equation 2.

We motivate the use of viscous-retained democracy by high-
lighting its improved robustness against malicious agents
compared to standard viscous democracy. In viscous-
retained democracy, the most influential voters retain the
same voting power as viscous democracy, while the overall
vote mass in the system is increased. This enhancement not
only increases robustness but also ensures that do no harm
property is satisfied whenever it holds for liquid democracy.

5. Experimental Analysis
In networks composed entirely of star and chain topolo-
gies, viscous democracy can be viewed as a special case of

viscous-retained democracy, specifically the case in which
only voters with weight greater than 1 are permitted to vote.
In FL scenarios, where communication costs are significant,
minimizing the number of active voters is essential. How-
ever, reducing the number of voters increases the system’s
vulnerability to adversarial attacks. To address this trade-off,
we propose a hybrid model that blends viscous and viscous-
retained democracy. This hybrid model introduces a tunable
threshold parameter τ ∈ (0, 1): lowering τ increases the
number of voters and thereby improves robustness, while
higher values reduce communication overhead by limiting
participation.

We consider a network n with 40 nodes such that nc is 10
and c is 4, wherein the guru is positioned at one end of
each and α = 0.5. In order to ascertain the clients that will
send their model weights to the central server, we pick a
threshold τ . The clients who have vote share higher than τ
after all clients vote end up transmitting their model weights
to the central server.

Each transfer of model weights to the central server incurs
a cost c. The total data transfer cost ctotal is the product
of cost c and the number of clients that are elected to send
model weights to the central server.

We now consider an adversary with a fixed budget cadv. The
number of adversarial clients that can actively transfer data,
denoted nadv, is determined by the integer division of cadv by
the cost per client c. The adversary strategically arranges its
nadvtot clients in a topology that maximizes their influence.
We note that while the adversary deploys a total of nadvtot
agents, only the nadv clients are capable of casting votes
i.e., they are the only ones to accumulate votes above the
specified threshold.

We present our adversarial robustness analysis based on the
optimal network topology an adversary might construct to
attack the voting network of size n. For example, in the case
of τ = 1, which corresponds to standard viscous democracy,
wherein only four agents cast votes, each accumulating
slightly less than two votes. Therefore, the adversary would
need to secure at least eight votes to gain a majority.

As an example, assuming that the cost per vote lies between
0.04 and 0.05, the adversary can afford to activate four core
agents within their subnetwork. To collectively accumulate
the required eight votes, each of these core agents must
receive additional delegations, which would require con-
necting two more agents to each core as alpha is equal to
0.5. As a result, the adversarial network must comprise at
least 12 agents in total in this case. In Figure 1, we plot the
minimum number of adversaries required to successfully
gain a majority of the given voting network at a certain total
cost of data transfer for various values of τ .

From Figure 1, we find that lowering the threshold τ in-
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Algorithm 1 FEDVRD
1: Input: w0 ← random initialization
2: Server:
3: for Iteration t← 1 to T do
4: Broadcast wt−1 to all clients
5: Receive delegations, compute votes vti and optimal

τ
6: Receive updates from clients with vti > τ

7: wt
n ←

∑
i v

t
i w

t
i,n∑

i v
t
i

8: end for
9: Client:

10: for Client i do
11: Receive wt−1 and do local training wt

i ← wt−1 −
rt−1∇ℓi(wt−1;Di)

12: Compute similarity sti ←
⟨wt

i ,w
t−1⟩

∥wt
i∥ ∥wt−1∥

13: Delegate/vote and send decision to server
14: if server requests weights then
15: send wt

i

16: end if
17: end for

Figure 1. Plot depicting the optimal τ for adversarial robustness at
a fixed total data transfer cost

creases the cost of data transmission, since more voters are
involved in the process. However, with a low threshold, the
system becomes more robust, more adversaries are needed
to successfully manipulate the outcome. This reveals a
trade-off, as we allow for higher data transmission costs,
we can adopt a lower threshold, which in turn increases
the system’s resistance to manipulation. Thus, improving
robustness comes at the expense of higher transmission cost.
The optimal τ for a certain cost for maximum adversarial
robustness is shown in Figure 1.

In order to leverage this tradeoff effectively at each data
transfer step, we propose FedVRD in Algorithm 1. At the
start of time step t, the server broadcasts weights wt−1 to

all clients. The clients then perform local training to obtain
their respective local weights wi

t. The clients then compute
the similarity sit between their local weights wi

t and wt−1

received from the server. The clients then broadcast sit to
their neighbors. Post this, all clients make the decision on
whether they would like to delegate to one of their neighbors
or transfer their own weights wi

t for timestep t. This decision
is relayed to the server. The server then computes an optimal
τ given the topology of the delegation graph. The server
then requests for local weights wi

t from clients with acquired
votes greater than τ . The selected clients then transmit
their local weights to the server. The server applies the
acquired votes to the weights to compute the global update
wt marking the end of timestep t. This process is repeated
for number of timesteps required.

6. Future Work
Our future work includes obtaining empirical results on real
world datasets and identifying optimal threshold values τ
for arbitrary graph structures. Another potential direction is
to investigate if the number of instances that violate the do
no harm property decreases strictly as τ increases, in more
general graph structures. Finally, establishing convergence
guarantees for FL utilizing viscous and viscous-retained
mechanisms is a promising direction.
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