
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING OFFLINE-TO-ONLINE REINFORCEMENT
LEARNING WITH Q CONDITIONED STATE ENTROPY
EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Studying how to fine-tune offline reinforcement learning (RL) pre-trained policy
is profoundly significant for enhancing the sample efficiency of RL algorithms.
However, directly fine-tuning pre-trained policies often results in sub-optimal
performance. This is primarily due to the distribution shift between offline pre-
training and online fine-tuning stages. Specifically, the distribution shift limits
the acquisition of effective online samples, ultimately impacting the online fine-
tuning performance. In order to narrow down the distribution shift between offline
and online stages, we proposed Q conditioned state entropy (QCSE) as intrinsic
reward. Specifically, QCSE maximizes the state entropy of all samples individ-
ually, considering their respective Q values. This approach encourages explo-
ration of low-frequency samples while penalizing high-frequency ones, and im-
plicitly achieves State Marginal Matching (SMM), thereby ensuring optimal per-
formance, solving the asymptotic sub-optimality of constraint-based approaches.
Additionally, QCSE can seamlessly integrate into various RL algorithms, enhanc-
ing online fine-tuning performance. To validate our claim, we conduct extensive
experiments, and observe significant improvements with QCSE ( about 13% for
CQL and 8% for Cal-QL). Furthermore, we extended experimental tests to other
algorithms, affirming the generality of QCSE.

1 INTRODUCTION
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Figure 1: Demonstration of QCSE.

Offline RL holds a unique advantage over online RL, as it
can be exclusively trained using pre-existing static offline RL
datasets, eliminating the needs for interactions with the envi-
ronment to acquire new online samples (Levine et al., 2020).
However, offline RL encounters specific limitations, includ-
ing the challenges of learning sub-optimal performance, and
the risks of overestimating out-of-distribution (OOD) state ac-
tions (Kumar et al., 2020a), and limited exploration, particu-
larly when the offline dataset is sub-optimal and fails to pro-
vide sufficient coverage (Lei et al., 2024). Therefore, we need
to further fine-tune the offline pre-trained policy in online set-
ting to address the aforementioned limitations (Fujimoto and Gu, 2021; Kostrikov et al., 2021; Wu
et al., 2022; Mark et al., 2023).

Drawing the inspiration from modern machine learning, where pre-training is succeeded by online
fine-tuning on downstream tasks (Brown et al., 2020; Touvron et al., 2023), it seems plausible to
further enhance the performance of offline pre-trained policy through the process of online fine-
tuning. However, offline algorithms often confine the offline pre-trained policy’s likelihood within
offline support, resulting in unstable fine-turning performance due to distribution shifts between
offline pre-training and online fine-tuning. To address these limitations, previous works attempt
to introduce additional constrains (Kostrikov et al., 2021; Zheng et al., 2022; Zhao et al., 2023;
Wu et al., 2022) during the online fine-turning stage. However, these algorithms still suffer from a
demonstrated performance decline (as shown by Nakamoto et al. in Figure 1) or asymptotic sub-
optimality during the initial online fine-tuning stage (Nakamoto et al., 2023; Wu et al., 2022; Li et al.,
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2023). In addition to the predominant regularization-based approaches Nakamoto et al. introduce
a method aimed at aligning the value estimation during offline and online stages, thereby ensuring
standard online fine-turning.

From a general perspective, all of these approaches can mitigate or resolve the negative impact
caused by distribution shifts between offline and online stages. Specifically, constraint-based ap-
proaches maximize action prediction within the action support and then gradually loosen the con-
straints, thus alleviating policy collapse caused by distribution shifts. Regarding the value-aligned
approach, ensuring standard online fine-tuning involves aligning the value estimation during both
offline pre-training and online fine-tuning stages, which mitigate the distribution shift in value esti-
mation between offline and online stages, consequently ensuring stable and asymptotic policy fine-
tuning performance. Therefore, such insight opens a question that: Can we focus on exploring
effective samples to alter the distribution shift between offline and online stages to guarantee the
online fine-tuning performance?

To answer this question, we showcase the necessity of state entropy maximization in online fine-
tuning stage: 1) Exploring diverse online samples help to diminish the negative impact of conserva-
tive pre-training. Specifically, it’s feasible to gather diverse samples to mitigate the conservatism of
offline pre-trained policy (Luo et al., 2023) and further collect effective online samples to improve
the fine-tuning performance. 2) Effective exploration is the crucial factor in enabling the asymp-
totically optimality. In particular, if the exploration can ensure that the marginal state distribution
matches the target (expert) density i.e. State Marginal Matching (SMM) (Lee et al., 2020), it can
further guarantee that the empirical policy approaches the optimal policy.

Therefore, it’s intuitively plausible to reduce the distribution shift between the offline and online
learning stages by gathering diverse samples, while approximately reaching the optimal perfor-
mance via theoretically optimal exploration, such as State Marginal Matching (SMM). Based on
this insight, we introduced Q conditioned State Entropy (QCSE), which involves separately estimat-
ing the state entropy conditioned on the Q estimates of each sample. By maximizing their average,
we implicitly achieve SMM, aiding the empirical policy approaching the optimal policy. The advan-
tage of QCSE lies in that it can approximately realize SMM, and thus naturally solve the asymptotic
sub-optimality of constraint-based approaches. Meanwhile, QCSE inherently benefits from the ex-
ploratory advantages of value conditioned reward designing represented by Kim et al.. Specifically,
Q-conditioned state entropy maximization can alleviate biased exploration towards low-value state
regions as the state distribution becomes more uniform. In particular QCSE is different from pre-
vious value conditioned reward designing where QCSE resolves the biased exploration of value
condition by considering differences in transitions that were previously overlooked, thus improving
the online fine-tuning stability. Additionally, QCSE holds theoretical advantage and innovation in
offline-to-online setting, while value conditioned reward design only considers the online setting. To
summarize, the contribution of our research can be summerized as follows:

• We will imply that state entropy maximization can implicitly realize SMM in online stage,
and further contribute to approaching the optimal performance.

• Based on the theoretical advantage of SMM, we proposed Q conditioned state entropy
exploration (QCSE) that can implicitly realize SMM during online fine-tuning stage.

• Compared with VCSE, QCSE takes transition information into consideration, thereby pro-
tecting transitions from being disrupted by indiscriminate entropy maximization.

2 RELATED WORK

Offline RL. The notorious challenges in offline RL pertains to the mitigation of out-of-distribution
(OOD) issues, which are a consequence of the distributional shift between the behavior policy
and the training policy (Fujimoto et al., 2019a). To effectively address this issue, 1) conservative
policy-based model-free methods adopt the following approaches: Adding policy regularization (Fu-
jimoto et al., 2019b; Kumar et al., 2019; Wu et al., 2019; Liu et al., 2023), or implicit policy con-
straints (Peng et al., 2019; Siegel et al., 2020; Zhou et al., 2020; Chen et al., 2022; Wu et al., 2022;
Liu et al., 2023). 2) And, conservative critic-based model-free methods penalize the value estima-
tion of OOD state-actions via conducting pessimistic Q function (Kumar et al., 2020a) or uncertainty
estimation (An et al., 2021; Bai et al., 2022; Rezaeifar et al., 2022; Wu et al., 2021) or implicitly
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regularizing the bellman equation (Kumar et al., 2020b). In terms of the model-base offline RL,
it similarly train agent with distribution regularization (Hishinuma and Senda, 2021), uncertainty
estimation (Yu et al., 2020; Kidambi et al., 2020; Lu et al., 2022), and value conservation (Yu et al.,
2021). In our research, due to the remarkable sampling efficiency and outstanding performance of
model-free algorithms in both offline and online RL settings, and we prove that QCSE satisfy the
guarantee of Soft-Q optimization (theorem 4.1), thus we select Conservative Q-Learning (CQL)
and Calibrated Q-Learning (Cal-QL) as our primary baseline methods. Additionally, to conduct a
thorough assessment of the effectiveness of our proposed approaches, we have also expanded our
evaluation to encompass a diverse set of other model-free algorithms, including Soft-Actor-Critic
(SAC) (Haarnoja et al., 2018), Implicit Q-learning (IQL) (Kostrikov et al., 2021), TD3+BC (Fuji-
moto and Gu, 2021), and AWAC (Nair et al., 2021).

Offline-to-Online RL. Previous researches have demonstrated that offline RL methods offer the
potential to expedite online training, a process that involves incorporating offline datasets into online
replay buffers (Nair et al., 2021; Vecerik et al., 2018; Todd Hester and et al., 2017) or initializing
the pre-trained policy to conduct online fine-tuning (Kostrikov et al., 2021; Beeson and Montana,
2022). However, there exhibits worse performance when directly fine-tuning the offline pre-trained
policy (Nakamoto et al., 2023; Lee et al., 2021a), and such an issue can be solved by adapting a
balanced replay scheme aggregated with pessimistic pre-training (Lee et al., 2021a), or pre-training
with pessimistic Q function and fine-tuning with exploratory methods (Wu et al., 2022; Mark et al.,
2023; Nakamoto et al., 2023). In particular, our approach QCSE differs from these methods in that
it enhances online fine-tuning solely by augmenting online exploration. (More related works have
been added to Appendix G.1)

Online Exploration. Recent advances in the studies of exploration can obviously improve on-
line RL sample efficiency, among that, remarkable researches include injecting noise into state
actions(Lillicrap et al., 2019) or designing intrinsic reward by counting visitation or errors from
predictive models (Badia et al., 2020; Sekar et al., 2020; Whitney et al., 2021; Burda et al., 2018).
In particular, the approaches most related to our study are to utilize state entropy as an intrinsic
reward (Kim et al., 2023; Seo et al., 2021).

3 PRELIMINARY

Reinforcement Learning (RL). We formulate RL as Markov Decision Process (MDP) tuple
i.e.M = (S,A, r, dM, p0, γ). Specifically, p0 denotes the distribution of initial state (observa-
tion), s0 ∼ p0 denotes initial observation, S denotes the observation space, A denotes the ac-
tions space, r(s,a) : S × A 7→ R denotes the reward function, dM(s′|s,a) : S × A → S
denotes the transition function (dynamics), and γ ∈ [0, 1] denotes discount factor. The goal of
RL is to obtain the optimal policy π∗ : S 7→ A to maximize the accumulated discounted re-
turn i.e. π∗ := argmaxπ Eτ∼π[R(τ)], where Eτ∼π[R(τ)] = E[

∑t=T
t=0 γtr(st,at)], and τ ={

s0,a0, r0, · · · , sT ,aT , rT |s0 ∼ p0,at ∼ π(·|st), st+1 ∼ dM(·|st,at)
}

is the rollout trajectory.
Generally, RL has to estimate a Q function i.e. Q(s,a) = Eτ∼π[

∑T
t=0 γ

tr(st,at)|s0 = s,a0 = a],
and a value function by V (s) := Ea∼A[Q(s,a)] to assistant in updating policy π. In this research,
we mainly focus on improving model-free algorithms to conduct offline-to-online RL setting.

Model-free Offline RL. Typically, model-free RL algorithms alternately optimize policy with
Q-network i.e. π := argmaxπ Es∼D,a∼π(·|s)[Q(s,a)], and conduct policy evaluation by the
Bellman equation iteration i.e. Q := argminQ E(s,a,s′)∼D[(Q(s,a) − BMQ(s,a))2], where
BMQ(s,a) := r(s,a) + γ · Q(s′, π(·|s′)). In particular, model-free offline RL aims to learn from
the static RL datasetsD collected by behavior policy πβ without access to the environment to collect
new trajectories, thus suffers from the OOD state actions and sub-optimal performance, therefore,
it’s necessary to further fine-tune the pre-trained policy online to further alleviate the limitations of
offline pre-trained policy.

Drawbacks of previous offline-to-online algorithms. However, directly fine-tuning the offline
pretrained policy may encounter distribution shift issues, potentially leading to policy collapse. De-
spite that constraint-based approaches can facilitate stable online fine-tuning, they may suffer from
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sub-asymptotic optimality. Different from the majority of offline-to-online approaches, we propose
Q conditioned state entropy exploration (QCSE), which alleviates distribution shift issue by implic-
itly realizing SMM through Q conditioned state entropy maximization.

4 Q CONDITIONED STATE ENTROPY MAXIMIZATION (QCSE)

Previously, Lee et al. suggests that error or count based exploration approaches (Pathak et al., 2017;
Burda et al., 2018) are insufficient to converge to a singular exploratory policy, and propose SMM to
realize converging to singular exploratory policy. Building on the theoretical advantages of SMM,
we aim to enhance online exploration through state entropy maximization, thereby improving online
fine-tuning performance.

Definition 1 (Marginal State distribution). Given the rollout trajectory τ ∼ π, we define the
marginal state distribution of π as ρπ(s) = Es0∼p0,at∼π(·|st),st+1∼dM(·|st,at)[

1
N

∑T
t=1 1(st = s)].

Definition 2 (State Marginal Matching). Given the target (optimal) state density p∗(s) and the
offline initialized marginal state distribution ρπ(s). We define State Marginal Matching (SMM) as
optimizing policy to minimize DKL[ρπ(s)||p∗(s)], i.e. π := argminπ DKL[ρπ(s)||p∗(s)], where
DKL denotes Kullback-Leibler (KL) divergence 1.

Definition 3 (Critic Conditioned State Entropy). Given empirical policy π ∈ Π, its critic
network Q(s,a) : S × A → R, and given state density of current empirical policy:
ρπ(s), where

∫
s∈D ρπ(s) = 1. We define the critic conditioned entropy as Hπ(s|Q) =

Es∼ρπ
[− log p(s|Q(s, π(·|s)))].

To explain why state entropy maximization helps to address the challenges of offline-to-online RL,
we first define the basic concepts and notations, specifically, we define the marginal state distribution
as Definition 1, and the process of the marginal state distribution ρπ(s) approaching target density
p∗(s) i.e. state marginal matching (SMM) as Definition 2. Subsequently, we illustrate how maxi-
mizing state entropy can approximate SMM during the online fine-tuning stage, thereby facilitating
the acquisition of the optimal policy.

State entropy maximization implicitly realize SMM during the online fine-tuning stage.
To elaborate on the relationship between state entropy maximization and SMM, we derive the
process of maximizing the state entropy of the empirical policy π i.e. maxEs∼ρπ [Hπ[s]] :=
maxEs∼ρπ [− log p(s)], s.t.π := argmaxπ Soft-Qπ , and arrive at the following expression:

max
ρπ

s.t.maxπ SoftQπ

Es∼ρπ [Hπ[s]] ≤ max
ρπ

s.t.maxπ SoftQπ

∫
s∼S2

−ρπ(s) log ρπ(s)︸ ︷︷ ︸
Jterm1

+

∫
s∼S1

−p∗(s) log p∗(s)︸ ︷︷ ︸
Jterm2

,
(1)

where p∗(s) denotes the target density, ρπ denotes the marginal state distribution initialized by the
offline dataset, as defined in Definition 1. S1 denotes domain where ρπ(s) > p∗(s)|s∼S1

, and S2
denotes domain where ρπ(s) ≤ p∗(s)|s∼S2

. proof of Equation 1 see Appendix B.1.

Since p∗(s) remains invariant during the training process, maximizing Jterm2 is equivalent to nar-
rowing down the domain S1. Meanwhile, maximizing Jterm1 is equivalent to encourage exploring
S2. Both Jterm1 and Jterm2 narrow the gap between ρπ(s) and p∗(s). Therefore, state entropy
maximization approximately solves the distribution shift issue and facilitates the approximation of
SMM during online fine-tuning stage. Furthermore, it encourages the empirical policy approaching
the optimal policy. Based on this analysis, we introduce QCSE that computes Q conditioned entropy
as intrinsic reward to narrow down the distribution shift between offline and online stages.

Connection with un-biased SMM (Lee et al., 2020). In particular, we emphasize that Equation 1
is an inequality, where our goal is to maximize the left-hand side, but we can also influence its upper
bound, which is the right-hand side of the inequality. Additionally, this paper does not implement
SMM in an unbiased manner, but as we have discussed above, maximizing the right-hand side of

1For the given distributions p(x) and p(x) on the domain X . KL divergence denotes DKL[p(x)||q(x)] =
Ex∼X [p(x) log p(x)

q(x)
].
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the equation serves the same purpose as SMM, which is to bring the current state distribution closer
to the optimal distribution. Furthermore, our problem setting is a RL problem, and when optimizing
Equation 1, the RL objective can influence the state distribution to explore high-value samples as
much as possible, thereby promoting the convergence of the distribution to the optimal distribution.

Implementation of QCSE. The mathematical formulation of QCSE, as shown in Equation 2,
involves calculating the Q conditioned state entropy as intrinsic reward to encourage the agent to
explore the environment uniformly. In particular, we use Tanh to limit the magnitude of the rQCSE,
preventing it from overwhelming the task reward and thereby reducing biases during critic updating.

rmod(s,a) = λ · Tanh(H(s|min(Qϕ1(s,a), Qϕ2(s,a)))︸ ︷︷ ︸
rQCSE

) + r(s,a)

∣∣∣∣
(s,a)∼Donline

, (2)

where ϕ1 and ϕ2 are separately the params of double Q Networks. However, we cannot directly
obtain ρπ(s), therefore, we cannot directly calculate state entropy. In order to approximate ρπ(s),
we refer to Kim et al. (2023), and use the Kraskov-Stögbauer-Grassberger (KSG) estimator (Kraskov
et al., 2003) to approximate state entropy as the intrinsic reward, i.e. Equation 3.

rQCSE(s,a) =
1

ds
ϕ(nQ̂ϕ

(i) + 1) + log 2 ·max(||si − sknn
i ||, ||Q̂(s,a)− Q̂(s,a)knn||)

∣∣∣∣
(s,a)∼Donline

,

(3)

where Q̂(s,a) = min(Qϕ1
(s,a), Qϕ2

(s,a)), and sknni is the ns(i)-th nearest neighbor of si in the
space S spanned by si. Specifically, ns(i) represents the number of neighborhoods around si, where
the distances to si are less than ϵ(si)

2 . And ϵ(si) represents twice the distance from si. nQ̂(i) and
Q̂knn

i can be similar defined by replacing s by Q̂. For more detail information, please refer to page
4, line 8 to 9 of Kim et al. (2023)).

4.1 ADVANTAGES OF QCSE

Monotonic of QCSE. Despite the concise and simple mathematical form of QCSE, QCSE has ad-
vantage lies in guaranteeing the monotonic Soft-Q optimization (supported by theorem 4.1), thus can
be seamlessly utilized in conjugation with Soft-Q based RL algorithms including CQL-SAC (Kumar
et al., 2020a) etc.
Theorem 4.1 (Converged QCSE Soft Policy is Optimal). Repetitive using lemma B.1 and lemma B.2
to any π ∈ Π leads to convergence towards a policy π∗. And it can be proved that Qπ∗

(st,at) ≥
Qπ (st,at) for all policies π ∈ Π and all state-action pairs (st,at) ∈ S×A, provided that |A| <∞.
Proof see Appendix B.3.
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Figure 2: Q condition vs. V condition. In this experiment, we selected AWAC as the base algorithm and
compared using V network and Q network to calculate the intrinsic reward’s condition. The experimental
results indicate that using the Q-network to compute the condition leads to overall better performance for
AWAC. Nair et al. (2021) points out that AWAC demonstrates poor online fine-tuning performance.

Q condition protects transitions from being disrupted by entropy maximization. Another ad-
vantage of QCSE is that it utilizes Q instead of V as the intrinsic reward’s condition. This approach
incorporates transition information, thereby preserving transitions that disrupted by indiscriminate
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state entropy maximization. For instance, assuming that there exists two transitions T1 = (s,a1, s1)
and T2 = (s,a2, s2). Since T1 and T2 have the same current observation s, they are related to
the same value conditioned intrinsic reward − log(s|V (s)), therefore, low-value transitions still re-
ceive relatively high intrinsic rewards, subsequently biasing the Q estimation, and further impacting
decision-making. However, by computing intrinsic rewards conditioned on Q(s,a) and maximizing
state entropy with distinct Q values separately, QCSE can further mitigate the biased exploration
issues left unresolved by VCSE. To validate our claims, we chose AWAC as baseline, and separately
utilize both Q-network and V-network to compute the intrinsic reward’s condition, conducting tests
on tasks sourced from Gym-Mujoco domain. As shown in Figure 2, using Q to compute condition
has better performance compared to using V.

5 PRACTICAL IMPLEMENTATION

We follow the standard offline-to-online RL process to test QCSE. Specifically, we first pre-train
the policy with the selected algorithm on a specific offline dataset. Then, we further fine-tune the
pre-trained policy online using QCSE. Finally, we test using the policy fine-tuned online. In terms
of the real implementation, QCSE augments the reward of online dataset by calculating the Q con-
ditional state entropy (via Equation 3) which is highly compatible with Q-ensemble or double-Q RL
algorithms. For algorithms that do not employ Q-ensemble or double Q, it is still possible to use
QCSE; however, they may not benefit from the advantages associated with Q-ensemble, as clarified
in the following section. When it comes to the hyper-parameters of QCSE, setting λ in Equation 2
to 1 is generally sufficient to improve the performance of various baselines on most tasks. However,
it is important to note that QCSE’s effectiveness is influenced by the number of k-nearest neighbor
(knn) clusters, as we have demonstrated in our ablation study. Additionally, for parameters unrelated
to QCSE, such as those of other algorithms used in conjunction with QCSE, it is not necessary to
adjust the original parameters of these algorithms (see more details including hyper-parameters,
model architecture, compiting recourese, e.g. in Appendix D.6). In the following section we will
conduct experimental evaluation to validate the effectiveness of QCSE.

6 EVALUATION

Our experimental evaluation aims to achieve the following primary objectives: 1) Investigating the
effectiveness of QCSE utilizing soft-Q based algorithms in facilitating offline-to-online RL and as-
sessing its performance. 2) Assessing the viability of integrating QCSE with another model-free
algorithms to enhance their sample efficiency. 3) Conducting diverse experiments to showcase the
performance differences or relationships between QCSE and various exploration methods, including
SE (Seo et al., 2021), VCSE (Kim et al., 2023), RND (Burda et al., 2018), and SAC (Haarnoja et al.,
2018). 4) Conducting a series of ablation experiments to verify the effectiveness of QCSE. We first
introduce our tasks and baselines.

Task and Datasets. We experiment with 12 tasks from mujoco (Brockman et al., 2016) and
Antmaze in D4RL (Fu et al., 2021). Meanwhile, we also test QCSE on tasks from binary an-
droit domain (see Nair et al.). The selected tasks cover various aspects of RL challenges, including
reward delay and high-dimensional continuous control. Specifically: 1) In the Antmaze tasks, the
goal is to control a quadruped robot to reach the final goal. Notably, this agent does not receive an
immediate reward for its current decision but instead only receives a reward of +1 upon success-
fully reaching the goal or terminating. This setup presents a form of reward delay, making these
tasks adapt to evaluate the long horizontal decision-making capability of algorithms. 2) In Gym-
locomotion tasks, the goal is to enhance the agent’s localmotion capabilities, presenting a contrast
to the Antmaze domain where Gym-Mujoco tasks feature high-dimensional decision-making spaces.
Also, the agent in Gym-Mujoco has the potential to obtain rewards in real time. Additionally, we use
binary-Androit tasks to assess the performance of QCSE on Androit-related tasks (For much
more details about this domain please refer to Nair et al.; Nakamoto et al.).

Baselines for Comparison. For convenience, we name any algorithm Alg paired with QCSE as
Alg-QCSE. Now we introduce our baselines. We primarily compare CQL-QCSE and Cal-QL-QCSE
to CQL (Kumar et al., 2020a) and Cal-QL (Nakamoto et al., 2023). We also verify that QCSE
can be broadly plugged into various model-free algorithms including SAC (Haarnoja et al., 2018),
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Figure 3: Online fine-tuning curve on selected tasks. We tested QCSE by comparing Cal-QL-QCSE, CQL-
QCSE to Cal-QL, CQL on selected tasks in the Gym-Mujoco and Antmaze domains, and then reported the
average return curves of multi-time evaluation. As shown in this Figure, QCSE can improve Cal-QL and
CQL’s offline fine-tuning sample efficiency and achieves better performance than baseline (CQL and Cal-QL
without QCSE) over all selected tasks.

IQL (Kostrikov et al., 2021), TD3+BC (Fujimoto and Gu, 2021), and AWAC (Nair et al., 2021), thus
improving their online fine-tuning performance. In particular, Cal-QL is the recent state-of-the-art
(SOTA) offline-to-online RL algorithm that has been adequately compared to multiple offline-to-
online methods (O3F (Mark et al., 2023), ODT (Zheng et al., 2022), and mentioned baselines),
and demonstrated obvious advantages. In particular, we explain the motivation we choose these
baselines. Specifically, Figure 3 uses CQLCal-QL to validate our proposed theory (theorem 4.1).
Figure 4 employs AWAC, TD3-BC and IQL to demonstrate the algorithm’s generalizability. Table 3
selects CQL and CalQL to verify the effectiveness of exploration algorithms in offline-to-online.

6.1 MAIN RESULTS

Can QCSE improve offline-to-online RL? It is clear that QCSE enhances the online fine-tuning
performance of both CQL (improve 13%) and Cal-QL (improve 8%). This is evidenced by the stable
and progressed fine-tuning curves shown in Figure 3 and the fine-tuned results shown in Table 3.
Specifically, CQL and Cal-QL combined with QCSE exhibit fewer gaps in the training curves, in-
dicating that QCSE helps to reduce the domain shift between the offline and online stages, thereby
benefiting the online fine-tuning process. Additionally, CQL-QCSE outperforms both CQL and Cal-
QL on nearly all selected tasks, supporting our hypothesis that enhancing the agent’s exploration ca-
pabilities by state entropy maximization can help guarantee the asymptotic optimality of the online
fine-tuned policy via implicitly achieving State Marginal Matching (SMM). Furthermore, when ex-
amining tasks with larger distribution shifts, such as medium-replay and medium, CQL-QCSE
demonstrates better asymptotic optimality than CQL, reinforcing this claim. (In Table 3, we present
the average training results from the last 20 to 100 steps across multiple runs for Antmaze and
gym-medium. For gym-medium-replay, we report the average of the maximum values ob-
tained from multiple runs.) Meanwhile, we conducted tests on the binary adroit domain. As shown
in Table 4, QCSE consistently enhances the performance of both CQL and Cal-QL in the binary
adroit domain.
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Table 1: Normalized score after online fine-tuning. We report the online fine-tuned normalized return. QCSE
obviously improves the performance of CQL and Cal-QL. In particular, CQL-QCSE (mean score of 92.5) is
the best out of the 12 selected baselines. Notably, part of Antmaze’s baseline results are quoted from existing
studies. Among them, AWAC’s results are quoted from Kostrikov et al. (2021) and CQL’s results are quoted
from Nakamoto et al. (2023). Addtionally we have report the

Offline-to-online Tasks IQL AWAC TD3+BC CQL CQL+QCSE Cal-QL Cal-QL+QCSE

antmaze-large-diverse 59 00 00 89.2±3.2 89.8±3.2 86.3±0.2 94.5±1.7
antmaze-large-play 51 00 00 91.7±3.8 92.6± 1.3 83.3±9.0 95.0±1.1

antmaze-medium-diverse 92 00 00 89.6±0.3 98.9±0.2 96.8±1.0 99.6±0.1
antmaze-medium-play 94 00 00 97.7±0.2 99.4±0.4 95.8±0.9 98.9±0.6

Total (Antmaze) 296 00 00 368.2 380.7 352.2 388.0

halfcheetah-medium 57 67 49 69.9±1.0 87.9±2.3 45.6±0.0 46.9±0.0
walker2d-meidum 93 91 82 123.1±4.0 130.0±0.0 80.3±0.4 90.0±3.6
hopper-medium 67 101 55 56.4±0.4 62.4± 1.3 55.8±0.7 61.7±2.6
ant-medium 113 121 43 123.8±1.5 136.9±1.6 96.4±0.3 104.2±3.0

halfcheetah-medium-replay 54 44 49 42.0±1.9 55.6±0.5 32.6±0.6 32.9±1.7
walker2d-medium-replay 90 73 90 98.1±5.7 112.7±1.5 27.2±8.7 47.7±6.4
hopper-medium-replay 91 56 88 17.6±11.1 27.1±15.8 13.8±2.1 7.7±4.1
ant-medium-replay 123 127 127 84.7±3.6 116.6±3 83.1±0.7 73.1±8.3

Total (Gym Mujoco) 688 680 583 615.6 729.2 434.8 464.2

Avg (Antmaze&Gym Mujoco) 82.2 56.7 48.6 82.0 92.5 65.6 71.0

Table 2: The experimental results of QCSE on the binary Androit tasks. For further details on the binary
Androit task, please refer to the AWAC or CalQL.

Algorithms door-binary-v0 pen-binary-v0 Total

CQL 99±9.9 20±6.6 119
CQL+QCSE 100±0.0 95±21.8 195
CalQL 98±14.0 97±17.05 195
CalQL+QCSE 99±9.9 99±9.7 198

Can QCSE be plugged into other model-free algorithms? To address the second question, we
conducted comparative experiments, assessing the performance of our QCSE across various model-
free algorithms such as TD3+BC, AWAC, IQL, and SAC. Notably, our QCSE, functioning as a

AWAC-baseline AWAC-QCSE TD3+BC-baseline TD3+BC-QCSE IQL-baseline IQL-QCSE
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Figure 4: Performance of Alg-QCSE. We test QCSE with AWAC, TD3+BC, and IQL on selected Gym-Mujoco
tasks, QCSE can obviously improve the performance of these algorithms on selected Gym-Mujoco tasks, show-
ing QCSE’s versatility.

plug-and-play reward augmentation algorithm, eliminates the need for additional modifications (i.e.
we seamlessly integrate QCSE to modify the reward during training with those algorithms).
Illustrated in Figure 4, the incorporation of QCSE leads to performance improvements across almost
all algorithms during online fine-tuning. This demonstrates the versatile applicability of QCSE to a
wide range of RL algorithms, extending beyond the scope of CQL or Cal-QL.

Is QCSE more effective than previous exploration methods in the offline-to-online setting?
QCSE increases exploration to improve the performance of offline-to-online. However, there are
numerous exploration-enhancing algorithms available, such as RND, VCSE, and others. It is chal-
lenging to determine whether such exploration-enhancing methods can similarly improve offline-to-
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Table 3: Comparison of QCSE, VCSE and RND (Burda et al., 2018). We test CalQL and CQL algorithms,
integrating them with QCSE, VCSE and RND across selected tasks in the Gym and Antmaze domains, and
record the results following online fine-tuning.

Offline-to-online Tasks CQL CQL+QCSE CQL+VCSE CQL+RND Cal-QL Cal-QL+QCSE Cal-QL+VCSE Cal-QL+RND

antmaze-large-diverse 89.2±3.2 89.8±3.2 80.9±10.5 89.5 ±6.5 86.3±0.2 94.5±1.7 93.5±5.0 81.5±4.5
antmaze-large-play 91.7±3.8 92.6±1.3 92.2±4.9 92.0±6.6 83.3±9.0 95.0±1.1 89.5±7.6 84.0±7.3

Total (Antmaze) 180.9 182.3 173.1 181.5 169.6 189.5 183.0 165.5

halfcheetah-medium 69.9±1.0 87.9±2.3 64.5± 1.5 64.4±0.9 45.6±0.0 46.9±0.0 42.6± 0.1 41.9±0.8
walker2d-meidum 123.1±4.0 130.0±0.0 101.1±8.9 112.5± 5.6 80.3±0.4 90.0±3.6 77.8±0.8 74.5±3.3

ant-medium 123.8±1.5 136.9±1.6 119.3±3.1 120.3±1.6 96.4±0.3 104.2±3.0 95.1±3.5 89.2±5.9

Total (Gym Mujoco) 316.8 354.8 284.9 297.2 222.3 241.1 215.5 205.6

Avg (Antmaze&Gym Mujoco) 497.7 537.1 458.0 478.7 391.9 430.6 398.5 371.1

online performance, necessitating comparative analysis. Specifically, we use Cal-QL and CQL as
the selected offline-to-online algorithms and test them in combination with different exploration al-
gorithms on the hardest task in the antmaze environment and some offline gym-mujoco tasks, while
also documenting the results of online fine-tuning. As shown in Table 1, QCSE outperforms VCSE
and RND on the selected tasks. We believe that the advantage of QCSE over VCSE on the selected
tasks stems from the fact that QCSE can incorporate the state transitions of decisions into the intrin-
sic reward process, thereby avoiding excessive exploration of low-value state samples and further
ensuring more stable training outcomes. Therefore, QCSE plays a crucial role in offline-to-online
scenarios that require stable online finetuning.

0 25 50 75 100
Averaged Normalized Score

PEX

BR

APL

SUNG

QCSE

Compared with Efficient Algorithms

Figure 5: Performance Comparison.
CQL+efficient offline-to-online approaches.

Can QCSE surpass previous efficient offline-to-
online algorithms? In order to more intuitively
demonstrate the effectiveness of QCSE, we replaced
QCSE with a series of past efficient offline-to-online
algorithms and conducted comparisons. As shown in
Figure 5, we select CQL as the base algorithm and
aggregate it with QCSE, APL (Zheng et al., 2023),
PEX (Zhang et al., 2023), SUNG (Guo et al., 2024) and
BR (Lee et al., 2021b) to test on tasks of Antmaze and
Gym-Mujoco (medium, medium-replay) domains,
and CQL-QCSE archives the best performance (85.6)
over all selected baselines, which demonstrating QCSE’s
competitive performance.

6.2 ABLATIONS
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Figure 6: We evaluate the performance when varying the number of state clusters. We assess QCSE by configur-
ing different sizes of k-nearest neighbor (knn) clusters and subsequently observe the impact of these parameter
settings on online fine-tuning, and it can be observed that the choice of knn cluster settings exerts a notable
influence on QCSE’s performance.

Effect of Hyperparameter. We primarily investigate the effect of the hyperparameter in Equa-
tion 13. Specifically, the Q conditioned state entropy is approximated using the KSG estimator,
where the number of state clusters serves as a crucial hyperparameter. As shown in Figure 6, the
performance can indeed be influenced by the number of state clusters, and a trade-off exists among
the sizes of these state clusters. For instance, the optimal cluster settings of walker2d and hopper
are saturated around 20 and 10, respectively. In contrast, a task like amaze-large-diverse re-
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quires a larger number of clusters (about 25). We consider the main reason is that different tasks
require varying degrees of exploration, and thus need different cluster settings.
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Figure 7: (a) Ablation experiments to validate the impact of pre-trained Q network. (b) Quantitative results on
the agent’s state entropy.

Scaled Ablations. We utilize AWAC to further validate the effectiveness of QCSE. Specifically,
we examine the impact of utilizing an offline pre-trained Q-network versus a randomly initialized
Q-network to compute intrinsic rewards, as shown in Figure 7 (a). Offline pre-trained Q as condi-
tion performs better than randomly initialized Q as condition. On the other hand, in Figure 7 (b),
we illustrate the progression of state entropy throughout the training process. Specifically, we can
observe that the state entropy of AWAC-QCSE eventually exceeds AWAC baseline, indicating the
influence of QCSE on state entropy.

Solution for Acceleration. Although our primary experiments have demonstrated the effective-
ness of QCSE in offline to online tasks, using KNN to compute intrinsic rewards entails high compu-
tational complexity. Furthermore, computing intrinsic rewards at every step would result in signifi-
cant consumption of computational resources. To reduce the computational resource consumption of
QCSE, we can compute the intrinsic reward every n steps, thereby enhancing the training efficiency
of QCSE. To validate the effectiveness of this approach, we selected CQL and CalQL for testing
on the pen-binary task. Specifically, when n is set to 100, CalQL+QCSE can maintain the total
training time close to the baseline while ensuring no obvious decrease in performance. When n is set
to 20, CalQL+QCSE can maintain a performance that is better than CalQL, while only increasing
the total training time by approximately one hour. When n is set to 50, it can keep the training time
of CQL+QCSE at a relatively low level, while also ensuring that the policy performance does not
degrade significantly (better than CQL). Therefore, calculating intrinsic rewards at fixed intervals of
training steps can reduce training time without significantly compromising training performance.

Table 4: Training time by calculating the entropy rewards at regular intervals of training steps. We selected the
pen-binary task for our testing and evaluated each task using a single Nvidia-RTX 2080 Ti GPU. Specifically,
in this table, we label the algorithm that utilizes QCSE and calculates entropy at an interval of i steps as n(i),
and we label base algorithms that donot utilize intrisic reward as base, h denotes hour.

Algorithms standard base n(1) n(10) n(20) n(50) n(100)

CalQL score 97 99 93 98 97 95
time 6.296h 21.65h 8.082h 7.393h 6.856h 6.682h

CQL score 20 99 89 0 89 0
time 8.293h 19.57h 7.602h 6.877h 6.214h 6.208h

7 CONCLUSIONS

We propose a generalized offline-to-online framework called QCSE. On the theoretical aspect, we
demonstrate that QCSE can implicitly realize SMM. Meanwhile, we showcase QCSE can guarantee
the monotonicity of soft-Q optimization. On the experimental aspect, QCSE leads to improve-
ments for both CQL and Cal-QL, validating our theoretical claims. We also extend the tests of
QCSE to other model-free algorithms, and experimental results showed that QCSE performs better
when combined with other model-free algorithms, demonstrating its generality.
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Limitations and future work. Although we propose that maximizing state entropy can approx-
imate State Marginal Matching (SMM) to ensure fine-tuned performance, we do not provide an
explicit approach to address distribution shift issues (under offline-to-online setting). In the future,
we aim to enhance QCSE to explicitly achieve SMM and assess whether this leads to improved
fine-tuned performance.

A ETHICAL CLAIM

Despite the potential of offline RL to learn from the static datasets without the necessity to access the
online environment, the offline method does not guarantee the optimal policy. Therefore, online fine-
tuning is essential for policy improvement. In this study, we propose a novel and versatile reward
augmentation framework, named Q conditioned state entropy maximization (QCSE) which can be
seamlessly plugged into various model-free algorithms. We believe our approach is constructive
and will enhance the sample efficiency of offline-to-online RL. Additionally, given that QCSE is an
integrated algorithm, we also believe it can broadly and readily benefit existing algorithms.

B THEORETICAL ANALYSIS

In this section, we provide the supplementary mathematical analysis for QCSE.

B.1 STATE ENTROPY MAXIMIZATION AND STATE MARGINAL MATCHING

In this section, we will discuss why maximizing state entropy contributes to achieving state marginal
matching.

max
ρπ(s)

s.t.maxπ SoftQπ

H[s] = max
ρπ(s)

s.t.maxπ SoftQπ

∫
s∼S
−ρπ(s) log ρπ(s)

= max
ρπ(s)

s.t.maxπ SoftQπ

∫
s∼S1

−ρπ(s) log ρπ(s) +
∫
s∼S2

−ρπ(s) log ρπ(s)

≤ max
ρπ(s)

s.t.maxπ SoftQπ

∫
s∼S2

−ρπ(s) log ρπ(s)︸ ︷︷ ︸
term2

+

∫
s∼S1

−p∗(s) log p∗(s)︸ ︷︷ ︸
term1

,

(4)

where p∗(s) denotes the target density, ρπ(s) denotes the marginal state distribution initialized by
the offline dataset, as defined in Definition 1. S1 denotes domain where ρπ(s) > p∗(s)|s∼S1

, and S2
denotes domain where ρπ(s) ≤ p∗(s)|s∼S2

. In this section, we examine the mathematical viability
of the QCSE framework, focusing on two key aspects: 1) Guarantee of Soft policy optimization 2)
Prevention of OOD state actions.

We first introduce the modified soft Q Bellman backup operator, denoted as Equation 5,

T π
QCSEQ (st,at) ≜ r (st,at) + rQCSE (st,at) + γEst+1∼p [V (st+1)] (5)

In this equation, the term V (st) = Eat∼π [Q (st,at)− log π (at | st)] is defined.
Lemma B.1 (Soft Policy Evaluation with QCSE.). Given the modified soft bellman backup operator
T π
QCSE in Equation 5, along with a mapping Q0 : S × A → R where |A| < ∞. We define an

iterative sequence as Qk+1 = T πQk. It can be shown that when index k tends towards infinity, the
sequence Qk converges to a soft Q-value of π.

proof. Let us define the QCSE reward as follows

rπQCSE (st,at) ≜ r (st,at)+λTanh (H (st | min (Qϕ1(st,at), Qϕ2(st,at))))+Est+1∼p [H (π (· | st+1))]
(6)
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and rewrite the update rule as

Q (st,at)← rπQCSE (st,at) + γEst+1∼p,at+1∼π [Q (st+1,at+1)] . (7)

Then we can apply mathematical analysis of convergence for policy evaluation as outlined in Sutton
and Barto (1998) to prove the result. It is essential to note that the assumption |A| <∞ is necessary
to ensure the boundedness of the QCSE reward.”

Lemma B.2 (Soft Policy Improvement with QCSE). Let πold ∈ Π, and let πnew be the solution to
the minimization problem defined as:

πnew = arg min
π′∈Π

DKL

(
π′ (· | st) ∥

exp (Qπold (st, ·))
Zπold (st)

)
. (8)

Then, it follows that Qπnew (st,at) ≥ Qπold (st,at) for all (st,at) ∈ S ×A provided that |A| <∞.

proof. Starting from Equation 9, which has been established in the work by (Haarnoja et al., 2018),
as:

Eat∼πnew [Qπold (st,at)− log πnew (at | st)] ≥ V πold (st) , (9)

we proceed to consider the soft Bellman equation, which can be expressed as:

Qπold (st,at) = r (st,at) + rQCSE (st,at) + γEst+1∼p [V
πold (st+1)]

≤ r (st,at) + rQCSE (st,at) + γEst+1∼p

[
Eat+1∼πnew [Qπold (st+1,at+1)

− log πnew (at+1 | st+1)

...
≤ Qπnew (st,at)

(10)

Here, we have iteratively expanded Qπold on the right-hand side by applying both the soft Bellman
equation and the inequality from Equation 9.

Theorem B.3 (Converged QCSE Soft Policy is Optimal). Repetitive using Lemma 1 and Lemma 2
to any π ∈ Π leads to convergence towards a policy π∗. And it can be proved that Qπ∗

(st,at) ≥
Qπ (st,at) for all policies π ∈ Π and all state-action pairs (st,at) ∈ S×A, provided that |A| <∞.

proof.

Let πi represent the policy at iteration i. According to Lemma 2, the sequence Qπi exhibits a
monotonic increase. Given that rewards and entropy and thus Q are bounded from above for policies
within the set Π, the sequence converges to a certain policy π∗. It is essential to demonstrate that
π∗ is indeed an optimal policy. Utilizing a similar iterative argument as employed in the proof of
Lemma 2, we can establish that Qπ∗

(st,at) > Qπ (st,at) holds for all (st,at) ∈ S × A. In other
words, the soft value associated with any other policy in Π is lower than that of the converged policy.
Consequently, π∗ is confirmed as the optimal policy within the set Π.

Theorem B.4 (Conservative Soft Q values with QCSE). By employing a double Q network, we en-
sure that in each iteration, the Q-value from the single Q network, denoted as Qπi

single Q (st,at),
is greater than or equal to the Q-value obtained from the double Q network, represented as
Qπi

double Q (st,at), for all (st,at) ∈ S ×A, where the action space is finite.

proof. Let’s begin by defining Q̂ (st,at) = min (Qϕ1
(st,at) , Qϕ2

(st,at)) . We then proceed to
examine the difference between the augmented rewards in the context of QCSE for the single Q and
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double Q networks:

rQCSE(st,at|Q̂ (st,at))− rQCSE(st,at|Q (st,at))

=

N∑
i=0

log 2max(||si − sknni ||, ||Q̂ (st,at)− Q̂knn (st,at) ||)−

N∑
i=0

log 2max(||si − sknni ||, ||Q (st,at)−Qknn (st,at) ||)

= log

∏N
i=0 max(||si − sknni ||, ||Q̂ (st,at)− Q̂knn (st,at) ||)∏N
i=0 max(||si − sknni ||, ||Q (st,at)−Qknn (st,at))||

≈ log

∏N
i=0 max(||si − sknni ||,H(Q̂))∏N
i=0 max(||si − sknni ||,H(Q)||)

≤ log

∏N
i=0 max(||si − sknni ||,H(Q))∏N
i=0 max(||si − sknni ||,H(Q))

= 0

(11)

Consequently, we establish that rQCSE(st,at|Q̂(st,at)) ≤ rQCSE(st,at|Q(st,at)). Now we con-
sider the modified soft Bellman equation

Qπi

doubleQ (st,at)

=r (st,at) + rQCSE(st,at|Q̂(st,at)) + γ · Est+1∼p[V̂ (st+1)]

=r (st,at) + rQCSE(st,at|Q̂(st,at)) + γ · Est+1∼p,at+1∼π

[
Q̂ (st+1,at+1)− log π (at+1 | st+1)

]
...

=r (st,at) + rQCSE(st,at|Q̂(st,at)) + γ · Est+1∼p,at+1∼π[r
mod(st+1,at+1|Q̂(st+1,at+1))] · · ·+

γn · Est+n∼p,at+n∼π[r
mod(st+n,at+n|Q̂(st+n,at+n))] + · · ·+ entropy terms

≤r (st,at) + rQCSE(st,at|Q(st,at)) + γ · Est+1∼p,at+1∼π[r
mod(st+1,at+1|Q(st+1,at+1))] · · ·+

γn · Est+n∼p,at+n∼π[r
mod(st+n,at+n|Q(st+n,at+n))] + · · ·+ entropy terms

=Qπi

singleQ (st,at)
(12)

where we have repeatedly expanded Q̂ in terms of QCSE rewards to obtain the final inequality
Qπi

singleQ ≥ Qπi

double Q.

C EXPERIMENTAL SETUP

In this section, we introduce the benchmarks and dataset we utilized, specifically, we mainly utilize
Gym-Mujoco and antmaze to test our algorithm.

C.1 GYM-MUJOCO

Our benchmars from Gym-Mujoco domain mainly includes halfcheetah, ant, hopper and
walker2d, and concrete information of these benchmarks can be referred to table 5. In paticular,
the action and observation space of these locomotion benchmarks are continuous and any decision
making will receive an immediate reward.

C.2 ANTMAZE

Our benchmars from antmaze mainly includes antmaze-large-diverse,
antmaze-medium-diverse, antmaze-large-play and antmaze-medium-play,
concrete information of our benchmarks can be referred to table 6.
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Environment Task Name Samples Observation Dim Action Dim

halfcheetah medium 106 6 17
walker2d medium 106 6 17
hopper medium 106 3 11
ant medium 106 8 111

halfcheetah medium-replay 2.02×105 6 17
walker2d medium-replay 3.02×105 6 17
hopper medium-replay 4.02×105 3 11
ant medium-replay 3.02×105 8 111

Table 5: Introduction of D4RL tasks (Gym-Mujoco).

Environment Task Name Samples Observation Dim Action Dim

antmaze large-diverse 106 29 8
antmaze large-play 106 29 8
antmaze medium-diverse 106 29 8
antmaze medium-play 106 29 8

Table 6: Introduction of D4RL tasks (Antmaze).

D IMPLANTATION DETAILS

D.1 OFFLINE-TO-ONLINE IMPLANTATION

The workflow of our method is similar to the most of offline-to-online algorithms that we firstly
pre-train on offline datasets, followed by online fine-tuning (Interacting with online environment to
collect online dataset and followed by fine-tuning on offline and online datasets).

D.2 EVALUATION DETAILS

Our evaluation method can be refered to Fu et al. (2021). That is for each evaluation, we freeze
the parameter of trained model, and then conducting evaluation 10∼50 times and then computing
the normalized score via scoreevaluation−scoreexpert

scoreexpert−scorerandom
, and then averaging these normalized evaluation

scores.

D.3 QCSE IMPLANTATION

In QCSE framework, we modify our reward as :

rmod(s,a) = λ · Tanh(H(s|min(Qϕ1
(s,a), Qϕ2

(s,a))))︸ ︷︷ ︸
rmod

+r(s,a), (s,a) ∼ Donline (13)

To calculate the intrinsic reward rmod for the online replay buffer Donline, we use the KSG estimator,
as defined in Equation 14, to estimate the conditional state density of the empirical dataset Donline

rmod(s,a) =
1

ds
ϕ(nv(i)+1)+log 2·max(||si−sknni ||, ||Q̂(s,a)−Q̂(s,a)knn||), (s,a) ∼ Donline.

(14)
Given that the majority of our selected baselines are implemented using the double Q({Qϕ1 , Qϕ2}),
the offline pre-trained double Q can be readily utilized for the computation of intrinsic rewards, and
we found that the performance of QCSE is sutured when λ is set to 1. We also provide a (Variance
Auto Encoder) VAE implantation (Equation 15) of QCSE, this realization is computing efficiency,
but require extraly training a VAE model, due to Equation 3 won’t require training thus we mainly
test Equation 3.

rmod(s,a) = − log pϕ̂(s|Q̂(s,a)) = − logEz∼qϕ(z|s,Q̂(s,a))[
pϕ̂(s|Q̂(s,a))

qϕ(z|s, Q̂(s,a))
], (s,a) ∼ Donline. (15)
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We will test and compare the performance difference and computing efficiency between Equation 15
and Equation 14 in the future.

D.4 CODEBASE

Our implementation is based on Cal-QL:https://github.com/nakamotoo/Cal-QL,
VCSE:https://sites.google.com/view/rl-vcse. Additionally, we have included our
source code in the supplementary material for reference. Readers can refer to our pseudocode (see
Algorithm 1) for a comprehensive understanding of the implementation details. Q̂ see 2. Part of our
source code will be released at: .

Algorithm 1 Training QCSE
Require: Pre-collected data Doffline.
1: Initialize πθ , and Qϕ1 , Qϕ2 .

// Offline Pre-training Stage.
2: for k = 1, · · · ,K do
3: Learn Qϕ on Doffline by Equation 17 or 16 //We compute target Q value via Qtarget, learning Qtarget by

Empirical Momentum Average (EMA),i.e. Qtarget = (1− α)Qϕ + αQtarget.
4: Learn πθ on Doffline with Equation 18.
5: end for

// Online Fine-tuning Stage.
6: for k = 1, · · · ,K do
7: Interacting πθ to obtain Donline.
8: Augmenting Reward in Donline by Equation 2.
9: Sample a batch offline data Doffline, and build training batch,i.e. Dmix = Doffline ∪ Donline //mixture of

offline and online is not necessary required, it depends on the quality of offline dataset.
10: Learn πθ , Qϕ1 , and Qϕ2 on Dmix with the same objective in offline stage.
11: end for

L(Q) = E(s,a)∼D[(Q(s,a)−BπMQ(s,a))2]+Es∼D,a∼π[max(Q(s,a), V µ(s))]−E(s,a)∼D[Q(s,a)].
(16)

L(Q) = E(s,a,s′)∼D[(Q(s,a)− BπMQ(s,a))2] + E(s,a,s′)∼D[−Q(s,a) +Q(s′, π(s′))], (17)

J (πθ) = Es∼D[−Q(s, πθ(s)) + α log(πθ(s))]. (18)

D.5 COMPUTING RESOURCES

Our experiments were run on a computer cluster with 4×32GB RAM, AMD EPYC 7742 64-Core
CPU, and NVIDIA-A100 GPU, Linux. Most of our code base (The implantation of Cal-QL, CQL,
TD3+BC, SAC) are based on JAX 3, part of our implantation (IQL, AWAC) are based on Pytorch4

(We use different deep learning frameworks mainly to preliminary validate that our algorithm can
work in various of deep learning frameworks).

D.6 OUR HYPER-PARAMETER

Hyper-parameter of QCSE. The K-nearest neighbors (knn) for QCSE are configured as follows:
[0, 10, 15, 25, 50, 85, 100, 110], and the parameter λ in Equation 13 is set to 1.

Hyper-parameter of Baselines In the context of these algorithms, we conducted tests related
to AWAC and IQL using the repository available at https://github.com/tinkoff-ai/
CORL, while tests related to Cal-QL and CQL were performed using the repository accessible at
https://github.com/nakamotoo/Cal-QL. The following five tables present fundamental
but critical hyperparameter settings for five baseline algorithms.

2where ϕ1 and ϕ2 are the params of double Q Networks and Q̂(s,a) = min(Qϕ1(s,a), Qϕ2(s,a)), and
xknn
i is the nx(i)-th nearest neighbor of xi.

3https://github.com/google/jax.git
4https://pytorch.org/
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Table 7: Hyper-parameters of AWAC.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

Buffer size 20000000
Batch size 256
learning rate 3e−4

γ 0.99
awac τ 5e-3
awac λ 1.0

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 8: Hyper-parameters of IQL.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

Batch size 256
learning rate of π 3e−4

learning rate of V 3e−4

learning rate of Q 3e−4

γ 0.99
IQL τ 0.7 # Coefficient for asymmetric loss
β (Inverse Temperature) 3.0# small beta → BC, big beta → maximizing Q

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 9: Hyper-parameters of TD3+BC.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256
TD3 alpha 2.5

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 10: Hyper-parameters of Cal-QL. We only provide the basic setting, for more detail setting, please
directly refer to https://nakamotoo.github.io/projects/Cal-QL

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)
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Table 11: Hyper-parameters of CQL. CQL uses Cal-QL’s code-base, and we only need to remove Cal-QL’s
calibration loss when deploying CQL.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

E APPENDED EXPERIMENTAL RESULTS

In Table 12, we compare a series of different efficient offline-to-online methods, including APL,
PEX, and BR. Specifically, we tested these methods on the ant-maze domain and the medium and
medium-replay tasks in the Gym-Mujoco environment. We found that QCSE shows the best
overall performance, indicating that QCSE, when paired with CQL, can achieve superior results.

Table 12: Comparison of various efficient offline-to-online methods. Part of experimental results are quoted
from Guo et al. (2024).

Task CQL+APL CQL+PEX CQL+BR CQL+SUNG CQL+QCSE

antmaze-large-diverse 0 0 0.1 44.1 89.8
antmaze-large-play 0 0 0 52.7 92.6
antmaze-medium-diverse 36.8 0.3 13.6 85.6 98.9
antmaze-medium-play 22.8 0.3 22.2 86.3 99.4

halfcheetah-medium 44.7 43.5 56.7 79.7 87.9
walker2d-meidum 75.3 34.0 81.7 86.0 130.0
hopper-medium 102.7 46.3 97.7 104.1 62.4

halfcheetah-medium-replay 78.6 45.5 64.9 75.6 55.4
walker2d-medium-replay 103.2 40.1 88.5 108.2 112.7
hopper-medium-replay 97.4 66.5 78.8 101.9 27.1

Average Fine-tuned 56.2 27.6 50.4 82.4 85.6
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F EXTENDED EXPERIMENTS

F.1 THE TRAINING PERFORMANCE OF QCSE ON MEDIUM-EXPERT

To further analyze the impact of the offline dataset on the experimental performance of QCSE, we
compared the performance of CQL and CQL+QCSE on the medium-expert dataset, respectively.
We found that QCSE did not significantly improve CQL on the medium-expert dataset, similar to
its performance on the medium dataset. This demonstrates that our algorithm has already converged
on the medium dataset and can effectively enhance the fine-tuning effect of the pre-training strategy
on suboptimal datasets.

CQL-baseline CQL-QCSE
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Figure 8: We compare the performance of CQL+QCSE and CQL on the medium-expert dataset.

State Entropy as Intrinsic Reward. If the state density ρ(s) is unknown, we can instead using
non-parametric entropy estimator to approximate the state entropy (Seo et al., 2021). Specifically,
given N i.i.d. samples {si}, the k-nearest neighbors (knn) entropy estimator can be defined as5:

Ĥk
N (S) =

1

N

N∑
i=1

log
N · ||si − sknni ||ds

2 · n̂
ds
2

π̂

k · Γ(ds

2 + 1)
∝ 1

N

N∑
i=1

log ||si − sknni ||. (19)

Visualization of State Entropy Changing. In this experiment, for each training step, we select
the buffer and randomly sample 5000 instances to approximate the entropy using Equation 10. and
then plot the trend of approximated state entropy. For the majority of the tasks, the state entropy
of AWAC-QCSE was either progressively greater than or consistently exceeded that of AWAC-base.
This indicates that QCSE effectively enhances the agent’s exploratory tendencies, enabling them
cover much more observation region.

AWAC-QCSE AWAC
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Figure 9: The Changing of Approximated Entropy along with increasing training steps. We found that the
approximated state entropy in the buffer collected by AWAC using QCSE was greater in the later stages of
online finetuning.

F.2 PRE-TRAINED Q VS. RANDOM Q

Pre-trained Q condition versus un-pre trained Q condition. To validate the statement in our
main paper that intrinsic reward computation is influenced by the initialization of Q, we conducted

5ds is the dimension of state and Γ is the gamma function, n̂π̂ ∝ 3.14.
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experiments comparing the effects of pre-trained initialized Q and from-scratch6 trained Q during
intrinsic reward calculation. Our findings indicate that intrinsic rewards based on offline-initialized
Q generally outperform those derived from a from-scratch trained Q across most tasks.

AWAC-baseline AWAC-QCSE AWAC-QCSE (scratch)
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Figure 10: Offline Pre-trained Q condition vs. Randomly initialized Q condition. In the majority of our se-
lected Gym-Mujoco tasks, the use of offline-initialized intrinsic reward conditions yielded better performance
and higher sample efficiency. To provide clarity, AWAC-base means AWAC algorithm without any modifica-
tion, AWAC-QCSE signifies AWAC with QCSE augmentation, and AWAC-QCSE (scratch) denotes AWAC with
QCSE where the computation of reward conditions satisfying note 6

F.3 AGGREGATED METRIC WITH QCSE

To demonstrate the significant improve brought by QCSE we adapt the method proposed by Agarwal
et al., QCSE can significantly improve the performance of CQL and Cal-QL.

84 88 92 96
normalized return

CQL
CQL-SERA

Cal-QL
Cal-QL-SERA

Median

84 88 92 96
normalized return

IQM

84 90 96
normalized return

Mean

12 16 20
normalized return

Fine-tuned performance Optimality Gap

Figure 11: Aggregate metrics with QCSE (SERA). We refer to Agarwal et al. (2022) to analyze QCSE’s
performance. Specifically, higher median, IQM, and mean scores are better, QCSE can significantly improve
the performance of CQL and Cal-QL.

G EXTENDED RELATED WORK

G.1 OFFLINE-TO-ONLINE RL

In this section, we systematically introduce recent developments in offline-to-online learning and
summarize the corresponding methods, the first perspective involves adopting a conservative pol-
icy optimization during online fine-tuning, typically achieved through the incorporation of policy
constraints. Specifically, there are three main approaches within this category. The first approach
constrains the predictions of the fine-tuning policy within the scope of offline support during online
fine-tuning (Wu et al., 2022). While this method contributes to achieving stable online fine-tuning
performance, it tends to lead to overly conservative policy learning, and the accuracy of the estima-
tion of offline support also influences the effectiveness of online fine-tuning. The second approach
utilizes an offline dataset to constrain policy learning (Nair et al., 2021; Kostrikov et al., 2021; Xiao
et al., 2023; Mark et al., 2023). However, the effectiveness of fine-tuning cannot be guaranteed if
the dataset quality is poor. This method is sensitive to the quality of the dataset. The third approach
employs pre-trained policies to constrain online fine-tuning, but this paradigm is influenced by the
quality of the pre-trained policy (Zhang et al., 2023; Yu and Zhang, 2023). The second perspective
involves adopting a conservative approach during offline training, specifically using pessimistic con-
straints to learn Q to avoid OOD (Out-of-Distribution) issues. Research in this category primarily

6We use from-scratch Q to compute intrinsic reward, while continuing to utilize the offline-initialized Q for
conducting online fine-tuning.
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includes: Learning a conservative Q during offline pre-training and employing an appropriate expe-
rience replay method during online learning or using Q ensemble during offline pre-training to avoid
OOD issues (Lee et al., 2021a; Lyu et al., 2022; Hong et al., 2023). However, as this approach intro-
duces conservative constraints during critic updates, the value estimates between offline and online
are not aligned, leading to a decrease in performance during early online fine-tuning. Therefore,
Cal-QL introduces a calibrated conservative term to ensure standard online fine-tuning (Nakamoto
et al., 2023). Addtionally, there are also some other methods, such that ODT (Zheng et al., 2022)
combined sequence modeling with Goal conditioned RL to conduct offline-to-online RL.
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