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ABSTRACT

Concept Bottleneck Models (CBMs) propose to enhance the trustworthiness of
AI systems by constraining their decisions on a set of human-understandable
concepts. However, CBMs typically assume that datasets contain accurate concept
labels—an assumption often violated in practice, which we show can significantly
degrade performance (by 25% in some cases). To address this, we introduce the
Concept Preference Optimization (CPO) objective, a new loss function based on
Direct Preference Optimization, which effectively mitigates the negative impact
of concept mislabeling on CBM performance. We provide an analysis of some
key properties of the CPO objective showing it directly optimizes for the concept’s
posterior distribution, and contrast it against Binary Cross Entropy (BCE) where
we show CPO is inherently less sensitive to concept noise. We empirically confirm
our analysis, finding that CPO consistently outperforms BCE in three real-world
datasets with and without added label noise.

1 INTRODUCTION

It is a well-known adage that “garbage in” leads to “garbage out.” Yet, when designing machine
learning (ML) methods that rely on high-quality labelled data, this concern is often overlooked.
In this work we show that Concept Bottleneck Models (CBMs) (Koh et al., 2020), a popular but
label-hungry family of interpretable neural architectures, when trained with mislabelled concepts
are specifically affected by this oversight. CBMs offer a promising solution to the opacity of
Deep Neural Networks (DNNs) by using human-understandable concepts (e.g., “has tail”, “has
whiskers”) as intermediate representations. This structure allows experts to intervene at test time by
correcting mispredicted concepts, updating the model’s final prediction (Shin et al., 2023). With their
interpretability and intervenability (Marcinkevičs et al., 2024), CBMs are well suited for high-stakes
tasks where verifiability is paramount. However, their reliance on labelled concepts makes them
vulnerable to noise. To address this, we propose a learning objective that improves CBM robustness
under mislabelled data. Although CBMs are promising, they assume the concept annotations are
correct for all samples—an unrealistic assumption when labeling - potentially - hundreds of concepts
per datum. A study found that 12% of ImageNet-1K animal validation images are mislabelled, with
some classes exceeding 90% (Luccioni & Rolnick, 2023). Concept labels, being more granular, likely
have even higher error rates, underscoring the need for robustness to label noise. CBMs are often
deployed in noisy real-world domains like healthcare (Sylolypavan et al., 2023), where labels can
be subjective (Wei et al., 2024). Even with correct labels, CBMs rely on data augmentations (e.g.,
random crops or flips; see Figure 1) that can distort concepts, making some mislabeling inevitable.
Thus, improving CBMs’ robustness to concept-label noise is crucial for real-world usability.

Inspired by Preference Optimization (PO), which relaxes the assumption that training data is optimally
labelled, we propose Concept Preference Optimization (CPO)—a PO-based loss for CBMs. Unlike
likelihood-based learning, CPO assumes only preference over labels, making it well-suited for noisy
settings (Kaufmann et al., 2023; Bengs et al., 2021). Our analysis and empirical results demonstrate
that CPO improves both in noiseless settings and mitigates the impact of mislabelled concepts.

∗Equal Supervision

1



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

2 RELATED WORK

Concept Learning (CL) Concept Learning is a subfield of eXplainable AI (XAI) where mod-
els are designed to explain their prediction using human-understandable units of information, or
concepts (Bau et al., 2017; Kim et al., 2018), that are relevant for a task of interest (Poeta et al.,
2023). While CL methods use diverse approaches to produce concept-based explanations, most can
be framed within the context of a Concept Bottleneck Model (CBM) (Koh et al., 2020). A CBM is a
neural architecture composed of (1) a concept predictor πθ(c | x), which maps input features x to
a predicted distribution c over a set of pre-defined concepts, and (2) a label predictor fϕ(c), which
maps the set of predicted concepts c to a downstream label y. By conditioning their task predictions
on a set of concepts, CBMs can explain their prediction through their predicted concepts. They also
allow for concept interventions, where, at test time, an expert interacting with the CBM can correct
a handful of its mispredicted concepts, leading to significant improvements in task accuracy (Shin
et al., 2023).

Recent approaches have expanded the reach of CBMs across varying real-world setups. Concept
Embedding Models (CEMs) (Espinosa Zarlenga et al., 2022) enhance the expressivity of concept
representations to enable CBMs to be competitive in datasets with incomplete (Yeh et al., 2020)
concept annotations. Post-hoc CBMs (Yuksekgonul et al., 2023), LaBOs (Yang et al., 2023), and
Label-free CBMs (Oikarinen et al., 2023) instead address the difficulty of sourcing concept labels
and retraining models by exploiting foundation and pretrained models. Further works improve the
effectiveness of concept interventions by introducing new training losses (Espinosa Zarlenga et al.,
2023), intervention policies (Chauhan et al., 2022), or considering inter-concept relationships (Havasi
et al., 2022; Steinmann et al., 2023; Vandenhirtz et al., 2024; Raman et al., 2024).

Among these, the closest to our work are Probabilistic CBMs (ProbCBM) (Kim et al., 2023) and
Stochastic CBMs (SCBMs) (Vandenhirtz et al., 2024). Both approaches frame CBMs probabilistically
and learn to amortize the posterior distribution of an auxiliary latent variable between the concepts
and the input data. ProbCBMs amortize the latent’s posterior using a diagonal covariance matrix
to estimate concept uncertainty. In contrast, SCBMs amortize the full covariance matrix and use it
to estimate joint concept distributions for more efficient interventions. Both approaches have their
benefits, but they both approximate the posterior of a latent variable and not the concept distributions.
Conversely, we show how the CPO objective is equivalent to learning the posterior distribution of the
concepts.

Preference Optimization (PO) Previous works show PO is a powerful learning framework for
settings where the training labels are rarely optimal, such as in recommender and information retrieval
systems (Yue & Joachims, 2009; Shivaswamy & Joachims, 2012; Radlinski et al., 2008; Dudı́k et al.,
2015). At its core, PO algorithms focus on learning a policy in setups where we lack an explicit
reward signal but instead have access to relative preferences between pairs of labels (a weaker
constraint). PO has become particularly important in the training of large language models in the
form of Reinforcement Learning from Human Feedback (RLHF) which is used to guide policy
optimization based on qualitative feedback (Ouyang et al., 2022b; team, 2024). While powerful, this
approach is computationally expensive as the reward function and policy are trained separately. To
alleviate this, Rafailov et al. (2023) introduces the Direct Preference Optimization (DPO) objective,
which streamlines the process by jointly training both the reward function and policy.

Akin to traditional likelihood-based optimization approaches, DPO has the added benefit of being end-
to-end differentiable. In contrast to likelihood-based learning, however, DPO does not require a set of
training labels sampled from the optimal data distribution, instead only assuming that a preference
exists between any pair of labels (Bengs et al., 2021). The assumption of optimal labels has been
shown to make likelihood-based prone to overfitting to simple patterns (Arpit et al., 2017) making
them largely less robust to label noise (Goodfellow et al., 2016). Such a limitation is particularly
relevant for traditional CBM training pipelines, which often include data augmentations and sample
mislabels that can lead concept labels to differ from the optimal ones. To alleviate this, we extend the
DPO objective to CBMs in this work. We find that, as in language and retrieval tasks, training CBMs
with our objective alleviates the effect of label noise.

3 BACKGROUND
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Figure 1: Concept scenarios for CBM: Beak color
(orange preferred over red), throat color (green opti-
mal), and beak shape (both incorrect).

In this work, we approach learning CBMs
through the use of PO and thus, adapt our nota-
tion accordingly.
Concept Bottleneck Models Concept Bottle-
neck Models (CBMs) (Koh et al., 2020) assume
their training sets (X, C, Y) are sampled i.i.d
from an empirical distribution µ(c, x, y), where
x ∈ X are the input features, c ∈ C are the bi-
nary concepts sets composed of c = {c1, ..., ck}
and y ∈ Y are the task labels. Here, we assume
that µ(c, x, y) may not necessarily be the same
as d∗(c, x, y), the optimal data distribution sam-
pled from the optimal policy π∗. Specifically,
we assume that they only differ at the concept
level, meaning the empirical distribution’s con-
cept labels may be noisy while the task labels are always correct. We argue, however, that this
difference is likely in practice as concept-specific noise may be accidentally added during training
because of common data augmentations that may occlude concepts (e.g., random crops or shifts; see
Figure 1). Moreover, concept-specific noise may further arise naturally due to subjective or fatigued
labeling (Sylolypavan et al., 2023; Wei et al., 2024).

CBMs consist of two sub-models. First, a concept predictor, πθ : X → Ck, maps the input x onto an
interpretable layer composed of predicted concepts, ĉ. The concept predictor is usually initialized
using a pretrained image encoder kθ. Then, a task predictor, fϕ : Ck → Ym, maps these predicted
concepts to the task labels ŷ. In this work, we focus on jointly trained CBMs, which are trained
end-to-end by minimizing the following objective weighted by a hyperparameter λ ∈ R:

LCBM = LCE(y, fϕ(c)) + λLBCE(c, πθ(c|x)).

The concept objective above optimizes the binary cross entropy (BCE) between the policy’s predic-
tions and the empirical data, which is known to be suboptimal under noisy settings (Goodfellow et al.,
2016). Due to this sensitivity, we take inspiration from modern PO algorithms, deriving a simple
and computationally efficient objective that is equivalent to approximating the concept’s posterior
distribution and is more robust to noise compared to BCE.

Direct Preference Optimization (DPO) Traditionally, preference optimization using RLHF algo-
rithms (Kaufmann et al., 2023) relies on learning a reward function through the Bradley-Terry
preference model (Ouyang et al., 2022a; Kaufmann et al., 2023). Given a preference dataset
(cw, cl, x, y) ∼ µp, one can learn a reward function capable of distinguishing preferred concepts cw

from dispreferred ones cl by optimizing

max
rψ

E(cw,cl,x)∼µp [log σ(rψ(cw, x) − rψ(cl, x))]

Where rψ is a parameterized reward function learnt through the optimization process and σ is the
sigmoid function. Using this learned reward function, a policy can be trained with any RL algorithm.
Most commonly employed is the proximal policy optimization (Schulman et al., 2017) algorithm,
which imposes a KL constraint with a prior π0(c|x) on the standard reward maximization objective,

max
πθ

Ex∼µ,c∼πθ [rψ(x, c)] − βDKL (πθ(c|x) ∥ π0(c|x)) (1)

where β is a hyperparameter controlling the prior’s strength. However, this two-step procedure is
computationally expensive and unstable. To address this, Rafailov et al. (2023) proposed the Direct
Preference Optimization (DPO) algorithm. This shows that the optimal policy for this optimization
problem can be expressed as

π∗(c|x) = 1
Z(x)π0(c|x) exp

(
1
β

r∗(x, c)
)

(2)

where Z(x) =
∑
c π0(c|x) exp

(
1
β r∗(x, c)

)
is the partition function, and r∗(x, c) represents the

optimal reward. Consequently, the optimal reward function can be expressed in terms of the optimal
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policy:

r∗(x, c) = β log π∗(c|x)
π0(c|x) + β log Z(x) (3)

Using this formulation, Equation 1 simplifies to

max
πθ

E(cw,cl,x)∼µ

[
log σ

(
log πθ(cw|x)

π0(cw|x) − log πθ(cl|x)
π0(cl|x)

)]
(4)

which is an offline objective that jointly trains the policy and reward functions.

4 PREFERENCE OPTIMIZATION FOR CBMS

Although one could directly optimize the objective in Equation 4, doing so for CBMs would require
a labelled dataset where preferences in concepts are explicitly specified. To circumvent this issue, we
can leverage the empirical dataset and state its preference over a concept set sampled from πθ. The
preference over a pair of concepts should hold specifically early on in training where the policy is
suboptimal compared to the empirical data. Throughout the rest of this section, we formally describe
this algorithm, showing some key similarities and differences between it and LBCE.

4.1 CONCEPT BOTTLENECK PREFERENCE OPTIMIZATION

To leverage the DPO objective to learn πθ, we re-formalize it as an online learning algorithm.
We collect negative concept sets by sampling from the policy conditioned on the input image
c′ ∼ πθ(c|x).1 We can then compare these negatively sampled concept sets with those sampled from
the empirical data c ∼ µ where we assume that the empirical set is preferred to the sampled set, that
is c ≻ c′. Note that this is a weaker assumption than that of traditional CBMs, as we only assume
a preference over c rather than its correctness. Using this, we can formally introduce the Concept
Preference Optimization (CPO) objective, an online formulation of Equation 4:

LCPO = −E(x,c)∼µ
c′∼πθ

[
log σ

(
log πθ(c|x)

π0(c|x) − log πθ(c′|x)
π0(c′|x)

)]
. (5)

When used in language modeling, π0 is defined as the model after a supervised fine-tuning procedure.
Here, we train the model from scratch. In practice, we could impose a prior on the concept labels
which relate to either the input or the task label e.g., π0(c|x, y). We briefly explore such applications
in § 6, but otherwise assume a uniform prior unless otherwise stated, leaving further explorations as
future work. These assumptions simplify the CPO algorithm as follows:

Proposition 4.1. Assuming that π0(c|x) follows a uniform distribution over binary concepts and that
concept labels are conditionally independent given the inputs (ci ⊥ cj | x for all i ̸= j), we have:

LCPO ∝ −Ec,x∼D,c′ ̸=c∼πθ
[

log(πθ(c|x))
]
. (6)

A proof for this proposition is given in App. C.1. Simply put, the above states that LCPO is proportional
to optimizing the binary cross-entropy when πθ samples concepts that differ from those in the
empirical distribution. LCPO is proportional to the objective in Equation 6, and not equal, because
when the sampled concepts are equal to the empirical ones, the objective is always constant, i.e.,
log πθ(c|x)

π0(c|x) − log πθ(c′|x)
π0(c′|x) = 0 in Equation 5. Where the equivalence to the log-likelihood when the

sampled concepts are not equal to the empirical ones relies on the stated assumptions.

Gradient Analysis Proposition 4.1 highlights a similarity between LCPO and LBCE. Therefore, we
can study their gradients to understand their key differences better. Under our previous assumptions,

1In practice, we use hard Gumbel-Softmax sampling (Jang et al., 2017) to ensure end-to-end differentiability.
In this work, we sample a single concept for each image in each iteration, but one could potentially sample
multiple per image to increase performance.
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we can express the expected gradient of LCPO as

E[∇θLCPO] = 1
N

∑
(c,x)∼µ
c′∼πθ

(πθ(c|x) − 1)πθ(c′|x)∇θkθ

= 1
N

∑
(c,x)∼µ

(πθ(c|x) − 1) (1 − πθ(c|x)) ∇θkθ

where kθ refers to the pre-trained image encoder traditionally used to generate concept representations.
A full derivation of this equality, which exploits the fact that we only have a nonzero gradient when
c′ ̸= c and thus π(c′|x) = 1 − π(c|x), is given in App. C.1.

This result shows that LCPO’s gradient is LBCE’s gradient weighted by how confident the policy is in
the sampled concept. This yields the following bound on the CPO gradient:
Proposition 4.2. Under the same assumption as Proposition 4.1, the expected gradient norm of LCPO
is a lower bound of LBCE’s expected gradient. That is:∥∥E[∇θLCPO]

∥∥
2 ≤

∥∥E[∇θLBCE]
∥∥

2

Proof. As 0 ≤ π(c|x) ≤ 1, we have that∥∥ ∇θkθ

N

∑
(c,x)∼µ
c′∼π(c|x)

(π(c|x) − 1)(1 − π(c|x))
∥∥

2
≤

∥∥ ∇θkθ

N

∑
(c,x)∼µ

(π(c|x) − 1)
∥∥

2

Notice how the right-hand side is equivalent to ∇θLBCE with equality only holding when ci ̸= c′
i

for all i. Thus, we can see that an implication of not assuming the correctness of the concepts is
that LCPO is more conservative in its gradient updates than LBCE. This means that LCPO has a larger
gradient when πθ is confident in the sampled concepts and more conservative when it is uncertain.
A visualization of the differences in the gradients is given in App. D. Next, we discuss the direct
implications of these results and the relationship to the improved label noise robustness.

4.2 NOISY CONCEPT LABELS

To improve performance, CBMs are traditionally trained by randomly augmenting input images with
transformations, such as cropping or blurring, which may obscure the represented concept. As a
result, CBMs are often trained with some level of concept noise, regardless of the reliability of the
empirical data. Moreover, commonly used benchmark datasets for CBMs, such as CUB (Wah et al.,
2011) and AwA2 (Xian et al., 2019), are designed so that their images may not accurately reflect
their concept labels. Intuitively, LCPO dropping the assumption of correctness towards preferences
should help under both noisy and optimal conditions. To illustrate why this is the case, we analyze
the gradients of LCPO and LBCE in the presence of noise.

Empirical Best Gradient To show why LCPO is more resilient to noise, we examine both losses’
gradients under noisy conditions and compare them to their optimal counterparts. To do so, we first
make the assumption that d∗(c, x) is one if x and c are the ground truth concepts in the image and
zero otherwise. In this case, given the empirical and optimal distributions µ and d∗, respectively, we
can derive the expected gradient that approximates the ground truth as:

E(c∗,x)∼d∗ [∇θL] = E(c,x)∼µ

[d∗(c, x)
µ(c, x) ∇θL(c, πθ(c|x))

]
= E(c∗,x)∼µ+

[
∇θL(c∗, πθ(c|x))

]
.

Here, d
∗(c,x)
µ(c,x) is an importance sampling coefficient that equals 1 when c exists in both d∗ and µ, and

0 otherwise, as we assume both µ and d∗ are deterministic, and µ+ ∈ µ is the subset containing only
optimal concepts. Conversely, µ− ∈ µ is the subset containing only suboptimal concepts c−. The
resulting gradient on the empirical data is

E(c,x)∼µ
[
∇θL

]
=E(c∗,x)∼µ+

[
∇θL(c∗, πθ(c∗|x)

]
+ E(c−,x)∼µ−

[
∇θL(c−, πθ(c−|x)

]
.
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Figure 2: Comparison of graphical models for Bayesian CBMs. Dashed outlines indicate the variable
over which an amortized posterior is taken. On the left (a) it can be seen that optimizing a CBM
using LCPO directly approximates the posterior distribution of the concepts. On the right (b) it can be
seen how other methods instead obtain the posterior over a latent variable z.

It is a linear combination between the gradients on the noisy concepts c− and the optimal ones c∗.
This formulation allows us to analyze the difference between the optimal gradient and the gradient
produced on a noisy distribution for both LCPO and LBCE:
Theorem 4.3. The gradient of LCPO under a constant level of noise is closer in distance to its
noise-free counterpart than the gradient of LBCE under the same noise is to its respective noise-free
counterpart. In other words:∥∥E(c∗,x)∼d∗ [∇θLCPO] − E(c,x)∼µ[∇θLCPO]

∥∥
2 ≤

∥∥E(c∗,x)∼d∗ [∇θLBCE] − E(c,x)∼µ[∇θLBCE]
∥∥

2

We prove this theorem in App. C.3. Intuitively, Theorem 4.3 says that when examining the difference
between optimal and noisy gradients, only terms from noisy observations remain. Thus, according to
Proposition C.1, Ec−∼µ− [∇θLDPO] ≤ Ec−∼µ− [∇θLBCE]. This implies that the gradient updates of
LCPO more closely approximate its optimal gradient, resulting in greater robustness to noise.

A simpler explanation lies in the update mechanisms, where CPO only modifies the policy when
concepts are incorrectly sampled, creating situations where sampled concepts c′ align with c− and,
thus, minimizing noise impact. In contrast, BCE updates continuously unless πθ(c|x) exactly equals
1 or 0, making it inherently more susceptible to noise. Figure 1 illustrates these results.

4.3 RELATIONSHIP TO AMORTIZED POSTERIOR APPROXIMATION

Given their relationship, we seek to understand the fundamental difference between optimizing LCPO
and LBCE.
Control as Inference The bottleneck nature of CBMs is similar to that of a Variational Auto-
Encoder (VAE) (Kingma & Welling, 2022). Traditionally, such Bayesian methods introduce a
“bottleneck” in their inference that is formed by latent variables that are learned in an unsupervised
fashion (Doersch, 2016). The graphical model representing a CBM often resembles this relationship,
with the key difference that CBMs directly specify the factors within the bottleneck in the form of
known concepts. One important outcome of this difference is that CBMs are traditionally trained
to optimize the likelihood of the empirical concepts, which is fundamentally different from approxi-
mating the concept’s posterior distribution (Koller & Friedman, 2009). On the other hand, Haarnoja
et al. (2017) show that Equation 1 — and Equation 5 by extension — is equivalent to training an
amortized posterior approximation of the actions (concepts in our contexts). This derivation relies on
introducing an optimality latent variable o whose relationship to x and c is visualized in Figure 2
(Eysenbach & Levine, 2022; Levine, 2018). This optimality variable denotes whether or not the given
state-action pair sampled from π is optimal o = 1 (c is the best visually represented concept in x) or
not o = 0. The distribution over this variable is then given as:

p(o = 1|x, c) = exp(r∗(c, x)) (7)

where r∗(c, x) ∈ (−∞, 0] in our case is an unknown reward function indicating how well a given
concept set is represented in an image. Here, one can interpret p(o = 1|x, c) as the probability that
the given concept set c is correct, or optimal, for input x, and p(o = 1|x) as how optimal, on average,
the concept sets sampled from π are for a given x. Given this, a posterior over the concepts is:

π(c|o = 1, x) = p(o = 1|c, x)π0(c|x)
p(o = 1|x) (8)

= 1
Z(o)π0(c|x) exp

(
1
β

r∗(x, c)
)

(9)
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where Z(o) = p(o = 1|x). This objective is equivalent to that in Equation 2 as Z(o) must be
equivalent to Z(x) for π(c|o = 1, x) to be a valid probability distribution. Hence, optimizing πθ
using the objective in Equation 1 - and Equation 5 by extension - directly approximates the optimal
concept posterior distribution where π∗(c|x) = π(c|o = 1, x).
Table 1: Task and concept performances. The highest and second-highest values in each column are
bolded and underlined, respectively.

CUB AwA2 CelebA
Task Accuracy Concept AUC Task Accuracy Concept AUC Task Accuracy Concept AUC

ProbCBM Sequential 0.742 ± 0.004 0.900± 0.007 0.891 ± 0.003 0.960 ± 0.003 0.302 ± 0.008 0.878 ± 0.006
ProbCBM Joint 0.766 ± 0.012 0.943 ± 0.006 0.860 ± 0.017 0.945 ± 0.007 0.288 ± 0.023 0.863 ± 0.005

CoopCBM 0.760 ± 0.004 0.936 ± 0.001 0.888 ± 0.006 0.950 ± 0.003 0.288 ± 0.011 0.878 ± 0.002

CBM BCE 0.753 ± 0.009 0.937 ± 0.001 0.900 ± 0.008 0.959 ± 0.003 0.283 ± 0.007 0.873 ± 0.002

CBM CPO (Ours) 0.800 ± 0.003 0.952 ± 0.001 0.915 ± 0.004 0.971 ± 0.001 0.310 ± 0.009 0.857 ± 0.003

CEM BCE 0.800 ± 0.003 0.946 ± 0.001 0.889 ± 0.001 0.953 ± 0.000 0.351 ± 0.006 0.875 ± 0.004

CEM CPO (Ours) 0.807 ± 0.004 0.931 ± 0.003 0.917 ± 0.003 0.965 ± 0.001 0.352 ± 0.004 0.853 ± 0.003

5 EXPERIMENTS
We evaluate the task accuracy and mean concept AUC-ROC of models trained with LCPO under
un-noised and noisy settings. We in addition analyze the intervention performance across baselines.

5.1 BASELINES

We evaluate LCPO against LBCE on the following CBM-based architectures: (1) standard joint
CBMs with sigmoidal concept representations (CBM), Concept Embedding Models (CEMs)
(Espinosa Zarlenga et al., 2022), which employ more expressive concept representations to in-
crease model capacity, (3) Coop-CBMs (Sheth & Ebrahimi Kahou, 2024), which use an auxil-
iary head to improve a CBM’s information bottleneck, and (4) ProbCBMs (Kim et al., 2023),
which introduce a latent parameter between inputs and concepts (Figure 2). ProbCBMs, in
particular, allow us to compare amortizing the concepts’ posterior distribution instead of a la-
tent variable’s. However, while ProbCBMs traditionally use sequential training, we jointly train
them to ensure a fair comparison across baselines. We do not evaluate training traditional
ProbCBMs with LCPO as their loss function optimizes an evidence-lower-bound on the latent
variables’ posterior, which explicitly requires maximizing concept likelihood. We comment
that while LCPO introduces a new parameter β we choose not to tune it and set β = 1 for all
experiments. We discuss other hyperparameters and implementation details in App. 5.1.

0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1.0

CU
B

Concept AUC

0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8
Task Accuracy

0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1.0

Aw
A2

0.1 0.2 0.3 0.4
0.70

0.75

0.80

0.85

0.90

0.95

0.1 0.2 0.3 0.4
Noise Level p

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ce
le

bA

0.1 0.2 0.3 0.4
Noise Level p

0.0

0.1

0.2

0.3

0.4

CEM BCE
CBM BCE

ProbCBM BCE Sequential
ProbCBM BCE Joint

CEM CPO (Ours)
CBM CPO (Ours)

Figure 3: Performance under label noise.

5.2 NO INTERVENTIONS

Base Performance Table 1 summarizes per-
formance metrics for all datasets and baselines.
Our results suggest that training with the LCPO
objective enhances the base task accuracy of
both standard CBMs and CEMs with minimal-
to-no-loss in mean concept AUC. Most notably,
we observe that, in CUB and AwA2, CPO-
trained CBMs match/outperform CEMs trained
with BCE, a significant result since these ben-
efits from CPO come without any additional
parameters or significant computational cost.
Noisy Setting To empirically study LCPO un-
der various amounts of noise we randomly flip
each training concept label with probability p
and report the performance. Figure 3 shows our
baselines’ task accuracies and concept AUCs as
we ablate the label noise probability p across
{0.1, 0.2, 0.3, 0.4}. We observe that, under
noisy label conditions, training CBMs and ProbCBMs with LBCE leads to a significant drop in
both task accuracy and concept AUC (except for AwA2). Interestingly, we see that CEMs trained with
LBCE are much more resilient to noise in comparison to CBMs. However, we still observe significant
drops in concept AUCs in CEMs trained with LBCE in all tasks but CelebA. We believe CEMs’ more
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Figure 4: CUB Interventions without added label noise. In CUB and CelebA, LCPO models lead to
the best intervention performance. While in AwA2, a substantial (∼8-15) number of interventions
must be performed for LBCE-based models to outperform LDPO ones.

robust performance in CelebA is due to the bottleneck imposed by this dataset being small (only 6
concepts), making any additional capacity extremely helpful. In contrast, we see that models trained
with LDPO are very resilient to noise. Specifically, we find that in terms of task accuracy, CBMs
trained with LDPO are the least affected by noise and largely surpass the performance of CEMs.
Moreover, we find that LDPO-trained models have their concept AUCs better preserved, consistently
holding the best or second-best ranks in concept AUC, often attaining significantly better concept
AUCs than LBCE-based models. Most interestingly, we find that even at rather noisy levels (p = 0.4),
CBMs trained with LDPO can outperform more complex models trained with LBCE and, in some
cases, are largely unaffected by the noise. Overall, we find that using LDPO is an effective way to
counteract concept label noise.

6 INTERVENTION PERFORMENCE

Base Interventions A key advantage of CBMs is their ability to improve their task performance
through test-time concept interventions. An advantage of LCPO directly optimizing for the concepts’
posterior distribution is that we can obtain accurate uncertainty estimations from the predicted concept
values. To test the effectiveness of this uncertainty estimate, we study the effect of interventions
when we choose the order in which concepts are intervened on based on their uncertainties, i.e., more
uncertain concepts are intervened on first. We do this for similar approaches by using the concept
prediction as an uncertainty estimate for CBMs and the determinant of the covariance matrix for
ProbCBMs (as done by Kim et al. (2023)).

Figure 4 illustrates the responsiveness of models to interventions. Here, we see that, across all datasets,
CEMs and standard CBMs trained with LCPO exhibit better accuracies as they are intervened on
than their LBCE counterparts. This suggests that directly modelling the concept posterior distribution
provides better uncertainty estimates, leading to more effective interventions. Additionally, CBMs
and CEMs trained with LCPO achieve stronger intervention performance than ProbCBMs on CUB,
while CEMs using LCPO outperform ProbCBMs on CelebA. The only exception is AwA2, where
ProbCBMs, on average, still require ∼eight interventions before surpassing LCPO models.

Noised Interventions In Figure 5 we provide intervention performance for all values of p ∈
{0.1, 0.2, 0.3, 0.3}. We find that again even at low noise levels LCPO models consistently outperform
their LBCE counterparts. The one model not holding to that is ProbCBMs which outperform LDPO
consistently on AwA2. It illustrates the responsiveness of models to interventions. We find that
overall, across all datasets, CEMs and standard CBMs trained with LCPO exhibit better accuracies as
they are intervened on than their LBCE counterparts. This suggests that directly modelling the concept
posterior distribution provides better uncertainty estimates, leading to more effective interventions.
Additionally, CBMs and CEMs trained with LCPO achieve stronger intervention performance than
ProbCBMs on CUB, while CEMs using LCPO outperform ProbCBMs on CelebA. The only exception
is AwA2, where ProbCBMs, on average, still require approximately eight interventions before
surpassing LCPO models.
Learning on Streaming Data A byproduct of LCPO optimizing for an approximate posterior is its
ability to leverage a prior. So far, we have assumed a uniform prior over concepts, but here we explore
adjusting it. One key benefit of CBMs is that practitioners can scrutinize concept representations at
test time, enhancing trust, and accuracy and enable the ability to collect new training data through
interventions. That is when a CBM is intervened on it obtains a new concept label that can be used
to improve the system further (an idea that has been explored in other fields (Stephan et al., 2024;
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Figure 5: Intervention performance for all noise levels. We find that overall methods trained with
LDPO yield better intervention performance under noise. These findings are specifically relevant to
CUB and Celeb where we see all other methods are harshly impacted.

Shi et al., 2024)). For this, we first partition the CUB training data into four equal-sized blocks, of
which we use the first block (= 25% of the total data) to train an initial checkpoint using a CBM
jointly trained using LDPO on the task labels y and concepts c. Thereafter, we analyze training on
the remaining data blocks only using concept labels in three different ways using LBCE, LCPO with a
uniform prior and LCPO with the previous checkpoint as the prior. The main idea is that a priori can
help prevent the model from drifting too far from the policy trained jointly with the task predictor
fϕ. Figure 6 evaluates models using k% ∈ {50%, 100%} of total concepts. Curiously, we find that
LCPO using a uniform prior performs worse when using more concept labels. We believe this is due
to the policy drifting further from that of the initial checkpoint. We find that indeed using a prior
one can alleviate this drift enabling LCPO to use all new concept labels. While here we find LBCE
underperforms LDPO, in App. 6 we show this gap narrows—though not fully closes—when the initial
policy is trained with LBCE.
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Figure 6: Updating a CBM with streaming concept
labels (no task labels).

We present a DPO-inspired training objective for
CBMs called LCPO. Our loss directly optimizes
for the concept’s posterior distribution, with con-
cept representations that explicitly encode un-
certainty, leading to improved intervention per-
formance. We provide analysis demonstrating
that LCPO exhibits greater robustness to noise
compared to LBCE and empirically show that
a simple CBM trained with the LCPO objective
can consistently outperform competing meth-
ods without any additional parameters. More-
over, our experiments complement our analysis
on LCPO’s behaviour under noise, showing that
LCPO yields better concept AUC and task accu-
racy than BCE-based models while better main-
taining its intervention performance. Furthermore, we demonstrate how the LCPO objective’s prior
can be leveraged to learn more efficiently from streaming data. Ultimately, LCPO offers numerous
benefits for CBM and CBM-like methods with minimal computational overhead.
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A IMPLEMENTATION DETAILS

A.1 TUNING

We employ a ResNet34 (He et al., 2015) as the backbone image encoder kθ, pretrained on ImageNet-
1k (Russakovsky et al., 2015). Following standard procedures, we apply random cropping and flipping
to a portion of the images during training. This augmentation process may introduce non-zero noise
levels, as some concepts could be removed from the images after transformation. We use a batch size
of 512 for the Celeb dataset and 256 for for CUB and AwA2. We train all models using RTX8000
Nvidia-GPU. In all datasets we train for up to 200 epochs and early stop if the validation loss has not
improved in 15 epochs. For fair evaluation across methods, we tune the learning rate for CEMs, CBMs,
and ProbCBM. Specifically, for CUB and AwA2 datasets, we explore learning rates ∈ {0.1, 0.01},
while for CelebA, we expand the search to ∈ {0.1, 0.01, 0.05, 0.005} due to the observed instability
of CEMs at higher learning rates. Additionally, we set the hyper-parameter λ ∈ {1, 5, 10} for all
methods. For CEMs and models trained using LDPO, we found RandInt beneficial, which randomly
intervenes on 25% of the concepts during training. ProbCBM introduce a few extra hyperparameters
which in this work we did not tune and directly use the hyperparameters provided by the original
authors. Similar to other models, ProbCBM employs RandInt at 50%, making it particularly sensitive
to interventions, especially in concept-complete tasks such as AwA2 and CUB. The only model for
which we tune additional hyper-parameters is Coop-CBM, where we adjust the weight parameter
for the auxiliary loss we discuss more in detail in App B.1. All experiments are run using a forked
version of the Github2 repository used by Espinosa Zarlenga et al. (2022).

B DATASETS

CUB Wah et al. (2011) In CUB we use the standard dataset used in Koh et al. (2020) made up
of k = 112 concept annotations representing bird attributes (e.g., beak type, wing color) and use
the bird class (m = 200) as the downstream task. Our only departure from Koh et al. (2020) is that
we group the concepts into 28 semantic concept groups, following Espinosa Zarlenga et al. (2022).
We use the same image processing as in (Koh et al., 2020) and by randomly flipping and cropping
some images during training. The final dataset is composed of ∼ 6,000 RGB images of dimension
(3, 299, 299) and split into a standard 70%-10%-20% train-validation-test split.

AwA2 Xian et al. (2019) For AwA2 we use the same data processing as Xu et al. (2024). These are
made up of where the k = 85 concepts correspond to visual animal attributes (e.g., has wings, has
claws) which are grouped into 28 semantic concept groups. We apply standard rotation and cropping
augmentations throughout training and use the standard 70%-10%-20% train-validation-test split.

CelebA Liu et al. (2015) For this dataset, we closely follow the data processing done by Es-
pinosa Zarlenga et al. (2022), where they select the 8 most balanced attributes out of a total of
40 binary attributes. Where they generate m = 256 classes by assign them a value based on the
base-10 representation of their attribute label. We construct the incomplete concept set using the
same 6 attributes selected by Espinosa Zarlenga et al. (2022). We follow the same subsampling
procedure as Espinosa Zarlenga et al. (2022) and randomly select 1

12 th of the images for training. This
results in a final dataset composed of 16,900 RGB images where we use the same 70%-10%-20%
train-validation-test split.

B.1 COOP CBM

Here, we briefly outline the training procedure for Coop-CBM, which we found to perform similarly
to CBMs trained with LBCE. Similar to other methods, we tune the learning rate and the concept
loss weight λ. However, Coop-CBM is the only model for which we conduct more extensive hyper-
parameter tuning, as we observed minimal differences between it and a standard CBM trained with
LBCE. Specifically, we tune the additional hyper-parameter γ ∈ {0.01, 1, 5, 10}, which controls the
strength of the auxiliary head3. In our setup, the optimal values for γ were found to be γ = 5 for

2https://github.com/mateoespinosa/cem
3Referred to as β in their work, but we change the notation to avoid confusion with our β parameter.
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CUB, γ = 10 for AwA2, and γ = 0.01 for CelebA. We observed negligible differences between
Coop-CBM and standard CBMs in terms of base and intervention performance (see Figure 7), except
for in AwA2 where it improves intervention performance but outperforms ProbCBM at higher number
of interventions. As a result, we did not include Coop-CBM in the remaining experiments.
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Figure 7: Intervention performance including Coop CBMs.

C ANALYSIS

While prior work has shown that under mild conditions, offline RL performs (equivalent CPO) better
than likelihood-based training under noisy labels (Kumar et al., 2022; Rashidinejad et al., 2021),
it still does not fully answer the question as to why specifically CPO should perform better in our
context.

C.1 GRADIENT DERIVATIONS

Assumptions: For all derivations, we assume binary labels. The conditional independence of the
concepts i.e., ci ⊥ cj |x ∀ i ̸= j, and that π0 follows a uniform distribution. Additionally, to reduce
redundancy, in all gradient derivations, we drop the ∇kθ as it does not affect the gradients of the loss
functions.

Derivation of the CPO objective

LCPO = −Ec,x∼D,c′∼πθ(c|x)[log σ(log πθ(c|x) − log πθ(c′|x)] (10)

= −Ec,x∼D,c′∼πθ(c|x)[log σ( πθ(c|x)
πθ(c′|x) )] (11)

= −Ec,x∼D,c′∼πθ(c|x)[log 1 − log(1 + exp(− log πθ(c|x)
πθ(c′|x) ))] (12)

= Ec,x∼D,c′∼πθ(c|x)[log(1 + exp(− log( πθ(c|x)
πθ(c′|x) ))] (13)

= Ec,x∼D,c′∼πθ(c|x)[log(1 + πθ(c′|x)
πθ(c|x) )] (14)

(15)

Thus, in this case, we can see if c′ is not equivalent to c, this loss reduces to cross-entropy.

LCPO = Ec,x∼D,c′ ̸=c∼πθ [log(πθ(c|x) + (1 − πθ(c|x))
πθ(c|x) )] (16)

= Ec,x∼D,c′ ̸=c∼πθ [log( 1
πθ(c|x) )] (17)

= −Ec,x∼D,c′ ̸=c∼πθ [log(πθ(c|x))] (18)
(19)
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Otherwise, it reduces to a constant:

LCPO = Ec,x∼D,c′=c∼πθ [log(πθ(c|x) + πθ(c|x))
πθ(c|x) )] (20)

= − log(1
2) (21)

(22)

CPO Gradient Derivation

∇θLCPO = Ec,x∼D,c′ ̸=c∼πθ [∇θ log(πθ(c|x) + (1 − πθ(c′|x))
πθ(c|x) )] (23)

(24)

Due to the gradient being zero when c = c′, the expected gradient of the CPO objective simplifies to:

∇θLCPO = 1
N

∑
(c,x)∼µ,c′ ̸=c∼πθ(c|x)

(πθ(c|x) − 1)πθ(c′|x) (25)

= 1
N

∑
(c,x)∼µ,c′ ̸=c∼πθ(c|x)

(πθ(c|x) − 1) (1 − πθ(c|x)) (26)

That is, the CPO objective only takes a gradient step for sampled concepts that do not equal the
empirical concepts.

C.2 BOUNDING THE GRADIENTS

Proposition C.1. The expected gradient given by LCPO under binary labels is strictly less than or
equal to the gradient of the LBCE

Proof: This proof relies strictly on the notion that 1 − π(c|x) ≤ 1 thus:

1
N

∑
(c,x)∼µ,c′∼πθ(c|x)

(πθ(c|x) − 1)(1 − πθ(c|x)) ≤ 1
N

∑
(c,x)∼µ

(πθ(c|x) − 1) (27)

Observe how the right-hand side is equivalent to the expected cross-entropy loss. The above proposi-
tion also takes into account the maximum gradient possible for the LCPO, which is when ci = c′

i for
all i

C.3 COMPARING THE GRADIENTS UNDER NOISE

Theorem C.2. The expected squared difference between the optimal gradient and one computed
under noisy labels for direct preference optimization is less than or equal to that for binary cross
entropy.

Proof: The optimal gradient to take under noisy labels is given by:

E(c∗,x)∼d[∇θL] = E(c,x)∼µ[ d(c, x)
µ(c, x)∇θL(c, πθ(c|x)] (28)

= E(c,x)∼µ[ d(c, x)
µ(c, x)∇θL(c, πθ(c|x)] (29)

= E(c∗,x)∼µ+ [∇θL(c∗, πθ(c|x)] (30)

(31)

We observe that when we do not adjust for the importance weight, the gradient under noisy labels is:
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E(c,x)∼µ[∇θL] = E(c∗,x)∼µ+ [∇θL(c∗, πθ(c∗|x)] + E(c−,x)∼µ− [∇θL(c−, πθ(c−|x)] (32)

(33)

Thus the difference in the expected value of the gradients is:

(E(c∗,x)∼d[∇θL] − E(c,x)∼µ[∇θL])2 = E(c−,x)∼µ− [∇θL(c−, πθ(c−|x)] (34)

Therefore, using Proposition C.1 we can observe that :

E(c−,x)∼µ− [∇θLCPO(c−, πθ(c−|x)] ≤ E(c−,x)∼µ− [∇θLBCE(c−, πθ(c−|x)] (35)

And thus:

(E(c∗,x)∼d[∇θLCPO] − E(c,x)∼µ[∇θLCPO])2 ≤ (E(c∗,x)∼d[∇θLBCE] − E(c,x)∼µ[∇θLBCE])2 (36)

D GRADIENT VISUALIZATIONS:

We empirically verify the results posed in Theorem 4.3. For this, we train a standard CBM where the
total loss function is Ltotal = 1

2 (LCPO + LBCE) and do not optimize the task loss. We train this model
over 100 gradient steps and visualize their gradients throughout training. Where the optimal gradient
for each loss L∗ is computed using the empirical concepts and the full loss L− is computed over both
noisy and non-noisy data points. To minimize the effects of noise on the labelled data and gain a
better approximation, we explicitly do not augment the data in any way. Figure 8 visualizes these
results for p ∈ {0.1, 0.3}, which empirically confirms the proposed theoretical results showing how
even under low amounts of noise p = 0.1 LCPO is a better approximation to its optimal gradient when
compared to LBCE. We find that in higher noise settings p = 0.3, L−

CPO deviates substantially less to
L∗

CPO compared to L−
BCE against L∗

BCE. This difference is specifically evident early on in training. We
hypothesize that providing better gradients early on in training potentially improves the generalization
of the model being a possible explanation for the improved performance of LCPO under noise seen in
the empirical evaluation.
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Figure 8: Visualization of noisy (indicated by a −) and optimal (indicated with a *) gradients
for ∇θLCPO and ∇LBCE. We can observe that even in low noise settings p = 0.1, LCPO better
approximates its optimal gradient, with this difference growing as the noise level increases, especially
at the beginning of training. We note that while visually it may seem that the squared difference for
LCPO is smaller for p = 0.3 than that for p = 0.1, this is mainly due to scale.
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E ADDITIONAL CONTINUAL EXPERIMENTS

Here, we examine the impact of using a model trained with LBCE as the starting point for the
experiments in § 6. Figure 9 compares the performance of CBMs trained on streaming data when
initialized with LBCE (left) versus LDPO (right, same as Figure 6). Overall, we find that updating a
LBCE-initialized model with LBCE yields the best results for LBCE. However, while this improves
performance, it still falls short of the results achieved when both initialization and training are done
with LDPO. We note in the leftmost plot, we exclude the LDPO model updated without a prior to
improve the clarity of the plot, but note that we find it yields approximately equal results to training
with a prior.
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((a)) Initialized using a LBCE model.
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((b)) Initialized using a LDPO model.
Figure 9: Task Accuracy/Concept AUC vs the percentage of data the model has been trained on.
We find that updating models initialized with a LBCE policy yields improved results for LBCE with
detrimental ones for LCPO (A). In (B) we again visualize the result for updating the models using a
LDPO- initialized policy (same as Figure 6). We find that the best result is given by using LDPO to
update a LDPO- initialized policy
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