
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING UNIVERSAL SAMPLE DIFFICULTY WITH
PATHOLOGY FOUNDATION MODELS IN HISTOPATHOL-
OGY IMAGE ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

The fast scaling speed of histopathology datasets allows researchers to train various
foundation models for disease-centered research with applications in classifying
disease-state information and predicting gene expression levels. However, it has
been shown that current models tend to be overconfident and make classification at
a low-calibration level. This case is underexplored for regression-type tasks such as
gene expression prediction as well, which could seriously affect the diagnosis and
treatment based on the developed models. To resolve this critical issue, we propose
a universal framework1 to estimate the sample difficulty (USD) in both regression
and classification tasks. In particular, we fit the data in the embedding space with
Gaussian distribution and then utilize prior-informed relative Mahalanobis distance
to estimate sample difficulty. Moreover, we incorporate such difficulty as a weight
to regularize the model prediction, which can improve model performance by
emphasizing challenging samples. Our method can be seamlessly extended to
regression tasks by the incorporation of discrete targets. Extensive experiments
demonstrate that our proposed USD can improve the disease-state classification
accuracy by up to 3.8% and gene-level correlation by up to 62.2% compared with
the most frequently used approaches. Finally, we provide comprehensive ablation
tests to demonstrate the importance of including sample difficulty in the training
stage and case studies for the reasonability of assigning samples with different
difficulty levels.

1 INTRODUCTION

The analysis of gigapixel-level whole-slide images (WSIs) is an important topic in computational
pathology Song et al. (2023a); Bera et al. (2019); Niazi et al. (2019); Al-Janabi et al. (2012). Due
to the complexity and scarcity of pathology data, it is difficult for a pathologist to make accurate
diagnoses. While machine-learning-based methods have been applied for pathology analysis Neto
et al. (2024); Shaban et al. (2024), these models are usually trained with limited data and knowledge,
which might not be useful for general purposes Zhang and Metaxas (2024). To solve this issue,
extensive efforts have been made to collect large-scale pathology data, bringing in several pathology
foundation models (PFM) pre-trained with pathology image or multimodal data Chen et al. (2024b);
Lu et al. (2023); Xu et al. (2024a); Ma et al. (2024). Those PFMs generate robust representations for
WSIs in either patch level or slide level, which demonstrate state-of-the-art (SOTA) performances for
a wide range of tasks including disease-state classification, disease sub-type identification, medical
text-image retrieval, etc. Recent research has also explored cases of using features from PFMs to
predict gene expressions from hematoxylin and eosin (H&E)–stained images Jia et al. (2024); Xie
et al. (2024); Anonymous (2024); Lee et al. (2024b), revealing the potentials of PFMs in handling
regression-oriented problems.

Despite this great progress, we often detect misclassified samples in both training and testing sets when
using PFMs for classification-oriented problems. The potential reasons could be multifaceted such as
assigning wrong labels, changing brightness, adding medical annotation, etc. Given the importance

1Full codes can be found here: https://anonymous.4open.science/r/USD-13EB/ (also in
supplementary files).
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of diagnostic accuracy for patients Niazi et al. (2019), handling extensive noise in pathology data
is highly essential. Although some researchers have investigated the difficulty of training samples
in general image datasets (e.g., ImageNet Deng et al. (2009)) with technique development Cui et al.
(2023) on relative Mahalanobis distance Mahalanobis (2018) and data distillation Wang et al. (2024),
we have not yet found any research that systematically investigates how to process these difficult
samples in pathology images. Moreover, most of the current research on sample difficulty focuses
on classification-oriented problems and attempts to improve models with enhanced generalization
ability Cui et al. (2023), but how to extend the learning of sample difficulty in regression-oriented
problems remains unsolved. For spatial transcriptomic data analysis, predicting gene expression
information based on the H&E image is also an emerging field, as the measurement of spatial
transcriptomics data is expensive Anonymous (2025); Zeng et al. (2022) for large-scale analysis. In
addition, multi-modal information can provide more insights for pathology analysis Qiao et al. (2022),
and thus predicting transcriptomics as a new modality allows us to perform additional analyses such
as survival prediction Jaume et al. (2024b) and cell-cell communication inference Armingol et al.
(2021). Since we find that these expression predictors might fail for certain genes or spots, we plan
to dive deeper for an interpretable solution. Therefore, a general framework for understanding and
interpreting sample difficulty for pathology image analysis will be extremely helpful for domain
experts in the medical field.

In this paper, we propose a Universal Learning Framework for Estimating Sample Difficulty (USD)
and improving the capacity of PFMs in histopathology image analysis. Different from previous
research Cui et al. (2023); Agarwal et al. (2022); Zhu et al. (2024), our method first transfers the
concept of sample difficulty into an outlier detection problem, and then models the training diffi-
culty of samples by integrating the prior information jointly with modified relative Mahalanobis
distance (MRMD). Furthermore, we leverage discrete targets to extend our sample difficulty to
the gene expression prediction task, resulting in a universal model for both regression and clas-
sification problems. With these novel designs, USD demonstrates a SOTA performance in both
disease-state classification and disease sub-type identification across three datasets of different
scales. In addition, USD improves the prediction of gene expression levels from the perspectives
of both performance and interpretability across eight datasets from different tissues and diseases.

Figure 1: Illustration of sample diffi-
culty (lower means easier).

We further visualize the sample difficulty estimated by
USD in Figure 1 and perform clustering analysis in Ap-
pendix 8.1. Regarding the disease-state classification task,
we can observe an intuitive difference in pathological mor-
phology between the selected samples. We also cannot
detect the squamous-like regions enriched with cancer
cells in the difficult samples labeled as lung squamous
cell carcinoma (LUSC). Regarding the gene expression
prediction task, we find that the patches with lower cell
enrichment or clear tissue patterns are marked with a high
difficulty level, which aligns with their Pearson correla-
tion coefficient (PCC) scores. In contrast, for regions with
more useful morphological information, these samples
are assigned with lower difficulty, which can be validated
by accurate predictions. Overall, our method can help
researchers to better select pathological areas for clinical analysis and filter out useless information.

Our contributions are: (1) we show that PFMs provide superior slide- and patch-level representations,
whose features can also estimate sample difficulty; (2) we introduce MRMD, a metric for measuring
difficulty in classification and regression with fewer false positives; (3) we demonstrate that combining
difficulty-aware learning with entropy regularization improves performance; and (4) we design a
difficulty-aware loss that boosts results on over 70% of datasets. Beyond these, we establish novelty
by conducting the most comprehensive evaluation of PFMs to date across diverse datasets, tasks, and
metrics, proving the generalizability of our solutions beyond UNI and surpassing traditional visual
models like ResNet50. We further show, for the first time, that PFM features extend naturally to
sample difficulty estimation, adding interpretability to pathology workflows. Finally, ablation and
robustness analyses clarify when and why PFMs are essential, linking feature representation with
difficulty estimation to advance both regression and classification tasks within a unified framework.
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2 RELATED WORK

Pathology Foundation Models (PFMs). Learning robust representations of pathology images is
a challenge with extensive applications in computer-aided diagnosis, and PFMs are developed to
resolve it. Most of the current PFMs are visual-based or textual-visual-based large-scale neural
networks built based on transformer blocks. Moreover, these models diversify in model architectures,
pre-training strategy, and training datasets. For example, models such as UNI Chen et al. (2024b) rely
on DINOv2 Oquab et al. (2024) as base architecture and Mass-100K dataset in the pre-training stage,
while models like GigaPath Xu et al. (2024a) is built based on ViT Dosovitskiy et al. (2021) and
utilizes private datasets which are not publicly available. Furthermore, models such as PLIP Huang
et al. (2023), CONCH Lu et al. (2024), MUSK Xiang et al. (2025), and TITAN Ding et al. (2024)
utilize multi-modal information in the pre-training stage, which enlarges the models’ capacity in
handling the cross-modality tasks. There also exist models focusing on introducing more modalities
in the pre-training stage, such as mSTAR Xu et al. (2024b) with transcriptomic data, as explorations
for new pre-training frameworks.

PFM Applications. Foundation Models are named after their powerful and wide-ranging downstream
capabilities in few-shot and zero-shot learning scenarios, and this is no exception for PFMs. The
proposed PFMs have already demonstrated strong abilities in handling disease-related classification
tasks, such as disease-state prediction, disease sub-type identification, and image-image retrieval
Chen et al. (2024b); Ochi et al. (2024); Xiang and Zhang (2023). These challenges are constrained
by data quality and disease heterogeneity and thus they did not have general solutions in the past.
Furthermore, PFMs with language capacity can also be applied to addressing multi-modal tasks such
as text-image retrieval Huang et al. (2023), visual question answer (VQA) testing Xiang et al. (2025),
and medical report generation Shaikovski et al. (2024); Liu et al. (2025b). Recently, researchers also
explored the capacity of predicting spot-level gene expression information directly from the paired
image information with features obtained from PFMs, which shows potential to help analyze spatial
transcriptomics data with lower cost than performing data sequencing directly Anonymous (2024);
Lee et al. (2024b). The validation of prediction performances is usually based on databases Jaume
et al. (2024a); Chen et al. (2024a) with paired spatial transcriptomics and H&E images.

Sample Difficulty. The measurement of sample difficulty can come from either task-specific designs
and models Agarwal et al. (2022); Baldock et al. (2021); Zhu et al. (2024), or from pre-trained
models Cui et al. (2023). Previously, researchers focused on uncertainty regularization as an effective
approach to reducing the overfitting and over-confidence problems in the training stage of the
classifier. In the classification problem, most of them are based on the modification of loss functions,
for example, Focal loss Liu et al. (2020), Lp norm Joo and Chung (2021), Poly loss (Poly) Leng et al.
(2022), Entropy Regularization (ER) Mnih (2016), Weighted Entropy Regularization (WER), and
Weighted Poly Loss (WPoly) Cui et al. (2023) are based on adding regularization terms in the loss
function to improve the optimization process. The weight could come from the pre-defined distance
used to measure the difficulty level of training samples. Other methods such as label smoothing
Müller et al. (2019) and correctness ranking loss (CRL) Moon et al. (2020) modify the labels to
penalize the samples with the highest prediction confidence, which could be potential solutions. In
the regression problem, ordinary entropy (OE) Zhang et al. (2023) is developed to regularize neural
networks for handling regression-based tasks inspired by the phenomenon that formatting regression
problems as classification problems is helpful. Modified loss functions such as Huber loss Huber
(1992) can contribute for reducing the drawbacks caused by underfitting extreme samples.

3 METHOD

Problem Definition. In this paper, we are given a histopathology dataset D = {xi, yi}ni=1, where
xi represents an m-dimensional feature vector extracted from PFMs for the i-th whole-slide image
(WSI) or patch (which is an image extracted from WSI based on certain rules) and yi represents the
corresponding targets for prediction, i.e., disease states for the classification task (yi is a scalar) or
gene expression levels (yi is a vector as we have multiple genes to predict) for regression task. For
the classification task, we train a classifier Cθ based on the training dataset, and may observe sample
xd whose predicted labels mismatch with the observed label (Cθ(xd) ̸= yd). These samples can be
treated as difficult samples. Our target is to identify difficult samples and further improve model
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Difficulty-aware Optimization:
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Figure 2: Illustration of USD’s pipeline. We accept either slide-level information or patch-level
information as input and incorporate the estimated sample difficulty from prior in the training process
by reconstructing the target of optimization. By default, PFMs are frozen and only used for extracting
image embeddings, while task-specific adapters are trained for different datasets.

performances by correctly predicting these samples in the training stage as many as possible. The
formal definition of sample difficulty analysis for the regression problem is similar, and the label of
each sample can be computed by discretizing y into different bins, while the mismatched samples are
still difficult samples under this context.

Overview. USD starts from estimating the sample difficulty levels based on image features extracted
from pre-trained base models such as PFMs. We then leverage the sample difficulty to regularize the
model outputs in the training stage, as a more difficult sample should be assigned to having a higher
weight. To effectively predict gene expression levels based on spatial transcriptomics and paired
sets of patches, we consider both sample difficulty and the relationship between expression-level
similarity and feature-level similarity. The illustration of USD is shown in Figure 2.

Foundation Models as Feature Extractor. We first utilize pre-trained PFMs to embed the images
into feature space, which can provide better representations discussed in the previous work Cui et al.
(2023). In summary, PFMs are generally trained to ignore low-level information (e.g., class labels)
and prioritize whole-image level information rather than low-level image statistics. Moreover, PFMs
are trained with more diverse data, which can better learn and extract the intrinsic features of input
images and remove noisy information. Therefore, the generated features will be helpful to estimate
training difficulty in a robust space and support USD to perform downstream applications.

Estimating Sample Difficulty with Prior Knowledge. For training dataset Dtrain = {xi, yi}n1
i=1,

we first derive the relative Mahalanobis distance (RMD) as the sample difficulty score, which has been
shown as a more powerful approach to detect difficult samples Cui et al. (2023). The computation of
RMD is introduced later and it can measure the distribution-level difference to define easy samples
and difficult samples. For samples with yi = k, we fit a Gaussian model of the set of features {xi} as
G(xi). The model can be computed based on:

P(Gk(x) | y = k) = N (Gk(x) | µk,Σ) ,µk =
1

Nk

∑
i:yi=k

Gk (xi) ,

Σ =
1

N

∑
k

∑
i:yi=k

(Gk (xi)− µk) (Gk (xi)− µk)
⊤
,

(1)

where µk represents the mean vector and Σ represents the sample covariance matrix, Nk represents
the samples belonging to class k, and Gk represents the Gaussian model for the class k. Similarly,
considering all training samples as a background, we can fit a Gaussian model Gb:

P(Gb(x)) = N (Gb(x) | µb,Σb) ,µb =
1

N

∑
Gb (xi) ,

Σb =
1

N

∑
(Gb (xi)− µb) (Gb (xi)− µb)

⊤
,

(2)

where N represents the number of samples used for fitting, and µb and Σb represent the estimated
mean and covariance matrix for all samples used for training.

4
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The high-level idea is to have a metric that can reflect both the sample similarity within the same
label as well as sample difference across different labels. For example, an easy-classified sample
should be close to the mean vector of assigned labels (representative) and far from the mean vectors
of observed samples (discriminative), estimated based on the Gaussian model. Therefore, for one
sample xi with label yi = k, we can define its RMD based on the difference of MD computed based
on Gk and Gb as:

RMDk (xi, k) = MDk (xi, k)−MDb (xi) , (3)
where MDk and MDb represent the Mahalanobis distance computed based on samples and different
clustering centroid. The formal computation of MD is:

MDk (xi, k) = − (Gk (xi)− µk)
⊤
Σ−1 (Gk (xi)− µk) ,

MDb (xi) = − (Gb (xi)− µb)
⊤
Σ−1

b (Gb (xi)− µb) .
(4)

However, fitting a model based on training datasets still has the risk of estimating wrong difficulty
levels. For example, there exist samples with low RMD with misclassified results and samples with
high RMD but correctly assigned labels based on a simple linear classifier, shown in Appendix 8.2.
Moreover, the consistency of sample difficulty is also important in the estimation, and Appendix
8.2 shows that using different splits do not change the proportion of difficult samples significantly.
Therefore, we estimate a prior from several fitted LR models based on the cross-validation approach.
For the given training dataset Dtrain, we split the dataset into q folds based on cross-validation and
fit q LR models. By collecting all the samples wrongly classified by these models, we can have
a list containing nq difficult samples derived from simple classifiers, denoted as {xi}

nq

i=1, which
can be further converted into the indicator weight w. This approach can also be used to determine
whether we need to fit a neural-network-based classifier for the given problem. Moreover, we assign
the maximal RMD for these samples, and the modified distance is defined as MRMD with the
indicator weight. Therefore, if wxi

= 1, the MRMD for sample xi is defined as:

MRMDyi (xi, yi) = max
j

RMDyj (xj , yj) , (5)

otherwise MRMD is the same as the pre-computed RMD. When we train the model to classify
sample xi, we regularize the classification loss function by treating MRMD as adaptive weights:

Lf = Lc (fθ (xi) , yi) + αs (xi, yi)H [fθ (xi)] ,

s (xi, yi) =
exp (MRMD (xi, yi) /T )

maxj {exp (MRMD (xj , yj) /T}+ ϵ
,

(6)

where Lc represents the cross-entropy loss, fθ(·) represents the classifier, H(·) represents the regu-
larized element (it can be either negative entropy or poly loss), and s(·, ·) represents the difficulty
weight. α is the weight used for loss balancing, T is the temperature parameter to control the shape
of weight distribution, and ϵ represents a tiny value to avoid numerical errors. In the real application
of USD to improve classification, for stable training, we normalize the distance MRMD(xi, yi)
into the range of (0, 1). The regularized loss Lf can be trained with Adam Kingma (2014) optimizer.
If we do not detect wrongly classified samples in this stage, our method degrades to no-prior mode.
We have also provided a systemic comparison between USD and RMD in Appendix 8.2.

Estimating Sample Difficulty for Regression Problems. Previous research Pintea et al. (2023) has
demonstrated that reconsidering regression problems in computer vision as classification problems
can always boost model performance. Therefore, the sample difficulty of continuous labels can be
estimated after transferring the continuous targets as discrete targets, for example, based on clustering
methods after batch effect correction Korsunsky et al. (2019); Tran et al. (2020) or Bins-Discretizer
methods Pedregosa et al. (2011). Therefore, assuming we have the transferring function t(·) and the
discrete labels computed based on k = t(yi), the difficulty of updated sample (xi, k) can be defined
as:

RMDk (xi, k) = MDk (xi, k)−MDb (xi) , (7)
where the computation of MRMDk (xi, k) is the same as steps used in the classification task.

The number of clusters and bins is tuned based on maximizing the Average Silhouette Width (ASW)
score Pedregosa et al. (2011). The computation process of MDk(·, ·) and MDb(·) is the same as the
approaches used in classification. Similarly, MRMD(·, ·) can also be computed based on LR with
features from PFMs as inputs and discrete labels as targets.

5
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Learning Sample Difficulty for a General Purpose. When considering the loss of (multi-target)
regression-based problems, we propose a new correlation-aware and difficulty-aware loss function
for gene expression prediction. Most of the previous work relied on minimizing the mean squared
error (MSE(·, ·)) of multiple genes between observed expression levels yi for spot i and predicted
expression levels ŷi. However, this approach only considers the global cost but ignores the fine-
grained differences across spots and genes. Therefore, we first introduced the designed PCCMSE
loss, which is the combination of MSE loss, spot-level Pearson correlation coefficient (PCC) loss,
and gene-level PCC loss. Its definition is:

Lbase = MSE(y, ŷ)− PCC(y, ŷ)− PCC(y⊤, ŷ⊤). (8)

Furthermore, inspired by Zhang et al. (2023), we also introduce the Ordinary Entropy loss function
(OE) in the optimization process, which can reduce the entropy in the training process by balancing
the tightness and diversity of feature space. The second term of our loss function is defined as:

LOE = − 1

M(M − 1)

M∑
i=1

∑
j ̸=i

wij

∥∥zci − zcj
∥∥
2
+

1

Mb

Mb∑
i=1

∥zi − zci∥2 , (9)

where wij = ∥yi − yj∥2 ensures that samples with larger distances in the expression space will
receive a large penalty. Here ci and cj represent the centers in the feature space of samples i and
j, and zi represents the embeddings from the outputs of the last encoder layer for the i-th sample.
M represents the number of centers and Mb represents the number of samples in the given batch
b. Finally, in our case, each feature is its center because of the expression difference, so we have
∥zi − zci∥2 = 0.

We finally incorporate the difficulty-aware loss function inspired by the classification problem in
equation equation 6, and thus our final loss function used in USD can be represented as:

Lfinal = Lbase + λOELOE + λfLf , (10)

where λOE, λf are hyper-parameters used to control the balance of the last two loss function terms.
All the hyper-parameters are tuned to the optimized version based on the model performance on the
validation dataset for both baseline and proposed methods.

4 EXPERIMENT

4.1 SETUP

Datasets. For the disease-state classification problem, we consider three datasets covering different
sub-tasks. We perform experiments of our proposed method and baseline methods for disease
sub-type classification based on TCGA LUSC-LUAD (TCGA) Weinstein et al. (2013) dataset, and
perform experiments for disease-state classification based on CAMELYON16 Bejnordi et al. (2017)
and PANDA datasets Bulten et al. (2022). PANDA is designed as a multi-classification problem with
six classes. TCGA LUSC-LUAD is a slide-level small-scale dataset and the latter two are slide-level
large-scale datasets. We generate training/validation/testing samples for these three datasets randomly.
Label distributions are summarized in Appendix 8.4. For the spatial transcriptomics prediction as
a patch-level task, we consider eight datasets named by the source diseases/tissues (IDC, READ,
PRAD, LYMPH_IDC, COAD, CCRCC, Brain, and Skin) from the HEST-1k database Jaume et al.
(2024a) and STImage-1K4M database Chen et al. (2024a). The highly variable genes used for training
and prediction are pre-defined in these datasets. Each dataset corresponds to one cancer or tissue type,
and we filter the disease dataset whose number of batches is lower than three, which is the minimal
number we need to split the whole dataset into training/validation/testing samples.

Evaluations. For the classification task, we select metrics Pedregosa et al. (2011) including Accuracy
(Acc), Balanced Accuracy (Bacc), Kappa coefficient (Kappa), Weighted-F1 score (wF1), Area Under
the Receiver Operating Characteristic curve score (AUROC), and Expected Calibration Error (ECE)
Kuleshov and Liang (2015). The higher the better for all metrics except ECE. Lower ECE represents
better calibrating confidence. We did not include AUROC for evaluating the multi-class classification
problem. For the regression task, we select metrics including spot-level PCC (SPCC), gene-level
Pearson Correlation Coefficients (GPCC), and Mean Squared Error (MSE). The higher the better for

6
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all metrics except MSE. All metrics are widely used in the related work Chen et al. (2024b); Jia et al.
(2024); Liu et al. (2025a) of classification and regression tasks.

Baseline Models. We have considered base models including UNI v1 Chen et al. (2024b), UNI v2
Chen et al. (2024b), GigaPath Xu et al. (2024a), and ResNet 50 He et al. (2016) for generating image
features. Our selection criteria are based on the related benchmarking analyses in this task Jaume
et al. (2024a); Lee et al. (2024a); Zhang et al. (2025); Vaidya et al. (2025), and training strategies
are inherited from Cui et al. (2023). We exclude image-text-based PFMs to avoid data leakage. For
disease-state classification, we consider LS Müller et al. (2019), L1 Joo and Chung (2021), Focal
Mukhoti et al. (2020), Poly Leng et al. (2022), ER Pereyra et al. (2017), CE Mannor et al. (2005),
WER Cui et al. (2023), and WPoly Cui et al. (2023) as baseline models, which are widely used in
related work. For gene expression prediction, we consider MSE Loss Wang and Bovik (2009), Huber
Loss Huber (1992), and PCCMSE Loss as baseline models. Here MSE Loss is the most frequently
used loss function in this task. Details of baselines can be found in Appendix 8.5.

Implementation Details. We implement our method using a single H200 NVIDIA GPU and
adopt mini-batch Adam training with a batch size proportion to data scale (32 for the dataset with
nsamples < 1000 and 512 for the dataset with nsamples > 1000), and the batch size is also determined
under the consideration of the GPU memory usage. We utilize PyTorch-lightning Falcon (2019) to
train the model and evaluate different baselines accordingly. All the spatial transcriptomic data are
normalized by standard pipeline from Scanpy Wolf et al. (2018). For tuning other hyper-parameters,
please refer Appendix 8.6. For running time and memory usage, please refer Appendix 8.7.

Datasets Metrics Base
Methods

LS L1 Focal Poly ER CE WER WPoly USD (ER) USD (Poly) Best Method

TCGA

ACC (↑)

UNI v1 0.420 0.923 0.913 0.927 0.933 0.913 0.933 0.923 0.933 0.923

UNIv2+USD (ER)
UNI v2 0.520 0.960 0.933 0.930 0.963 0.923 1.000 0.920 1.000 0.920

GigaPath 0.510 0.647 0.603 0.760 0.697 0.737 0.677 0.767 0.677 0.767
ResNet 50 0.517 0.517 0.653 0.637 0.520 0.643 0.640 0.690 0.627 0.680

AUROC (↑)

UNI v1 0.446 0.986 0.987 0.986 0.994 0.986 0.994 0.989 0.994 0.989

UNIv2+USD (ER)
UNI v2 0.543 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000

GigaPath 0.570 0.742 0.838 0.859 0.877 0.866 0.898 0.891 0.898 0.891
ResNet 50 0.545 0.517 0.704 0.697 0.568 0.696 0.664 0.721 0.677 0.731

CAMELYON16

ACC (↑)

UNI v1 0.494 0.715 0.715 0.726 0.732 0.747 0.724 0.724 0.741 0.756

UNIv1+USD (Poly)
UNI v2 0.450 0.574 0.585 0.559 0.553 0.559 0.538 0.518 0.562 0.550

GigaPath 0.491 0.491 0.468 0.459 0.482 0.497 0.488 0.462 0.491 0.485
ResNet 50 0.541 0.535 0.529 0.524 0.497 0.521 0.456 0.535 0.585 0.553

AUROC (↑)

UNI v1 0.536 0.828 0.821 0.832 0.831 0.829 0.821 0.820 0.812 0.834

UNIv1+USD (Poly)
UNI v2 0.463 0.752 0.690 0.738 0.738 0.724 0.701 0.713 0.753 0.739

GigaPath 0.519 0.649 0.593 0.619 0.610 0.610 0.592 0.575 0.643 0.661
ResNet 50 0.524 0.725 0.720 0.719 0.719 0.725 0.515 0.712 0.730 0.703

PANDA

ACC (↑)

UNI v1 0.147 0.489 0.484 0.490 0.474 0.471 0.485 0.485 0.495 0.494

UNIv1+USD (ER)
UNI v2 0.165 0.479 0.479 0.489 0.480 0.479 0.474 0.485 0.488 0.468

GigaPath 0.182 0.468 0.459 0.470 0.460 0.465 0.460 0.466 0.473 0.453
ResNet 50 0.178 0.417 0.437 0.440 0.437 0.439 0.429 0.438 0.430 0.431

wF1 (↑)

UNI v1 0.099 0.458 0.468 0.467 0.445 0.446 0.467 0.469 0.479 0.478

UNIv1+USD (ER)
UNI v2 0.165 0.479 0.479 0.489 0.480 0.479 0.474 0.485 0.488 0.468

GigaPath 0.171 0.437 0.435 0.445 0.438 0.446 0.428 0.440 0.455 0.424
ResNet 50 0.174 0.342 0.416 0.413 0.415 0.416 0.403 0.413 0.397 0.404

Table 1: Benchmarking results across base models and training strategies for classification tasks. We
reported the average scores for each method from five random seeds, and the information on standard
deviation can be found in Appendix 8.8. Our proposed method and the best score are boldfaced.

4.2 EXPERIMENTAL RESULTS

Disease State Classification. We select Acc and AUROC for evaluating the dataset with binary
labels, while Acc and wF1 are presented for evaluating the dataset with multiple labels, summarized
in Table 1. We also provide tables with full metrics, which are listed in Appendix 8.8. We first
consider LR as a simple baseline for assessing the necessity of performing training with non-linear
models based on Appendix 8.9, which shows that PFMs with USD are always better than LR across
different datasets. Overall, if we consider evaluating the training strategies based on different PFMs
(including 12 combinations), USD achieves the highest performance in 75.0% choices evaluated by
AUROC or wF1 and 53.8% choices evaluated by Acc, demonstrating the consistent improvement
of USD. Furthermore, the ER mode of USD is more helpful for handling datasets with complicated
structures (e.g., multi-label classification) and can also reduce the uncertainty when making the
decision, reflected by the lower ECE. If we focus on a specific dataset such as TCGA, the best
combination, UNI v2 and USD with ER mode, can surpass the second-best combination by 3.8%.
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Figure 3: Results of choosing different K. (a) represents the results performed for the classification
task. (b) represents the results performed for the regression task.

The Poly mode of USD is more suitable for datasets with simpler structures. Both of the proposed
modes have low standard deviation, shown in Appendix 8.8. We also demonstrate the robustness of
USD under imbalanced or noisy labels, shown in Appendix 8.4. As a result, USD acts as an efficient
solution to improve the accuracy of image classification on a wide range of problem types and data,
and can be easily integrated into arbitrary training pipelines for classification tasks.

Metrics Methods
Datasets and Rank

IDC READ PRAD LYMPH_IDC COAD CCRCC Brain Skin Average Avg Rank

SPCC (↑)

MSE Loss 0.581 0.332 0.691 0.103 0.621 0.373 0.602 0.400 0.463 2.89
Huber Loss 0.589 0.322 0.684 0.090 0.626 0.369 0.605 0.393 0.460 3.22

PCCMSE Loss 0.588 0.360 0.687 0.049 0.621 0.383 0.615 0.401 0.463 2.67
USD (ER) 0.589 0.381 0.689 0.129 0.622 0.386 0.618 0.409 0.478 1.22

GPCC (↑)

MSE Loss 0.389 0.190 0.132 0.242 0.565 0.264 0.095 0.237 0.264 3.22
Huber Loss 0.390 0.166 0.134 0.250 0.568 0.251 0.102 0.198 0.257 2.89

PCCMSE Loss 0.400 0.271 0.134 0.219 0.562 0.284 0.133 0.266 0.284 2.22
USD (ER) 0.400 0.283 0.138 0.236 0.565 0.273 0.154 0.265 0.289 1.67

MSE (↓)

MSE Loss 2.825 0.264 0.293 0.845 0.959 0.491 0.281 1.561 0.940 2.56
Huber Loss 2.812 0.228 0.301 0.864 0.969 0.499 0.279 1.578 0.941 3.22

PCCMSE Loss 2.748 0.242 0.293 0.769 0.958 0.486 0.285 1.578 0.920 1.89
USD (ER) 2.754 0.269 0.294 0.857 0.957 0.492 0.279 1.481 0.923 2.33

Table 2: Benchmarking results for the regression task. We report the average scores (Average) for
each method from five random seeds and average rank (Avg Rank) by averaging method’s rank in
different datasets. The information on standard deviation can be found in Appendix 8.8. USD and the
score with best value are boldfaced, and lower rank represents a better method.

Gene Expression Prediction. We first select the most promising PFM to form the base model
for predicting spatial transcriptomics based on PCCMSE Loss. According to the Appendix 8.8,
UNI v2 is the best option for predicting gene expression levels from patches, so we conduct main
experiments based on this model to reduce the cost of generating path-level embeddings for each
dataset, estimating the sample difficulty, and training different models for expression prediction.
According to Table 2, MSE Loss and Huber Loss generally perform worse than PCCMSE Loss,
reflected in the lower SPCC score and GPCC score, as well as higher MSE, on average. USD also
surpasses state-of-the-art training framework, DeepPT Hoang et al. (2024), discussed in Appendix
8.10. Moreover, USD achieves the highest SPCC score in 75% datasets and the highest GPCC score
in 50% datasets. Compared with the second-best method in the selected metrics, USD makes an
average improvement by 3.2% for SPCC and 1.8% for GPCC. If we compare USD with MSE Loss,
which is a more generally used loss function in this task, we can improve the model performance
by 62.2% at most for GPCC in the Brain dataset. USD also has low variance, validated by the table
with information of the standard deviation. Therefore, USD can participially predict gene expression
levels higher than the baselines based on the cross-gene evaluation setting, which is closer to the
practical applications of gene expression analysis, such as the detection of differential expression
gene Kiselev et al. (2019); Song et al. (2023b) and the selection of cell-type-specific marker genes
Pullin and McCarthy (2024).

4.3 ANALYSIS

Insights from Analyzing Factors Affecting Image Classification. To estimate the sample difficulty
with prior, we need to run K-fold cross-validation to collect the samples that are wrongly predicted
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by a simple linear predictor. By adjusting different K, we have various sample lists with different
lengths. To determine a suitable K and demonstrate the robustness of our method, we examine
different K based on the CAMELYON16 dataset with base model UNI v1. According to Figure 3
(a), increasing K may slightly reduce model performance, which shows that our training strategy
expects a relatively smaller K to generate difficult sample sets. Moreover, very large K requires
longer training time, and thus we finally fix K = 3 for all datasets. We also consider the options of
input type with different modes, the necessity of dropping the difficult samples or fine-tuning the
base model and prediction head together, and the options of computing sample difficulty, discussed
in Appendix 8.11. These variations cannot make improvement.

Figure 4: Ablation tests for the regression task. (a)
represents the results under different components
of final loss. The mode CE means using cross
entropy as the classification loss. (b) represents
the results under different batch effect correction
strategies.

Lessons from Analyzing Factors Affecting
Gene Expression Prediction. In the regression
task, based on Figure 3 (b), adjusting K will not
affect model performance too much, and thus
USD is very robust to K in the gene expression
prediction setting. We have included a similar
study for the cluster number with all datasets in
Appendix 8.12. Furthermore, we perform ab-
lation studies to investigate the contribution of
different loss function components, summarized
in Figure 4 (a). According to this figure, our
final loss function Lfinal has the highest SPCC
and GPCC scores, while its MSE is close to
the best method. Moreover, we find that incor-
porating the term LOE can help us better learn
the cell-level and gene-level correlations while
adding the term Lf regularized by the sample
difficulty helps us reducing the average error be-
tween predicted and observed expression levels.
This conclusion matches with previous studies
arguing that utilizing classification loss can re-
duce the MSE for the regression task. If we do
not consider incorporating sample difficulty and
use cross entropy (CE) to compute the classifi-
cation loss, we cannot achieve improvement. We also consider the approaches to reduce batch effect
in the expression space, including Harmony, kBins, and no correction mode (NoC), and the results
are summarized in Figure 4 (b). Correcting batch effect can improve model performance. Running
Harmony or KBins can make the correlation smoother and reduce the batch effect in the relationship
of SPCC and difficulty, shown in Figure 5. The comparisons of different modes and base models are
summarized in Appendices 8.13 and 8.14.

Figure 5: Relationship between sample difficulty and SPCC based on adjusting different batch effect
correction strategies. The SPCC is computed based on the training dataset.

5 CONCLUSION

This paper investigates a clinical-associated problem of estimating the slide-level or patch-level
training difficulty to boost model performances targeting two typical tasks in histopathology image
analysis, including the classification of disease states and the prediction of spatial transcriptomics.
We have also included a section in Appendix 8.15 to discuss limitations.
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6 ETHICS STATEMENT

All authors follow the ethics statement of this conference. The users are solely responsible for the
content they generate with models in USD, and there are no mechanisms in place for addressing
harmful, unfaithful, biased, and toxic content disclosure. Any modifications of the models should
be released under different version numbers to keep track of the original models related to this
manuscript. The target of current USD only serves for academic research. The users cannot use it for
other purposes.

7 REPRODUCIBILITY STATEMENT

We have provided source codes in the abstract and supplementary files for reproductibility. We have
also provided detailed scores of all methods tested in our submission.
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8 APPENDIX

In this section, we present information on baselines, hyper-parameters, and other analyses or tables
that cannot be placed in the main text due to page limitation.

8.1 VISUALIZATION OF SAMPLE DIFFICULTY.

Here we visualize the sample label as well as sample difficulty based on the TCGA dataset with UNI
v1 embeddings Figure 6 based on UMAP McInnes et al. (2018). According to this figure, we capture
sample difficulty of different labels, and the samples with similar difficulty levels show clustering
performances. This discovery further conforms our interpretation of sample difficulty.

Figure 6: UMAP visualization of sample embeddings colored by disease states (left) and sample
difficulty (right).

8.2 MOTIVATIONS AND STABILITY OF MRMD.

Motivation explanation.

According to Figure 7, we found that Logistic Regression (LR) can make correct prediction for
samples with high difficulty levels, as well as wrong prediction for samples with low difficulty
levels. This observation motivates us to reconsider the design of sample difficulty estimation, as
we need to include the prior from a simple regression before estimating the sample difficulty with
a more complicated model. Since the main purpose of considering sample difficulty is to improve
generalizability by correctly predicting difficult samples, we believe it is necessary to reconsider the
definition of difficult samples.

Stability explanation.

We ensure the consistency of sample difficulty by examining the consistency of the proportion of
wrongly classified labels with different numbers of cross-validation sets. Here we show the proportion
overlap by iterating different split q in Tables 3 and 4, and we do not observe strong oscillation by
iterating different q for the three datasets used in the classification task. Therefore, our proposed
method can define a robust method for generating difficult samples.

Number of split 2 3 4 5 6 7 8 9 10
Proportion 0.46 0.43 0.49 0.49 0.47 0.44 0.44 0.43 0.43

Table 3: Relationship between the number of splits and the proportion of difficult samples identified
by LR model in the CAMELYON16 dataset.

8.3 COMPARISON BETWEEN RMD AND USD.

• Different scenarios: Cui et al. (2023) focuses on a general computer vision problem with
public datasets from different domains, but USD aims to tackle a challenge mentioned in
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Figure 7: Examples of histopathology images and corresponding decisions made by LR, which is
based on ResNet 50 and TCGA dataset.

Number of split 2 3 4 5 6 7 8 9 10
Proportion 0.59 0.57 0.56 0.56 0.55 0.56 0.55 0.55 0.55

Table 4: Relationship between the number of splits and the proportion of difficult samples identified
by LR model in the PANDA dataset.

the potential limitations of Cui et al. (2023), which focuses on medical image analysis, as
the medical images suffer from more challenging scenarios, such as label imbalance and
noisy data. Cui et al. (2023) is not straightforwardly suitable for medical domain data.

• Different problem settings: In terms of problem construction, Cui et al. (2023) only considers
image classification as a major task, while USD considers more diverse tasks, including
image classification as well as gene expression prediction (a regression task). We are among
the first research groups that try to improve the image regression prediction performance
by leveraging the estimated sample difficulty, and thus USD is a more generalizable tool.
Moreover, extending the estimation method to regression problems is not easily shown in
our comprehensive experiments and discussion.

• Different difficult estimation methods: In terms of the estimation of sample difficulty, Cui
et al. (2023) does not consider any prior information which might help on the estimation pro-
cess, while USD considers using a simpler classifier such as Logistic Regression to provide
correct prior to estimate a more accurate sample difficulty, supported by the visualization
result in Figure 1 and the performance improvement across different tasks.

• Different experimental designs: Cui et al. (2023) did not consider many ablation studies
and did not justify the necessity of introducing sample difficulty estimation for different
datasets, as it lacked comparison with a linear-based classifier, but USD introduces a more
rigorous comparison and demonstrates that we need to figure out the complexity of the
problem ahead of model training and construction. USD also has more ablation studies to
justify our choices for both the classification and regression tasks. Therefore, USD improves
significantly and generalizes to a different area compared with Cui et al. (2023), which leads
to an independent method.
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8.4 LABEL DISTRIBUTION OF IMBALANCE AND NOISY DATA TESTING.

Label distributions of datasets designed for the classification task.

Type TCGA_number
tumor 100
health 90

Table 5: Label distribution of the TCGA dataset.

Type CAMELYON16_number
tumor 159
health 111

Table 6: Label distribution of the CAMELYON16 dataset.

Index PANDA_number
0 2892
1 2666
2 1343
4 1249
3 1242
5 1224

Table 7: Label distribution of the PANDA dataset.

Analysis of label imbalance testing.

To produce data with imbalanced labels, we now include more experiment results based on sampling
the labels to create an extreme imbalance dataset from CAMELYON16, shown in Table 8, including
the case of many positive samples and the case of many negative samples. According to the results
from this table, USD still performs well under the extreme conditions, achieving over 80% accuracy
under two situations. Compared with the original dataset, we even have better performance, and thus
USD will not be affected by the issue of label imbalance significantly.

Dataset Model Metric Original Many positive samples (pos/neg=7) Many negative samples (neg/pos=14)

CAMELYON16
UNI v1+USD (Poly) ACC 0.756 (0.02) 0.850 (0.03) 0.949 (0.01)

wF1 0.746 (0.03) 0.804 (0.01) 0.804 (0.01)

UNI v1+USD (ER) ACC 0.741 (0.03) 0.831 (0.03) 0.977 (0.00)
wF1 0.750 (0.03) 0.988 (0.00) 0.766 (0.01)

Table 8: Performances of USD with two different sample difficulty penalty methods under three
conditions with label imbalance simulation.

Analysis of label noise testing.

To produce data with noisy labels, we utilize the symmetric noise generation method used in trust-
worthy machine learning Zhang et al. (2024) and discrete diffusion models Lou et al. (2023), which
means we select a certain proportion of samples and randomly pick different labels to replace their
correct labels. We then train USD with pathology image features from UNI v1 for the classification
task. According to Table 9 with Accuracy, AUROC, and wF1 metrics, we find that USD still shows
good performances under the condition with relatively lower noise label proportion (0.1-0.3), and the
performance USD will be affected under high noise level proportion, which aligns with the study of
label noise shown in Zhang et al. (2024). Therefore, USD is still a robust mode for datasets with a
small amount of imperfect labels. In real applications, for datasets with a very high proportion of
imperfect labels, which might be caused by low data quality and the calibration with domain experts,
label re-annotation, loss re-design could be more suitable approaches in medical applications Shi
et al. (2024).

8.5 EXPLANATIONS OF BASELINES

Explanations of Baseline Methods for Disease-State Classification.
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Dataset Metric 0.1 0.3 0.5 0.7
TCGA ACC 0.910 (0.05) 0.923 (0.05) 0.920 (0.03) 0.090 (0.04)

AUROC 0.991 (0.01) 0.992 (0.01) 0.990 (0.01) 0.016 (0.02)
CAMELYON16 ACC 0.665 (0.02) 0.594 (0.04) 0.526 (0.04) 0.365 (0.04)

AUROC 0.798 (0.02) 0.671 (0.01) 0.491 (0.04) 0.319 (0.03)
PANDA ACC 0.461 (0.01) 0.429 (0.00) 0.389 (0.01) 0.295 (0.04)

wF1 0.438 (0.01) 0.396 (0.01) 0.340 (0.03) 0.217 (0.07)

Table 9: Model performances with the format score (standard deviation) under different noise levels
(0.1–0.7) for the classification task.

Let pk be the likelihood that the model assigned to the k-th class given the input x, and yk is the true
target, where yk is 1 for the correct class and 0 for the rest.

• Cross Entropy (CE): LCE = −
∑K

k=1 yk log pk.

• Label Smoothing (LS): LLS = −
∑K

k=1 y
LS
k log pk with yLSk = yk(1− α) + α/K and α is

a tuning parameter.

• Focal Loss: LFocal = −
∑K

k=1 yk(1− pk)
γ log pk, where γ is a tuning parameter.

• Entropy Regularizer (ER): LER = LCE − αH(p), where H(p) = −
∑K

k=1 pk log pk and α
is a tuning parameter.

• Poly-N Loss: LPoly = LCE+
∑K

k=1 yk
∑N

j=1 ϵj(1−pk)
j where ϵj is the perturbation term

for the j-th coefficient.

• L1 Loss: LL1
= LCE + λ∥fW ∥1 where fW ∈ IRK is the logit values, and we use it to

compute pk = softmaxk(fW ).
• Weighted ER: LWER = LCE −αs(x, y)H(p), where α is a tuning parameter and s(x, y) is

a sample-specific weighting derived from the RMD-based sample difficulty score.
• Weighted Poly-1:

LWPoly = LCE + s(x, y)

K∑
k=1

ykϵ1(1− pk),

where s(x, y) is a sample-specific weighting derived from the RMD-based sample difficulty
score.

Explanations of Baseline Methods for Gene Expression Prediction.

Let y be the true target and f(x) be the prediction based on the input x.

• MSE Loss: LMSE = (y − f(x))2.
• Huber Loss: Given a hyper-parameter δ,

LHuber =

{
1
2 (y − f(x))2 if |y − f(x)| ≤ δ

δ(|y − f(x)| − 1
2δ) otheriwse

.

Explanations of Methods for Reducing Batch Effect. Batch effect means the technique noise
existing in the sequencing data from different samples. We consider Harmony Korsunsky et al.
(2019) and KBins Pedregosa et al. (2011) as two approaches for reducing batch effect. The idea of
Harmony is to utilize iterative clustering to pull the cells (spots) from different samples with similar
biological information to a cluster, until the convergence. This approach has been validated by several
benchmarking studies Tran et al. (2020); Arevalo et al. (2024) as a suitable method. KBins means we
utilize k-bin discreter to place spots with similar average gene expression profiles across genes in a
cluster, and thus the batch effect can be reduced by better characterizing biology-informed clusters.

8.6 HYPER-PARAMETER TUNING

For the disease-state classification task, we inherit the loss-specific hyper-parameter from Cui et al.
(2023), which is already tuned. These parameters include the entropy weight λe = 0.3, the Focal
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weight fγ = 1.0, the LS weight ϵ = 1.0, the L1 weight α = 1.0, and the Poly weight ϵp = 2.0.
The learning rate for training different combinations with PANDA and CAMELYON16 is 1e-3. The
learning rate for training different combinations based on UNI v1, UNI v2, and GigaPath is 1e-3, and
1e-2 based on ResNet 50, for the TCGA dataset. The choice of fold s is explained in the Analysis
section. In this section, we present information on baselines, hyper-parameters, and other analyses or
tables that cannot be placed in the main text due to page limitations.

For the gene expression prediction task, we tune the learning rate, λOE, and λf based on the grid
search for all models. The final choices of these three parameters are summarized in Table 10. We
found that the change of these choices is not in a large range, and thus our model is robust for different
conditions. The choice of fold s is explained in the Analysis section.

Dataset Learning Rate λOE λf

IDC 1.00E-04 1.00E-03 1.00E-03
READ 1.00E-03 1.00E-03 1.00E-03
PRAD 1.00E-03 1.00E-03 1.00E-03
LYMPH_IDC 1.00E-03 1.00E-03 1.00E-02
COAD 1.00E-03 1.00E-03 1.00E-03
CCRCC 1.00E-03 1.00E-03 1.00E-03
Brain 1.00E-03 1.00E-03 1.00E-03
Skin 1.00E-03 1.00E-03 1.00E-03

Table 10: Hyper-parameter tuning information of the spatial transcriptomic prediction task.

8.7 TRAINING EFFICIENCY

Here we present the running time and consumed GPU memory in Table 11 for the classification task
and Table 12 for the regression task. According to these tables, USD consumes comparable resources
with other baselines, but can improve model performances.

Method Time (s) GPU memory usage (GB)

LS 68.457 4.725
L1 73.973 4.725
Focal 60.086 4.725
Poly 68.852 4.725
ER 77.329 4.266
CE 79.456 4.725
WER 111.930 4.396
Wpoly 108.710 4.396
USD (Poly) 108.710 4.396

Table 11: Running time and memory usage for the classification task. We include statistics from both
baseline methods and USD. The experiment is performed on the CAMELYON16 dataset.

Method Time (s) GPU memory usage (GB)

MSE Loss 307.252 5.930
Huber Loss 306.928 5.930
PCCMSE Loss 335.070 5.930
USD (ER) 931.392 11.129

Table 12: Running time and memory usage for the classification task. We include statistics from both
baseline methods and USD. The experiment is performed on the Brain dataset.
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8.8 FULL TABLES

We list the average scores of all metrics for the classification task in Table 13, the standard deviation
of all metrics for the classification task in Table 14, and the standard deviation of all metrics for the
regression task in Table 15.

8.9 COMPARISONS BETWEEN LOGISTIC REGRESSION AND USD FOR DISEASE-STATE
PREDICTION.

Here we consider a simple baseline, Logistic Regression (LR), and fit this model then make a
comparison with our proposed model, to demonstrate the necessity of using the more advanced
approach to address the disease-state classification task. According to Table 16, our proposed method
performs better than LR in all of the included metrics across three datasets, and thus we demonstrate
the necessity of developing a novel solution for this task.

8.10 COMPARISONS BETWEEN USD AND TASK-SPECIFIC METHOD DEEPPT FOR GENE
EXPRESSION PREDICTION.

Here we include the comparison between our proposed method and a task-specific method DeepPT,
which was benchmarked in a recent publication for gene expression prediction from histopathology
images and ranked as the best method Zhang et al. (2025). DeepPT encodes a patch into embedding
space with pre-trained models, and later trains an auto-encoder to make the image embeddings
become more dense, and the compressed embeddings are used for predicting gene expression levels.
According to Table 17, USD performs better than DeepPT evaluated by all metrics on average, and
participially in the READ and the LYMPH_IDC datasets. Table 18 shows that USD is also a robust
method with low variance. Therefore, USD can also surpass current state-of-the-art training pipeline.

8.11 COMPARISONS OF METHODS FOR TRAINING THE PREDICTION HEAD

Here we consider two modes of training the prediction head for disease-state classification based
on the TCGA dataset. The first mode is full parameter training (FPT), which means we tune the
feature extractor together with the prediction head. The second mode is only training the prediction
head (TPH) and freezing the feature extractor, which is also the default mode with less GPU memory
usage. According to Table 19, TPH performs better than FPT in all metrics, and thus we keep TPH as
our final solution.

We also investigate the contribution of using patch-level (36 patches per image) information from the
whole slide to train a classifier for disease-state prediction with mean pooling (MP) and multi-instance
learning (ABMIL). The comparison based on the CAMELYON16 dataset with UNI v1 as base model
is shown in Table 20. According to this table, using PFMs to encode slides directly is a better choice,
and its required scale of training data is smaller than multi-instance learning design. The potential
limitations of patch-based methods such as MP and ABMIL Ilse et al. (2018) are the bias in selecting
patches to represent a slide, and the training cost of patch-level information is also more expensive.
Nevertheless, our conclusion in the slide-level representation can also be transferred to patch-level
representation easily, demonstrated by our regression-based experiments. Moreover, we consider
removing samples which are wrongly classified by the linear classifier and re-train the prediction
head (RD), whose result is also summarized in this table. We find that removing difficult samples
cannot improve model performance, and thus our default setting is the most optimal setting. With the
same dataset, we also consider a different approach to compute MRMD, that is, for a sample with
class c, we compute the base Gaussian model Gb based on the samples not belonging to this class.
This approach is represented as MRMD (class removal) and the default method is represented as
MRMD (base). According to Table x, MRMD (base) has better performances, and thus using
different types of samples to compute MRMD also does not improve the performance of USD.

8.12 EFFECT OF CHOOSING THE CLUSTER NUMBER

Since the ASW score is widely used in evaluating the clustering performance in spatial transcriptomic
data analysis, we believe that the biological signals will not be oversimplified by selecting the optimal
bin number. We present additional experimental results by using different numbers of bins for
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Datasets Metrics Base
Methods

LS L1 Focal Poly ER CE WER WPoly USD (ER) USD (Poly) Best Method

TCGA

ACC (↑)

UNI v1 0.420 0.923 0.913 0.927 0.933 0.913 0.933 0.923 0.933 0.923

UNI v2+USD (ER)
UNI v2 0.520 0.960 0.933 0.930 0.963 0.923 1.000 0.920 1.000 0.920

GigaPath 0.510 0.647 0.603 0.760 0.697 0.737 0.677 0.767 0.677 0.767
ResNet 50 0.517 0.517 0.653 0.637 0.520 0.643 0.640 0.690 0.627 0.680

AUROC (↑)

UNI v1 0.446 0.986 0.987 0.986 0.994 0.986 0.994 0.989 0.994 0.989

UNI v2+USD (ER)
UNI v2 0.543 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000

GigaPath 0.570 0.742 0.838 0.859 0.877 0.866 0.898 0.891 0.898 0.891
ResNet 50 0.545 0.517 0.704 0.697 0.568 0.696 0.664 0.721 0.677 0.731

Bacc (↑)

UNI v1 0.420 0.923 0.913 0.927 0.933 0.913 0.933 0.923 0.933 0.923
UNI v2 0.520 0.960 0.933 0.930 0.963 0.923 1.000 0.920 1.000 0.920

GigaPath 0.510 0.647 0.603 0.760 0.697 0.737 0.677 0.767 0.677 0.767
ResNet 50 0.517 0.517 0.653 0.637 0.520 0.643 0.640 0.690 0.627 0.680 UNI v2+USD (ER)

Kappa (↑)

UNI v1 -0.160 0.847 0.827 0.853 0.867 0.827 0.867 0.847 0.867 0.847
UNI v2 0.040 0.920 0.867 0.860 0.927 0.847 1.000 0.840 1.000 0.840

GigaPath 0.020 0.293 0.207 0.520 0.393 0.473 0.353 0.533 0.353 0.533
ResNet 50 0.033 0.033 0.307 0.273 0.040 0.287 0.280 0.380 0.253 0.360 UNI v2+USD (ER)

wF1 (↑)

UNI v1 0.361 0.923 0.913 0.926 0.933 0.913 0.933 0.923 0.933 0.923
UNI v2 0.467 0.960 0.933 0.930 0.963 0.923 1.000 0.919 1.000 0.919

GigaPath 0.447 0.636 0.532 0.749 0.639 0.721 0.627 0.758 0.627 0.758
ResNet 50 0.488 0.442 0.651 0.631 0.438 0.636 0.629 0.690 0.613 0.676 UNI v2+USD (ER)

ECE (↓)

UNI v1 0.107 0.242 0.100 0.089 0.051 0.098 0.065 0.097 0.065 0.097
UNI v2 0.186 0.299 0.073 0.069 0.243 0.078 0.151 0.073 0.151 0.073

GigaPath 0.131 0.166 0.253 0.121 0.227 0.137 0.208 0.126 0.208 0.126
ResNet 50 0.210 0.199 0.155 0.210 0.219 0.219 0.184 0.209 0.184 0.209 UNI v1+ER

CAMELYON16

ACC (↑)

UNI v1 0.494 0.715 0.715 0.726 0.732 0.747 0.724 0.724 0.741 0.756

UNI v1+USD (Poly)
UNI v2 0.450 0.574 0.585 0.559 0.553 0.559 0.538 0.518 0.562 0.550

GigaPath 0.491 0.491 0.468 0.459 0.482 0.497 0.488 0.462 0.491 0.485
ResNet 50 0.541 0.535 0.529 0.524 0.497 0.521 0.456 0.535 0.585 0.553

AUROC (↑)

UNI v1 0.536 0.828 0.821 0.832 0.831 0.829 0.821 0.820 0.812 0.834

UNI v1+USD (Poly)
UNI v2 0.463 0.752 0.690 0.738 0.738 0.724 0.701 0.713 0.753 0.739

GigaPath 0.519 0.649 0.593 0.619 0.610 0.610 0.592 0.575 0.643 0.661
ResNet 50 0.524 0.725 0.720 0.719 0.719 0.725 0.515 0.712 0.730 0.703

Bacc (↑)

UNI v1 0.491 0.734 0.733 0.746 0.752 0.765 0.741 0.738 0.757 0.771
UNI v2 0.456 0.605 0.615 0.592 0.587 0.593 0.573 0.553 0.592 0.586

GigaPath 0.516 0.527 0.510 0.503 0.515 0.536 0.525 0.505 0.531 0.526
ResNet 50 0.539 0.571 0.565 0.562 0.536 0.558 0.500 0.572 0.617 0.588 UNI v1+USD (WPoly)

Kappa (↑)

UNI v1 -0.017 0.449 0.448 0.472 0.484 0.510 0.463 0.460 0.496 0.525
UNI v2 -0.087 0.197 0.218 0.173 0.163 0.174 0.137 0.100 0.173 0.160

GigaPath 0.030 0.050 0.018 0.005 0.029 0.067 0.047 0.010 0.060 0.049
ResNet 50 0.077 0.133 0.122 0.114 0.068 0.108 0.000 0.135 0.219 0.165 UNI v1+USD (WPoly)

wF1 (↑)

UNI v1 0.494 0.702 0.704 0.715 0.721 0.739 0.715 0.718 0.750 0.746

UNI v1+USD (ER)
UNI v2 0.435 0.510 0.521 0.482 0.475 0.479 0.445 0.407 0.498 0.463

GigaPath 0.413 0.385 0.316 0.292 0.378 0.378 0.366 0.298 0.350 0.342
ResNet 50 0.534 0.446 0.438 0.417 0.371 0.417 0.286 0.438 0.524 0.467

ECE (↓)

UNI v1 0.066 0.102 0.100 0.139 0.092 0.110 0.080 0.133 0.107 0.106

ResNet 50+LS
UNI v2 0.058 0.114 0.103 0.199 0.119 0.144 0.135 0.229 0.159 0.156

GigaPath 0.070 0.142 0.163 0.342 0.164 0.194 0.188 0.324 0.199 0.232
ResNet 50 0.049 0.100 0.106 0.245 0.137 0.181 0.190 0.193 0.137 0.167

PANDA

ACC (↑)

UNI v1 0.147 0.489 0.484 0.490 0.474 0.471 0.485 0.485 0.495 0.494

UNI v1+USD (ER)
UNI v2 0.165 0.479 0.479 0.489 0.480 0.479 0.474 0.485 0.488 0.468

GigaPath 0.182 0.468 0.459 0.470 0.460 0.465 0.460 0.466 0.473 0.453
ResNet 50 0.178 0.417 0.437 0.440 0.437 0.439 0.429 0.438 0.430 0.431

wF1 (↑)

UNI v1 0.099 0.458 0.468 0.467 0.445 0.446 0.467 0.469 0.479 0.478

UNI v1+USD (ER)
UNI v2 0.165 0.479 0.479 0.489 0.480 0.479 0.474 0.485 0.488 0.468

GigaPath 0.171 0.437 0.435 0.445 0.438 0.446 0.428 0.440 0.455 0.424
ResNet 50 0.174 0.342 0.416 0.413 0.415 0.416 0.403 0.413 0.397 0.404

Bacc (↑)

UNI v1 0.162 0.422 0.432 0.431 0.413 0.411 0.432 0.431 0.437 0.441

UNI v1+USD (ER)
UNI v2 0.170 0.408 0.426 0.431 0.423 0.425 0.417 0.433 0.428 0.405

GigaPath 0.161 0.398 0.398 0.410 0.399 0.408 0.392 0.399 0.414 0.388
ResNet 50 0.179 0.333 0.377 0.381 0.378 0.379 0.366 0.380 0.368 0.368

Kappa (↑)

UNI v1 0.002 0.589 0.605 0.598 0.588 0.582 0.598 0.599 0.594 0.603

UNI v2+Focal
UNI v2 0.004 0.588 0.613 0.602 0.611 0.604 0.605 0.612 0.603 0.585

GigaPath 0.000 0.568 0.574 0.590 0.576 0.582 0.564 0.570 0.577 0.567
ResNet 50 0.048 0.476 0.524 0.533 0.524 0.531 0.518 0.530 0.527 0.517

ECE (↓)

UNI v1 0.047 0.088 0.023 0.150 0.059 0.045 0.027 0.103 0.043 0.084

ResNet 50+LS
UNI v2 0.033 0.101 0.032 0.128 0.067 0.045 0.041 0.077 0.034 0.051

GigaPath 0.016 0.086 0.027 0.150 0.064 0.054 0.043 0.074 0.031 0.061
ResNet 50 0.012 0.099 0.050 0.096 0.082 0.018 0.056 0.057 0.022 0.022

Table 13: Benchmarking average scores under the full metric list for the classification task.
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Datasets Metrics Base
Methods

LS L1 Focal Poly ER CE WER WPoly USD (ER) USD (Poly) Best Method

TCGA

ACC

UNI v1 0.072 0.028 0.022 0.009 0.000 0.022 0.000 0.015 0.000 0.015

UNI v2+USD (ER)
UNI v2 0.230 0.022 0.017 0.014 0.022 0.015 0.000 0.007 0.000 0.007

GigaPath 0.162 0.151 0.076 0.067 0.180 0.069 0.134 0.024 0.134 0.024
ResNet 50 0.249 0.054 0.032 0.043 0.051 0.032 0.043 0.022 0.035 0.046

AUROC

UNI v1 0.149 0.010 0.010 0.009 0.008 0.012 0.005 0.009 0.005 0.009

UNI v2+USD (ER)
UNI v2 0.264 0.001 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000

GigaPath 0.457 0.218 0.071 0.057 0.085 0.029 0.047 0.044 0.047 0.044
ResNet 50 0.320 0.061 0.024 0.019 0.022 0.016 0.014 0.012 0.027 0.032

Bacc

UNI v1 0.072 0.028 0.022 0.009 0.000 0.022 0.000 0.015 0.000 0.015

UNI v2+USD (ER)
UNI v2 0.230 0.022 0.017 0.014 0.022 0.015 0.000 0.007 0.000 0.007

GigaPath 0.162 0.151 0.076 0.067 0.180 0.069 0.134 0.024 0.134 0.024
ResNet 50 0.249 0.054 0.032 0.043 0.051 0.032 0.043 0.022 0.035 0.046

Kappa

UNI v1 0.144 0.056 0.043 0.018 0.000 0.043 0.000 0.030 0.000 0.030

UNI v2+USD (ER)
UNI v2 0.460 0.045 0.033 0.028 0.043 0.030 0.000 0.015 0.000 0.015

GigaPath 0.324 0.302 0.152 0.135 0.361 0.138 0.267 0.047 0.267 0.047
ResNet 50 0.499 0.108 0.064 0.086 0.101 0.065 0.087 0.045 0.069 0.092

wF1

UNI v1 0.074 0.028 0.022 0.009 0.000 0.022 0.000 0.015 0.000 0.015

UNI v2+USD (ER)
UNI v2 0.250 0.022 0.017 0.014 0.022 0.015 0.000 0.008 0.000 0.008

GigaPath 0.175 0.154 0.128 0.080 0.244 0.086 0.169 0.027 0.169 0.027
ResNet 50 0.272 0.101 0.034 0.045 0.090 0.038 0.067 0.023 0.047 0.048

ECE

UNI v1 0.057 0.016 0.027 0.013 0.012 0.024 0.024 0.011 0.024 0.011

UNI v2+Wpoly
UNI v2 0.103 0.024 0.011 0.011 0.029 0.017 0.050 0.010 0.050 0.010

GigaPath 0.071 0.109 0.089 0.040 0.098 0.072 0.066 0.014 0.066 0.014
ResNet 50 0.085 0.034 0.023 0.035 0.064 0.026 0.019 0.029 0.029 0.040

CAMELYON16

ACC

UNI v1 0.087 0.046 0.040 0.035 0.019 0.019 0.019 0.012 0.034 0.022

UNI v1+USD (Poly)
UNI v2 0.066 0.044 0.081 0.063 0.042 0.071 0.069 0.092 0.061 0.054

GigaPath 0.095 0.045 0.026 0.007 0.026 0.035 0.043 0.013 0.079 0.066
ResNet 50 0.039 0.034 0.037 0.049 0.056 0.056 0.000 0.049 0.056 0.064

AUROC

UNI v1 0.112 0.026 0.047 0.019 0.025 0.026 0.013 0.024 0.026 0.020

ResNet 50+Focal
UNI v2 0.100 0.042 0.091 0.058 0.026 0.040 0.057 0.051 0.048 0.039

GigaPath 0.097 0.076 0.063 0.035 0.096 0.068 0.062 0.052 0.089 0.055
ResNet 50 0.089 0.008 0.002 0.009 0.011 0.009 0.072 0.015 0.003 0.021

Bacc

UNI v1 0.088 0.042 0.036 0.033 0.016 0.017 0.020 0.015 0.037 0.019

ResNet 50+ER
UNI v2 0.072 0.037 0.071 0.056 0.037 0.063 0.061 0.081 0.052 0.049

GigaPath 0.091 0.044 0.022 0.006 0.022 0.032 0.031 0.012 0.070 0.058
ResNet 50 0.043 0.030 0.032 0.045 0.049 0.050 0.000 0.044 0.051 0.058

Kappa

UNI v1 0.174 0.083 0.072 0.065 0.034 0.035 0.038 0.027 0.069 0.040

ResNet 50+ER
UNI v2 0.141 0.071 0.137 0.105 0.070 0.119 0.115 0.154 0.099 0.092

GigaPath 0.179 0.081 0.041 0.011 0.040 0.059 0.060 0.022 0.133 0.110
ResNet 50 0.043 0.032 0.062 0.084 0.093 0.050 0.000 0.044 0.051 0.058

wF1

UNI v1 0.087 0.058 0.049 0.041 0.024 0.023 0.020 0.011 0.032 0.027
UNI v2 0.067 0.082 0.144 0.121 0.082 0.129 0.131 0.171 0.122 0.095

GigaPath 0.149 0.092 0.067 0.014 0.092 0.071 0.111 0.028 0.143 0.126
ResNet 50 0.036 0.066 0.072 0.095 0.113 0.102 0.000 0.085 0.100 0.116 ResNet 50+ER

ECE

UNI v1 0.049 0.011 0.026 0.033 0.006 0.018 0.021 0.010 0.017 0.019

UNI v1+ER
UNI v2 0.061 0.022 0.038 0.066 0.036 0.054 0.047 0.062 0.043 0.022

GigaPath 0.055 0.046 0.043 0.051 0.039 0.083 0.080 0.039 0.043 0.060
ResNet 50 0.026 0.037 0.009 0.044 0.059 0.017 0.025 0.014 0.047 0.046

PANDA

ACC

UNI v1 0.050 0.016 0.015 0.016 0.013 0.008 0.011 0.012 0.014 0.009

UNI v1+USD (ER)
UNI v2 0.041 0.011 0.007 0.005 0.007 0.004 0.009 0.015 0.010 0.009

GigaPath 0.014 0.009 0.012 0.013 0.017 0.003 0.009 0.006 0.006 0.007
ResNet 50 0.013 0.009 0.005 0.007 0.009 0.009 0.005 0.005 0.012 0.012

wF1

UNI v1 0.059 0.024 0.019 0.026 0.021 0.014 0.019 0.019 0.014 0.010

UNI v1+USD (ER)
UNI v2 0.047 0.023 0.017 0.014 0.015 0.011 0.016 0.021 0.015 0.016

GigaPath 0.010 0.016 0.015 0.020 0.025 0.010 0.013 0.006 0.010 0.006
ResNet 50 0.018 0.018 0.007 0.011 0.012 0.008 0.011 0.011 0.021 0.026

Bacc

UNI v1 0.012 0.021 0.013 0.023 0.016 0.013 0.017 0.017 0.016 0.008

GigaPath+Wpoly
UNI v2 0.006 0.015 0.008 0.014 0.011 0.010 0.013 0.012 0.015 0.009

GigaPath 0.013 0.013 0.017 0.017 0.022 0.005 0.007 0.005 0.006 0.011
ResNet 50 0.011 0.011 0.005 0.005 0.008 0.008 0.010 0.007 0.014 0.021

Kappa

UNI v1 0.027 0.022 0.011 0.021 0.013 0.021 0.013 0.018 0.013 0.005

UNI v1+USD (Poly)
UNI v2 0.025 0.018 0.011 0.007 0.010 0.012 0.013 0.010 0.017 0.008

GigaPath 0.045 0.013 0.019 0.019 0.021 0.011 0.012 0.007 0.010 0.011
ResNet 50 0.031 0.029 0.017 0.009 0.012 0.014 0.020 0.013 0.013 0.034

ECE

UNI v1 0.016 0.015 0.005 0.034 0.009 0.014 0.011 0.013 0.019 0.008

ResNet 50+USD (ER)
UNI v2 0.017 0.014 0.014 0.030 0.011 0.009 0.017 0.037 0.010 0.007

GigaPath 0.012 0.017 0.008 0.018 0.012 0.020 0.011 0.034 0.013 0.019
ResNet 50 0.013 0.011 0.005 0.011 0.012 0.004 0.015 0.009 0.004 0.009

Table 14: Benchmarking standard deviation under the full metric list for the classification task.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Metrics Methods
HEST-1K STImage-1K4M

IDC READ PRAD LYMPH_IDC COAD CCRCC Brain Skin

SPCC

MSE 0.009 0.007 0.000 0.074 0.007 0.004 0.001 0.010
Huber 0.006 0.010 0.003 0.008 0.001 0.002 0.001 0.015
PCCMSE 0.005 0.006 0.002 0.008 0.001 0.002 0.001 0.021
USD (er) 0.005 0.005 0.003 0.036 0.002 0.006 0.002 0.007

GPCC

MSE 0.008 0.003 0.002 0.138 0.005 0.005 0.003 0.027
Huber 0.004 0.004 0.003 0.003 0.002 0.008 0.004 0.066
PCCMSE 0.002 0.003 0.005 0.002 0.002 0.003 0.005 0.008
USD (er) 0.003 0.004 0.008 0.026 0.002 0.008 0.002 0.026

MSE

MSE 0.073 0.004 0.001 0.035 0.013 0.001 0.001 0.011
Huber 0.065 0.002 0.002 0.005 0.009 0.001 0.001 0.035
PCCMSE 0.025 0.003 0.002 0.007 0.002 0.000 0.002 0.016
USD (er) 0.069 0.018 0.004 0.022 0.006 0.007 0.003 0.020

Table 15: Benchmarking standard deviation for the full metric list based on the regression task.

KMeans clustering after processing the data with Harmony, and the image features are extracted with
UNI v2. Table 22 shows that selecting the best k based on tuning ASW score achieves the highest
SPCC score in over 75% datasets from both the HEST and STImage1k4M databases, and its GPCC
and MSE are also in the top2 list for most of the datasets. Moreover, using the best k can obviously
reduce the randomness and improve training robustness evaluated with all three metrics, especially in
the IDC and LYMPH_IDC datasets, since the results based on k=7 and 11 for IDC and k=5 and 7 for
Brain show high variance in the evaluation with MSE or SPCC across five random seeds. Therefore,
tuning the cluster number k with ASW score is an effective approach to select the size used for model
training, supported by its superiority in average performance and robustness.

8.13 COMPARISONS BETWEEN USD (ER) AND USD (POLY) FOR THE GENE EXPRESSION
PREDICTION.

The results for comparing two modes of USD are shown in Figure 8. According to this figure, these
two modes do not show obvious differences across all selected metrics.

8.14 COMPARISONS BETWEEN DIFFERENT BASE MODELS FOR GENE EXPRESSION
PREDICTION

According to Tables 23 and 24, UNI v2-based combination always outperforms other combinations
evaluated by GPCC, and it also has low variance. Therefore, UNI v2 is selected as the base model for
evaluating the performances of gene expression prediction based on different training strategies.

8.15 BROADER IMPACT AND LIMITATIONS

One possible limitation of USD could be the task-specific requirements of pathology foundation
models, as the sample difficulty is affected by the source representations, and thus different foundation
models might lead to differences in estimating sample difficulty. One potential solution is to define a
metric to select models before estimating sample difficulty. The other limitation could be training
efficiency for large-scale datasets, which could potentially be addressed by using advanced GPU
cores.
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Datasets Metrics Base
Methods

LR USD (ER)

TCGA

ACC

UNI v1 0.733 0.933
UNI v2 0.917 1.000

GigaPath 0.617 0.677
ResNet 50 0.500 0.627

AUROC

UNI v1 0.994 0.994
UNI v2 1.000 1.000

GigaPath 0.919 0.898
ResNet 50 0.023 0.677

Bacc

UNI v1 0.733 0.933
UNI v2 0.917 1.000

GigaPath 0.617 0.677
ResNet 50 0.500 0.627

Kappa

UNI v1 0.467 0.867
UNI v2 0.833 1.000

GigaPath 0.233 0.353
ResNet 50 0.000 0.253

wF1

UNI v1 0.713 0.933
UNI v2 0.916 1.000

GigaPath 0.551 0.627
ResNet 50 0.333 0.613

ECE

UNI v1 0.329 0.065
UNI v2 0.329 0.151

GigaPath 0.236 0.208
ResNet 50 0.263 0.184

CAMELYON16

ACC

UNI v1 0.618 0.741
UNI v2 0.618 0.562

GigaPath 0.647 0.491
ResNet 50 0.500 0.585

AUROC

UNI v1 0.756 0.812
UNI v2 0.751 0.753

GigaPath 0.716 0.643
ResNet 50 0.672 0.730

Bacc

UNI v1 0.620 0.757
UNI v2 0.638 0.592

GigaPath 0.655 0.531
ResNet 50 0.541 0.617

Kappa

UNI v1 0.237 0.496
UNI v2 0.264 0.173

GigaPath 0.303 0.060
ResNet 50 0.074 0.219

wF1

UNI v1 0.618 0.750
UNI v2 0.599 0.498

GigaPath 0.646 0.350
ResNet 50 0.376 0.524

ECE

UNI v1 0.251 0.107
UNI v2 0.220 0.159

GigaPath 0.227 0.199
ResNet 50 0.181 0.137

PANDA

ACC

UNI v1 0.458 0.495
UNI v2 0.448 0.488

GigaPath 0.449 0.473
ResNet 50 0.378 0.430

wF1

UNI v1 0.448 0.479
UNI v2 0.438 0.488

GigaPath 0.439 0.455
ResNet 50 0.307 0.397

Bacc

UNI v1 0.408 0.437
UNI v2 0.398 0.428

GigaPath 0.405 0.414
ResNet 50 0.280 0.368

Kappa

UNI v1 0.569 0.594
UNI v2 0.551 0.603

GigaPath 0.556 0.577
ResNet 50 0.286 0.527

ECE

UNI v1 0.175 0.043
UNI v2 0.206 0.034

GigaPath 0.142 0.031
ResNet 50 0.045 0.022

Table 16: Evaluation results between LR and USD (ER).
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Metircs Methods
Datasets and Statistics

IDC READ PRAD LYMPH_IDC COAD CCRCC Brain Skin Average

SPCC
DeepPT 0.579 0.314 0.688 0.084 0.611 0.379 0.603 0.389 0.456

USD (ER) 0.589 0.381 0.689 0.129 0.622 0.386 0.618 0.409 0.478

GPCC
DeepPT 0.386 0.186 0.110 0.223 0.563 0.263 0.110 0.189 0.254

USD (ER) 0.400 0.283 0.138 0.236 0.565 0.273 0.154 0.265 0.289

MSE
DeepPT 2.947 0.277 0.296 0.868 0.986 0.491 0.282 1.668 0.977

USD (ER) 2.754 0.269 0.294 0.857 0.957 0.492 0.279 1.481 0.923

Table 17: Comparing average scores between DeepPT and USD for the gene expression prediction
task.

Metircs Methods
Datasets and Statistics

IDC READ PRAD LYMPH_IDC COAD CCRCC Brain Skin Average

SPCC
DeepPT 0.004 0.003 0.001 0.025 0.003 0.005 0.003 0.014 0.007

USD (ER) 0.005 0.005 0.003 0.036 0.002 0.006 0.002 0.007 0.008

GPCC
DeepPT 0.004 0.003 0.006 0.026 0.004 0.013 0.013 0.015 0.011

USD (ER) 0.003 0.004 0.008 0.026 0.002 0.008 0.002 0.026 0.010

MSE
DeepPT 0.027 0.002 0.001 0.015 0.009 0.001 0.001 0.016 0.009

USD (ER) 0.069 0.018 0.004 0.022 0.006 0.007 0.003 0.020 0.019

Table 18: Comparing standard deviation between DeepPT and USD for the gene expression prediction
task.

Metrics FPT TPH

Acc 0.487 (0.014) 0.912 (0.020)
AUROC 0.600 (0.236) 0.984 (0.010)

Bacc 0.487 (0.014) 0.900 (0.038)
Kappa -0.028 (0.028) 0.827 (0.043)
wF1 0.327 (0.006) 0.913 (0.022)

Table 19: Performances of two modes for training the prediction head. The format of value in the
table is: average (standard deviation).

Datasets Metrics
Methods

MP RD ABMIL Default

CAMELYON16

ACC 0.524 (0.035) 0.562 (0.048) 0.509 (0.017) 0.756 (0.022)

AUROC 0.643 (0.060) 0.641 (0.048) 0.538 (0.018) 0.834 (0.020

Bacc 0.542 (0.026) 0.580 (0.055) 0.071 (0.033) 0.771 (0.019)

Kappa 0.082 (0.052) 0.152 (0.103) 0.448 (0.037) 0.525 (0.040)

wF1 0.496 (0.060) 0.537 (0.052) 0.618 (0.059) 0.750 (0.027)

ECE 0.212 (0.033) 0.188 (0.046) 0.267 (0.039) 0.107 (0.019)

Table 20: Performances of four different strategies for training the prediction head. The format of
value in the table is: average (standard deviation).
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Datasets Metrics
Methods

MRMD (base) MRMD (class-removal)

CAMELYON16

ACC 0.756 (0.022) 0.750 (0.021)

AUROC 0.834 (0.020 0.831 (0.009)

Bacc 0.771 (0.019) 0.767 (0.018)

Kappa 0.525 (0.040) 0.514 (0.038)

wF1 0.750 (0.027) 0.743 (0.025)

ECE 0.107 (0.019) 0.109 (0.154)

Table 21: Performances of two different strategies for computing sample difficulty. The format of
value in the table is: average (standard deviation).

Figure 8: Benchmarking scores averaged by all tested datasets between USD (ER) and USD (Poly).
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Dataset (best k) Metric k=3 k=5 k=7 k=9 k=11

IDC (best k=3)
SPCC 0.591 (0.004) 0.590 (0.003) 0.591 (0.007) 0.591 (0.008) 0.589 (0.008)
GPCC 0.400 (0.003) 0.401 (0.004) 0.396 (0.004) 0.403 (0.002) 0.398 (0.008)
MSE 2.69 (0.005) 2.70 (0.083) 2.80 (0.173) 2.75 (0.067) 2.76 (0.150)

READ (best k=3)
SPCC 0.381 (0.005) 0.383 (0.005) 0.379 (0.006) 0.379 (0.004) 0.383 (0.010)
GPCC 0.283 (0.004) 0.285 (0.001) 0.282 (0.002) 0.286 (0.005) 0.285 (0.004)
MSE 0.269 (0.018) 0.270 (0.012) 0.265 (0.009) 0.267 (0.011) 0.270 (0.004)

PRAD (best k=3)
SPCC 0.690 (0.003) 0.687 (0.003) 0.686 (0.002) 0.686 (0.004) 0.689 (0.003)
GPCC 0.138 (0.008) 0.134 (0.006) 0.132 (0.004) 0.136 (0.009) 0.138 (0.003)
MSE 0.294 (0.004) 0.293 (0.004) 0.295 (0.002) 0.294 (0.003) 0.291 (0.002)

LYMPH_IDC (k=7)
SPCC 0.119 (0.051) 0.120 (0.049) 0.129 (0.036) 0.136 (0.046) 0.101 (0.044)
GPCC 0.241 (0.020) 0.239 (0.018) 0.236 (0.026) 0.250 (0.006) 0.205 (0.052)
MSE 0.864 (0.025) 0.862 (0.019) 0.857 (0.022) 0.872 (0.020) 0.852 (0.023)

COAD (best k=3)
SPCC 0.622 (0.002) 0.625 (0.002) 0.625 (0.003) 0.624 (0.005) 0.623 (0.004)
GPCC 0.565 (0.002) 0.567 (0.003) 0.568 (0.002) 0.567 (0.002) 0.565 (0.004)
MSE 0.957 (0.006) 0.958 (0.003) 0.959 (0.005) 0.953 (0.009) 0.959 (0.010)

CCRC (best k=3)
SPCC 0.386 (0.006) 0.383 (0.003) 0.383 (0.007) 0.386 (0.011) 0.382 (0.006)
GPCC 0.273 (0.008) 0.274 (0.005) 0.272 (0.007) 0.273 (0.008) 0.270 (0.007)
MSE 0.492 (0.007) 0.492 (0.004) 0.494 (0.001) 0.493 (0.005) 0.495 (0.004)

Brain (best k=3)
SPCC 0.618 (0.002) 0.613 (0.008) 0.610 (0.008) 0.610 (0.007) 0.612 (0.007)
GPCC 0.154 (0.002) 0.157 (0.007) 0.155 (0.008) 0.157 (0.010) 0.161 (0.010)
MSE 0.279 (0.003) 0.279 (0.004) 0.280 (0.005) 0.281 (0.005) 0.276 (0.003)

Skin (best k=3)
SPCC 0.409 (0.007) 0.395 (0.021) 0.390 (0.023) 0.396 (0.013) 0.409 (0.009)
GPCC 0.265 (0.020) 0.255 (0.019) 0.262 (0.019) 0.255 (0.020) 0.258 (0.025)
MSE 1.481 (0.020) 1.580 (0.014) 1.572 (0.013) 1.589 (0.025) 1.581 (0.010)

Table 22: Effect of cluster number k with format score (standard deviation) for the regression task.

Metrics Methods
Base Models

UNI v1 UNI v2 GigaPath ResNet 50

SPCC
MSE Loss 0.572 0.581 0.588 0.550
Huber Loss 0.562 0.589 0.585 0.527
PCCMSE Loss 0.575 0.588 0.599 0.554

GPCC
MSE Loss 0.348 0.389 0.330 0.267
Huber Loss 0.334 0.390 0.321 0.220
PCCMSE Loss 0.355 0.400 0.351 0.281

MSE
MSE Loss 3.424 2.825 2.945 2.598
Huber Loss 3.512 2.812 2.951 2.919
PCCMSE Loss 3.414 2.748 2.855 2.561

Table 23: Benchmarking average scores for the full metric list based on different base models for the
regression task.

Metrics Methods
Base Models

UNI v1 UNI v2 GigaPath ResNet 50

SPCC
MSE Loss 0.013 0.009 0.004 0.006
Huber Loss 0.010 0.006 0.006 0.007
PCCMSE Loss 0.006 0.005 0.005 0.002

GPCC
MSE Loss 0.002 0.008 0.017 0.019
Huber Loss 0.008 0.004 0.006 0.016
PCCMSE Loss 0.003 0.002 0.007 0.003

MSE
MSE Loss 0.034 0.073 0.059 0.043
Huber Loss 0.026 0.065 0.075 0.079
PCCMSE Loss 0.030 0.025 0.032 0.031

Table 24: Benchmarking standard deviation for the full metric list based on different base models for
the regression task.

28


	Introduction
	Related Work
	Method
	Experiment
	Setup
	Experimental Results
	Analysis

	Conclusion
	Ethics Statement
	Reproducibility statement
	Appendix
	Visualization of Sample Difficulty.
	Motivations and Stability of MRMD.
	Comparison between RMD and USD.
	Label Distribution of Imbalance and Noisy Data Testing.
	Explanations of Baselines
	Hyper-parameter Tuning
	Training Efficiency
	Full Tables
	Comparisons between Logistic Regression and USD for Disease-State Prediction.
	Comparisons between USD and Task-Specific Method DeepPT for Gene Expression Prediction.
	Comparisons of Methods for Training the Prediction Head
	Effect of choosing the cluster number
	Comparisons between USD (ER) and USD (Poly) for the Gene Expression Prediction.
	Comparisons between Different Base Models for Gene Expression Prediction
	Broader Impact and Limitations


