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ABSTRACT

The fast scaling speed of histopathology datasets allows researchers to train various
foundation models for disease-centered research with applications in classifying
disease-state information and predicting gene expression levels. However, it has
been shown that current models tend to be overconfident and make classification at
a low-calibration level. This case is underexplored for regression-type tasks such as
gene expression prediction as well, which could seriously affect the diagnosis and
treatment based on the developed models. To resolve this critical issue, we propose
a universal frameworkﬂ to estimate the sample difficulty (USD) in both regression
and classification tasks. In particular, we fit the data in the embedding space with
Gaussian distribution and then utilize prior-informed relative Mahalanobis distance
to estimate sample difficulty. Moreover, we incorporate such difficulty as a weight
to regularize the model prediction, which can improve model performance by
emphasizing challenging samples. Our method can be seamlessly extended to
regression tasks by the incorporation of discrete targets. Extensive experiments
demonstrate that our proposed USD can improve the disease-state classification
accuracy by up to 3.8% and gene-level correlation by up to 62.2% compared with
the most frequently used approaches. Finally, we provide comprehensive ablation
tests to demonstrate the importance of including sample difficulty in the training
stage and case studies for the reasonability of assigning samples with different
difficulty levels.

1 INTRODUCTION

The analysis of gigapixel-level whole-slide images (WSIs) is an important topic in computational
pathology Song et al.|(2023a)); Bera et al.| (2019); Niazi et al.|(2019); |Al-Janabi et al.|(2012). Due
to the complexity and scarcity of pathology data, it is difficult for a pathologist to make accurate
diagnoses. While machine-learning-based methods have been applied for pathology analysis Neto
et al.| (2024); Shaban et al.| (2024)), these models are usually trained with limited data and knowledge,
which might not be useful for general purposes |[Zhang and Metaxas| (2024). To solve this issue,
extensive efforts have been made to collect large-scale pathology data, bringing in several pathology
foundation models (PFM) pre-trained with pathology image or multimodal data|Chen et al.|(2024b);
Lu et al.[(2023); Xu et al.[(2024a)); Ma et al.| (2024). Those PFMs generate robust representations for
WSIs in either patch level or slide level, which demonstrate state-of-the-art (SOTA) performances for
a wide range of tasks including disease-state classification, disease sub-type identification, medical
text-image retrieval, etc. Recent research has also explored cases of using features from PFMs to
predict gene expressions from hematoxylin and eosin (H&E)-stained images Jia et al.|(2024); Xie
et al.| (2024); |Anonymous|(2024); Lee et al.| (2024b), revealing the potentials of PFMs in handling
regression-oriented problems.

Despite this great progress, we often detect misclassified samples in both training and testing sets when
using PFMs for classification-oriented problems. The potential reasons could be multifaceted such as
assigning wrong labels, changing brightness, adding medical annotation, etc. Given the importance

'Full codes can be found here: https://anonymous.4open.science/r/USD-13EB/|(also in
supplementary files).
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of diagnostic accuracy for patientsNiazi et al.|(2019), handling extensive noise in pathology data
is highly essential. Although some researchers have investigated the difficulty of training samples
in general image datasets (e.g., ImageNet|Deng et al.|(2009)) with technique development|Cui et al.|
(2023) on relative Mahalanobis distance Mahalanobis| (2018)) and data distillation (2024),

we have not yet found any research that systematically investigates how to process these difficult
samples in pathology images. Moreover, most of the current research on sample difficulty focuses
on classification-oriented problems and attempts to improve models with enhanced generalization
ability (2023)), but how to extend the learning of sample difficulty in regression-oriented
problems remains unsolved. For spatial transcriptomic data analysis, predicting gene expression
information based on the H&E image is also an emerging field, as the measurement of spatial
transcriptomics data is expensive [Anonymous| (2025)); [Zeng et al.| (2022)) for large-scale analysis. In
addition, multi-modal information can provide more insights for pathology analysis (2022),
and thus predicting transcriptomics as a new modality allows us to perform additional analyses such

as survival prediction Jaume et al.|(2024b) and cell-cell communication inference
(2021). Since we find that these expression predictors might fail for certain genes or spots, we plan
to dive deeper for an interpretable solution. Therefore, a general framework for understanding and
interpreting sample difficulty for pathology image analysis will be extremely helpful for domain
experts in the medical field.

In this paper, we propose a Universal Learning Framework for Estimating Sample Difficulty (USD)
and improving the capacity of PFMs in histopathology image analysis. Different from previous
research [Cui et al.| (2023); Agarwal et al.|[(2022); Zhu et al.| (2024)), our method first transfers the
concept of sample difficulty into an outlier detection problem, and then models the training diffi-
culty of samples by integrating the prior information jointly with modified relative Mahalanobis
distance (MRMD). Furthermore, we leverage discrete targets to extend our sample difficulty to
the gene expression prediction task, resulting in a universal model for both regression and clas-
sification problems. With these novel designs, USD demonstrates a SOTA performance in both
disease-state classification and disease sub-type identification across three datasets of different
scales. In addition, USD improves the prediction of gene expression levels from the perspectives
of both performance and interpretability across eight datasets from different tissues and diseases.

We further visualize the sample difficulty estimated by '
USD in Figure[T]and perform clustering analysis in Ap-
pendix [8.1] Regarding the disease-state classification task,
we can observe an intuitive difference in pathological mor-
phology between the selected samples. We also cannot
detect the squamous-like regions enriched with cancer
cells in the difficult samples labeled as lung squamous
cell carcinoma (LUSC). Regarding the gene expression
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prediction task, we find that the patches with lower cell oy 1o oty oo

enrichment or clear tissue patterns are marked with a high
difficulty level, which aligns with their Pearson correla-
tion coefficient (PCC) scores. In contrast, for regions with
more useful morphological information, these samples
are assigned with lower difficulty, which can be validated Figure 1: Illustration of sample diffi-
by accurate predictions. Overall, our method can help  cyjty (lower means easier).

researchers to better select pathological areas for clinical analysis and filter out useless information.

Our contributions are: (1) we show that PFMs provide superior slide- and patch-level representations,
whose features can also estimate sample difficulty; (2) we introduce MRMD, a metric for measuring
difficulty in classification and regression with fewer false positives; (3) we demonstrate that combining
difficulty-aware learning with entropy regularization improves performance; and (4) we design a
difficulty-aware loss that boosts results on over 70% of datasets. Beyond these, we establish novelty
by conducting the most comprehensive evaluation of PEMs to date across diverse datasets, tasks, and
metrics, proving the generalizability of our solutions beyond UNI and surpassing traditional visual
models like ResNet50. We further show, for the first time, that PEM features extend naturally to
sample difficulty estimation, adding interpretability to pathology workflows. Finally, ablation and
robustness analyses clarify when and why PFMs are essential, linking feature representation with
difficulty estimation to advance both regression and classification tasks within a unified framework.
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2 RELATED WORK

Pathology Foundation Models (PFMs). Learning robust representations of pathology images is
a challenge with extensive applications in computer-aided diagnosis, and PFMs are developed to
resolve it. Most of the current PEMs are visual-based or textual-visual-based large-scale neural
networks built based on transformer blocks. Moreover, these models diversify in model architectures,
pre-training strategy, and training datasets. For example, models such as UNI|Chen et al.|(2024b) rely
on DINOv2|Oquab et al.|(2024) as base architecture and Mass-100K dataset in the pre-training stage,
while models like GigaPath Xu et al.| (2024a)) is built based on ViT [Dosovitskiy et al.[|(2021)) and
utilizes private datasets which are not publicly available. Furthermore, models such as PLIP [Huang
et al.| (2023), CONCH |Lu et al.| (2024), MUSK |Xiang et al.| (2025), and TITAN |Ding et al.| (2024)
utilize multi-modal information in the pre-training stage, which enlarges the models’ capacity in
handling the cross-modality tasks. There also exist models focusing on introducing more modalities
in the pre-training stage, such as mSTAR Xu et al.|(2024b) with transcriptomic data, as explorations
for new pre-training frameworks.

PFM Applications. Foundation Models are named after their powerful and wide-ranging downstream
capabilities in few-shot and zero-shot learning scenarios, and this is no exception for PFMs. The
proposed PFMs have already demonstrated strong abilities in handling disease-related classification
tasks, such as disease-state prediction, disease sub-type identification, and image-image retrieval
Chen et al.|(2024b); Ochi et al.[(2024)); Xiang and Zhang| (2023). These challenges are constrained
by data quality and disease heterogeneity and thus they did not have general solutions in the past.
Furthermore, PFMs with language capacity can also be applied to addressing multi-modal tasks such
as text-image retrieval [Huang et al.|(2023)), visual question answer (VQA) testing Xiang et al.| (2025)),
and medical report generation [Shaikovski et al.| (2024)); Liu et al.[(2025b). Recently, researchers also
explored the capacity of predicting spot-level gene expression information directly from the paired
image information with features obtained from PFMs, which shows potential to help analyze spatial
transcriptomics data with lower cost than performing data sequencing directly Anonymous|(2024);
Lee et al.|(2024b)). The validation of prediction performances is usually based on databases|Jaume
et al.|(20244a); |Chen et al.| (2024a) with paired spatial transcriptomics and H&E images.

Sample Difficulty. The measurement of sample difficulty can come from either task-specific designs
and models |[Agarwal et al.| (2022); [Baldock et al.| (2021)); Zhu et al.|(2024), or from pre-trained
models|Cui et al.| (2023)). Previously, researchers focused on uncertainty regularization as an effective
approach to reducing the overfitting and over-confidence problems in the training stage of the
classifier. In the classification problem, most of them are based on the modification of loss functions,
for example, Focal loss|Liu et al.|(2020), L,, norm Joo and Chung| (2021), Poly loss (Poly) |Leng et al.
(2022), Entropy Regularization (ER) Mnih|(2016), Weighted Entropy Regularization (WER), and
Weighted Poly Loss (WPoly) (Cui et al.|(2023) are based on adding regularization terms in the loss
function to improve the optimization process. The weight could come from the pre-defined distance
used to measure the difficulty level of training samples. Other methods such as label smoothing
Miiller et al.| (2019) and correctness ranking loss (CRL) [Moon et al.| (2020) modify the labels to
penalize the samples with the highest prediction confidence, which could be potential solutions. In
the regression problem, ordinary entropy (OE) Zhang et al.| (2023)) is developed to regularize neural
networks for handling regression-based tasks inspired by the phenomenon that formatting regression
problems as classification problems is helpful. Modified loss functions such as Huber loss [Huber
(1992) can contribute for reducing the drawbacks caused by underfitting extreme samples.

3 METHOD

Problem Definition. In this paper, we are given a histopathology dataset D = {x;,y; }}_,, where
x; represents an m-dimensional feature vector extracted from PFMs for the ¢-th whole-slide image
(WSI) or patch (which is an image extracted from WSI based on certain rules) and y; represents the
corresponding targets for prediction, i.e., disease states for the classification task (y; is a scalar) or
gene expression levels (y; is a vector as we have multiple genes to predict) for regression task. For
the classification task, we train a classifier Cyp based on the training dataset, and may observe sample
x4 whose predicted labels mismatch with the observed label (Cp(x4) # yq). These samples can be
treated as difficult samples. Our target is to identify difficult samples and further improve model
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Figure 2: Illustration of USD’s pipeline. We accept either slide-level information or patch-level
information as input and incorporate the estimated sample difficulty from prior in the training process
by reconstructing the target of optimization. By default, PFMs are frozen and only used for extracting
image embeddings, while task-specific adapters are trained for different datasets.

performances by correctly predicting these samples in the training stage as many as possible. The
formal definition of sample difficulty analysis for the regression problem is similar, and the label of
each sample can be computed by discretizing y into different bins, while the mismatched samples are
still difficult samples under this context.

Overview. USD starts from estimating the sample difficulty levels based on image features extracted
from pre-trained base models such as PFMs. We then leverage the sample difficulty to regularize the
model outputs in the training stage, as a more difficult sample should be assigned to having a higher
weight. To effectively predict gene expression levels based on spatial transcriptomics and paired
sets of patches, we consider both sample difficulty and the relationship between expression-level
similarity and feature-level similarity. The illustration of USD is shown in Figure[2]

Foundation Models as Feature Extractor. We first utilize pre-trained PFMs to embed the images
into feature space, which can provide better representations discussed in the previous work (Cui et al.
(2023)). In summary, PFMs are generally trained to ignore low-level information (e.g., class labels)
and prioritize whole-image level information rather than low-level image statistics. Moreover, PFMs
are trained with more diverse data, which can better learn and extract the intrinsic features of input
images and remove noisy information. Therefore, the generated features will be helpful to estimate
training difficulty in a robust space and support USD to perform downstream applications.

Estimating Sample Difficulty with Prior Knowledge. For training dataset Dyyqin = {Xi, ¥i } 121,
we first derive the relative Mahalanobis distance (RMD) as the sample difficulty score, which has been
shown as a more powerful approach to detect difficult samples |Cui et al.[(2023)). The computation of
RMD is introduced later and it can measure the distribution-level difference to define easy samples
and difficult samples. For samples with y; = k, we fit a Gaussian model of the set of features {x;} as
G(x;). The model can be computed based on:

P(Gr(x) |y =k) =N (Gr(x) | g, ), e = Z G (xi)
. ”’"T (1)
= DY (Gr(x) — ) (Gr (xi) — i)
k iyi=k

where pj, represents the mean vector and X represents the sample covariance matrix, Ny, represents
the samples belonging to class k, and G, represents the Gaussian model for the class k. Similarly,
considering all training samples as a background, we can fit a Gaussian model Gy:

P(Gy(x)) = N (Go(x) | po, Tn) s o = ZGb Xi),

b= % Y (G (xi) = ) (G (xi) — o)

where N represents the number of samples used for fitting, and p;, and 3, represent the estimated
mean and covariance matrix for all samples used for training.

@)
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The high-level idea is to have a metric that can reflect both the sample similarity within the same
label as well as sample difference across different labels. For example, an easy-classified sample
should be close to the mean vector of assigned labels (representative) and far from the mean vectors
of observed samples (discriminative), estimated based on the Gaussian model. Therefore, for one
sample x; with label y; = k, we can define its RMD based on the difference of MD computed based
on (G, and G, as:

RMDk (Xi, k‘) = MDk (Xi7 k’) - MDb (Xz) 5 (3)
where MD;, and M D, represent the Mahalanobis distance computed based on samples and different
clustering centroid. The formal computation of MD is:

MPDy, (x4, k) = — (Gi (x:) — ) 57 (G (%) — )

“)
MDy (x;) = — (G (x:) — )" 5, (G (xi) — pun)
However, fitting a model based on training datasets still has the risk of estimating wrong difficulty
levels. For example, there exist samples with low RMD with misclassified results and samples with
high RMD but correctly assigned labels based on a simple linear classifier, shown in Appendix [8.2]
Moreover, the consistency of sample difficulty is also important in the estimation, and Appendix
[8:2] shows that using different splits do not change the proportion of difficult samples significantly.
Therefore, we estimate a prior from several fitted LR models based on the cross-validation approach.
For the given training dataset D;,.q;,, We split the dataset into g folds based on cross-validation and
fit ¢ LR models. By collecting all the samples wrongly classified by these models, we can have
a list containing n, difficult samples derived from simple classifiers, denoted as {x;};*,, which
can be further converted into the indicator weight w. This approach can also be used to determine
whether we need to fit a neural-network-based classifier for the given problem. Moreover, we assign
the maximal RMD for these samples, and the modified distance is defined as MRMD with the
indicator weight. Therefore, if wy, = 1, the MRMD for sample x; is defined as:

MRMD,, (xi,y;) = max RMD,, (x5,y;), (5)
¢ :

otherwise MRMD is the same as the pre-computed RMD. When we train the model to classify
sample x;, we regularize the classification loss function by treating MR MD as adaptive weights:

Ly =L (fo(x:i),vi) +as(xi,9:) H [ fo (xi)],
exp (MRMD (x;,y;) /T) (6)
max; {exp (MRMD (x;,y;) /T}+ €’

where L. represents the cross-entropy loss, fy(-) represents the classifier, 7 (-) represents the regu-
larized element (it can be either negative entropy or poly loss), and s(-, -) represents the difficulty
weight. « is the weight used for loss balancing, 7' is the temperature parameter to control the shape
of weight distribution, and e represents a tiny value to avoid numerical errors. In the real application
of USD to improve classification, for stable training, we normalize the distance MRMD(x;, y;)
into the range of (0, 1). The regularized loss £ can be trained with Adam Kingmal (2014)) optimizer.
If we do not detect wrongly classified samples in this stage, our method degrades to no-prior mode.
We have also provided a systemic comparison between USD and RMD in Appendix [8.2]

S (Xia yL) =

Estimating Sample Difficulty for Regression Problems. Previous research Pintea et al.|(2023)) has
demonstrated that reconsidering regression problems in computer vision as classification problems
can always boost model performance. Therefore, the sample difficulty of continuous labels can be
estimated after transferring the continuous targets as discrete targets, for example, based on clustering
methods after batch effect correction [Korsunsky et al.|(2019); Tran et al.| (2020) or Bins-Discretizer
methods [Pedregosa et al.[(2011). Therefore, assuming we have the transferring function #(-) and the
discrete labels computed based on k = ¢(y;), the difficulty of updated sample (x;, k) can be defined
as:

RMDy, (x5, k) = MDy, (x5, k) — MDy (x;) , (N
where the computation of MRMDy, (x;, k) is the same as steps used in the classification task.

The number of clusters and bins is tuned based on maximizing the Average Silhouette Width (ASW)
score Pedregosa et al.|(2011). The computation process of M Dy (-, -) and MDy(-) is the same as the
approaches used in classification. Similarly, MRMD(-,-) can also be computed based on LR with
features from PFMs as inputs and discrete labels as targets.
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Learning Sample Difficulty for a General Purpose. When considering the loss of (multi-target)
regression-based problems, we propose a new correlation-aware and difficulty-aware loss function
for gene expression prediction. Most of the previous work relied on minimizing the mean squared
error (MSE(+, -)) of multiple genes between observed expression levels y; for spot ¢ and predicted
expression levels y;. However, this approach only considers the global cost but ignores the fine-
grained differences across spots and genes. Therefore, we first introduced the designed PCCMSE
loss, which is the combination of MSE loss, spot-level Pearson correlation coefficient (PCC) loss,
and gene-level PCC loss. Its definition is:

»Cbase = MSE(ya y) - PCC(yv 5’) - PCC(yTa yT) (®)
Furthermore, inspired by [Zhang et al.|(2023)), we also introduce the Ordinary Entropy loss function

(OE) in the optimization process, which can reduce the entropy in the training process by balancing
the tightness and diversity of feature space. The second term of our loss function is defined as:

1 M | M
EOEZ—mZZwiJ Hzci—ZcJ'szLﬁZHZi—Zci 2 ©)

i=1 joi bim1
where w;; = |ly; — y;l|, ensures that samples with larger distances in the expression space will

receive a large penalty. Here ¢; and c; represent the centers in the feature space of samples 7 and
7, and z; represents the embeddings from the outputs of the last encoder layer for the i-th sample.
M represents the number of centers and M, represents the number of samples in the given batch
b. Finally, in our case, each feature is its center because of the expression difference, so we have
lz; — 2z, ||, = 0.

We finally incorporate the difficulty-aware loss function inspired by the classification problem in
equation equation [6] and thus our final loss function used in USD can be represented as:

Leinal = Loase + AoeLog + ALy, (10)

where Aog, Af are hyper-parameters used to control the balance of the last two loss function terms.
All the hyper-parameters are tuned to the optimized version based on the model performance on the
validation dataset for both baseline and proposed methods.

4 EXPERIMENT
4.1 SETUP

Datasets. For the disease-state classification problem, we consider three datasets covering different
sub-tasks. We perform experiments of our proposed method and baseline methods for disease
sub-type classification based on TCGA LUSC-LUAD (TCGA) Weinstein et al.|(2013)) dataset, and
perform experiments for disease-state classification based on CAMELYON16 |Bejnordi et al.|(2017)
and PANDA datasets |Bulten et al.|(2022). PANDA is designed as a multi-classification problem with
six classes. TCGA LUSC-LUAD is a slide-level small-scale dataset and the latter two are slide-level
large-scale datasets. We generate training/validation/testing samples for these three datasets randomly.
Label distributions are summarized in Appendix [8.4] For the spatial transcriptomics prediction as
a patch-level task, we consider eight datasets named by the source diseases/tissues (IDC, READ,
PRAD, LYMPH_IDC, COAD, CCRCC, Brain, and Skin) from the HEST-1k database Jaume et al.
(2024a) and STImage-1K4M database Chen et al.|(2024a). The highly variable genes used for training
and prediction are pre-defined in these datasets. Each dataset corresponds to one cancer or tissue type,
and we filter the disease dataset whose number of batches is lower than three, which is the minimal
number we need to split the whole dataset into training/validation/testing samples.

Evaluations. For the classification task, we select metrics|Pedregosa et al.|(2011) including Accuracy
(Acc), Balanced Accuracy (Bacc), Kappa coefficient (Kappa), Weighted-F1 score (wF1), Area Under
the Receiver Operating Characteristic curve score (AUROC), and Expected Calibration Error (ECE)
Kuleshov and Liang| (2015). The higher the better for all metrics except ECE. Lower ECE represents
better calibrating confidence. We did not include AUROC for evaluating the multi-class classification
problem. For the regression task, we select metrics including spot-level PCC (SPCC), gene-level
Pearson Correlation Coefficients (GPCC), and Mean Squared Error (MSE). The higher the better for
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all metrics except MSE. All metrics are widely used in the related work |Chen et al.| (2024b); Jia et al.
(2024); IL1u et al.| (2025a)) of classification and regression tasks.

Baseline Models. We have considered base models including UNI v1 (Chen et al.| (2024b), UNI v2
Chen et al.| (2024b), GigaPath |Xu et al.|(2024a), and ResNet 50 He et al.|(2016)) for generating image
features. Our selection criteria are based on the related benchmarking analyses in this task |Jaume
et al.| (2024a)); |Lee et al.| (2024a)); [Zhang et al.| (2025)); |Vaidya et al.|(2025), and training strategies
are inherited from Cui et al.| (2023)). We exclude image-text-based PFMs to avoid data leakage. For
disease-state classification, we consider LS Miiller et al.|(2019), L; Joo and Chung| (2021)), Focal
Mukhoti et al.|(2020), Poly [Leng et al.| (2022), ER |Pereyra et al.|(2017)), CE Mannor et al. (2005)),
WER |Cui et al.|(2023), and WPoly |Cui et al.| (2023) as baseline models, which are widely used in
related work. For gene expression prediction, we consider MSE Loss Wang and Bovik| (2009), Huber
Loss|[Huber| (1992), and PCCMSE Loss as baseline models. Here MSE Loss is the most frequently
used loss function in this task. Details of baselines can be found in Appendix [8.3]

Implementation Details. We implement our method using a single H200 NVIDIA GPU and
adopt mini-batch Adam training with a batch size proportion to data scale (32 for the dataset with
Nsamples < 1000 and 512 for the dataset with ngampies > 1000), and the batch size is also determined
under the consideration of the GPU memory usage. We utilize PyTorch-lightning [Falcon|(2019) to
train the model and evaluate different baselines accordingly. All the spatial transcriptomic data are
normalized by standard pipeline from Scanpy [Wolf et al.| (2018). For tuning other hyper-parameters,
please refer Appendix For running time and memory usage, please refer Appendix

Methods
Datasets Metrics Base IS | L, |Focal | Poly | ER | CE | WER | WPoly | USD (ER) | USD (Poly) |  Best Method

UNIvI 0420 | 0.923 | 0.913 | 0.927 | 0.933 | 0.913 | 0.933 | 0.923 0.933 0.923
UNIv2 0520 | 0.960 | 0.933 | 0.930 | 0.963 | 0.923 | 1.000 | 0.920 1.000 0.920

ACC (1) GigaPath  0.510 | 0.647 | 0.603 | 0.760 | 0.697 | 0.737 | 0.677 | 0.767 0.677 0.767 UNIv2+USD (ER)
ResNet 50 0.517 | 0.517 | 0.653 | 0.637 | 0.520 | 0.643 | 0.640 | 0.690 0.627 0.680
TCGA UNIvI 0446 | 0.986 | 0.987 | 0.986 | 0.994 | 0.986 | 0.994 | 0.989 | 0.994 0.989
UNIV2  0.543 | 1.000 | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 1.000 1.000

AUROC (1) GigaPath  0.570 | 0.742 | 0.838 | 0.859 | 0.877 | 0.866 | 0.898 | 0.891 0.898 0.891 UNIv2+USD (ER)
ResNet 50 0.545 | 0.517 | 0.704 | 0.697 | 0.568 | 0.696 | 0.664 | 0.721 0.677 0.731
UNIvl 0494 | 0.715 | 0.715 | 0.726 | 0.732 | 0.747 | 0.724 | 0.724 0.741 0.756
UNIV2 0450 | 0.574 | 0.585 | 0.559 | 0.553 | 0.559 | 0.538 | 0.518 0.562 0.550

ACC (D) GigaPath  0.491 | 0.491 | 0.468 | 0.459 | 0.482 | 0.497 | 0.488 | 0.462 0.491 0.485 UNIv1+USD (Poly)
ResNet 50 0.541 | 0.535 | 0.529 | 0.524 | 0.497 | 0.521 | 0.456 | 0.535 0.585 0.553
CAMELYON16 UNIvI 0536 | 0.828 | 0.821 | 0.832 | 0.831 | 0.829 | 0.821 | 0.820 | 0812 0.834
UNIV2 0463 | 0.752 | 0.690 | 0.738 | 0.738 | 0.724 | 0.701 | 0.713 0.753 0.739

AUROC (1)  GigaPath  0.519 | 0.649 | 0.593 | 0.619 | 0.610 | 0.610 | 0.592 | 0.575 0.643 0.661 UNIvI+USD (Poly)
ResNet 50 0.524 | 0.725 | 0.720 | 0.719 | 0.719 | 0.725 | 0.515 | 0.712 0.730 0.703
UNIvl  0.147 | 0.489 | 0.484 | 0.490 | 0.474 | 0.471 | 0.485 | 0.485 0.495 0.494
UNIV2  0.165 | 0.479 | 0.479 | 0.489 | 0.480 | 0.479 | 0.474 | 0.485 0.488 0.468

ACC(1)  GigaPath 0.182 | 0.468 | 0.459 | 0.470 | 0.460 | 0.465 | 0.460 | 0.466 0.473 0.453 UNIvI+USD (ER)
ResNet 50 0.178 | 0.417 | 0.437 | 0.440 | 0.437 | 0.439 | 0.429 | 0.438 0.430 0.431
PANDA UNIvI  0.099 | 0.458 | 0.468 | 0.467 | 0.445 | 0.446 | 0467 | 0469 | 0.479 0478
UNIV2 0165 | 0.479 | 0.479 | 0.489 | 0.480 | 0.479 | 0.474 | 0.485 0.488 0.468

wFL (1) GigaPath  0.171 | 0.437 | 0.435 | 0.445 | 0.438 | 0.446 | 0.428 | 0.440 0.455 0.424 UNIv1+USD (ER)
ResNet 50 0.174 | 0.342 | 0.416 | 0.413 | 0.415 | 0.416 | 0.403 | 0.413 0.397 0.404

Table 1: Benchmarking results across base models and training strategies for classification tasks. We
reported the average scores for each method from five random seeds, and the information on standard
deviation can be found in Appendix [8.8] Our proposed method and the best score are boldfaced.

4.2 EXPERIMENTAL RESULTS

Disease State Classification. We select Acc and AUROC for evaluating the dataset with binary
labels, while Acc and wF1 are presented for evaluating the dataset with multiple labels, summarized
in Table |I} We also provide tables with full metrics, which are listed in Appendix We first
consider LR as a simple baseline for assessing the necessity of performing training with non-linear
models based on Appendix[8.9] which shows that PFMs with USD are always better than LR across
different datasets. Overall, if we consider evaluating the training strategies based on different PFMs
(including 12 combinations), USD achieves the highest performance in 75.0% choices evaluated by
AUROC or wF1 and 53.8% choices evaluated by Acc, demonstrating the consistent improvement
of USD. Furthermore, the ER mode of USD is more helpful for handling datasets with complicated
structures (e.g., multi-label classification) and can also reduce the uncertainty when making the
decision, reflected by the lower ECE. If we focus on a specific dataset such as TCGA, the best
combination, UNI v2 and USD with ER mode, can surpass the second-best combination by 3.8%.
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Figure 3: Results of choosing different K. (a) represents the results performed for the classification
task. (b) represents the results performed for the regression task.

The Poly mode of USD is more suitable for datasets with simpler structures. Both of the proposed
modes have low standard deviation, shown in Appendix [8.8] We also demonstrate the robustness of
USD under imbalanced or noisy labels, shown in Appendix [8.4] As a result, USD acts as an efficient
solution to improve the accuracy of image classification on a wide range of problem types and data,
and can be easily integrated into arbitrary training pipelines for classification tasks.

Datasets and Rank
Metrics Methods  “|pc READ PRAD LYMPH_IDC COAD CCRCC Brain  Skin  Average Avg Rank
MSELoss 0581 0332  0.691 0.103 0621 0373 0602 0400 0.463 2.89
HuberLoss  0.589 0322  0.684 0.090 0.626 0369 0.605 0393 0460 322
SPCC (1) PCCMSELoss 0.588 0360  0.687 0.049 0621 0383 0615 0401  0.463 2.67
USD (ER) 0589 0381  0.689 0.129 0622 038 0.618 0409 0478 1.22
MSELoss 0389 0.190 0.132 0242 0565 0264 0095 0237 0264 3.22
HuberLoss 0390 0.166  0.134 0.250 0568 0251 0102 0198 0257 2.89
GPCC (1) PCCMSELoss 0400 0271 0.134 0219 0562 0284 0133 0266 0284 222
USD (ER)  0.400 0283 0.138 0236 0565 0273 0154 0265 0.289 1.67
MSELoss  2.825 0264 0293 0.845 0959 0491 0281 1561 0.940 2.56
HuberLoss  2.812 0228  0.301 0.864 0969 0499 0279 1578 0941 3
MSE(}) PCCMSELoss 2748 0242 0293 0.769 0958 0486 0285 1578  0.920 1.89
USD (ER) 2754 0269 0.294 0.857 0957 0492 0279 1481 0923 233

Table 2: Benchmarking results for the regression task. We report the average scores (Average) for
each method from five random seeds and average rank (Avg Rank) by averaging method’s rank in
different datasets. The information on standard deviation can be found in Appendix [8.8] USD and the
score with best value are boldfaced, and lower rank represents a better method.

Gene Expression Prediction. We first select the most promising PFM to form the base model
for predicting spatial transcriptomics based on PCCMSE Loss. According to the Appendix [8.8]
UNI v2 is the best option for predicting gene expression levels from patches, so we conduct main
experiments based on this model to reduce the cost of generating path-level embeddings for each
dataset, estimating the sample difficulty, and training different models for expression prediction.
According to Table 2] MSE Loss and Huber Loss generally perform worse than PCCMSE Loss,
reflected in the lower SPCC score and GPCC score, as well as higher MSE, on average. USD also
surpasses state-of-the-art training framework, DeepPT [Hoang et al.|(2024), discussed in Appendix
[8:10] Moreover, USD achieves the highest SPCC score in 75% datasets and the highest GPCC score
in 50% datasets. Compared with the second-best method in the selected metrics, USD makes an
average improvement by 3.2% for SPCC and 1.8% for GPCC. If we compare USD with MSE Loss,
which is a more generally used loss function in this task, we can improve the model performance
by 62.2% at most for GPCC in the Brain dataset. USD also has low variance, validated by the table
with information of the standard deviation. Therefore, USD can participially predict gene expression
levels higher than the baselines based on the cross-gene evaluation setting, which is closer to the
practical applications of gene expression analysis, such as the detection of differential expression
gene Kiselev et al.|(2019); Song et al.| (2023b) and the selection of cell-type-specific marker genes
Pullin and McCarthy|(2024)).

4.3  ANALYSIS

Insights from Analyzing Factors Affecting Image Classification. To estimate the sample difficulty
with prior, we need to run K -fold cross-validation to collect the samples that are wrongly predicted
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by a simple linear predictor. By adjusting different /&', we have various sample lists with different
lengths. To determine a suitable K and demonstrate the robustness of our method, we examine
different K based on the CAMELYON16 dataset with base model UNI v1. According to Figure[3]
(a), increasing K may slightly reduce model performance, which shows that our training strategy
expects a relatively smaller K to generate difficult sample sets. Moreover, very large K requires
longer training time, and thus we finally fix K = 3 for all datasets. We also consider the options of
input type with different modes, the necessity of dropping the difficult samples or fine-tuning the
base model and prediction head together, and the options of computing sample difficulty, discussed
in Appendix [8.T1] These variations cannot make improvement.

Lessons from Analyzing Factors Affecting a
Gene Expression Prediction. In the regression P
task, based on Figure 3 (b), adjusting K will not AT
affect model performance too much, and thus

USD is very robust to K in the gene expression
prediction setting. We have included a similar ...
study for the cluster number with all datasets in
Appendix [8:12] Furthermore, we perform ab-
lation studies to investigate the contribution of | .. ——
different loss function components, summarized KBins
in Figure [ (a). According to this figure, our ‘ remen
final loss function L, has the highest SPCC
and GPCC scores, while its MSE is close to
the best method. Moreover, we find that incor-
porating the term Log can help us better learn
the cell-level and gene-level correlations while
adding the term £ regularized by the sample

difficulty helps us reducing the average error be-  Figure 4: Ablation tests for the regression task. (a)
tween prederd and obserw?d €xpression levgls. represents the results under different components
This conclusion matches with previous studies  of final loss. The mode CE means using cross
arguing that utilizing classification loss can re- entropy as the classification loss. (b) represents

duce the MSE for the regression task. If we do  the results under different batch effect correction
not consider incorporating sample difficulty and  gstrategies.

use cross entropy (CE) to compute the classifi-

cation loss, we cannot achieve improvement. We also consider the approaches to reduce batch effect
in the expression space, including Harmony, kBins, and no correction mode (NoC), and the results
are summarized in Figure ] (b). Correcting batch effect can improve model performance. Running
Harmony or KBins can make the correlation smoother and reduce the batch effect in the relationship
of SPCC and difficulty, shown in Figure[5] The comparisons of different modes and base models are
summarized in Appendices[8.13|and [8.14]

SPCC
GPCS
MSE

SPCC
. GPC%

No-correction (p<0.05) Harmony (p<0.05) K-bins (p<0.05)

Difficulty
Figure 5: Relationship between sample difficulty and SPCC based on adjusting different batch effect
correction strategies. The SPCC is computed based on the training dataset.

5 CONCLUSION

This paper investigates a clinical-associated problem of estimating the slide-level or patch-level
training difficulty to boost model performances targeting two typical tasks in histopathology image
analysis, including the classification of disease states and the prediction of spatial transcriptomics.
We have also included a section in Appendix [8.15]to discuss limitations.
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6 ETHICS STATEMENT

All authors follow the ethics statement of this conference. The users are solely responsible for the
content they generate with models in USD, and there are no mechanisms in place for addressing
harmful, unfaithful, biased, and toxic content disclosure. Any modifications of the models should
be released under different version numbers to keep track of the original models related to this
manuscript. The target of current USD only serves for academic research. The users cannot use it for
other purposes.

7 REPRODUCIBILITY STATEMENT

We have provided source codes in the abstract and supplementary files for reproductibility. We have
also provided detailed scores of all methods tested in our submission.
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8 APPENDIX

In this section, we present information on baselines, hyper-parameters, and other analyses or tables
that cannot be placed in the main text due to page limitation.

8.1 VISUALIZATION OF SAMPLE DIFFICULTY.

Here we visualize the sample label as well as sample difficulty based on the TCGA dataset with UNI
vl embeddings Figure[6]based on UMAP MclInnes et al| (2018). According to this figure, we capture
sample difficulty of different labels, and the samples with similar difficulty levels show clustering
performances. This discovery further conforms our interpretation of sample difficulty.

disease diff 1le16
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Figure 6: UMAP visualization of sample embeddings colored by disease states (left) and sample
difficulty (right).
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8.2 MOTIVATIONS AND STABILITY OF MRMD.

Motivation explanation.

According to Figure [7} we found that Logistic Regression (LR) can make correct prediction for
samples with high difficulty levels, as well as wrong prediction for samples with low difficulty
levels. This observation motivates us to reconsider the design of sample difficulty estimation, as
we need to include the prior from a simple regression before estimating the sample difficulty with
a more complicated model. Since the main purpose of considering sample difficulty is to improve
generalizability by correctly predicting difficult samples, we believe it is necessary to reconsider the
definition of difficult samples.

Stability explanation.

We ensure the consistency of sample difficulty by examining the consistency of the proportion of
wrongly classified labels with different numbers of cross-validation sets. Here we show the proportion
overlap by iterating different split ¢ in Tables[3]and[d] and we do not observe strong oscillation by
iterating different ¢ for the three datasets used in the classification task. Therefore, our proposed
method can define a robust method for generating difficult samples.

Number of split 2 3 4 5 6 7 8 9 10
Proportion 046 043 049 049 047 044 044 043 043

Table 3: Relationship between the number of splits and the proportion of difficult samples identified
by LR model in the CAMELYON16 dataset.

8.3 COMPARISON BETWEEN RMD AND USD.

« Different scenarios: (2023) focuses on a general computer vision problem with
public datasets from different domains, but USD aims to tackle a challenge mentioned in
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Difficulty: <<0 Difficulty: >>0
Predicted: LUAD Predicted: LUAD
GT Label: LUAD

Figure 7: Examples of histopathology images and corresponding decisions made by LR, which is
based on ResNet 50 and TCGA dataset.

Number of split 2 3 4 5 6 7 8 9 10
Proportion 059 057 0.56 056 055 056 055 0.55 055

Table 4: Relationship between the number of splits and the proportion of difficult samples identified
by LR model in the PANDA dataset.

the potential limitations of (2023), which focuses on medical image analysis, as
the medical images suffer from more challenging scenarios, such as label imbalance and
noisy data. (2023)) is not straightforwardly suitable for medical domain data.

Different problem settings: In terms of problem construction, [Cui et al.[(2023) only considers
image classification as a major task, while USD considers more diverse tasks, including
image classification as well as gene expression prediction (a regression task). We are among
the first research groups that try to improve the image regression prediction performance
by leveraging the estimated sample difficulty, and thus USD is a more generalizable tool.
Moreover, extending the estimation method to regression problems is not easily shown in
our comprehensive experiments and discussion.

Different difficult estimation methods: In terms of the estimation of sample difficulty,
does not consider any prior information which might help on the estimation pro-
cess, while USD considers using a simpler classifier such as Logistic Regression to provide
correct prior to estimate a more accurate sample difficulty, supported by the visualization
result in Figure 1 and the performance improvement across different tasks.

Different experimental designs: (2023)) did not consider many ablation studies
and did not justify the necessity of introducing sample difficulty estimation for different
datasets, as it lacked comparison with a linear-based classifier, but USD introduces a more
rigorous comparison and demonstrates that we need to figure out the complexity of the
problem ahead of model training and construction. USD also has more ablation studies to
justify our choices for both the classification and regression tasks. Therefore, USD improves
significantly and generalizes to a different area compared with|Cui et al| (2023), which leads
to an independent method.

17



Under review as a conference paper at ICLR 2026

8.4 LABEL DISTRIBUTION OF IMBALANCE AND NOISY DATA TESTING.

Label distributions of datasets designed for the classification task.

Type TCGA_number
tumor 100
health 90

Table 5: Label distribution of the TCGA dataset.

Type CAMELYON16_number
tumor 159
health 111

Table 6: Label distribution of the CAMELYON16 dataset.

Index PANDA_number
2892
2666
1343
1249
1242
1224

N WhNo—O

Table 7: Label distribution of the PANDA dataset.

Analysis of label imbalance testing.

To produce data with imbalanced labels, we now include more experiment results based on sampling
the labels to create an extreme imbalance dataset from CAMELYON16, shown in Table [§] including
the case of many positive samples and the case of many negative samples. According to the results
from this table, USD still performs well under the extreme conditions, achieving over 80% accuracy
under two situations. Compared with the original dataset, we even have better performance, and thus
USD will not be affected by the issue of label imbalance significantly.

Dataset Model Metric Original Many positive les (pos/neg=7) Many negative les (neg/pos=14)
ACC 0.756 (0.02) 0.850 (0.03) 0.949 (0.01)
CAMELYON16 UNIVI+USD (Poly) wF1 0.746 (0.03) 0.804 (0.01) 0.804 (0.01)
UNI vI+USD (ER) ACC 0.741 (0.03) 0.831 (0.03) 0.977 (0.00)
wF1 0.750 (0.03) 0.988 (0.00) 0.766 (0.01)

Table 8: Performances of USD with two different sample difficulty penalty methods under three
conditions with label imbalance simulation.

Analysis of label noise testing.

To produce data with noisy labels, we utilize the symmetric noise generation method used in trust-
worthy machine learning Zhang et al.|(2024) and discrete diffusion models [Lou et al.| (2023)), which
means we select a certain proportion of samples and randomly pick different labels to replace their
correct labels. We then train USD with pathology image features from UNI v1 for the classification
task. According to Table@]with Accuracy, AUROC, and wF1 metrics, we find that USD still shows
good performances under the condition with relatively lower noise label proportion (0.1-0.3), and the
performance USD will be affected under high noise level proportion, which aligns with the study of
label noise shown in|Zhang et al.|(2024). Therefore, USD is still a robust mode for datasets with a
small amount of imperfect labels. In real applications, for datasets with a very high proportion of
imperfect labels, which might be caused by low data quality and the calibration with domain experts,
label re-annotation, loss re-design could be more suitable approaches in medical applications |Shi
et al.[(2024).

8.5 EXPLANATIONS OF BASELINES

Explanations of Baseline Methods for Disease-State Classification.
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Dataset Metric 0.1 0.3 0.5 0.7
TCGA ACC 0.910 (0.05) 0.923 (0.05) 0.920 (0.03) 0.090 (0.04)
AUROC 0.991(0.01) 0.992 (0.01) 0.990 (0.01) 0.016 (0.02)
CAMELYON16 ACC 0.665 (0.02) 0.594 (0.04) 0.526 (0.04) 0.365 (0.04)
AUROC 0.798 (0.02) 0.671 (0.01) 0.491 (0.04) 0.319 (0.03)
PANDA ACC 0.461 (0.01) 0.429 (0.00) 0.389 (0.01) 0.295 (0.04)
wF1 0.438 (0.01) 0.396(0.01) 0.340 (0.03) 0.217 (0.07)

Table 9: Model performances with the format score (standard deviation) under different noise levels
(0.1-0.7) for the classification task.

Let py, be the likelihood that the model assigned to the k-th class given the input x, and yy, is the true
target, where yy, is 1 for the correct class and O for the rest.

¢ Cross Entropy (CE): Lcg = — 22{21 Yk log p.

« Label Smoothing (LS): Lr.s = — Y v, y&S log py, with 45 = (1 — @) + a/K and « is
a tuning parameter.

e Focal Loss: Lrocal = — Z,f:l yr(1 — pi)7 log pi, where + is a tuning parameter.

* Entropy Regularizer (ER): Lgr = Log — aH(p), where H(p) = — Zszl i log pr. and
is a tuning parameter.

* Poly-N Loss: Lpoly = Lcg + Zle Yk Zjvzl €;(1—px)? where €; is the perturbation term
for the j-th coefficient.

« Ly Loss: L1, = Lcg + M|l fw|l1 where fir € RY is the logit values, and we use it to
compute pg = softmaxy (fw ).

» Weighted ER: Lwer = Lcor — as(x, y)H(p), where « is a tuning parameter and s(x, y) is
a sample-specific weighting derived from the RMD-based sample difficulty score.

* Weighted Poly-1:

K
Lywpoly = Lcr + s(x,y) Zka(l - Dk),
k=1
where s(x, y) is a sample-specific weighting derived from the RMD-based sample difficulty

Score.

Explanations of Baseline Methods for Gene Expression Prediction.

Let y be the true target and f(x) be the prediction based on the input x.

e MSE Loss: Lyse = (v — f(x))2.
* Huber Loss: Given a hyper-parameter 6,

r _{é(yf(X)V if [y — f(x)[ <6
e =8 (ly — f(x)] — 16) otheriwse ’

Explanations of Methods for Reducing Batch Effect. Batch effect means the technique noise
existing in the sequencing data from different samples. We consider Harmony Korsunsky et al.
(2019) and KBins [Pedregosa et al.| (201 1) as two approaches for reducing batch effect. The idea of
Harmony is to utilize iterative clustering to pull the cells (spots) from different samples with similar
biological information to a cluster, until the convergence. This approach has been validated by several
benchmarking studies [Tran et al.|(2020); |Arevalo et al.|(2024) as a suitable method. KBins means we
utilize k-bin discreter to place spots with similar average gene expression profiles across genes in a
cluster, and thus the batch effect can be reduced by better characterizing biology-informed clusters.

8.6 HYPER-PARAMETER TUNING

For the disease-state classification task, we inherit the loss-specific hyper-parameter from |Cui et al.
(2023)), which is already tuned. These parameters include the entropy weight \. = 0.3, the Focal
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weight f, = 1.0, the LS weight ¢ = 1.0, the L; weight o = 1.0, and the Poly weight ¢, = 2.0.
The learning rate for training different combinations with PANDA and CAMELYON16 is 1e-3. The
learning rate for training different combinations based on UNI v1, UNI v2, and GigaPath is le-3, and
le-2 based on ResNet 50, for the TCGA dataset. The choice of fold s is explained in the Analysis
section. In this section, we present information on baselines, hyper-parameters, and other analyses or
tables that cannot be placed in the main text due to page limitations.

For the gene expression prediction task, we tune the learning rate, Aog, and Ay based on the grid
search for all models. The final choices of these three parameters are summarized in Table |10} We
found that the change of these choices is not in a large range, and thus our model is robust for different

conditions. The choice of fold s is explained in the Analysis section.

Dataset Learning Rate  A\op Af

IDC 1.00E-04 1.00E-03 1.00E-03
READ 1.00E-03 1.00E-03 1.00E-03
PRAD 1.00E-03 1.00E-03 1.00E-03
LYMPH_IDC 1.00E-03 1.00E-03 1.00E-02
COAD 1.00E-03 1.00E-03 1.00E-03
CCRCC 1.00E-03 1.00E-03 1.00E-03
Brain 1.00E-03 1.00E-03 1.00E-03
Skin 1.00E-03 1.00E-03 1.00E-03

Table 10: Hyper-parameter tuning information of the spatial transcriptomic prediction task.

8.7 TRAINING EFFICIENCY

Here we present the running time and consumed GPU memory in Table[TT] for the classification task
and Table[I2]for the regression task. According to these tables, USD consumes comparable resources

with other baselines, but can improve model performances.

Method Time (s) GPU memory usage (GB)
LS 68.457 4.725
Ly 73.973 4.725
Focal 60.086 4.725
Poly 68.852 4.725
ER 77.329 4.266
CE 79.456 4.725
WER 111.930 4.396
Wpoly 108.710 4.396

USD (Poly) 108.710

4.396

Table 11: Running time and memory usage for the classification task. We include statistics from both
baseline methods and USD. The experiment is performed on the CAMELYON16 dataset.

Method Time (s) GPU memory usage (GB)
MSE Loss 307.252 5.930
Huber Loss 306.928 5.930
PCCMSE Loss  335.070 5.930
USD (ER) 931.392 11.129

Table 12: Running time and memory usage for the classification task. We include statistics from both

baseline methods and USD. The experiment is performed on the Brain dataset.
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8.8 FULL TABLES

We list the average scores of all metrics for the classification task in Table[T3] the standard deviation
of all metrics for the classification task in Table [I4} and the standard deviation of all metrics for the
regression task in Table

8.9 COMPARISONS BETWEEN LOGISTIC REGRESSION AND USD FOR DISEASE-STATE
PREDICTION.

Here we consider a simple baseline, Logistic Regression (LR), and fit this model then make a
comparison with our proposed model, to demonstrate the necessity of using the more advanced
approach to address the disease-state classification task. According to Table[I6] our proposed method
performs better than LR in all of the included metrics across three datasets, and thus we demonstrate
the necessity of developing a novel solution for this task.

8.10 COMPARISONS BETWEEN USD AND TASK-SPECIFIC METHOD DEEPPT FOR GENE
EXPRESSION PREDICTION.

Here we include the comparison between our proposed method and a task-specific method DeepPT,
which was benchmarked in a recent publication for gene expression prediction from histopathology
images and ranked as the best method Zhang et al.| (2025)). DeepPT encodes a patch into embedding
space with pre-trained models, and later trains an auto-encoder to make the image embeddings
become more dense, and the compressed embeddings are used for predicting gene expression levels.
According to Table|17] USD performs better than DeepPT evaluated by all metrics on average, and
participially in the READ and the LYMPH_IDC datasets. Table [T8]shows that USD is also a robust
method with low variance. Therefore, USD can also surpass current state-of-the-art training pipeline.

8.11 COMPARISONS OF METHODS FOR TRAINING THE PREDICTION HEAD

Here we consider two modes of training the prediction head for disease-state classification based
on the TCGA dataset. The first mode is full parameter training (FPT), which means we tune the
feature extractor together with the prediction head. The second mode is only training the prediction
head (TPH) and freezing the feature extractor, which is also the default mode with less GPU memory
usage. According to Table[T9] TPH performs better than FPT in all metrics, and thus we keep TPH as
our final solution.

We also investigate the contribution of using patch-level (36 patches per image) information from the
whole slide to train a classifier for disease-state prediction with mean pooling (MP) and multi-instance
learning (ABMIL). The comparison based on the CAMELYON16 dataset with UNI v1 as base model
is shown in Table[20] According to this table, using PFMs to encode slides directly is a better choice,
and its required scale of training data is smaller than multi-instance learning design. The potential
limitations of patch-based methods such as MP and ABMIL [lise et al.| (2018)) are the bias in selecting
patches to represent a slide, and the training cost of patch-level information is also more expensive.
Nevertheless, our conclusion in the slide-level representation can also be transferred to patch-level
representation easily, demonstrated by our regression-based experiments. Moreover, we consider
removing samples which are wrongly classified by the linear classifier and re-train the prediction
head (RD), whose result is also summarized in this table. We find that removing difficult samples
cannot improve model performance, and thus our default setting is the most optimal setting. With the
same dataset, we also consider a different approach to compute MRMD, that is, for a sample with
class ¢, we compute the base Gaussian model GG, based on the samples not belonging to this class.
This approach is represented as MRMD (class removal) and the default method is represented as
MRMD (base). According to Table x, MRMD (base) has better performances, and thus using
different types of samples to compute MRMD also does not improve the performance of USD.

8.12 EFFECT OF CHOOSING THE CLUSTER NUMBER
Since the ASW score is widely used in evaluating the clustering performance in spatial transcriptomic

data analysis, we believe that the biological signals will not be oversimplified by selecting the optimal
bin number. We present additional experimental results by using different numbers of bins for
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| Methods
Datasets | Metrics Base LS Ly | Focal | Poly | ER CE | WER | WPoly | USD(ER) | USD (Poly) | Best Method
UNIvI | 0420 | 0923 | 0913 | 0927 | 0933 | 0913 | 0933 | 0923 0.933 0.923
UNIv2 | 0520 | 0960 | 0.933 | 0930 | 0963 | 0923 | 1.000 | 0.920 1.000 0.920
ACC (1) GigaPath | 0510 | 0.647 | 0603 | 0760 | 0.697 | 0.737 | 0677 | 0.767 0.677 0.767 UNI v2+USD (ER)
ResNet50 | 0517 | 0517 | 0.653 | 0.637 | 0520 | 0.643 | 0.640 | 0.690 0.627 0.680
UNIvI | 0446 | 0986 | 0.987 | 098 | 0994 | 0986 | 0.994 | 0.989 0.994 0.989
UNIv2 | 0543 | 1000 | 1.000 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000 1.000 1.000
AUROC (1) | GigaPath | 0570 | 0742 | 0838 | 0859 | 0877 | 0.866 | 0.898 | 0.891 0.898 0.891 UNI v2+USD (ER)
ResNet50 | 0545 | 0517 | 0704 | 0.697 | 0568 | 0696 | 0.664 | 0721 0.677 0.731
UNIvI 0420 | 0923 | 0913 | 0927 | 0933 | 0913 | 0933 | 0923 0.933 0.923
UNIv2 | 0520 | 0960 | 0933 | 0930 | 0963 | 0923 | 1.000 | 0.920 1.000 0.920
Bace (1) GigaPath | 0510 | 0.647 | 0603 | 0760 | 0.697 | 0.737 | 0677 | 0.767 0.677 0.767
ResNet50 | 0517 | 0517 | 0.653 | 0.637 | 0520 | 0643 | 0.640 | 0.690 0.627 0.680 UNI v2+USD (ER)
TCGA UNIVI | -0.160 | 0.847 | 0.827 | 0853 | 0.867 | 0827 | 0.867 | 0.847 0.867 0.847
UNIv2 | 0040 | 0920 | 0867 | 0.860 | 0927 | 0847 | 1.000 | 0.840 1.000 0.840
Kappa (1) | GigaPath | 0020 | 0293 | 0207 | 0520 | 0393 | 0473 | 0353 | 0.533 0.353 0.533
ResNet50 | 0.033 | 0033 | 0307 | 0273 | 0040 | 0287 | 0280 | 0.380 0.253 0.360 UNI v2+USD (ER)
UNIvI 0361 | 0923 | 0913 | 0926 | 0933 | 0913 | 0933 | 0923 0.933 0.923
UNIv2 | 0467 | 0960 | 0933 | 0930 | 0963 | 0923 | 1.000 | 0919 1.000 0.919
wF1 (1) GigaPath | 0447 | 0.636 | 0532 | 0749 | 0639 | 0.721 | 0627 | 0758 0.627 0.758
ResNet50 | 0488 | 0442 | 0.651 | 0.631 | 0438 | 0636 | 0.629 | 0.690 0.613 0.676 UNI v2+USD (ER)
UNIvI | 0107 | 0242 | 0.100 | 0.089 | 0.051 | 0.098 | 0.065 | 0.097 0.065 0.097
UNIv2 | 0186 | 0299 | 0073 | 0.069 | 0243 | 0.078 | 0.I51 | 0073 0.151 0.073
ECE ({) GigaPath | 0.131 | 0.166 | 0253 | 0121 | 0227 | 0.137 | 0208 | 0.126 0.208 0.126
ResNet50 | 0210 | 0.199 | 0.155 | 0210 | 0219 | 0219 | 0.184 | 0.209 0.184 0.209 UNIVI+ER
UNIVI | 0494 | 0715 | 0715 | 0726 | 0732 | 0747 | 0.724 | 0724 0.741 0.756
UNIv2 | 0450 | 0574 | 0.585 | 0559 | 0553 | 0559 | 0538 | 0518 0.562 0.550
ACC (1) GigaPath | 0491 | 0491 | 0468 | 0459 | 0482 | 0497 | 0488 | 0462 0.491 0.485 UNIvI+USD (Poly)
ResNet50 | 0541 | 0535 | 0520 | 0.524 | 0497 | 0521 | 0456 | 0535 0.585 0.553
UNIvI | 0536 | 0.828 | 0.821 | 0.832 | 0831 | 0829 | 0.821 | 0.820 0.812 0.834
UNIv2 | 0463 | 0752 | 0.690 | 0738 | 0738 | 0.724 | 0701 | 0.713 0.753 0.739
AUROC (1) | GigaPath | 0519 | 0.649 | 0593 | 0619 | 0610 | 0.610 | 0.592 | 0575 0.643 0.661 UNIvI+USD (Poly)
ResNet50 | 0524 | 0725 | 0720 | 0.719 | 0719 | 0725 | 0515 | 0712 0.730 0.703
UNIvI | 0491 | 0734 | 0733 | 0.746 | 0752 | 0765 | 0.741 | 0.738 0.757 0.771
UNIv2 | 0456 | 0.605 | 0.615 | 0592 | 0587 | 0593 | 0.573 | 0.553 0.592 0.586
Bacc (1) GigaPath | 0516 | 0.527 | 0.510 | 0503 | 0515 | 053 | 0.525 | 0.505 0.531 0.526
ResNet50 | 0539 | 0571 | 0.565 | 0.562 | 0536 | 0558 | 0500 | 0.572 0.617 0.588 UNI v1+USD (WPoly)
CAMELYON16 UNIvI | -0017 | 0449 | 0448 | 0472 | 0484 | 0510 | 0463 | 0.460 0.496 0.525
UNIv2 | -0087 | 0.197 | 0218 | 0.173 | 0.163 | 0.174 | 0.137 | 0.100 0.173 0.160
Kappa (1) | GigaPath | 0.030 | 0.050 | 0.018 | 0.005 | 0.029 | 0.067 | 0047 | 0.010 0.060 0.049
ResNet50 | 0.077 | 0133 | 0122 | 0.114 | 0.068 | 0.108 | 0.000 | 0.135 0.219 0.165 UNI v1+USD (WPoly)
UNIvI | 0494 | 0702 | 0704 | 0.715 | 0721 | 0739 | 0715 | 0718 0.750 0.746
UNIv2 | 0435 | 0510 | 0521 | 0482 | 0475 | 0479 | 0445 | 0407 0.498 0.463
wF1 (1) GigaPath | 0413 | 0385 | 0316 | 0292 | 0378 | 0378 | 0366 | 0298 0.350 0.342 UNI v1+USD (ER)
ResNet50 | 0534 | 0446 | 0438 | 0417 | 0371 | 0417 | 0286 | 0438 0.524 0.467
UNI v 0066 | 0.102 | 0100 | 0.139 | 0.092 | 0.110 | 0080 | 0.133 0.107 0.106
UNIv2 | 0058 | 0114 | 0103 | 0.199 | 0.119 | 0.144 | 0135 | 0.229 0.159 0.156
ECE (4) GigaPath | 0070 | 0.142 | 0.163 | 0342 | 0.164 | 0.194 | 0.188 | 0324 0.199 0.232 ResNet 50+LS
ResNet50 | 0.049 | 0.100 | 0.106 | 0245 | 0137 | 0181 | 0.190 | 0.193 0.137 0.167
UNIVI | 0147 | 0489 | 0484 | 0490 | 0474 | 0471 | 0485 | 0485 0.495 0.494
UNIV2 | 0.165 | 0479 | 0479 | 0489 | 0480 | 0479 | 0474 | 0485 0.488 0.468
ACC (1) GigaPath | 0.182 | 0468 | 0459 | 0470 | 0460 | 0.465 | 0460 | 0.466 0.473 0.453 UNI v1+USD (ER)
ResNet50 | 0178 | 0417 | 0437 | 0440 | 0437 | 0439 | 0420 | 0438 0.430 0.431
UNIVI | 0099 | 0458 | 0468 | 0467 | 0445 | 0446 | 0.467 | 0.469 0.479 0.478
UNIV2 | 0.165 | 0479 | 0479 | 0489 | 0480 | 0479 | 0474 | 0485 0.488 0.468
wF1 (1) GigaPath | 0.171 | 0437 | 0435 | 0445 | 0438 | 0.446 | 0428 | 0440 0.455 0.424 UNI v1+USD (ER)
ResNet50 | 0174 | 0342 | 0416 | 0413 | 0415 | 0416 | 0403 | 0413 0.397 0.404
UNIVI | 0162 | 0422 | 0432 | 0431 | 0413 | 0411 | 0432 | 0431 0.437 0.441
UNIv2 | 0170 | 0408 | 0426 | 0431 | 0423 | 0425 | 0417 | 0433 0.428 0.405
PANDA Bace (1) GigaPath | 0.161 | 0.398 | 0398 | 0410 | 0399 | 0.408 | 0392 | 0.399 0.414 0.388 UNI v1+USD (ER)
ResNet50 | 0179 | 0333 | 0377 | 0381 | 0378 | 0379 | 0366 | 0.380 0.368 0.368
UNIvI | 0002 | 0580 | 0.605 | 0.598 | 0588 | 0582 | 0.598 | 0.599 0.594 0.603
UNIv2 | 0004 | 0588 | 0.613 | 0.602 | 0611 | 0.604 | 0.605 | 0.612 0.603 0.585
Kappa (1) GigaPath 0.000 0.568 | 0.574 | 0.590 | 0576 | 0582 | 0.564 0.570 0.577 0.567 UNI v2+Focal
ResNet50 | 0.048 | 0476 | 0524 | 0533 | 0524 | 0531 | 0518 | 0530 0.527 0.517
UNIvI | 0047 | 0.088 | 0.023 | 0150 | 0.059 | 0.045 | 0.027 | 0.103 0.043 0.084
UNIv2 | 0033 | 001 | 0.032 | 0.128 | 0067 | 0.045 | 0.041 | 0.077 0.034 0.051
ECE (1) GigaPath | 0.016 | 0.086 | 0.027 | 0.150 | 0.064 | 0.054 | 0.043 | 0.074 0.031 0.061 ResNet 50+LS
ResNet50 | 0.012 | 0.099 | 0.050 | 0.096 | 0082 | 0018 | 0.056 | 0.057 0.022 0.022

Table 13: Benchmarking average scores under the full metric list for the classification task.
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| | | Methods
Datasets | Metrics | Base | g Li | Focal | Poly | ER CE | WER | WPoly | USD(ER) | USD (Poly) | Best Method
UNIvI | 0072 | 0028 | 0.022 | 0.009 | 0.000 | 0.022 | 0.000 | 0.015 0.000 0.015
UNIv2 | 0230 | 0022 | 0017 | 0014 | 0022 | 0015 | 0.000 | 0.007 0.000 0.007
ACC GigaPath | 0.162 | 0.151 | 0.076 | 0.067 | 0.180 | 0069 | 0.134 | 0.024 0.134 0.024 UNI v2+USD (ER)
ResNet50 | 0249 | 0054 | 0.032 | 0.043 | 0051 | 0032 | 0043 | 0.022 0.035 0.046
UNIvI | 0.149 | 0010 | 0010 | 0.009 | 0.008 | 0.012 | 0.005 | 0.009 0.005 0.009
UNIv2 | 0264 | 0001 | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 0.000 0.000
AUROC | GigaPath | 0457 | 0218 | 0071 | 0057 | 0.085 | 0.029 | 0.047 | 0044 0.047 0.044 UNI v2+USD (ER)
ResNet50 | 0.320 | 0061 | 0024 | 0.019 | 0022 | 0016 | 0014 | 0.012 0.027 0.032
UNIvI | 0072 | 0.028 | 0022 | 0.009 | 0.000 | 0022 | 0.000 | 0015 0.000 0.015
UNIv2 | 0230 | 0.022 | 0017 | 0.014 | 0022 | 0015 | 0.000 | 0007 0.000 0.007
Bace GigaPath | 0.162 | 0151 | 0.076 | 0067 | 0.180 | 0.069 | 0.134 | 0.024 0.134 0.024 UNI v2+USD (ER)
ResNetS0 | 0.249 | 0.054 | 0032 | 0.043 | 0051 | 0032 | 0043 | 0.022 0.035 0.046
TCGA UNIVI | 0144 | 0.056 | 0.043 | 0.018 | 0.000 | 0.043 | 0.000 | 0030 0.000 0.030
UNIV2 | 0460 | 0.045 | 0033 | 0.028 | 0.043 | 0030 | 0.000 | 0015 0.000 0.015
Kappa | GigaPath | 0324 | 0302 | 0.152 | 0135 | 0361 | 0.138 | 0267 | 0.047 0.267 0.047 UNI v2+USD (ER)
ResNet 50 | 0499 | 0108 | 0.064 | 0.086 | 0.101 | 0065 | 0087 | 0.045 0.069 0.092
UNIvI | 0074 | 0028 | 0.022 | 0.009 | 0.000 | 0.022 | 0.000 | 0015 0.000 0.015
UNIv2 | 0250 | 0022 | 0.017 | 0014 | 0022 | 0015 | 0.000 | 0.008 0.000 0.008
wFI GigaPath | 0.175 | 0.154 | 0.128 | 0.080 | 0244 | 0.086 | 0.169 | 0.027 0.169 0.027 UNI v2+USD (ER)
ResNet50 | 0272 | 0101 | 0.034 | 0.045 | 0.090 | 0038 | 0067 | 0.023 0.047 0.048
UNIvI | 0057 | 0016 | 0.027 | 0013 | 0012 | 0024 | 0.024 | 0.011 0.024 0.011
UNIv2 | 0103 | 0024 | 0011 | 0011 | 0029 | 0017 | 0.050 | 0.010 0.050 0.010
ECE GigaPath | 0.071 | 0.109 | 0.089 | 0.040 | 0098 | 0.072 | 0.066 | 0.014 0.066 0.014 UNI v2+Wpoly
ResNet50 | 0.085 | 0034 | 0023 | 0.035 | 0064 | 0026 | 0.019 | 0.029 0.029 0.040
UNIvI | 0087 | 0.046 | 0.040 | 0.035 | 0019 | 0019 | 0.019 | 0012 0.034 0.022
UNIV2 | 0066 | 0.044 | 0.081 | 0.063 | 0042 | 0071 | 0.069 | 0.092 0.061 0.054
Acc GigaPath | 0.095 | 0.045 | 0.026 | 0007 | 0.026 | 0.035 | 0.043 | 0013 0.079 0.066 UNI v1+USD (Poly)
ResNet50 | 0.039 | 0034 | 0037 | 0.040 | 0.056 | 0056 | 0.000 | 0.049 0.056 0.064
UNIvI | 0112 | 0026 | 0.047 | 0.019 | 0025 | 0.026 | 0.013 | 0.024 0.026 0.020
UNIv2 | 0100 | 0.042 | 0.091 | 0.058 | 0026 | 0.040 | 0.057 | 0.051 0.048 0.039
AUROC | GigaPath | 0.097 | 0.076 | 0.063 | 0.035 | 0.096 | 0.068 | 0062 | 0.052 0.089 0.055 ResNet 50+Focal
ResNet50 | 0.089 | 0.008 | 0.002 | 0.009 | 0.011 | 0.009 | 0072 | 0015 0.003 0.021
UNIvI | 0088 | 0.042 | 0.036 | 0.033 | 0016 | 0017 | 0.020 | 0015 0.037 0.019
UNIv2 | 0072 | 0037 | 0.071 | 0.056 | 0.037 | 0063 | 0.061 | 0.081 0.052 0.049
Bacc GigaPath | 0.091 | 0.044 | 0022 | 0006 | 0022 | 0032 | 0.031 | 0012 0.070 0.058 ResNet S0+ER
ResNet50 | 0.043 | 0.030 | 0032 | 0.045 | 0.049 | 0050 | 0.000 | 0.044 0.051 0.058
CAMELYON16 UNIvI | 0.074 | 0.083 | 0072 | 0065 | 0.034 | 0.035 | 0.038 | 0.027 0.069 0.040
UNIv2 | 0041 | 0071 | 0137 | 0.105 | 0070 | 0.119 | 0.115 | 0.154 0.099 0.092
Kappa | GigaPath | 0.179 | 0081 | 0.041 | 0.011 | 0.040 | 0059 | 0060 | 0.022 0.133 0.110 ResNet S0+ER
ResNet50 | 0.043 | 0032 | 0.062 | 0.084 | 0093 | 0.050 | 0.000 | 0.044 0.051 0.058
UNIvI | 0087 | 0058 | 0049 | 0.041 | 0.024 | 0.023 | 0020 | 0.011 0.032 0.027
UNIv2 | 0067 | 0082 | 0.044 | 0.121 | 0.082 | 0129 | 0.131 | 0.171 0.122 0.095
wF1 GigaPath | 0.149 | 0.092 | 0.067 | 0014 | 0092 | 0.071 | 0111 | 0028 0.143 0.126
ResNet50 | 0.036 | 0.066 | 0072 | 0.095 | 0.113 | 0102 | 0.000 | 0085 0.100 0.116 ResNet SO+ER
UNIvI | 0049 | 0.011 | 0026 | 0.033 | 0.006 | 0018 | 0.021 | 0010 0.017 0.019
UNIv2 | 0061 | 0022 | 0038 | 0.066 | 0.036 | 0054 | 0.047 | 0062 0.043 0.022
ECE GigaPath | 0.055 | 0.046 | 0.043 | 0051 | 0.039 | 0.083 | 0080 | 0.039 0.043 0.060 UNI vI+ER
ResNetS0 | 0.026 | 0.037 | 0.009 | 0.044 | 0059 | 0.017 | 0.025 | 0014 0.047 0.046
UNIvI | 0050 | 0016 | 0.015 | 0.016 | 0013 | 0.008 | 0.011 | 0012 0.014 0.009
UNIv2 | 0041 | 0011 | 0.007 | 0.005 | 0007 | 0.004 | 0.009 | 0.015 0.010 0.009
AccC GigaPath | 0014 | 0.009 | 0.012 | 0.013 | 0017 | 0.003 | 0.009 | 0.006 0.006 0.007 UNI v1+USD (ER)
ResNet50 | 0.013 | 0009 | 0.005 | 0.007 | 0.009 | 0.009 | 0005 | 0.005 0.012 0.012
UNIvI | 0059 | 0024 | 0.019 | 0026 | 0021 | 0014 | 0.019 | 0019 0.014 0.010
UNIv2 | 0047 | 0023 | 0017 | 0.014 | 0015 | 0011 | 0.016 | 0.021 0.015 0.016
WFl GigaPath | 0010 | 0.016 | 0.015 | 0.020 | 0025 | 0010 | 0.013 | 0.006 0.010 0.006 UNI v1+USD (ER)
ResNet50 | 0.018 | 0018 | 0.007 | 0.011 | 0.012 | 0.008 | 0011 | 0011 0.021 0.026
UNIvI | 0012 | 0021 | 0.013 | 0.023 | 0016 | 0013 | 0.017 | 0017 0.016 0.008
UNIv2 | 0.006 | 0015 | 0.008 | 0.014 | 0011 | 0010 | 0.013 | 0012 0.015 0.009
PANDA Bacc GigaPath | 0013 | 0013 | 0.017 | 0.017 | 0022 | 0.005 | 0.007 | 0.005 0.006 0.011 GigaPath+Wpoly
ResNet50 | 0.011 | 0011 | 0.005 | 0.005 | 0.008 | 0.008 | 0010 | 0.007 0.014 0.021
UNIvI | 0027 | 0022 | 0011 | 0.021 | 0013 | 0021 | 0.013 | 0018 0.013 0.005
UNIv2 | 0025 | 0018 | 0.011 | 0.007 | 0010 | 0012 | 0.013 | 0010 0.017 0.008
Kappa | GigaPath | 0.045 | 0013 | 0019 | 0.019 | 0.021 | 0011 | 0012 | 0.007 0.010 0.011 UNI v1+USD (Poly)
ResNet50 | 0.031 | 0029 | 0017 | 0009 | 0012 | 0014 | 0020 | 0013 0.013 0.034
UNIvI | 0016 | 0015 | 0.005 | 0.034 | 0009 | 0014 | 0011 | 0013 0.019 0.008
UNIv2 | 0017 | 0014 | 0.014 | 0030 | 0011 | 0.009 | 0.017 | 0.037 0.010 0.007
ECE GigaPath | 0012 | 0017 | 0.008 | 0.018 | 0012 | 0020 | 0.011 | 0.034 0.013 0.019 ResNet 50+USD (ER)
ResNet50 | 0.013 | 0011 | 0005 | 0.011 | 0.012 | 0.004 | 0015 | 0.009 0.004 0.009

Table 14: Benchmarking standard deviation under the full metric list for the classification task.
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| HEST-1K | STImage-1K4M

Metrics | Methods | 1nc READ PRAD LYMPH_IDC COAD CCRCC Brain  Skin
MSE 0.009  0.007  0.000 0.074  0.007 0.004 0.001 0.010
Huber 0.006 0.010  0.003 0.008  0.001 0.002  0.001 0.015
SPCC  pCCMSE 0.005 0.006 0.002 0.008  0.001 0.002  0.001 0.021
USD (er) 0.005 0.005 0.003 0.036  0.002 0.006  0.002 0.007
MSE 0.008  0.003  0.002 0.138  0.005 0.005 0.003 0.027
Huber 0.004  0.004  0.003 0.003  0.002 0.008  0.004 0.066
GPCC  pCCMSE 0.002 0.003 0.005 0.002  0.002 0.003  0.005 0.008
USD (er) 0.003  0.004  0.008 0.026  0.002 0.008  0.002 0.026
MSE 0.073  0.004  0.001 0.035 0013 0.001  0.001 0.011
Huber 0.065 0.002  0.002 0.005  0.009 0.001  0.001 0.035
MSE  pCCMSE 0.025 0.003  0.002 0.007  0.002 0.000 0.002 0.016
USD (er) 0.069 0.018  0.004 0.022  0.006 0.007  0.003 0.020

Table 15: Benchmarking standard deviation for the full metric list based on the regression task.

KMeans clustering after processing the data with Harmony, and the image features are extracted with
UNI v2. Table[22|shows that selecting the best k based on tuning ASW score achieves the highest
SPCC score in over 75% datasets from both the HEST and STImage1k4M databases, and its GPCC
and MSE are also in the top2 list for most of the datasets. Moreover, using the best k can obviously
reduce the randomness and improve training robustness evaluated with all three metrics, especially in
the IDC and LYMPH_IDC datasets, since the results based on k=7 and 11 for IDC and k=5 and 7 for
Brain show high variance in the evaluation with MSE or SPCC across five random seeds. Therefore,
tuning the cluster number k with ASW score is an effective approach to select the size used for model
training, supported by its superiority in average performance and robustness.

8.13 COMPARISONS BETWEEN USD (ER) AND USD (POLY) FOR THE GENE EXPRESSION
PREDICTION.

The results for comparing two modes of USD are shown in Figure[8] According to this figure, these
two modes do not show obvious differences across all selected metrics.

8.14 COMPARISONS BETWEEN DIFFERENT BASE MODELS FOR GENE EXPRESSION
PREDICTION

According to Tables[23]and [24} UNI v2-based combination always outperforms other combinations
evaluated by GPCC, and it also has low variance. Therefore, UNI v2 is selected as the base model for
evaluating the performances of gene expression prediction based on different training strategies.

8.15 BROADER IMPACT AND LIMITATIONS

One possible limitation of USD could be the task-specific requirements of pathology foundation
models, as the sample difficulty is affected by the source representations, and thus different foundation
models might lead to differences in estimating sample difficulty. One potential solution is to define a
metric to select models before estimating sample difficulty. The other limitation could be training
efficiency for large-scale datasets, which could potentially be addressed by using advanced GPU
cores.
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‘ | | Methods

Datasets ‘ Metrics ‘ Base ‘ LR ‘ USD (ER)

UNI vl 0.733 0.933

UNIv2 0917 1.000

ACC GigaPath 0.617 0.677

ResNet 50 0.500 0.627

UNI vl 0.994 0.994

UNI v2 1.000 1.000

AUROC GigaPath 0.919 0.898

ResNet 50 0.023 0.677

UNI vl 0.733 0.933

UNI v2 0917 1.000

Bacc GigaPath 0.617 0.677

ResNet 50 0.500 0.627

TCGA UNI vl 0.467 0.867

UNI v2 0.833 1.000

Kappa GigaPath 0.233 0.353

ResNet 50 0.000 0.253

UNI vl 0.713 0.933

UNIv2 0.916 1.000

wF1 GigaPath 0.551 0.627

ResNet 50 0.333 0.613

UNIvl 0.329 0.065

UNI v2 0.329 0.151

ECE GigaPath 0.236 0.208

ResNet 50 0.263 0.184

UNI vl 0.618 0.741

UNI v2 0.618 0.562

ACC GigaPath 0.647 0.491

ResNet 50 0.500 0.585

UNI vl 0.756 0.812

UNI v2 0.751 0.753

AUROC GigaPath 0.716 0.643

ResNet 50 0.672 0.730

UNI vl 0.620 0.757

UNI v2 0.638 0.592

Bacc GigaPath 0.655 0.531

ResNet 50 0.541 0.617

CAMELYONI16 UNI vl 0.237 0.496

UNIv2 0.264 0.173

Kappa GigaPath 0.303 0.060

ResNet 50 0.074 0.219

UNI vl 0.618 0.750

UNI v2 0.599 0.498

wF1 GigaPath 0.646 0.350

ResNet 50 0.376 0.524

UNI vl 0.251 0.107

UNI v2 0.220 0.159

ECE GigaPath 0.227 0.199

ResNet 50 0.181 0.137

UNI vl 0.458 0.495

UNIv2 0.448 0.488

ACC GigaPath 0.449 0.473

ResNet 50 0.378 0.430

UNIvl 0.448 0.479

UNI v2 0.438 0.488

wF1 GigaPath 0.439 0.455

ResNet 50 0.307 0.397

UNI vl 0.408 0.437

UNI v2 0.398 0.428

PANDA Bacc GigaPath 0.405 0.414

ResNet 50 0.280 0.368

UNI vl 0.569 0.594

UNI v2 0.551 0.603

Kappa GigaPath 0.556 0.577

ResNet 50 0.286 0.527

UNI vl 0.175 0.043

UNI v2 0.206 0.034

ECE GigaPath 0.142 0.031

ResNet 50 0.045 0.022

Table 16: Evaluation results between LR and USD (ER).
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\ Datasets and Statistics
Metires | Methods | ' ;nc READ PRAD LYMPHIDC COAD CCRCC Brain  Skin  Average

DeepPT 0579 0314  0.688 0.084 0.611 0379 0.603 0389  0.456
SPCC  USD (ER) 0.589 0.381  0.689 0.129 0.622  0.38  0.618 0.409 0.478
DeepPT 0386 0.186  0.110 0.223 0563 0263 0.110 0.189  0.254
GPCC  USD (ER) 0.400 0.283  0.138 0.236 0.565 0273  0.154 0265 0.289
DeepPT 2947 0277  0.296 0.868 0986 0491 0282 1.668 0.977
MSE  USD(ER) 2754 0.269 0.294 0.857 0957 0492 0279 1481  0.923

Table 17: Comparing average scores between DeepPT and USD for the gene expression prediction
task.

\ Datasets and Statistics
Metires | Methods | ' |nc READ PRAD LYMPHIDC COAD CCRCC Brain  Skin  Average

DeepPT  0.004 0.003  0.001 0.025 0.003  0.005 0.003 0.014  0.007
SPCC  USD (ER) 0.005 0.005 0.003 0.036 0.002  0.006 0.002 0.007 0.008
DeepPT  0.004 0.003  0.006 0.026 0.004 0013 0013 0.015 0.011
GPCC  yUSD (ER) 0.003 0.004 0.008 0.026 0.002  0.008  0.002 0.026 0.010
DeepPT ~ 0.027 0.002  0.001 0.015 0.009  0.001 0.001 0.016 0.009
MSE  USD(ER) 0.069 0.018 0.004 0.022 0.006  0.007 0.003 0.020 0.019

Table 18: Comparing standard deviation between DeepPT and USD for the gene expression prediction
task.

Metrics FPT TPH

Acc  0.487(0.014) 0.912 (0.020)
AUROC  0.600 (0.236)  0.984 (0.010)
Bacc  0.487 (0.014)  0.900 (0.038)
Kappa  -0.028 (0.028) 0.827 (0.043)
wFl  0.327 (0.006) 0.913 (0.022)

Table 19: Performances of two modes for training the prediction head. The format of value in the
table is: average (standard deviation).

Kappa | 0.082(0.052) 0.152(0.103) 0.448 (0.037) 0.525 (0.040)
wFl | 0.496 (0.060) 0.537 (0.052) 0.618 (0.059) 0.750 (0.027)
ECE | 0.212(0.033) 0.188(0.046) 0.267 (0.039) 0.107 (0.019)

\ \ Methods
Datasets | Metries | = yp | Rp | ABMIL | Default

| ACC | 0.524(0.035) 0.562(0.048) 0509 (0.017) 0.756 (0.022)
| AUROC | 0.643 (0.060) 0.641 (0.048) 0.538 (0.018)  0.834 (0.020
| Bacc | 0.542(0.026) 0.580 (0.055) 0.071(0.033) 0.771 (0.019)

CAMELYONI6 |
|
|

Table 20: Performances of four different strategies for training the prediction head. The format of
value in the table is: average (standard deviation).
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\ \ Methods
Datasets \ Metrics | MRMD (base) | MRMD (class-removal)
| ACC | 0.756 (0.022) 0.750 (0.021)
| AUROC |  0.834 (0.020 0.831 (0.009)
| Bacc | 0.771(0.019) 0.767 (0.018)
CAMELYONI6 | Kappa | 0.525(0.040) 0.514 (0.038)
| wFl | 0.750 (0.027) 0.743 (0.025)
| ECE | 0.107(0.019) 0.109 (0.154)

Table 21: Performances of two different strategies for computing sample difficulty. The format of
value in the table is: average (standard deviation).

0.50 0.30
UsD (ER)
0.94 USD (WPoly)
0.48 - 0.28 0.927
0.90
0.46 | 0.26 -
T e 0.88
[} X 4
S, 3 w
(@) U' =
£ e
0.44 0.24 0.86
0.84
0.42 - 0.22
0.82
0.40 . 0.20 T 0.80 :

Figure 8: Benchmarking scores averaged by all tested datasets between USD (ER) and USD (Poly).
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Dataset (best K) Metric k=3 k=5 k=7 k=9 k=11
SPCC  0.591 (0.004) 0.590(0.003) 0.591 (0.007) 0.591 (0.008) 0.589 (0.008)
IDC (best k=3) GPCC  0.400 (0.003) 0.401 (0.004) 0.396 (0.004) 0.403 (0.002) 0.398 (0.008)

MSE  2.69(0.005) 2.70(0.083) 2.80(0.173)  2.75(0.067)  2.76 (0.150)
SPCC _ 0.381(0.005) 0.383 (0.005) 0.379 (0.006) 0.379 (0.004) 0.383 (0.010)
READ (bestk=3)  GPCC  0.283 (0.004) 0.285 (0.001) 0.282 (0.002) 0.286 (0.005)  0.285 (0.004)
MSE  0.269 (0.018) 0.270 (0.012) 0.265(0.009) 0.267 (0.011)  0.270 (0.004)
SPCC _ 0.690 (0.003) 0.687 (0.003) 0.686 (0.002) 0.686 (0.004) 0.639 (0.003)
PRAD (bestk=3) ~ GPCC  0.138(0.008) 0.134 (0.006) 0.132(0.004) 0.136(0.009) 0.138 (0.003)
MSE  0.294 (0.004) 0.293 (0.004) 0.295 (0.002) 0.294 (0.003) 0.291 (0.002)
SPCC _ 0.119(0.051) 0.120 (0.049) 0.129 (0.036) 0.136 (0.046) _0.101 (0.044)
LYMPH_IDC (k=7) GPCC  0.241(0.020) 0.239(0.018) 0.236 (0.026) 0.250 (0.006) ~ 0.205 (0.052)
MSE  0.864 (0.025) 0.862(0.019) 0.857 (0.022) 0.872(0.020) 0.852 (0.023)
SPCC  0.622 (0.002) 0.625(0.002) 0.625 (0.003) 0.624 (0.005) 0.623 (0.004)
COAD (bestk=3)  GPCC  0.565 (0.002) 0.567 (0.003) 0.568 (0.002) 0.567 (0.002) 0.565 (0.004)
MSE  0.957 (0.006) 0.958 (0.003) 0.959 (0.005) 0.953 (0.009) 0.959 (0.010)
SPCC  0.386 (0.006) 0.383 (0.003) 0.383 (0.007) 0.386 (0.011) 0.382 (0.006)
CCRC (bestk=3)  GPCC  0.273(0.008) 0.274 (0.005) 0.272 (0.007) 0.273 (0.008) 0.270 (0.007)
MSE 0492 (0.007) 0.492 (0.004) 0.494 (0.001) 0.493 (0.005) 0.495 (0.004)
SPCC  0.618(0.002) 0.613 (0.008) 0.610 (0.008) 0.610(0.007) 0.612 (0.007)
Brain (best k=3) GPCC  0.154(0.002) 0.157 (0.007) 0.155(0.008) 0.157 (0.010) 0.161 (0.010)
MSE  0.279(0.003) 0.279 (0.004) 0.280 (0.005) 0.281 (0.005) 0.276 (0.003)
SPCC 0409 (0.007) 0.395 (0.021) 0.390 (0.023) 0.396 (0.013) _0.409 (0.009)
Skin (best k=3) GPCC  0.265 (0.020) 0.255(0.019) 0.262 (0.019) 0.255 (0.020)  0.258 (0.025)
MSE  1.481(0.020) 1.580(0.014) 1.572(0.013) 1.589(0.025) 1.581 (0.010)

Table 22: Effect of cluster number k& with format score (standard deviation) for the regression task.

\ Base Models

Metrics | Methods ;N[ y] | UNIv2 | GigaPath | ResNet 50
MSE Loss 0.572 0.581 0.588 0.550

spcc Huber Loss 0562 0589  0.585 0.527
PCCMSE Loss 0.575 0.588 0.599 0.554

MSE Loss 0.348 0.389 0.330 0.267

Gpcc  Huber Loss 0.334 0.390 0.321 0.220
PCCMSE Loss 0.355 0.400 0.351 0.281

MSE Loss 3.424 2.825 2.945 2.598

MSE Huber Loss 3.512 2.812 2.951 2919
PCCMSE Loss 3.414 2.748 2.855 2.561

Table 23: Benchmarking average scores for the full metric list based on different base models for the
regression task.

\ Base Models

Metrics | Methods | ';Npy) | UNIvV2 | GigaPath | ResNet 50
MSE Loss 0.013 0.009 0.004 0.006

spcc Huber Loss 0010 0.006  0.006 0.007
PCCMSE Loss 0.006 0.005 0.005 0.002

MSE Loss 0.002 0.008 0.017 0.019

Gpcc  Huber Loss 0.008 0.004 0.006 0.016
PCCMSE Loss 0.003 0.002 0.007 0.003

MSE Loss 0.034 0.073 0.059 0.043

MSE Huber Loss 0.026 0.065 0.075 0.079
PCCMSE Loss 0.030 0.025 0.032 0.031

Table 24: Benchmarking standard deviation for the full metric list based on different base models for
the regression task.
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