
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANYAVATAR: DYNAMIC AND CONSISTENT AUDIO-
DRIVEN HUMAN ANIMATION FOR MULTIPLE CHAR-
ACTERS

Anonymous authors
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Figure 1: AnyAvatar can generate videos using a character image and audio as input. AnyAvatar
enables the creation of multi-character, highly consistent, and dynamic human animations that
accurately reflect the emotions expressed in the audio.

ABSTRACT

Recent years have witnessed significant progress in audio-driven human animation.
However, critical challenges remain in (i) generating highly dynamic videos while
preserving character consistency, (ii) achieving precise emotion alignment between
characters and audio, and (iii) enabling multi-character audio-driven animation.
To address these challenges, we propose AnyAvatar, a multimodal diffusion trans-
former (MM-DiT)-based model capable of simultaneously generating dynamic,
emotion-controllable, and multi-character dialogue videos. Concretely, AnyAvatar
introduces three key innovations: (i) A character image injection module is de-
signed to replace the conventional addition-based character conditioning scheme,
eliminating the inherent condition mismatch between training and inference. This
ensures the dynamic motion and strong character consistency; (ii) An Audio Emo-
tion Module (AEM) is introduced to extract and transfer the emotional cues from
an emotion reference image to the target generated video, enabling fine-grained
and accurate emotion style control; (iii) A Face-Aware Audio Adapter (FAA) is
proposed to isolate the audio-driven character with latent-level face mask, enabling
independent audio injection via cross-attention for multi-character scenarios. These
innovations empower AnyAvatar to surpass state-of-the-art methods on benchmark
datasets and a newly proposed wild dataset, generating realistic avatars in dynamic,
immersive scenarios. The source code and model weights will be released publicly.
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1 INTRODUCTION

In recent years, Diffusion Transformers (DiT) have significantly advanced video generation. Among
these developments, text-to-video and image-to-video techniques Bar-Tal et al. (2024); Zhou et al.
(2024); Blattmann et al. (2023a;b); Guo et al. (2023); Zhou et al. (2022); Gupta et al. (2023); Wang
et al. (2023); Ho et al. (2022); Brooks et al. (2022); Wang et al. (2020); Singer et al. (2022); Li
et al. (2018); Villegas et al. (2022); Lin et al. (2025b) have gained increasing attention due to their
near-practical applicability. Audio-driven human animation, has experienced explosive growth, as it
enables realistic human video synthesis with minimal input. Recent DiT-based approaches Zhang
et al. (2023); Wang et al. (2024a); Meng et al. (2024); Cui et al. (2024); Lin et al. (2025a) have
demonstrated superior performance in audio-driven generation compared to existing methods.

Current audio-driven human animation methods can be broadly categorized into two paradigms:
portrait animation and full-body animation. Portrait animation methods Wang et al. (2024a); Meng
et al. (2024); Cui et al. (2024) focus exclusively on facial movements while maintaining static or
simplistic backgrounds. Full-body animation methods Lin et al. (2025a); Tu et al. (2025); Gan et al.
(2025); Kong et al. (2025); Gao et al. (2025) address this spatial limitation by extending motion to
the full body. However, they face persistent challenges including unnatural character movements,
misalignment between audio emotions and facial expressions, and an inability to drive multi-character
scenes with audio. These limitations currently represent the most significant barrier to developing
truly convincing audio-driven human animations.

Recent advances in audio-driven human animation have achieved significant progress, yet critical
challenges persist in motion quality, character consistency, emotion alignment, and multi-character
audio-driving. For instance, Hallo-3 Cui et al. (2024), a DiT-based portrait animation method,
generates only facial movements while neglecting body motion. OmniHuman-1 Lin et al. (2025a)
introduces a multimodal motion-conditioned hybrid training strategy to mitigate data scarcity issues.
OmniAvatar Gan et al. (2025) proposes an audio-driven human animation model trained with
LoRA. WanS2V Gao et al. (2025) proposes an efficient model that integrates text and audio control,
enabling high-quality and stable audio-driven video generation of characters in complex cinematic
scenes. StableAvatar Tu et al. (2025) combines a timestep-aware audio adapter and a dynamic
weighted sliding-window strategy to achieve infinite-length, identity-consistent video synthesis.
However, its approach greatly limits the dynamic movements. These limitations underscore the
need for more robust solutions. To address these gaps, our work focuses on three key objectives:
(i) improving dynamic expressiveness while preserving character identity, (ii) ensuring precise
emotion synchronization between audio and video, and (iii) enabling realistic multi-character dialogue
generation for real-world applications.

First, current audio-driven human animation methods typically rely on reference images during
inference to enforce consistency between the generated video and the reference. However, this
approach often leads to unnatural motion, as the model tends to replicate expressions and poses
from the reference rather than generating dynamic, audio-aligned movements. To overcome this
limitation, we propose a character image injection module, which transforms human image features
into representations more amenable to model learning. By injecting these features along the channel
dimension, we avoid the trade-off between dynamism and consistency that arises from direct latent
space usage, ensuring coherence between training and inference.

Second, we introduce an Audio Emotion Module (AEM) to align video characters’ emotions with
those conveyed in the audio. This module leverages reference images to guide emotion mapping,
ensuring that facial expressions accurately reflect the audio’s affective content, thereby improving
realism in human animation.

Finally, to address the challenge of multi-character animation, we propose a Face-Aware Audio
Adapter (FAA). This module applies a face mask to latent features extracted from the input, generating
face-masked video latents that are then fused with audio information. Since the audio primarily
influences the masked face region, we can independently drive different characters using distinct
audio inputs, enabling realistic multi-character dialogue generation for cinematic applications.

Extensive experiments demonstrate that our framework effectively drives multi-person scenarios with
audio, significantly improving both dynamism and consistency. Our key contributions are as follows:
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• A character image injection module that resolves the dynamism-consistency trade-off caused
by reference image usage, enhancing overall motion quality in foreground and background.

• An Audio Emotion Module (AEM) that aligns video characters’ emotions with audio-driven
affective cues, improving realism in facial expressions.

• A Face-Aware Audio Adapter (FAA) that enables localized audio-driven animation for
multiple characters by masking targeted face regions in the latent space, facilitating multi-
character dialogue generation.

2 RELATED WORK

Audio-conditioned portrait animation. Hallo Xu et al. (2024) proposes an innovative hierarchical
audio-driven visual synthesis approach based on diffusion models, which integrates generative models,
denoisers, temporal alignment techniques, and a reference network to achieve precise synchronization
between audio inputs and visual outputs. V-Express Wang et al. (2024a) balances strong and weak
control signals through progressive drop operations, enabling effective use of weak signals like audio
in portrait video generation. EchoMimic Meng et al. (2024) innovatively uses both audio and facial
landmarks for training, addressing the instability and unnatural results of using audio or landmarks
alone, enabling the generation of more natural portrait videos. Loopy Jiang et al. (2024) learns natural
motion and improves audio-portrait movement correlation through designed temporal modules and an
audio-to-latents module, eliminating the need for manual motion templates to generate more realistic
and high-quality videos. Hallo3 Cui et al. (2024) is designed with a Transformer-based identity
reference network to ensure facial identity consistency, and explores speech audio conditions and
motion frame mechanisms to enable the model’s audio-driven capabilities.

Audio-conditioned full-body animation. In OmniHuman-1 Lin et al. (2025a), a multimodal motion
condition hybrid training strategy is introduced, enabling the model to benefit from data augmentation
with mixed conditions, thereby overcoming the challenges faced by previous methods due to the
scarcity of high-quality data. StableAvatar Tu et al. (2025) integrates a timestep-aware audio
adapter and a dynamically weighted sliding window strategy, enabling infinite-length video synthesis
while addressing issues of audio synchronization and segment drift. Its innovative audio local
guidance mechanism further enhances the naturalness of audio-driven expressions and movements.
OmniAvatar Gan et al. (2025) proposes an audio-conditioned full-body avatar video generation model
trained with LoRA. By employing multi-level, pixel-wise audio embeddings, it effectively enhances
natural and adaptive body movements as well as high-precision lip synchronization. MultiTalk Kong
et al. (2025), a novel framework for audio-driven multi-person video generation, which introduces
multi-stream audio injection and Label Rotary Position Embedding to address audio-person binding,
along with innovative training strategies, effectively enabling instruction-following and dynamic,
realistic multi-person video synthesis.WanS2V Gao et al. (2025) proposes a high-quality audio-driven
human animation method that combines global text-based control with fine-grained audio-driven
motion, supports complex multi-person scenarios and stable long video generation.

3 METHODS

Given a reference image, a driving audio, and a facial mask of the character, our method can generate
talking videos of single or multiple characters based on the driving audio. The overall framework of
our method is illustrated in the figure 2. Specifically, we adopt HunyuanVideo Kong et al. (2024) as
our backbone. It is a video generation model built upon the MM-DiT architecture. In Section 3.1,
we explore a character image injection module, which can maintain both character consistency and
vividness. Then, in Section 3.2, we discuss how to apply an audio adapter to face region to enable
multi-character audio-driven animation. In Section 3.3 we discuss an emotion alignment module.

3.1 CHARACTER IMAGE INJECTION MODULE

In previous I2V methods, padding frames were often used for video inference. While this approach
ensures good integrity and consistency of characters, backgrounds, and foregrounds, it also limits
the motion dynamics of the generated video. Additionally, padding frames can lead to misalignment
between the training and inference processes. Removing padding frames for video inference results

3
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Figure 2: The framework of AnyAvatar. It consists of three parts: (1) Character Image Injection
Module, which ensures high consistency of the character while maintaining high dynamics; (2) Audio
Emotion Module, which aligns the character’s facial expressions in the video with the emotions in
the audio; and (3) Face-aware Audio Adapter, which enables audio-driven multiple characters.

in better motion dynamics but severely compromises character consistency and integrity. Therefore,
we explored three character image injection mechanisms, as illustrated in Figure 3: (a) the reference
image and video are processed through the same tokenizer, and the generated latents are concatenated
in the token dimension; (b) the character image is first repeated T times (T represents the length of the
video) and concatenated with the original video in the channel dimension, then fed into tokenizer1,
while the character reference image is fed into tokenizer2, and both are concatenated in the token
dimension before fed to the model; (c) the reference image is first repeated T times and fed into
tokenizer2, then added directly to the video latent through a projection module composed of fully
connected layers fed to the model. The mechanism (c) shows better results compared to mechanisms
(a) and (b), as it improves the dynamics of motion while ensuring the consistency and integrity of
characters, backgrounds, and foregrounds in the video, significantly enhancing video quality. For
specific ablation comparisons experience, please refer to the experiment section. Since the backbone’s
tokenizer1 is specifically trained for video, we need to add an extra tokenizer2 to fit the image branch.
The weights of this tokenizer are copied from the backbone’s tokenizers, and we found that this
approach accelerates model convergence.

3.2 FACE-AWARE AUDIO ADAPTER

In terms of audio conditioning, we use Whisper Radford et al. (2023) for audio feature extraction, and
for face masks, we employ the InsightFace Ren et al. (2023) method to detect the bounding box of the
facial region. Given an audio-video sequence consisting of n′ frames, we extract audio features for
each frame, yielding a feature of shape n′× 10× d, where 10 denotes the number of tokens per audio
frame. The corresponding video latent representations are temporally compressed by a pretrained 3D
VAE into n frames, with n =

⌊
n′

4

⌋
+1, where the additional 1 accounts for the initial, uncompressed

frame, and 4 is the temporal compression ratio. Furthermore, to incorporate identity information, an
identity image is concatenated at the beginning, resulting in a video latent of n+ 1 frames.

To ensure temporal alignment between the audio features and the compressed video latent, we first
pad the audio feature sequence prior to the initial frame, producing a total of (n + 1) × 4 audio
frames. We then aggregate every four consecutive audio frames into one, resulting in a temporally
aligned audio feature tensor gA that matches the structure of the video latent representation. To
ensure temporal alignment between the face mask and the compressed video latent, we set the face
mask corresponding to the initial frame to 1, and also make it contain a total of (n+ 1)× 4 mask
frames. This results in a mask gM that is both temporally and spatially aligned with the video latent.

gA = Rearrange(gA,0) : [b, (n+ 1)× 4, 10, d]→ [b, (n+ 1), 40, d]. (1)

With the temporally aligned audio features gA, we introduce audio information into the video latent
representation yt using a cross-attention mechanism. To prevent interference across different time
steps, we adopt a spatial cross-attention strategy that performs audio injection separately for each
time step. Specifically, each audio frame interacts only with the spatial tokens of its temporally
aligned video frame, and cross-attention is applied independently at each temporal index. To this

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

QKV Concat

Q K V
Attention

Projection

Projection
Tokenizer Tokenizer1 Tokenizer2

Tokenizer1

QKV Concat

Q K V
Attention

Projection

QKV Concat

Q K V
Attention

Projection

Tokenizer2

Image Repeat T times

Repeat

(a) Token Concat (b) Token Concat + Channel Concat (c) Ours

Text 
Token

Video
Token

Image
Token

Image Token

Figure 3: Three types of Character Image Injection Module.
end, we decouple the temporal dimension from the spatial dimensions of the video latent and apply
attention solely along the spatial axes:

y′t,A = Rearrange(yt) :[b, (n+ 1)wh, d]→ [b, n+ 1, wh, d],

y′′t,A = y′t,A+αA × CrossAttn(gA, y′t)× gM ,

yt,A = Rearrange(y′′t,A) :[b, n+ 1, wh, d]→ [b, (n+ 1)wh, d],

(2)

where αA is a weight to control the influence of the audio feature.

3.3 AUDIO EMOTION MODULE

To align the emotion conveyed in the audio with the character’s facial expression, we compress the
emotional reference image into features using a pretrained 3D VAE, and then inject these features into
the Double Block of HunyuanVideo through an FC layer and spatial cross-attention mechanism.
Specifically, the reference image features serve as the Key and Value, while the original video
latent representation serves as the Query. This approach fuses information from the emotional
reference image with the masked video latent yt,A, enabling the model to better understand the
relationship between audio emotion and facial expressions. To formalize this process, we first encode
the emotional reference image Eref = Encoder(Iref), where Eref denotes the encoded feature of the
emotional reference image Iref. Next, to integrate these features into the video latent representation,
we perform the following steps: We first reshape the video latent yt,A into temporal-spatial dimensions
as y

′

t,A, then apply an FC layer and spatial cross-attention to inject emotional features: y′′t,A,E , and
finally restore the original structure:

y
′

t,A = Rearrange(yt,A) :[b, (n+ 1)wh, d]→ [b, n+ 1, wh, d],

y′′t,A,E = y′t,A+γE × CrossAttn(FC(Eref), y
′

t,A),

yt,A,E = Rearrange(y
′

t,A,E) :[b, n+ 1, wh, d]→ [b, (n+ 1)wh, d],

(3)

where γE is a learnable scaling factor that controls the influence of the emotional reference features
on the video latent. Notably, we found that inserting this module into a Single Block does not allow
the model to effectively learn emotion. In contrast, integrating it into a Double Block enables the
model to better drive character emotions. This suggests that the Double Block plays a crucial role in
capturing and representing emotional details during complex emotion-to-expression mapping tasks.

3.4 LONG VIDEO GENERATION

As shown in Algorithm 1, at each timestep, the model performs denoising in a segment-wise manner.
Let the audio embedding be v[0,l]a of length l, the latent variable at timestep t be z[0,l]t , and the segment
length be f . We introduce a position-shift offset α, where α < f < l, determining how much the
starting point shifts in each iteration. The accumulated shift offset is initialized as αβ = 0. For each
denoising step t from T down to 1, a new segment is selected with start s = αβ , end e = s+ f , and
processed length n = 0. The algorithm iteratively processes each segment as long as n < l. For
every segment, the pretrained AnyAvatar model predicts the next latent variable given the current
latent and audio slice as:

z
[s,e]
t−1 = AAM(z

[s,e]
t , v[s,e]a , t) (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

After each prediction, indices are updated as s ← s + f , e ← e + f , and n ← n + f . If these
indices exceed the sequence length, i.e., if s > l or e > l, we use circular padding: s ← s mod l
and e← e mod l. After all segments are processed for a timestep, the accumulated offset is updated
as αβ ← αβ + α. In our experiments, we set the offset α to 5 for each timestep, and find that this
setting effectively maintains coherence across segments. This segment-wise shifting strategy enables
AnyAvatar to naturally bridge audio and visual contexts, resulting in continuous video generation
that closely follows the audio prompts. The final denoised latent is z[0,l]0 .

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS
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Figure 4: Qualitative comparison on the HTDF dataset.

Implementation Details. We use HunyuanVideo-I2V Kong et al. (2024) as the base model
for AnyAvatar. The training process consists of two distinct stages. In the first stage, we train
exclusively on audio-only data to establish fundamental audio-visual alignment. In the second
stage, we implement a mixed training regime combining audio and image data in a 1:1.5 ratio to
enhance motion stability. The resolution of the training data ranged from 704 × 704 to 704 × 1216.
Throughout the training, we maintain fixed parameters for both LLaVA and 3D VAE while updating
all other learnable parameters. We use 160 GPUs with 96GB of memory each, set the global batch
size to 40, and the learning rate to 1e-5. More details are provided in the appendix A.5.

Datasets. To obtain high-quality training data, we use LatentSync Li et al. (2024) to filter out
audio-visual asynchronous data and employ Koala-36M Wang et al. (2024b) to filter out data with
low brightness or low aesthetics. Through our standardized data selection process, we obtain 500,000
samples with character audio, with a total duration of approximately 1,250 hours. During the testing
stage, we select the publicly available portrait datasets CelebV-HQ Zhu et al. (2022) and HDTF Zhang
et al. (2021) to evaluate the portrait animation capabilities of various methods. In addition, since
there is currently no publicly available full-body animation test set, we construct our own full-body
animation test set, which contains 250 videos covering 200 identities, involving different races, ages,
genders, styles, and initial actions. More datasets details are provided in the appendix A.6.

Evaluation Metrics and Compared Baselines. We use the Q-align Wu et al. (2023) visual language
model (VLM) to evaluate video quality (IQA) and aesthetic metrics (AES), and use FID Heusel et al.
(2017) and FVD Unterthiner et al. to assess the distance between generated videos and real videos. In
addition, we use the smoothness metric from VBench Huang et al. (2024) to evaluate video motion
stability, employ Sync-C, Sync-D Chung & Zisserman (2017) to assess audio-visual synchronization
and employ HKC, HKV Lin et al. (2024) are employed, to represent hand quality and motion richness
respectively. Apart from objective metrics, we also conducted a subjective evaluation with 30 users.
The thirty users rated the generated results across four dimensions: lip synchronization(LS), Identity
Preservation (IP), Full-body Naturalness(FBN), and Facial Naturalness(FCN). To comprehensively
assess the advancement of our method, we compared it with the current state-of-the-art audio-driven
portrait animation methods, including Sonic, EchoMimic, EchoMimic-V2 and Hallo-3. For audio-
driven full-body animation, we first compared Hallo3 Cui et al. (2024), FantasyTalking Wang et al.
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Figure 5: Visualization of videos generated by AnyAvatar on the wild dataset.
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Figure 6: Qualitative comparison on the wild body dataset.

(2025b), Multitalk Kong et al. (2025), OmniAvatar Gan et al. (2025), StableAvatar Tu et al. (2025)
and WanS2V Gao et al. (2025) on our proposed full-body animation test set.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Qualitative Results. We conducted qualitative comparisons with existing methods. For audio-
driven portrait animation, we mainly compared our approach with Sonic, EchoMimic, EchoMimicV2,
and Hallo-3 on the HDTF dataset, which primarily focuses on lip synchronization and facial expres-
sion accuracy. As shown in the figure 4, our method produces results with higher video quality, more
natural and vivid facial expressions, and more aesthetically pleasing video effects on this dataset. For
audio-driven full-body animation, The figure 5 demonstrates the effectiveness of our model across
various styles of characters, emotion control, and audio-driven multi-character scenarios, showcasing
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Table 1: Quantitative comparisons with audio-driven portrait animation baselines.

Methods
IQA ↑ AES↑ Sync-C↑ FID↓ FVD↓ Sync-D↓

CelebV-HQ / HDTF

Sonic 3.60 / 3.86 2.43 / 2.41 5.58 / 5.81 49.28 / 40.50 415.04 / 413.94 8.31 / 9.80
EchoMimic 3.39 / 3.64 2.25 / 2.23 3.41 / 4.07 46.74 / 45.38 450.98 / 410.05 9.99 / 10.31

EchoMimic-V2 2.75 / 3.36 1.97 / 2.15 4.11 / 3.39 46.37 / 39.73 862.24 / 487.75 9.50 / 11.00
Hallo-3 3.57 / 3.77 2.38 / 2.35 4.57 / 4.87 45.69 / 39.07 444.92 / 380.31 8.97 / 9.90
Ours 3.70 / 3.99 2.52 / 2.54 4.92 / 5.30 43.42 / 38.01 445.02 / 358.71 8.55 / 9.74

Table 2: Quantitative comparisons with audio-driven full-body animation baselines.

Methods IQA ↑ AES↑ Sync-C↑ FID↓ FVD↓ Sync-D ↓ HKC↑ HKV↑ FCN FBN IP LS

Hallo3 4.345 2.771 5.131 50.122 629.943 9.942 0.623 0.268 2.91 2.59 4.28 3.61
FantasyTalking 4.631 3.023 3.682 58.243 677.672 11.213 0.771 0.379 3.43 3.49 4.65 4.21
OmniHuman-1 4.652 2.995 5.343 49.681 719.401 9.774 0.839 0.310 4.11 4.18 4.79 4.61

OmniAvatar 4.607 3.004 7.121 54.675 654.104 7.987 0.754 0.223 3.65 3.12 4.32 4.22
StableAvatar 4.638 3.015 7.234 55.644 639.006 8.690 0.794 0.386 3.77 3.61 4.79 4.59

Multitalk 4.361 2.864 6.987 52.330 613.213 8.637 0.785 0.388 3.82 3.56 4.75 4.55
WanS2V 4.812 3.007 6.989 49.777 921.998 7.957 0.783 0.413 4.02 4.50 4.80 4.59

Ours 4.668 3.036 7.534 49.380 650.541 8.535 0.849 0.390 3.91 3.88 4.84 4.65

Table 3: Ablation on CIIM.

Methods VQ ↑ MD ↑ IP ↑ LS ↑

Token 2.863 3.585 4.402 4.239
Token + Channel 4.412 2.336 4.576 4.431

Token + Add 4.486 4.127 4.289 4.161

Table 4: Ablation on the Methods to Inject Face Masks.

Methods BD↑ SB↑ DB↑ IQA ↑ AES↑ FID↓ FVD↓

w/o mask 0.0027 100% 87% 4.803 3.587 72.124 1205.123
w token 0.0025 100% 85% 4.764 3.335 73.124 1400.153
w mask 0.0028 100% 90% 4.815 3.589 74.087 1202.491

the validity of our approach. Then we mainly compared our method with other methods on the wild
full-body dataset. As shown in Figure 6, the videos generated by our method demonstrate more
natural variations in the foreground, background, and character movements, while also achieving
more accurate lip synchronization and better character consistency, resulting in higher overall video
quality. These improvements are attributed to the focused design of the audio adapter module and
the introduction of the character image injection module. Notably, we tested 50-second videos to
compare the long video generation capabilities of different methods. It is evident that our method
exhibits stronger stability in 50-second video generation. Additionally, other methods often fail to
animate non-human characters. Therefore, our approach is better suited to meet the demands of
practical application scenarios. More comparative and visual results are provided in the appendix.
Quantitative Results. To thoroughly validate the superiority of our method in audio-driven portrait
animation, we compared our approach with baseline methods on various evaluation metrics using
the CelebV-HQ and HDTF test sets. As shown in the Table 1, the results demonstrate that our
method achieves the best performance, proving the effectiveness of our approach in audio-driven
portrait animation and showcasing its capability in audio synchronization. Meanwhile, to verify the
superiority of our method in audio-driven full-body animation, we conducted a comparison with
baseline methods on various evaluation metrics using our proposed test set. As shown in Table 2, the
experimental results demonstrate that our method achieves the best performance on most evaluation
metrics, proving its effectiveness in audio-driven portrait animation generation and showcasing its
capability in audio-visual synchronization.
User Study. To further validate the effectiveness of our proposed method, we conducted a subjective
evaluation on the wild full-body animation dataset. Each participant assessed four key dimensions: lip
synchronization (LS), identity preservation (IP), full-body naturalness (FBN), and facial naturalness
(FCN). A total of 30 participants rated each aspect on a scale from 1 to 5. For each method, we
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Figure 7: (a) Ablation on Audio Emotion Module. (b)Ablation on Face-Aware Audio Adapter.

generated 30 videos, and each participant was required to evaluate videos from all methods. As
shown in Table 2, the results indicate that AnyAvatar outperforms existing baseline methods in the
IP and LS evaluation dimensions. Since OmniHuman-1 is not open source and its online service
includes super-resolution operations, there is a natural visual advantage in subjective evaluations. In
addition, our method inherits some inherent issues of Hunyuanvideo. Therefore, in terms of FCN and
FBN, our scores show certain deficiencies compared to OmniHuman-1.

Ablation on Character Image Injection Module. We subjectively evaluated three Character
Image Injection Modules across four dimensions: Lip Synchronization (LS), Video Quality (VQ),
Identity Preservation (IP), and Motion Diversity (MD). As shown in Table 3: (1) Token concat excels
at enhancing video dynamics, but performs poorly in terms of IP and VQ. (2) Token concat + channel
concat method ensures the consistency of characters, backgrounds, and foregrounds, but it can be seen
from the MD that the dynamic motion is greatly restricted. (3) Token concat + add maintains video
dynamic motion while also preserving the consistency of characters, backgrounds, and foregrounds.
Ablation on Audio Emotion Module. Figure 7(a) demonstrates that when only text guidance is
used, the model cannot generate facial expressions, while the introduction of the AEM enables better
alignment between the emotions conveyed by the audio and the character’s facial expressions.
Ablation on Face-Awared Audio Adapter. The figure 7(b) shows that without using a mask, the
characters are driven by the audio randomly; whereas after applying the mask, only the masked
character is affected by the audio, enabling precise audio control for multiple characters.
Ablation on the Methods to Inject Face Masks. As shown in the Table 4, we compared the
method of injecting masks into Video Tokens, commonly used in inpainting task. To demonstrate
that introducing masks does not degrade the video backgrounds, we additionally introduced three
metrics. We selected 50 images with clean backgrounds to evaluate the success rate of each method
in preserving static backgrounds (SB), and 50 images with complex backgrounds to assess their
performance in maintaining physical consistency (DB). We also measure the optical flow score of the
background to evaluate background dynamics (BD). Overall, our method outperforms the other two
approaches in both background evaluation metrics and overall video quality. Moreover, the results
of BD, SB, and DB clearly indicate that the introduction of masks does not lead to foreground or
background distortion. Furthermore, the IQA, AES, FID, and FVD demonstrate that our method
achieves higher overall consistency and better performance compared to the approach without masks.

5 CONCLUSION

In this paper, we propose AnyAvatar, an audio-driven human animation method that achieves both
high character consistency and dynamic motion. We introduce a character image injection module
resolves the inherent trade-off between dynamism and consistency by adaptively balancing these
objectives, significantly enhancing the naturalness and diversity of generated videos. To ensure
alignment between the audio’s emotional tone and character expressions, we introduce the Audio
Emotion Module which transfers affective cues from emotion reference images to the target animation.
For multi-character scenarios, our method employs latent-space masking to localize audio-driven
animation to specific face regions, enabling independent control of different characters through
targeted mask modulation. Extensive qualitative and quantitative experiments demonstrate that
AnyAvatar outperforms existing methods in video dynamism, subject consistency, lip-sync accuracy,
audio-emotion-expression alignment, and multi-character scenarios.

9
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A APPENDIX

In this appendix, we offer further details on preliminary, implementation details, present additional
experimental results, and limitations and societal impacts, structured as follows:

• The Use of Large Language Models (Sec. A.1);
• Reproducibility statement (Sec. A.2);
• Ethics statement (Sec. A.3)
• Preliminary (Sec. A.4);
• Implementation Details (Sec. A.5);
• Datasets Details (Sec. A.6);
• More Visualization Results (Sec. A.7).
• Limitations (Sec. A.8)
• Societal Impacts (Sec. A.9)

A.1 THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of a large language model (LLM) to assist in the preparation of this
manuscript. The LLM’s role was strictly limited to improving grammar and refining language. It did
not contribute to any of the core research components, such as the initial ideas, experimental design,
data analysis, or interpretation of the results.

A.2 REPRODUCIBILITY STATEMENT

We have explained the implementation of AnyAvatar in detail in Sec. 4.1 and Sec. A.5. The code and
dataset pipeline used in this work will be open-source online.

A.3 ETHICS STATEMENT

Source of Test Data. In the visualization results presented in the main text and supplementary
materials, some of the character images and driving audio are sourced from open-source test sets,
while the rest are generated by AI. Before collecting users’ image data, we require users to sign an
informed consent form, explicitly authorizing the use of their image data for academic research and
non-commercial secondary dissemination. This fundamentally avoids infringement of others’ portrait
rights and copyrights.

User study. All user study experiments are conducted in strict accordance with national laws, and
reasonable compensation is provided to participants.

Training Data Standards.

• Data Collection. When collecting the data, we were careful to only include videos that—to
the best of our knowledge, were intended for free use and redistribution by their respective
authors. That said, we are committed to protecting the privacy of individuals who do not
wish their videos to be included.

• Dataset Balancing. To eliminate various biases in the dataset, we manually increased the
diversity and representativeness of the data, for example, by adding more data for minority
groups/races and reducing the amount for majority groups/races. This helps reduce risks
such as reinforcing stereotypes, generating offensive content, or producing lower-quality
results for specific groups.

• Data Screening and Filtering. We removed harmful content from the collected training
dataset and introduced prompt and video filters to prevent users from generating inappro-
priate content. For training data selection, we first use open-source tools for preliminary
screening, and then employ ten staff members to carry out a detailed manual review over a
period of half a month. During this process, we negotiate reasonable compensation standards
with the staff in advance, and final payment is settled based on each individual’s actual
workload.
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Model Anti-Abuse Measures. To prevent misuse of the model by users, we have implemented and
will continue to improve multiple preventive measures, including:

• User Behavior Guidelines. To prevent harassment and bullying of others, we require users
not to upload photos of others without their consent. Content Identification: All content
generated by AnyAvatar will be clearly marked as synthetic (e.g., via watermarking) to
prevent it from being used to mislead others.

• Safety Assessment and Monitoring. We will continue to expand our safety assessment
tools, conduct regular risk analyses, and strictly review and retrospectively evaluate new use
cases. At the same time, we will develop a monitoring system that combines automation
and human oversight to promptly detect and prevent potential abuse.

• Compliance and Distribution. We will impose strict usage requirements on the model to
ensure it is only used for legal and compliant scientific research purposes. We will continue
to conduct relevant research, actively listen to community feedback, dynamically improve
our ethical guidelines, and do our utmost to eliminate potential negative social impacts,
promoting the healthy and responsible development of technology.

Regarding culture bias. There are significant differences in emotional expression across cultures,
yet most current emotion recognition and generation models remain centered on Western norms,
which can introduce cultural bias. Most of these technologies perform inconsistently across different
datasets and are highly sensitive to label definitions, reflecting inherent biases in the training data.
Although the AnyAvatar model does not directly classify emotions, its training data and generation
mechanisms may still inherit such biases. In the future, we plan to incorporate multicultural datasets
and culturally adaptive algorithms to improve the model’s fairness and applicability across diverse
backgrounds.

A.4 PRELIMINARY

Diffusion Transformer. The Diffusion Transformer (DiT) is a diffusion model designed based on the
Transformer architecture. With the emergence of SoRA Liu et al. (2024), we have seen its tremendous
potential in the field of video generation. Multi-Modal DiT (MM-DiT) is an improved version of
the DiT structure, and the main difference between MM-DiT and DiT lies in the way conditions are
injected. DiT uses a cross-attention mechanism for text injection, while MM-DiT connects textual
information with images or videos to perform joint attention. Specifically, we adopt HunyuanVideo
as our backbone. This model uses a causal 3DVAE to compress videos in both temporal and spatial
dimensions, and employs LLaVA to encode textual information and obtain text embeddings. The
textual and video information are then jointly input into MMDiT.

Identity Enhancement and Motion Dynamics. Firstly, we resize the target image to match the
dimensions of the video frames. We then use the pretrained 3DVAE from HunyuanVideo to map
the reference image R from image space to the latent space, obtaining the reference image latent
vR ∈ Rw×h×c, where w and h denote the width and height of the latent, and c is the feature dimension.
Similarly, we encode the noise video using the 3D VAE to obtain the video latent vnoise ∈ Rf×w×h×c

where is the the number of video frames. Next, we process vR with Tokenizer2 K2 to obtain
tR ∈ Rwh×c and tnoise ∈ Rfwh×c, respectively. We then replicate the reference image T times
(where T is the original video length) to obtain ir, and use the 3DVAE together with Tokenizer1 K1

(initialized with the weights of Tokenizer2) to obtain tr ∈ Rfwh×c. We add tr and tnoise element-wise,
and concatenate the result with tR along the token dimension to form the final input p, as shown
below:

p = TokenCat ({K1(tr) +K2(tnoise)} , tR) (5)

Thanks to the strong temporal modeling prior of HunyuanVideo, identity information can be efficiently
propagated along the time axis. Therefore, we assign 3D-RoPE (Su et al., 2024) positional encoding
to the concatenated image latent. In the original HunyuanVideo, video latents are assigned 3D-RoPE
along the time, width, and height axes; for a pixel at position (f, i, j) (where f is the frame index, i is
the width, and j is the height), the RoPE is RoPE(f, i, j). For the image latent, to enable effective
broadcasting of identity information along the temporal sequence, we place it at the −1-th frame,
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i.e., before the first frame with time index 0. Furthermore, inspired by Omnicontrol (Tan et al., 2024)
in controllable image generation, to prevent the model from simply copying and pasting the target
image into the generated frames, we introduce a spatial shift for the image latent, as follows:

RoPEzI (f, i, j) = RoPE(−1, i+ w, j + h). (6)

The LLaVA model, as a multi-modal understanding framework, is designed to capture the correlation
between text and image, primarily extracting high-level semantic information such as category,
color, and shape, while often overlooking finer details like text and texture. However, in video
customization, identity is significantly determined by these image details, making the LLaVA branch
alone insufficient for identity preservation. To address this, we propose an identity enhancement
module. By concatenating video latents with the target image over the time axis, and leveraging
the video model’s efficient information transmission capability in the temporal dimension, we can
effectively enhance video identity consistency.

Training. During the training process, we employ the Flow Matching Lipman et al. (2022) framework
to optimize our video generation model. Specifically, we first extract the latent representation of the
video, denoted as vi, along with its corresponding reference image R. To introduce stochasticity, we
sample a time step t ∈ [0, 1] from a logit-normal distribution Esser et al. (2024). We then initialize
the noise vector z0 ∼ N (0, I) from a standard Gaussian distribution. The training sample at time t,
vt, is constructed by linearly interpolating between the initial noise z0 and the target latent vi.

The model is trained to predict the velocity ut =
dzt
dt at each time step, conditioned on the reference

image R. This velocity guides the sample vt towards the target latent v0. During optimization, the
model outputs a predicted velocity λt, and the parameters are updated by minimizing the mean
squared error between λt and the ground-truth velocity ut. The overall generation loss is defined as:

Lgeneration = Et,x0,x1
∥λt − ut∥2 . (7)

This training strategy enables the model to effectively learn the underlying data distribution and
generate high-quality, customized video content conditioned on the reference image.

A.5 IMPLEMENTATION DETAILS

Long Video Generation. The HunyuanVideo13B model Kong et al. (2024) can only generate videos
with 129 frames, which is often shorter than the audio length. To tackle the challenge of generating
long videos, we use the Time-aware Position Shift Fusion method from Sonic Ji et al. (2024). We
successfully adapt this method to the HunyuanVideo13B model, which is based on the MM-DiT
architecture, and achieve good results. This fusion strategy is simple yet effective, as it does not add
any extra inference or training costs. It helps to reduce issues like jitter and abrupt transitions during
video generation.

As shown in Algorithm 1, at each timestep, the model takes a segment of the audio as input to predict
the corresponding latent. It uses a starting offset to smoothly connect with the segment from the
previous timestep, shifting forward by α steps each time. We set the offset α to 5 at each timestep, and
our experiments show that this is an effective choice. This approach allows AnyAvatar to naturally
bridge the context, enabling continuous video generation that follows the audio prompts.

Drive Multi-Character Talking. AnyAvatar can achieve lip synchronization for multiple characters
(such as ID A and ID B) with single forward pass. Specifically, we input an audio clip into the
model, where the first half contains the audio of ID A and the second half contains the audio of ID
B. We simply apply the mask for the first half to the facial region of ID A, and the mask for the
second half to the facial region of ID B. In this way, multiple characters can be driven in a single
inference. Our method enables driving multiple people to speak simultaneously using a single mask,
but they can only speak the same lines according to the audio. In other words, if there are two people
within one mask, they can speak the same sentence at the same time. However, it is currently not
possible to support scenarios where different characters speak different lines simultaneously or where
interruptions occur during speech. We believe this is a highly meaningful research direction, and we
will focus on this area in the future to further explore more possibilities in more natural, multi-speaker
scenarios.
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Algorithm 1 Long Video Fusion

Require: Audio embedding v
[0,l]
a with length l, denoising steps T , initial noisy latent z[0,l]T , pretrained AnyA-

vatar model AAM(·) for sequence length f , position-shift offset α < f < l.
Ensure: Denoised latent z[0,l]0 .
1: Initialize accumulated shift offset αβ = 0.
2: for t = T, · · · , 1 do
3: // Denoising loop
4: Initialize start point s = αβ , end e = s+ f , processed

length n = 0. // Start from new position for each timestep.
5: while n < l do
6: // Sequence loop
7: z

[s,e]
t−1 = AAM(z

[s,e]
t , v

[s,e]
a , t)

8: s←− s+ f , e←− e+ f , n←− n+ f . // Move to next clip non-overlapping
9: if s > l or e > l then

10: s←− s%l, e←− e%l. // Padding circularly
11: end if
12: end while
13: αβ ←− αβ + α. // Accumulate shift offset
14: end for
15: return Denoised latent z[0,l]0 .

A.6 DATASETS DETAILS

Data sources: Open-source data (OpenhumanVid Li et al. (2025)) and self-collected data. When
collecting the data, we were careful to only include videos that to the best of our knowledge were
intended for free use and redistribution by their respective authors. That said, we are committed to
protecting the privacy of individuals who do not wish their videos to be included.

Data distribution: Our data is divided into video data with audio and video data without audio.
Among the video data with audio, there are 50,000 samples of two-person dialogues, 190,000 samples
of single-person speech, and 10,000 samples of animation. For the video data without audio, we do
not distinguish between categories, and there are a total of 250,000 samples.

A.7 MORE VISUALIZATION RESULTS

Figure 8 shows the results of our method in multiple characters scenarios such as crosstalk, singing,
and walking conversations, demonstrating the robustness of our model.

Figure 9 presents visualizations of realistic human images. From this scene, it can be seen that our
model is able to maintain good character consistency while enhancing dynamics, further demonstrat-
ing the effectiveness of our character image injection module.

Figure 10 showcases the generation results of our method applied to characters with diverse styles.
The results show that our method generalizes well across various styles, including LEGO, chinese
painting, anime, and pencil sketch.

Figure 11 demonstrates the precise control of emotions achieved by our method. It can be seen that
our model has a good understanding of emotions such as happiness, sadness, excitement, and anger.
This enables us to generate human animation videos that better align with the emotions conveyed
by the audio, further demonstrating the unique capabilities of our model compared to previous
audio-driven human animation methods.

In summary, compared to previous audio-driven human animation methods Wang et al. (2025b); Lin
et al. (2025a); Jiang et al. (2024); Cui et al. (2024); Ji et al. (2024), our approach offers more practical
features such as multi-character and emotion control audio-driven human animation. At the same
time, it also outperforms previous methods in terms of character consistency and video dynamics.
These advancements highlight the state-of-the-art performance and innovative design of our model.
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A.8 LIMITATIONS

Firstly, our current approach relies on emotion reference images to drive the character’s emotions,
rather than allowing the model to infer and generate emotions directly from the audio. This leads to
two main issues: (1) increased complexity for users during operation, and (2) the inability to reflect
dynamic emotional changes within the video. Since each reference image corresponds to only one
emotion, multiple emotions in a single audio segment may result in generation errors. Therefore,
exploring methods to directly extract emotions from audio and generate corresponding emotional
character videos is a promising direction for future research.

Secondly, we currently use HunyuanVideo13B Kong et al. (2024) as our base model, while Fan-
tasyTalking Wang et al. (2025b) employs Wan14B Wang et al. (2025a). Regardless of the base
model, the inference process is time-consuming. For instance, generating a 10s video at 720×1216
resolution (with 50 inference steps) takes approximately 60 minutes, which is far from meeting the
requirements of real-time applications. Thus, improving the model’s generation speed to achieve
real-time performance is one of our key future objectives. This will facilitate the application of our
model in scenarios with higher real-time demands, such as live streaming and interactive real-time
applications.

Finally, exploring interactive human animation capable of real-time feedback is a promising research
direction. This is expected to further expand the application of our method for users. This direction
requires our model not only to possess strong content generation capabilities but also to have a
solid understanding and contextual awareness, enabling fast and contextually appropriate responses
to users. Our current focus is on developing an offline, high-precision, audio-driven model that
achieves state-of-the-art performance. Of course, there are already several mainstream acceleration
schemes for DiT architectures in the industry, and we have experimented with some of these methods.
By combining these with hardware acceleration, we are optimistic about achieving real-time video
generation with our model. For example, we have explored various training-free acceleration methods
(such as Jenga), and achieved a 4x speedup on our model (for instance, with a reference image at
704×1216 resolution, generating a 5-second video with 30 inference steps originally took 60 minutes,
but now only takes 15 minutes after acceleration). Although acceleration is not the main focus of our
current work, we will continue to explore efficient acceleration techniques for large models, striving
to achieve real-time applications as soon as possible.

A.9 SOCIETAL IMPACTS

Real-time interactive digital humans Ao (2024) have become a major focus in the fields of artificial
intelligence. However, their development has not yet reached its full potential due to several technical
limitations. On one hand, current generative models still struggle to produce diverse and natural
actions and expressions, making it difficult to achieve truly lifelike interactions. On the other hand,
many high-performance models are extremely large in terms of parameter count, resulting in slow
inference speeds that cannot meet the demands of real-time generation. These challenges significantly
hinder the practical deployment of interactive digital humans.

Against this backdrop, audio-driven human animation technology plays a crucial role in advancing
the development of interactive digital humans. Some technologies, such as AnyAvatar, provides
strong support for improving the quality of real-time digital human performance. By leveraging
it, these systems can significantly enhance the naturalness of digital human conversations and
effectively address issues such as unnatural facial expressions and movements. The application of such
technologies greatly improves the expressiveness and emotional richness of digital humans, laying
a solid technical foundation for the further growth of the industry. We believe that, with ongoing
technological advancements, audio-driven human animation will be widely adopted in various
real-world scenarios, enabling digital humans to deliver more intelligent and realistic interactive
experiences.

Impacts on Employment: This research enables the generation of high-quality audio-visual synchro-
nized videos, which can greatly improve the efficiency of film and television professionals and reduce
repetitive labor, thereby shortening working hours and significantly promoting the development of
the video production industry. While it may lead to a reduction in certain job positions, overall, this
research plays a substantial role in advancing the industry.
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Impacts on Public Property and Democratic Institutions: We have already considered these aspects
and have taken various measures to prevent harm to public property and democratic institutions. We
add watermarks and content tracing to the generated videos, and introduce prompt and video filters to
prevent users from generating inappropriate content that could mislead others. At the same time, we
have implemented a public figure review mechanism, prohibiting users from uploading images of
public figures to ensure the authenticity of political leaders and topics.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 8: More visualizations on multi-character audio-driven human animation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Ref Image Output Video

Figure 9: More visualizations on realistic scenarios.
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Ref Image Output Video

Figure 10: More visualizations on diverse character styles
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Emotion Happy

Emotion Angry

Emotion Sad

Emotion Excited

Figure 11: More visualizations on emotion control.
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