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ABSTRACT

Anomaly detection is a critical task in computer vision with profound implications
for medical imaging, where identifying pathologies early can directly impact patient
outcomes. While recent unsupervised anomaly detection approaches show promise,
they require substantial normal training data and struggle to generalize across
anatomical contexts. We introduce D24FAD, a novel dual distillation framework
for few-shot anomaly detection that identifies anomalies in previously unseen tasks
using only a small number of normal reference images. Our approach leverages
a pre-trained encoder as a teacher network to extract multi-scale features from
both support and query images, while a student decoder learns to distill knowledge
from the teacher on query images and self-distill on support images. We further
propose a learn-to-weight mechanism that dynamically assesses the reference value
of each support image conditioned on the query, optimizing anomaly detection
performance. To evaluate our method, we curate a comprehensive benchmark
dataset comprising 13,084 images across four organs, four imaging modalities,
and five disease categories. Extensive experiments demonstrate that D24FAD
significantly outperforms existing approaches, establishing a new state-of-the-art
in few-shot medical anomaly detection.

1 INTRODUCTION

The automatic detection of anomalies in medical images is a crucial yet challenging task in clinical
practice. Finding abnormalities early through automated screening enables timely intervention,
leading to improved patient outcomes. However, developing robust algorithms for this task remains
difficult due to the diverse manifestations of anatomical and pathological abnormalities in different
patients. Furthermore, obtaining annotated datasets of verified anomalies is prohibitively expensive
and time-consuming in medical contexts. These challenges have driven significant research interest
in unsupervised anomaly detection methods, which can identify anomalies without requiring labeled
abnormal training data.

Recent years have witnessed substantial advances in unsupervised anomaly detection approaches.
Generative models, including autoencoders (Shvetsova et al., 2021) and generative adversarial
networks (GANs) (Jiang et al., 2019), have shown promising results by learning to reconstruct
normal patterns and identifying anomalies through reconstruction errors. Various architectural
innovations have further improved detection performance, such as memory banks for storing and
retrieving prototypical normal patterns (Gong et al., 2019), normalizing flows to model complex
data distributions (Yu et al., 2021), and self-supervised learning for better feature representations (Li
et al., 2021). Knowledge distillation has also emerged as an effective paradigm (Deng and Li, 2022),
where a student network learns to emulate a teacher’s behavior on normal samples, allowing anomaly
detection through discrepancy analysis.

These approaches, however, typically require large amounts of normal training data from target
domains—data that may not be readily available in many clinical scenarios (Pachetti and Colantonio,
2024). In addition, they often struggle to generalize across different anomaly detection tasks, limiting
their practical utility (Fernando et al., 2021; Cai et al., 2025). This highlights the need for few-shot
anomaly detection, where models can adapt to new anatomical contexts using only a small number of
normal reference images. Critically, these models are evaluated on novel tasks unseen during training
to assess their ability to generalize across different anatomical structures and imaging conditions. In
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this paradigm, both training and inference are performed in an episodic manner, with each episode
containing a support set of few normal images and a query image to be evaluated. This approach
is particularly relevant in clinical practice, where physicians often have access to limited normal
reference cases when examining new patients or encountering rare conditions. Despite its practical
importance, few-shot anomaly detection in medical imaging remains relatively unexplored in the
literature.

To address this important yet underexplored problem, we propose D24FAD, a dual distillation
framework for few-shot anomaly detection. Our approach leverages a pre-trained encoder as a teacher
network to extract multi-scale feature maps from support and query images through parallel pathways
with shared weights. A student decoder, trained exclusively on normal samples, learns to distill
knowledge from the teacher network on query images while self-distilling on support images. This
design enables anomaly detection at inference time by analyzing feature discrepancies between
query and support representations, thereby using normal reference images as a basis for anomaly
identification. Note that some works refer to this process as feature reconstruction. In this work, for
consistency with prior anomaly detection methods (Salehi et al., 2021; Deng and Li, 2022; Gu et al.,
2023; Ma et al., 2023; Zhou et al., 2022), we use the term distillation. Furthermore, we introduce a
learn-to-weight mechanism that dynamically assigns importance to each support image, optimizing
their reference values for different query images.

To facilitate research in this direction, we curate a comprehensive medical image dataset comprising
four organs, four imaging modalities, and five disease categories, totaling 13,084 images. This dataset
provides a standardized benchmark for evaluating few-shot anomaly detection methods across diverse
medical contexts.

Our key contributions are:

• We formalize the few-shot medical anomaly detection task and establish a benchmark dataset
spanning multiple organs, modalities, and pathologies.

• We propose a dual distillation framework that effectively leverages limited normal reference
images through knowledge distillation for anomaly detection.

• We propose a learn-to-weight mechanism that evaluates the reference value of each support
image conditioned on query images to enhance anomaly detection performance.

• We demonstrate through extensive experiments that our approach achieves state-of-the-art
results, significantly outperforming existing methods.

2 METHODOLOGY

2.1 PROBLEM DEFINITION

We formulate few-shot medical anomaly detection as follows. Given a training set comprising several
distinct tasks, each containing exclusively normal samples, we aim to develop an anomaly detection
model with strong generalization capabilities for unseen anomaly detection tasks. During training,
following the few-shot learning paradigm, we select one normal image as a query and several fixed
normal images from the identical task as support samples to facilitate the learning of normal patterns.
This task-agnostic model is not optimized for specific tasks but instead learns a universal anomaly
detection strategy applicable across diverse medical images.

During inference, our test set contains both normal and abnormal images from novel target tasks
unseen during training. We select K normal samples from each target task to form a support set,
where K ∈ {2, 4, 8} in our experiments. This support set enables the model to adapt to previously
unseen tasks when determining whether a test query image contains anomalies.

2.2 DUAL DISTILLATION

Figure 1 illustrates our proposed dual distillation framework. We prioritize architectural simplicity,
with the network comprising only two components: a fixed pre-trained encoder and a learnable
decoder. The encoder, functioning as a teacher, extracts visual features from both query and support
images, while the decoder, acting as a student, reconstructs multi-scale feature representations from
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Figure 1: Overview of our dual distillation framework for few-shot anomaly detection. The archi-
tecture incorporates a frozen pre-trained teacher encoder and a learnable student decoder. During
training, the teacher encoder processes both query and support images, while the student learns to
reconstruct multi-scale feature representations through our proposed dual distillation approach. At
inference time, for previously unseen tasks, anomalies are identified by analyzing discrepancies
between query and support image features in the student network. In addition, we introduce a
learn-to-weight mechanism that enhances model performance by dynamically assessing the reference
value of each support image relative to a specific query (cf. Section 2.3).

the encoder’s output. We introduce two distillation strategies—teacher-student distillation and student
self-distillation—that work in tandem for few-shot anomaly detection. The following subsections
elaborate on these strategies.

Teacher-Student Distillation We leverage a pre-trained encoder as the teacher network, which has
been exposed to diverse visual patterns through training on large-scale datasets such as ImageNet.
This teacher encapsulates rich semantic knowledge that we transfer to guide our student decoder,
providing a reference point for anomaly detection through consistency enforcement. We apply this
distillation mechanism specifically to query images.

Formally, given a query image, let xi
qry and zi

qry denote feature maps from the i-th layer of the
teacher encoder and student decoder, respectively. For knowledge transfer, we define the following
loss function:

Ltsd =
∑
i

1

HiWi

∑
h,w

1− sim(xi
qry[h,w], z

i
qry[h,w]) , (1)

where (h,w) indexes all spatial locations in feature maps xi
qry and zi

qry, Hi and Wi represent the
height and width of the feature maps at the i-th layer, and sim(a, b) = aTb/∥a∥ ∥b∥.

After training exclusively on normal data, the teacher encoder and student decoder become aligned to
represent normal patterns with high similarity. For normal test query samples that conform to patterns
observed during training, the student’s representations closely match the teacher’s, resulting in low
distillation loss. Conversely, when presented with anomalous query samples, the student decoder fails
to adequately reconstruct the teacher’s feature maps, producing discrepancies in their representations.

Student Self-Distillation Teacher-student distillation provides a solid foundation but is incomplete
for few-shot anomaly detection since it does not make use of support images. Given limited normal
references available in few-shot settings, we introduce student self-distillation to capitalize on
these valuable normal examples. By performing self-distillation on support images, we establish a
consistent reference base of what “normal” looks like, against which query images can be compared.
This design aligns with clinical diagnostic practices, where distinguishing pathological abnormalities
from normal anatomical variations requires reliable reference data.

Formally, given a support set, let zk,i
spt denote feature maps of the k-th support image from the i-th

layer of the student encoder. We define a student self-distillation loss that aggregates multi-scale
discrepancies as:

Lssd =
1

K

∑
k

∑
i

1

HiWi

∑
h,w

1− sim(zk,i
spt[h,w],z

i
qry[h,w]) , (2)

where K represents the number of support images.
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By minimizing this loss, the student network learns to align the query’s representations with normal
references, which is crucial for few-shot anomaly detection. This self-distillation mechanism enables
the model to learn more discriminative features, even with the constraint of having access to only
normal training samples.

Training Objective In summary, we train our model by optimizing a combination of the two
distillation losses:

L = λLtsd + Lssd , (3)
where λ is a hyperparameter that balances the teacher-student distillation and student self-distillation
to the overall learning objective.

2.3 LEARN-TO-WEIGHT

In Eq. (2), we initially assign equal weights to all support images. However, we observe that
this assumption is often suboptimal—the reference value provided by each support image varies
for different query images. This phenomenon is particularly prevalent in medical imaging, where
individual anatomical variability leads to significant differences in shape and appearance among
support images, resulting in varied reference values for the same query.

To better utilize the support set, we propose a learn-to-weight mechanism that adaptively weights
support samples based on their relevance to a given query. Specifically, we learn reference values of
support images conditioned on the query as follows:

wi = softmax(
zi
qry × ϕ(zi

spt)
T

√
Ci

) , (4)

where ϕ is a linear projection implemented as a 1×1 convolution. Note that appropriate reshaping oper-
ations are performed: zi

qry ∈ RCi×Hi×Wi is reshaped to R1×(Ci×Hi×Wi) and zi
spt ∈ RK×Ci×Hi×Wi

is reshaped to RK×(Ci×Hi×Wi).

We then reformulate the student self-distillation loss by incorporating our learn-to-weight mechanism
as:

Lssd_l2w =
∑
i

1

HiWi

∑
h,w

1− sim(softmax(
zi
qry × ϕ(zi

spt)
T

√
Ci

)zi
spt[h,w], z

i
qry[h,w]) . (5)

The overall training objective is updated to:

L = λLtsd + Lssd_l2w . (6)

Our learn-to-weight mechanism enables more effective knowledge transfer from support to query
images by dynamically assessing the importance of each support sample based on its relevance to the
specific query being evaluation.

2.4 ANOMALY SCORING

At inference time, given a test query image and K support images of a novel task (representing an
unseen imaging modality and/or disease), we compute a similarity map at each scale using Eq. (5).
These multi-scale similarity maps are then aggregated to derive a comprehensive anomaly map. The
final anomaly score for the input image is obtained by computing the mean value of this aggregated
anomaly map, providing a scalar quantification of anomalousness.

3 RELATED WORK

Given the expense and time required to obtain verified anomalies in medical imaging, unsuper-
vised anomaly detection methods have become mainstream. Reconstruction-based approaches have
emerged as a leading paradigm in this field. Schlegl et al. (2017) pioneer the use of GANs with
AnoGAN (Li et al., 2018), later introducing f-AnoGAN (Schlegl et al., 2019), which improves effi-
ciency by incorporating an encoder to map images to a latent space. Various autoencoder architectures
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have been explored, including variational autoencoders (Zimmerer et al., 2018) and vector-quantized
variational autoencoders (Naval Marimont and Tarroni, 2021). To address the overgeneralization
problem, where abnormal images are reconstructed too accurately, Gong et al. (2019) and Park et al.
(2020) introduce memory banks to store normal patterns for comparison during inference. Several
works (Rudolph et al., 2021; Gudovskiy et al., 2022; Yu et al., 2021) leverage normalizing flows,
enabling exact likelihood estimation for image modeling, and achieve strong performance in anomaly
detection.

Self-supervised learning (Jing and Tian, 2021) has also been applied to anomaly detection, typically
following two paradigms. One-stage approaches train models to detect synthetic anomalies and
directly apply them to real abnormalities (Tan et al., 2021; Schlüter et al., 2022). Two-stage ap-
proaches first learn self-supervised representations on normal data, followed by constructing one-class
classifiers (Li et al., 2021; Sohn et al., 2021). Recently, knowledge distillation from pre-trained
models presents another promising approach for unsupervised anomaly detection (Salehi et al.,
2021; Deng and Li, 2022; Batzner et al., 2024). In these methods, a student network distilled by a
pre-trained teacher network on normal samples can only extract normal features, leading to detectable
discrepancies when anomalies are encountered during inference.

However, these methods typically require numerous normal samples for effective training—a require-
ment that becomes impractical in scenarios with limited data availability. This limitation motivates
the need for more efficient anomaly detection methods that can achieve strong performance with few
training samples.

Few-shot anomaly detection aims to generalize to novel tasks using limited reference samples. Early
approaches such as TDG (Sheynin et al., 2021) and DiffNet (Rudolph et al., 2021) primarily focus
on training with a small set of normal samples, adhering to a one-model-per-task paradigm that
necessitates retraining for each new anomaly detection task. RegAD (Huang et al., 2022) addresses
this limitation by leveraging registration as a task-agnostic proxy, enabling generalization across
unseen tasks. It is noteworthy that these methods are primarily designed for industrial defects and fail
to account for the high variability present in medical imaging, where data span diverse modalities (e.g.,
MRI and CT) and anatomical regions. In addition, their reliance on aggressive data augmentation
(e.g., random rotation) is impractical for medical images with strict structural constraints.

In medical imaging, recent efforts like MediCLIP (Zhang et al., 2024) improve performance by
synthesizing anomalies from limited normal data but remain confined to single-task scenarios. MVFA
(Huang et al., 2024) introduces multi-level visual feature adapters to align CLIP’s visual and language
representations, yet demands pixel-level annotations and anomalous samples during training, which
are costly to acquire in many scenarios. InCTRL (Zhu and Pang, 2024) achieves cross-domain
generalization via contextual residual learning but still requires anomalous data for optimization.
INP-Former (Luo et al., 2025) achieves reference-free anomaly detection by extracting intrinsic
normal prototypes from test images. However, this approach is designed for natural images and
shows limited performance on medical imaging data. In contrast, our method is trained solely on
normal samples and, during inference, adapts to unseen anomaly detection tasks using only a few
normal reference images, eliminating the need for annotated anomalies or retraining. This approach
reduces deployment costs while maintaining strong generalization across medical modalities and
anatomical regions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets To evaluate our method, we compile a comprehensive dataset spanning diverse anatomical
regions, lesion types, and imaging modalities by integrating several widely used medical anomaly
detection benchmarks. We provide detailed information on dataset composition and train/test splits
below to ensure transparency and reproducibility.

• HIS: Derived from Camelyon16 1, which contains 6,091 normal and 997 abnormal patches
from breast cancer patients, we allocate 700 normal images for training and create a balanced
test set comprising 400 normal and 400 abnormal images.

1https://camelyon16.grand-challenge.org/Data/
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Table 1: Anomaly detection performance comparison on multiple medical imaging datasets (HIS,
LAG, APTOS, RSNA, and Brain Tumor). Performance is measured using image-level AUROC
(%) with the best-performing method highlighted in bold. We compare our approach against both
unsupervised (♠) and few-shot (♥) methods.

Method HIS LAG APTOS RSNA Brain Tumor
2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot

♠

UAE 44.8±1.3 54.9±7.4 48.5±6.0 57.7±0.0 64.7±7.7 60.5±5.7 71.8±4.7 68.5±0.1 68.7±0.5 43.0±2.2 42.0±5.0 48.0±5.5 68.4±0.3 68.8±0.7 69.2±1.9
f-AnoGAN 67.4±2.3 49.5±11.1 54.0±9.5 51.1±3.6 55.0±2.9 37.1±8.1 35.5±8.0 31.3±5.2 30.5±3.7 38.6±6.2 43.1±1.2 42.2±2.6 34.7±5.3 53.9±4.5 65.3±2.0
FastFlow 73.1±1.4 75.1±0.7 71.2±1.4 66.3±2.8 66.5±2.1 72.2±1.5 87.8±1.4 90.0±0.9 84.1±1.3 74.4±0.7 77.9±0.7 79.6±0.5 90.8±0.4 90.3±1.1 91.0±0.6
PatchCore 67.8±0.1 64.7±0.5 59.6±0.9 69.1±0.6 67.5±1.1 77.1±0.7 67.3±1.4 69.1±1.3 71.9±0.6 65.0±0.2 70.9±0.3 74.6±0.1 64.1±1.9 74.0±2.3 78.1±1.6
SimpleNet 66.5±4.5 64.5±1.1 55.1±5.6 70.3±1.3 69.3±2.9 74.9±1.2 72.8±6.8 73.4±1.9 73.2±4.9 62.1±2.0 69.7±1.3 76.9±1.3 63.5±2.5 70.8±4.5 77.4±5.6
CutPaste 57.9±9.6 74.6±0.2 73.9±0.1 60.2±2.0 77.2±0.4 78.1±1.6 51.8±8.1 89.6±0.2 85.9±0.2 67.3±4.5 74.5±0.6 83.3±0.1 79.3±5.8 87.7±0.4 89.3±0.2
NSA 38.8±4.1 51.1±5.8 50.8±7.9 57.1±2.2 51.6±2.6 48.3±5.1 39.9±7.4 46.6±9.0 52.6±1.9 58.8±9.7 51.7±10.1 48.6±8.7 39.9±14.7 38.9±6.5 44.1±9.8
ReContrast 58.5±5.0 65.2±0.6 64.4±2.1 64.6±0.7 72.7±2.8 77.3±0.2 52.6±8.5 75.3±3.7 82.4±0.7 71.1±0.6 75.5±0.2 75.3±0.2 56.7±3.6 63.1±3.6 71.4±2.0
RD++ 39.6±4.6 40.3±3.5 41.8±5.5 42.7±2.3 41.9±2.6 43.5±2.0 54.6±6.8 47.0±7.5 52.4±5.7 59.1±5.1 60.0±2.2 58.5±2.2 26.0±4.9 25.5±3.3 24.4±3.4
RD4AD 73.2±1.0 68.1±0.2 68.1±0.7 65.7±2.0 71.7±1.3 77.0±0.9 51.3±4.4 68.1±4.7 67.4±2.0 60.7±1.7 68.2±1.4 76.1±0.7 62.2±6.0 74.6±1.9 81.4±1.2

♥

RegAD 54.5±1.5 57.0±2.1 51.4±2.8 51.9±5.3 54.4±1.3 68.1±1.6 53.0±2.4 59.4±2.8 61.2±0.8 46.1±0.4 50.9±1.5 64.5±2.4 68.4±13.3 70.2±4.0 75.8±4.1
WinCLIP 58.0±0.0 58.8±0.0 57.2±0.0 55.0±0.0 53.8±0.0 55.0±0.0 53.1±0.0 53.1±0.0 53.0±0.0 69.6±0.0 70.8±0.0 71.8±0.0 38.2±0.0 45.0±0.0 43.4±0.0
MediCLIP 61.4±1.9 66.8±1.7 65.1±0.7 71.7±2.4 72.3±1.3 73.2±2.3 77.6±1.7 77.7±1.3 78.5±1.1 50.7±4.5 54.4±3.2 59.4±4.3 89.9±1.2 88.2±1.2 88.7±1.6
MVFA-AD 76.4±7.6 80.6±1.0 80.7±2.8 73.1±4.3 77.2±3.1 81.0±3.8 86.1±6.7 87.4±3.6 89.6±4.1 74.6±6.8 87.4±3.5 84.9±1.0 92.8±3.7 93.7±3.4 96.3±0.8
InCTRL 71.8±0.0 73.5±0.0 72.7±0.0 71.7±0.0 71.1±0.0 71.1±0.0 95.6±0.0 94.5±0.0 89.5±0.0 79.5±0.0 81.4±0.0 82.7±0.0 90.6±0.0 91.8±0.0 91.8±0.0
INP-Former 63.6±3.5 66.6±1.2 65.8±1.5 71.8±2.6 71.8±1.9 74.7±1.5 89.6±3.2 90.4±2.4 91.1±4.6 76.1±3.5 79.1±2.1 78.5±2.8 74.7±8.6 78.4±6.0 81.4±4.8
AnomalyGPT 47.9±1.1 47.1±0.5 48.3±0.4 57.6±1.3 58.1±0.8 57.5±1.0 76.2±0.7 78.7±0.4 77.6±1.1 62.8±0.4 63.0±1.0 62.7±0.8 76.9±3.1 78.9±2.4 78.9±2.7
Ours 94.2±2.3 94.2±3.3 94.3±3.5 94.7±2.2 96.2±1.4 97.3±0.8 100.0±0.0 100.0±0.0 100.0±0.0 88.9±10.4 97.9±1.2 99.2±0.5 95.5±0.7 95.3±1.0 95.5±0.8

• LAG: This dataset (Li et al., 2019) consists of 6,882 normal retinal fundus images and 4,878
abnormal images exhibiting glaucoma. Following Cai et al. (2022), we utilize 1,500 normal
images for training and evaluate on 811 normal and 911 abnormal images.

• APTOS: This collection2 of retinal images from diabetic retinopathy patients provides 1,000
normal samples for our training set, while the test set comprises 805 normal samples and
1,857 anomalous samples.

• RSNA: This chest X-ray dataset3 contains 8,851 normal and 6,012 lung opacity images. In
accordance with Cai et al. (2022), we select 1,000 normal images for training and construct
a balanced test set with 1,000 normal and 1,000 abnormal images.

• Brain Tumor: This dataset4 encompasses 2,000 MRI slices without tumors, 1,621 with
gliomas, and 1,645 with meningiomas. We classify both glioma and meningioma slices
as anomalies. The normal cases originate from Br35H5 and Saleh et al. (2020), while the
anomalous cases come from Saleh et al. (2020) and Cheng et al. (2015). Following Cai et al.
(2022), our experimental protocol uses 1,000 normal slices for training and evaluates on a
test set containing 600 normal and 600 abnormal slices (equally distributed between glioma
and meningioma).

These datasets present significant challenges, including subtle pathological manifestations, heteroge-
neous lesion morphologies, and complex tissue architectures, thereby providing a rigorous testbed for
evaluating our model’s generalization capabilities across multiple medical imaging scenarios.

Implementation Details We employ WideResNet-50 (Zagoruyko and Komodakis, 2016) pre-
trained on ImageNet as the backbone for our teacher encoder. Parameters are optimized using the
Adam optimizer with β1 = 0.5 and β2 = 0.999 (Kingma and Ba, 2014). Our model is trained for 70
epochs with a batch size of 64, and all images are resized to 128× 128 pixels. All experiments are
conducted on a single NVIDIA A100 GPU.

Competing Methods Following prior works (Jeong et al., 2023; Huang et al., 2024; Gu et al.,
2024), we compare our approach against both unsupervised and few-shot methods. We include
a broad set of state-of-the-art methods, including the unsupervised approaches (UAE (Mao et al.,
2020), f-AnoGAN (Schlegl et al., 2019), FastFlow (Yu et al., 2021), PatchCore (Roth et al., 2022),
SimpleNet (Liu et al., 2023), CutPaste (Li et al., 2021), NSA (Schlüter et al., 2022), ReContrast (Guo
et al., 2023), RD++ (Tien et al., 2023), and RD4AD (Deng and Li, 2022)) and the few-shot methods
(RegAD (Huang et al., 2022), WinCLIP (Jeong et al., 2023), MediCLIP (Zhang et al., 2024), MVFA
(Huang et al., 2024), InCTRL (Zhu and Pang, 2024), INP-Former (Luo et al., 2025) and AnomalyGPT

2https://www.kaggle.com/c/aptos2019-blindness-detection
3https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
4https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
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Table 2: Ablation study results across five medical imaging datasets (HIS, LAG, APTOS, RSNA and
Brain Tumor). We examine the impact of student self-distillation (ssd), teacher-student distillation
(tsd), and learn-to-weight mechanism (l2w). Performance is reported as image-level AUROC (%)
with the best configuration highlighted in bold.

ssd tsd l2w
HIS LAG APTOS RSNA Brain Tumor

2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot
- ✓ - 66.1 66.7 74.1 64.4 70.2 75.9 58.2 60.8 63.9 57.0 66.5 74.1 55.5 73.8 81.1
✓ - - 90.0 91.0 92.9 92.7 93.9 94.0 92.7 98.8 99.2 84.9 92.7 98.1 93.9 93.6 94.2
✓ ✓ - 94.3 94.5 95.8 95.8 96.5 97.0 100.0 100.0 100.0 98.7 98.7 99.5 94.9 95.3 96.4
✓ - ✓ 92.6 93.6 94.3 93.1 93.8 98.6 99.5 99.8 99.9 88.1 96.8 98.4 94.0 94.2 94.7
✓ ✓ ✓ 96.7 98.4 99.0 97.6 97.9 98.0 100.0 100.0 100.0 99.0 99.1 99.8 95.1 96.3 96.8

(Gu et al., 2024)). For unsupervised methods and few-shot methods without generalization capability
(MediCLIP, MVFA, and INP-Former), we utilize K support (normal) images as training data to train
the models and evaluate them on the same task. For few-shot methods with generalization capability
(RegAD, WinCLIP, InCTRL, AnomalyGPT, and ours), we adopt a leave-one-out training and testing
protocol, where networks are trained on all datasets except the one being used for testing. Note that
some baselines, such as PatchCore and RD4AD, compute image-level anomaly scores by applying
max-pooling over the pixel-level anomaly maps.

Evaluation Metrics Following prior works (Cao et al., 2023; Pang et al., 2023; Zhu and Pang,
2024), we focus on image-level tasks, as many medical datasets do not provide pixel-level annotations.
We use AUROC to quantify model performance, which is the standard metric for anomaly detection
tasks.

4.2 RESULTS AND DISCUSSION

We present our experimental results in Table 1. Across all evaluated settings (K = 2, 4, 8), our
proposed method consistently outperforms competing approaches on the HIS, LAG, APTOS, and
RSNA datasets, demonstrating significant improvements over the second-best methods. On the
Brain Tumor dataset, our approach achieves performance comparable to MVFA. Unsupervised
anomaly detection methods generally exhibit limited performance, likely due to insufficient training
samples. In contrast, few-shot anomaly detection algorithms demonstrate superior performance, with
our proposed approach showing particularly strong generalization abilities across diverse medical
imaging datasets. With only two normal reference images (K = 2), our method achieves 100%
precision on the APTOS dataset. Note that results for MediCLIP and InCTR differ from those
reported in their original papers due to evaluation on different datasets.

For qualitative analysis, we demonstrate our method’s anomaly localization capability through
example anomaly maps in Appendix E.

In addition, we find that our model is not sensitive to the choice of support images (see Appendix C).

4.3 ABLATION STUDIES

To evaluate each component’s contribution to our approach, we conduct comprehensive ablation
studies across five datasets, with results presented in Table 2.

Student Self-Distillation Student self-distillation plays a critical role in our few-shot anomaly
detection framework. Without it, our network effectively degenerates into an unsupervised approach.
To rigorously validate its importance, we conduct an ablation study (see Table 2, first row). The
results demonstrate a significant performance degradation when student self-distillation is removed,
confirming its efficacy and necessity in the few-shot setting.

Teacher-Student Distillation Our results demonstrate that teacher-student distillation substantially
enhances model performance. Under various few-shot settings (K = 2, 4, 8), AUROC scores across
the five datasets improve by margins ranging from 0.66% to 13.76% (cf. Table 2). We include a
qualitative t-SNE visualization in Appendix D to further examine the underlying mechanism.
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HIS LAG APTOS RSNA Brain Tumor

Figure 2: Distribution of abnormality scores for normal (blue) and abnormal (red) samples across
five datasets, visualized using raincloud plots and boxplots. For each dataset, the left subplot presents
results without the learn-to-weight mechanism, while the right subplot shows results with the mecha-
nism applied. Reduced overlap between red and blue distributions indicates superior discrimination
performance. Each boxplot displays the median value and interquartile range (IQR), with whiskers
extending to the extrema within 1.5× IQR from the quartiles, illustrating the significance of our
approach.

Table 3: Analysis of weight coefficient λ and its impact on anomaly detection performance.

λ
HIS LAG APTOS RSNA Brain Tumor

2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot
1.0 95.3 96.0 96.4 94.9 96.7 97.9 100.0 100.0 100.0 96.7 98.7 99.5 94.7 95.6 95.9
0.5 96.0 97.4 98.0 96.6 98.5 98.8 100.0 100.0 100.0 93.0 99.3 99.4 94.9 96.0 96.2
0.1 96.7 98.4 99.0 97.6 97.9 98.0 100.0 100.0 100.0 99.0 99.1 99.8 95.1 96.3 96.8

0.05 95.8 97.5 97.6 95.1 95.9 97.3 100.0 100.0 100.0 86.7 97.0 99.4 94.7 93.6 95.6
0.01 95.2 96.9 97.4 92.7 95.8 99.2 99.4 100.0 100.0 90.1 97.4 99.5 94.2 94.5 95.3

Learn-to-Weight Mechanism Experimental results confirm the effectiveness of the proposed learn-
to-weight mechanism, as evidenced in Figure 2. Without this mechanism, histograms of normal and
abnormal samples exhibit significant overlaps. As detailed in Table 2, incorporating this component
yields an average AUROC improvement of 1.91% across the five datasets for K = 2, 4, 8, with peak
improvement reaching 6.81%. Moreover, this module is domain-agnostic and can be integrated into
various few-shot learning frameworks.

Weight Coefficient The weight coefficient λ balances the contribution between teacher-student
distillation and student self-distillation in the overall objective function. To determine its optimal
value, we conducted a grid search over λ ∈ {1.0, 0.5, 0.1, 0.05, 0.01} using a dedicated validation
set containing 100 normal and 100 anomalous images per task. Results in Table 3 indicate that setting
λ = 0.1 yields the best average performance across all datasets on the test set.

4.4 IMPACT OF DIFFERENT BACKBONES

Table 4 presents a quantitative comparison of different backbones serving as the teacher network. As
expected, deeper and wider networks demonstrate superior representational capacity, contributing
to more accurate anomaly detection. Notably, our dual distillation approach maintains competitive
performance even when employing more compact architectures (e.g., ResNet-34 (Koonce, 2021)).
Interestingly, we observe that extremely large models such as Swin Transformer (Liu et al., 2021)
yield suboptimal results despite their theoretical capacity advantage. This counter-intuitive finding
suggests that excessive complexity in the teacher network may impede effective knowledge transfer
to the student network, creating a representational gap that the distillation process struggles to bridge.
The phenomenon highlights an important trade-off in our teacher-student architecture where the ideal
teacher model balances representational power with distillation compatibility.

4.5 INFERENCE TIME AND PARAMETERS
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Table 4: Quantitative performance comparison of various backbone architectures employed as the
teacher network across all datasets.

Backbone HIS LAG APTOS RSNA Brain Tumor
2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot

ResNet-34 87.0 90.3 92.0 92.8 95.9 96.1 100.0 100.0 100.0 92.1 93.9 95.3 89.2 93.0 94.9
ResNet-50 91.4 93.9 95.4 92.5 96.3 96.4 100.0 100.0 100.0 94.2 97.1 98.3 94.6 95.3 96.4
Swin-S 74.8 74.9 82.1 75.5 82.7 90.7 99.9 100.0 100.0 67.8 68.2 69.2 89.1 93.1 96.4
Swin-B 64.7 67.9 80.1 78.8 76.6 70.2 98.4 98.3 99.3 61.6 62.6 63.2 82.6 90.4 90.9
CLIP 88.5 91.2 93.5 90.3 93.1 93.8 97.8 99.9 99.9 85.7 90.4 93.1 92.8 93.5 95.2
BiomedCLIP 89.2 92.1 94.3 91.5 95.2 95.7 99.9 99.9 100.0 91.2 94.3 96.2 91.7 94.6 98.1
WideResNet-50 96.7 98.4 99.0 97.6 97.9 98.0 100.0 100.0 100.0 99.0 99.1 99.8 95.1 96.3 96.8
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Figure 3: Performance comparison of anomaly de-
tection methods across three dimensions: AUROC
score (vertical axis), inference time (horizontal
axis), and memory footprint (circle radius).

We compare our model with competing few-shot
anomaly detection methods and a representative
unsupervised method (RD4AD) in terms of AU-
ROC, inference time, and memory usage during
inference, averaged across all five datasets (see
Figure 3). All evaluations are conducted on a
NVIDIA RTX 3090 GPU (24 GB VRAM). Our
D24FAD achieves the highest AUROC score
for anomaly detection while demonstrating sig-
nificant computational efficiency—running 2×
faster than MVFA, 2.5× faster than InCTRL
and RegAD, and 3× faster than AnomalyGPT
and WinCLIP. In addition, D24FAD requires
only 5 GB of memory for inference, position-
ing it among the most memory-efficient few-
shot anomaly detection methods. These results
demonstrate the superior practical value of our approach compared to competitors.

5 CONCLUSION

In this paper, we introduce D24FAD, a novel dual distillation framework for few-shot anomaly
detection in medical imaging. By leveraging a pre-trained encoder as a teacher network and employing
a student decoder that distills knowledge from the teacher on query images while self-distilling on
support images, our approach effectively identifies anomalies in novel tasks using only a small set of
normal reference images. The learn-to-weight mechanism we proposed further enhances performance
by dynamically assessing the reference value of each support image conditioned on the query.

Our extensive experiments on a comprehensive benchmark dataset comprising 13,084 images across
multiple organs, imaging modalities, and disease categories demonstrate that D24FAD significantly
outperforms existing methods in few-shot medical anomaly detection. Specifically, our approach
achieves superior AUROC scores while maintaining computational efficiency. Furthermore, D24FAD
exhibits remarkable memory efficiency, requiring only 5 GB for inference, which positions it among
the most resource-efficient few-shot anomaly detection methods.

The clinical significance of our work is particularly notable in medical settings where obtaining large
annotated datasets is challenging due to privacy concerns, rare pathologies, or resource constraints.
By requiring only a few normal samples, D24FAD enables practical anomaly detection across diverse
medical imaging scenarios without extensive data collection efforts. This makes our approach
especially valuable for detecting anomalies in uncommon anatomical structures or rare disease
presentations where comprehensive datasets are unavailable.

ETHICS STATEMENT

The authors acknowledge that this work adheres to the ICLR Code of Ethics.
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REPRODUCIBILITY STATEMENT

Code to reproduce all experiments is available at https://anonymous.4open.science/r/
D24FAD-4CFE.
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APPENDIX

A USE OF LARGE LANGUAGE MODELS

Large language models were used solely for light editing tasks including grammar correction, spelling
checks, and minor phrasing improvements to enhance clarity and concision.

B ANALYSIS OF PRE-TRAINING DATA FOR THE TEACHER NETWORK

To examine how the teacher’s pre-training domain influences performance, we compare ResNet-50
models trained on ImageNet (natural images) and RadImageNet (Mei et al., 2022) (medical images).
As shown in Table 5, the medically pre-trained teacher provides an average improvement of 0.91%,
indicating that domain-aligned representations enhance accuracy. This also reinforces our main
claim that the proposed distillation framework is flexible and can readily incorporate stronger or
domain-specific teacher models.

Table 5: Performance comparison between different pre-training datasets on ResNet-50 backbone.

HIS LAG APTOS RSNA Brain Tumor
2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot

ImageNet 91.4 93.9 95.4 92.5 96.3 96.4 100.0 100.0 100.0 94.2 97.1 98.3 94.6 95.3 96.4
RadImageNet 93.6 95.2 95.6 93.0 95.9 96.8 99.9 100.0 100.0 97.4 98.0 98.6 95.3 97.7 98.4

C IMPACT OF SUPPORT IMAGE SELECTION

To evaluate the robustness of our method, we study the effect of support image choice. We perform
five trials, each with randomly selected support examples, and report the mean and standard deviation.
As shown in Table 6, performance with randomly selected support images differs only slightly from
that with a fixed set, indicating that support sample selection has minimal impact on the results.

D TEACHER-STUDENT DISTILLATION

We visualize feature representations from the student network using t-SNE on the RSNA dataset. As
illustrated in Figure 4, using teacher student distillation produces more compact and discriminative
feature clusters, validating its effectiveness.
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Table 6: Performance comparison between fixed (top) and randomly sampled (bottom) support sets.

HIS LAG APTOS RSNA Brain Tumor
2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot

D24FADfix 93.8±1.1 93.5±1.5 93.2±1.1 94.4±1.5 96.1±1.3 97.1±0.4 100.0±0.1 100.0±0.0 100.0±0.0 88.4±9.7 97.3±1.4 98.9±0.4 95.8±1.1 95.3±1.0 95.2±0.4

D24FADrnd 92.6±2.2 93.4±1.1 93.5±0.9 94.8±1.9 95.8±1.3 96.5±0.8 99.8±0.5 100.0±0.0 100.0±0.0 93.4±6.9 96.9±2.1 98.4±0.9 94.7±0.5 96.0±1.3 96.1±0.6
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Figure 4: t-SNE visualization of embeddings from normal and abnormal samples in the RSNA dataset,
extracted from the student network. Left: embeddings without teacher-student distillation. Right:
embeddings with teacher-student distillation applied.

E QUALITATIVE RESULTS

For qualitative analysis, we demonstrate our method’s anomaly localization capability using anomaly
maps shown in Figure 6. The figure displays results across five datasets: HIS, LAG, APTOS, RSNA,
and Brain Tumor (from left to right). The top row shows original images from each dataset, while the
bottom row shows the corresponding anomaly maps generated by our method. Despite promising
qualitative localization, the absence of pixel-level annotations in our benchmark hinders quantitative
evaluation, and this limitation could be addressed with fully annotated datasets in the future.

F ALTERNATIVE INSTANTIATIONS OF THE LEARN-TO-WEIGHT MECHANISM

To assess the flexibility of our weighting mechanism, we introduce three alternative similarity
functions—Gaussian, embedded Gaussian, and concatenation—to compute query–support similarity,
followed by softmax normalization:

Gaussian
wi = softmax(ez

i
qry(z

i
spt)

T

) . (7)
Euclidean distance, as in (Buades et al., 2005), is also applicable, but the dot product is more
implementation-friendly in modern deep-learning frameworks.

Embedded Gaussian
wi = softmax(eθ(z

i
qry)ϕ(z

i
spt)

T

) , (8)
where θ and ϕ are linear projections implemented with 1× 1 convolutions.

Concatenation
wi = softmax(ReLU(wT[θ(zi

qry), ϕ(z
i
spt)])) , (9)

where [·, ·] denotes concatenation, and w is a learnable weight vector. The query feature zi
qry ∈

R1×Ci×Hi×Wi is broadcast to RK×(Ci×Hi×Wi) for this computation.

The remaining steps follow Section 2.3. As shown in Table 7, different weighting strategies produce
comparable but distinct results. The scaled dot-product formulation used in our main model shows
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slightly better performance, likely because it provides a more direct and effective measure of fea-
ture similarity. These variants demonstrate the flexibility of our learn-to-weight design, and other
alternatives may further improve performance.

Table 7: Performance comparison between different ways to instantiate Learn-To-Weight.

HIS LAG APTOS RSNA Brain Tumor
2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot

Gaussian 95.7 97.4 98.0 95.6 96.9 97.0 99.9 99.2 100.0 97.0 98.1 98.8 94.1 95.3 95.8
Gaussian, embed 96.0 98.6 98.4 96.9 97.2 97.4 99.9 100.0 100.0 98.8 98.7 99.2 94.5 95.7 96.2
Concatenation 95.9 97.6 98.2 96.7 97.1 97.7 99.9 99.8 100.0 97.5 97.9 99.0 94.3 94.5 96.0
Ours 96.7 98.4 99.0 97.6 97.9 98.0 100.0 100.0 100.0 99.0 99.1 99.8 95.1 96.3 96.8

We also visualize the learned weights in Figure 5. Support images that are normal, anomalous, or
semantically irrelevant are marked in green, red, and yellow, respectively. Across multiple layers
(weight 1/2/3), the model consistently assigns lower weights to anomalous or irrelevant support
images, highlighting the effectiveness of the proposed mechanism.

weight 1：0.5653
weight 2：0.5324
weight 3：0.5580

weight 1：0.4347
weight 2：0.4676
weight 3：0.4420

weight 1：0.5824
weight 2：0.6216
weight 3：0.7095

weight 1：0.4176
weight 2：0.3784
weight 3：0.2905

weight 1：0.8092
weight 2：0.8225
weight 3：0.8169

weight 1：0.1908
weight 2：0.1775
weight 3：0.1831Query

Figure 5: Visualization of learned weights in the learn-to-weight mechanism.

Figure 6: Visualization of exemplar anomaly maps generated by the proposed model.
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