
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VERIEQUIVBENCH: AN EQUIVALENCE SCORE FOR
GROUND-TRUTH-FREE EVALUATION OF FORMALLY
VERIFIABLE CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal verification is the next frontier for ensuring the correctness of code gen-
erated by Large Language Models (LLMs). While methods that co-generate code
and formal specifications in formal languages, like Dafny, can, in principle, prove
alignment with user intent, progress is bottlenecked by specification quality evalu-
ation. Current benchmarks rely on matching against ground-truth specifications, a
manual and expertise-intensive process that has limited existing datasets to a few
hundred simple problems and also suffers from a reliability issue. To address this,
we introduce VeriEquivBench, a new benchmark with 2, 389 complex algorith-
mic problems that probe the limitations of current models in both code generation
and formal reasoning. Our evaluation framework replaces ground-truth matching
with a formally grounded metric, the equivalence score, and rigorously verifies
the quality of generated specifications and code. Our results show that generating
formally verifiable code remains a profound challenge for state-of-the-art LLMs.
This underscores both the difficulty of the task and the need for benchmarks like
VeriEquivBench to drive progress toward scalable and reliable coding agents.

1 INTRODUCTION

Large language models (LLMs) already possess substantial capacity for following natural-language
instructions and executing a wide range of coding tasks (Li et al., 2022; Jain et al., 2024; Zhao
et al., 2025). At the same time, the correctness of the generated code remains a concern (Cotroneo
et al., 2024; Wang et al., 2025b), where functional errors cost users extra effort to debug and also
pose significant risks in the safety-critical domain (Dalrymple et al., 2024). A common solution is
to evaluate generated code through unit tests (Jimenez et al., 2024; Wang et al., 2025c). However,
this process offers no provable guarantee of correctness, as insufficient unit test coverage can fail
to detect critical errors (Yu et al., 2025). On the contrary, a verifiable system resolves the issue
by co-generating formal specifications and code to formally verify the alignment with the natural
language query intention (Sun et al., 2024). Our work focuses on building an end-to-end agent
for formal verification, for which we adopt Dafny (Leino, 2010). It is an ideal choice as Dafny’s
automatic theorem prover (De Moura & Bjørner, 2008) eliminates the need for manual proof writing.
Furthermore, its similarity to common languages like Python and C simplifies code transformation.

While several benchmarks (Ye et al., 2025b; Thakur et al., 2025) target at building a reliable rea-
soning system by formally ensuring the exact code generation (György et al., 2025), their progress
is constrained by the reliance on manually-written, ground-truth specifications for evaluation. This
formal annotation process is incredibly labour-intensive and requires deep expertise (Misu et al.,
2024), which sets a barrier to scaling these benchmarks in both size and complexity. As a result,
prominent Dafny benchmarks, including DafnySynthesis (Misu et al., 2024) and CloverBench (Sun
et al., 2024), contain only 215 simple examples combined, insufficient for evaluating current LLMs’
advanced reasoning abilities. Moreover, the reliance on expert annotation is not only a scaling bot-
tleneck; it also leads to a reliability issue. An analysis (Sun et al., 2024) has figured that 10% of
expert-written specifications in DafnySynthesis are wrongly claimed as ground-truths, and our own
review finds another 18%, containing errors or ambiguities. Such flaws undermine the validity of
any benchmark that depends on a ground-truth solution. This raises a critical question: How can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Binary search:
Given a sorted array and a target,
return the index if found else -1.

Query Code + Spec

Hard-Coded

Statement that Spec ==> Code

Dafny Verifier

Dafny Verifier

Dafny Verified
Bidirectional
Proofs

Equiv.
Code &

Spec

The method searches for key in a sorted, non-null array
a. If the key is not found, it returns negative one and
guarantees the key is not in the array. If it finds the key,
it returns the index of an element equal to the key.

Natural Language QueryGenerated Spec

Validate The Solution

Figure 1: An end-to-end verifiable coding agent first generates code and specifications, using the
Dafny verifier to prove their mutual equivalence. It then translates the complete formal specification
back into natural language, allowing the user to confirm that it aligns with their original intent.

we reliably evaluate specifications’ quality without depending on the ground-truth? To answer this
question, we make the following concrete technical contributions:

Contribution 1. We propose a novel formally-grounded metric, named the equivalence score, that
measures the mutual equivalence between generated code and its specifications. The score confirms
whether a specification unambiguously describes the code’s behaviour by using the Dafny verifier
to check for bidirectional implication. This automated process has no false positives, ensuring that
only correctly matched code-specification pairs are accepted. In order to validate the alignment with
the query intention, we further include a second evaluation step: translating formal specifications
back to natural language, as illustrated in Figure 1. Note that the effort in translation between natural
and formal languages is asymmetric, since natural language can be ambiguous and lack necessary
logic (Jiang et al.). Using Claude-4 as a judge (Wang et al., 2025a), we observe a high success rate
of 82.98% for Grok-4 translations, confirming its viability as an evaluation metric.

Contribution 2. Equipped with our automated evaluation metric, we introduce VeriEquivBench, a
benchmark of 2, 389 examples for end-to-end formally verifiable code generation. VeriEquivBench
significantly expands on prior work in both dataset size and problem complexity, a leap demon-
strated by the average Cyclomatic Complexity score, which rises from 2.44 in DafnySynthesis to
5.63. The core of our dataset is converted from the LeetCode corpus (Xia et al., 2025), a large and
community-validated collection of algorithmic problems well-suited for evaluating a model’s rea-
soning abilities. To supplement this data, we also introduce a synthesis pipeline that uses a structured
tagging system to generate novel queries by randomly combining tags for different domains, data
structures, and algorithms, introduced in Section 2.3. This provides a scalable method for creating
large training datasets of new problem descriptions that are fully compatible with our automated
evaluation signal. However, Claude-4 is able to generate qualified Python code for only 15.85% of
these novel synthesis queries, reflecting the model’s limitations.

Contribution 3. We conduct a concrete evaluation of state-of-the-art LLMs, where VeriEquivBench
serves as a testbed for these models to explore and extend the reasoning abilities on complex prob-
lems, beyond human-annotated data (Silver et al., 2021; Ye et al., 2025a; Shojaee et al., 2025). Our
evaluation highlights the profound difficulty of this task and the effectiveness of our benchmark. The
best-performing model, Claude-4-sonnet, which solves 75.81% of the problems in CloverBench,
succeeds on only 4.83% of our data, even with a pass@4 metric. Given this poor performance, and
following prior work (Loughridge et al., 2025; Yan et al., 2025), we include two simpler auxiliary

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tasks to scaffold the problem: (1) infilling the necessary clauses to complete a given specification,
and (2) generating a specification from provided Dafny code. To facilitate future research, we estab-
lish baselines for both tasks using reinforcement learning.

2 BENCHMARK OVERVIEW AND CONSTRUCTION PIPELINE

In this section, we first present aggregate data statistics for VeriEquivBench. Subsequently, we in-
troduce the two curated subsets released with the benchmark: (i) the LeetCode-transformed dataset,
and (ii) a tag-composition dataset, called TagComp, the latter being explicitly constructed to evaluate
verifiable agents on novel data without contamination (Tu et al., 2024; Riddell et al., 2024).

Each problem in our benchmark provides a comprehensive set of artifacts: a natural language query,
implementations in both Python and Dafny, unit tests and two versions of formal specifications: a
strong auto-formalized baseline explained in Section 2.1 and a weaker, verifiable but incomplete
version explained in Section 2.2. Additionally, each problem is annotated with metadata, including
its difficulty level and descriptive tags for the relevant algorithm, data structure, and domain. Unlike
LeetCode, our benchmark uses a more detailed and structured set of tags to categorize problems.
This new tagging system is described in Section 2.3 for future query synthesis.

Starting from the original Leetcode split of 2, 641 training and 228 test instances, we first curate
2, 174 cases successfully transformed to Dafny. Then we compose new problems by merging tags,
producing 1, 893 additional items; the full tag-composition procedure is described in Section 2.3.
For new problems, we ask Claude-4-sonnet to generate pairs of Python code and corresponding unit
tests. For only 300 of new problems, Claude-generated code passes at least 85% of their correspond-
ing unit tests, forming the cleaned TagComp dataset. Of these, 215 samples clear the weak-baseline
pipeline, giving us 2, 389 problems in total that pair natural-language queries with formally anno-
tated code.

Table 1 presents key metrics for our annotated Dafny code, which uses the weaker, verifiably cor-
rect specifications. Our problems are significantly more complex than those in CloverBench, often
involving multiple methods rather than a single one. Furthermore, the corresponding specifications,
while incomplete, contain a substantial number of formal clauses.

Table 1: The table overviews several attributes of our annotated code.

Dataset Metric function method invariant ensures decreases
LeetCode mean 0.78 1.33 5.12 1.71 0.46

TagComp mean 0.96 3.18 7.34 3.14 0.70

2.1 LEETCODE AUTOFORMALIZATION

Past formal-language sets such as DafnyBench (Loughridge et al., 2025) are still small and narrow,
because hand-written specifications are too costly to scale (Misu et al., 2024). To obtain large,
varied training data without extra human cost, we mine the classic Leetcode pool, convert problems
to formal specifications, stated in Figure 2 Pipeline 1, while keeping query and specification aligned
with two short tightening evaluation protocols (Sun et al., 2024), shown in Figure 2 Pipeline 2.

Specification Generation We feed the problem description to Claude-4-sonnet to obtain an initial
Dafny specification, yet even the initial drafts often contain syntax errors. Thus, we revise and
resubmit up to ten times until the file has no parse or resolution errors. We find that supplying two
simple examples exploits the model’s in-context learning (Dong et al., 2023) and sharply lowers the
error rate (prompt template in Appendix C).

Furthermore, we constrain the model to generate specifications using only first-order logic, prohibit-
ing recursive or dynamic programming-style definitions. This ensures the specification describes the
problem’s declarative properties without leaking the implementation’s structure.

Equivalence to NL The equivalence check follows the protocol proposed by Clover (2024) and
contains two steps: (1) A model (we use Grok4 here) rewrites the description so that it cleanly

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

mirrors the specification, then another model (Claude-4) judges the equivalence between the original
description and the rewritten one, yielding a score; (2) The specification alone is translated into
Python and executed against the ground-truth LeetCode unit tests. The unit test passing rate is
reported in Appendix D.1.

Figure 2: The figure outlines our autoformalization and code generation workflow: Pipeline 1 pro-
duces comprehensive and syntax-free specifications; Pipeline 2 checks consistency between the NL
query and the specifications; Pipeline 3 emits fully annotated code that passes the verifier.

2.2 LEETCODE VERIFIABLE CODE GENERATION

Owing to the limited performance of state-of-the-art LLMs on challenging formal-language coding,
we adopt the multi-stage pipeline (pipeline 3 of Figure 2): prompted by the previously generated
specifications, the problem description, and a reference Python solution, the stronger model (Claude-
4) produces annotated Dafny code, while a lighter model (Claude-3.5) then polishes this output,
iterating up to six times to eliminate any syntax or parsing errors.

In practice, the vast majority of problems converge within three refinement rounds, while a resid-
ual subset still fails to yield a well-formed artifact even after the sixth attempt, with the success
transformation rate reported in Table 2, and data statistics reported in Table 1.

Table 2: The table shows the number of examples without syntax errors in autoformalization and
verifiable examples in code generation.

Dataset Spec Autoformalization Dafny Code Genetation
Number Rate (%) Number Rate (%)

LeetCode 2584 90.1 2174 75.8
TagComp 296 98.7 215 71.7

2.3 DATA SYNTHESIS THROUGH TAG COMPOSITION

We propose constructing a fine-grained, “template-level” taxonomy to provide an abstract descrip-
tion of algorithmic problems via tags (Wang et al., 2025c). In our system, every task is labelled with
three orthogonal categories: domain, data-structure, and algorithm class((Chollet et al., 2025)).

To obtain these labels, we (i) harvest a high-quality seed pool from the Luogu online judge (luo,
2025), and (ii) manually prune hallucinated or off-topic tags. Our ontology defines over 500 fine-
grained tags, offering more than seven times the descriptive granularity of the 69 tags used by Leet-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Code (see Appendix A for a comparison). The tag set is designed so that, taken together, the tags col-
lectively reflect the complete programming knowledge entailed by each individual problem, while
retaining a modest level of abstraction.

The three categories of tags capture complementary aspects of programming knowledge. First, the
domain category encompasses the overarching problem space or application context in which an
algorithm operates, such as graph theory. Second, the data structure category pertains to the founda-
tional mechanisms for manipulating data that underpin the algorithm’s functionality and efficiency,
like arrays. Third, the algorithm category refers to the core strategic paradigm employed, such as
sorting, focusing on the decision-making logic. These algorithm tags directly shape the overall
control flow of a solution, as they orchestrate the program logic and structure.

However, not all problems conform to highly standardized patterns. In contemporary algorithmic
competition problems, for instance, many challenges necessitate solvers to discern the underlying
mathematical structures, an approach commonly termed ”constructive methods”. From a coding
perspective, these constructive methods typically appear as compact code blocks that rely solely on
fundamental loops or arithmetic operations. Consequently, it is difficult to categorize them beyond
a general “constructive method” tag. From the problem setter’s viewpoint, such problems and their
solutions stem from empirically observed mathematical structural properties, which inherently resist
exhaustive coverage by conventional tags.

To synthesize novel queries, we select tags in the following workflow: first, we randomly pull 12
tags from each of three pools, and then let Claude-4 pick any 3–8 tags in total. This short list is
fed back to the model so that Claude can create one clear algorithm question with roughly 40 unit
tests (Xu et al., 2025). Initially, we create approximately 1, 900 problems, but only retain the 300
that pass at least 85%of their tests (Xu et al., 2025), and call this clean set, TagComp. The detailed
pipeline and prompt templates used can be found in Appendix B and Appendix C.

3 EVALUATION METRICS AND TASKS

A verifiable coding agent reduces hallucinations and provides trustworthy solutions aligned with
users’ intentions. As shown in Figure 1, our solution evaluation includes two steps, which are

• verifying the equivalence between generated code and specifications, and
• validating the solution by translating formal specifications back to problem descriptions in

natural languages.

To understand the need for verifying the equivalence between the code and the specifications, con-
sider a simple binary search algorithm. The goal is to return the index of a key in a sorted array a,
or negative one if the key is not found. A weak but verifiable post-condition might only state that
the output, idx, is within a valid range: ensures -1 <= idx < a.Length. While this spec-
ification passes the verifier, it fails to exactly describe the code. This creates a dangerous loophole:
an incorrect implementation that doesn’t actually find the key could still satisfy this weak condition,
and the verifier would not catch the error.

Existing benchmarks do not offer a metric to formally validate the quality of specifications. Without
one, there is no way to guarantee that the verified code truly aligns with its intended behaviour. In-
stead, building up equivalence examines whether the specification is complete without ambiguities.
Our equivalence score accomplishes the task by proving the bidirectional implication relationship:

• whether the code falls into the lattices described by the specifications, and
• whether the method output is the unique value satisfying specifications for any inputs.

Both proofs can be automatically completed by the Dafny verifier. The first direction can be verified
by passing the annotation to the verifier. The second direction requires creating a statement that the
specification implies the code for the verifier to check.

Figure 3 presents a counterexample to illustrate how our equivalence score identifies an underspec-
ified function. The Max method correctly returns the maximum of two integers a and b, but its
post-condition (ensures max >= a) is too weak; it doesn’t guarantee that the output is also
greater than or equal to b. To test if the specification fully implies the code’s behaviour, we use
the Check Max Spec method. This method creates an arbitrary value max, assumed to satisfy

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

method Check_Max_Spec(a: int, b: int) returns (max: int)
{
max := *;
assume max >= a;
var value := Max(a, b);
assert value == max;

}

Figure 3: We show an example where the equivalence score proves the given specifications are
underspecified for returning the maximum between two integers. The code presents the statement
to verify whether the specification implies the code.

all provided pre-conditions and post-conditions. Our equivalence score then tests the assertion that
the unique value satisfying these conditions is the method output. The Dafny verifier is guaranteed
to find this assertion to be false without any false positives. Because the specification is not strong
enough to imply the code, this program would not receive an equivalence score.

As mentioned in the introduction, end-to-end formally verifiable code generation is still challenging
for current proprietary LLMs. Dafny has its own programming logic, such as claiming the invariance
of old elements in arrays to support the proof. Therefore, we re-emphasize the importance of two
auxiliary tasks to facilitate understanding of specific nuances of Dafny, introduced in DafnyBench
(Loughridge et al., 2025) and Veri-Code Series I (2025):

• Verifiable Code Refinement: Given annotated but unverified Dafny code, the model’s goal
is to add the necessary intermediate clauses, such as invariants and lemmas, to make the
code pass the verifier. Success is determined by successful verification.

• Code-To-Spec Generation: Given a Dafny implementation, the model attempts to gener-
ate the strongest formal specification. The quality of the output is evaluated by measuring
its strength improvement over a baseline, using the spec-superior-score (Yan et al., 2025).

Our two sets of formal specifications map onto these auxiliary tasks. For the Verifiable Code Refine-
ment task, models are challenged to fix our strong auto-formalized specifications. For the Code-to-
Specification Generation task, models improve upon our weaker, but already verified, specifications.

4 EMPIRICAL EVALUATION

This section validates the quality of our benchmark and the reliability of our evaluation metric.
We then present the performance of several state-of-the-art LLMs on the end-to-end verifiable code
generation task, followed by an analysis of our baselines on the two auxiliary tasks.

4.1 QUALITY METRICS

Specification Quality Our strong specification baseline, generated via auto-formalization, con-
tains the ground-truth specification for 7.14% of the LeetCode-derived problems and 7.87% of the
synthetic TagComp problems, shown in Figure 5. In total, this process yields 161 complex algorith-
mic data with rigorously verified specifications. This significantly enriches the publicly available
dataset of ground-truth specifications.

Code Transformation Quality To evaluate the quality of our Python-to-Dafny code transforma-
tion, we randomly sample 20 programs from the LeetCode set and validate them against translated
unit tests. Due to the mismatch between Python and Dafny unit test formats and the long compi-
lation time of Dafny, we only provide limited validation. But the transformation is proved highly
reliable, with 90% of the translated Dafny programs passing all tests.

Data Complexity The average Cyclomatic Complexity (McCabe, 1976) quantitatively manifests
the increasing complexity of our data, which counts the number of linearly independent paths in the
control flow graph. It is computed using the Radon software package for Python.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We list the score for MBPP (Austin et al., 2021), since 50 manually annotated data in DafnySynthesis
are based on MBPP-50 and the other 103 are also transformed from it. Thus, the analysis represents
a comparison to DafnySynthesis. We skip the analysis of CloverBench due to a lack of Python
implementations. Our benchmark’s average score of 5.63 is significantly higher than the 2.44 for
DafnySynthesis, indicating more complicated control flows. Notably, our synthetically generated
data is even slightly more complex than the LeetCode-derived portion, with a score that is 0.25 points
higher. This complexity is further validated by a manual rating from Claude-4, which classified the
majority of our synthetic problems as either medium or hard.

Table 3: The table compares the code complexity of a previous benchmark and VeriEquivBench,
indicating a more intricate control flow of our data.

Dataset MBPP-50 MBPP LeetCode TagComp

Average Cyclomatic Complexity 2.44 2.78 5.38 5.63

4.2 VALIDATION OF THE EVALUATION METRICS

We first validate our equivalence score on 50 expert-written verifiable code provided in DafnySyn-
thesis. CloverBench has reviewed their data and reported that 10% of the data does not give the
ground-truth specification. After testing on our evaluation metric, the equivalence score, we figure
out another nine examples where the formal specification contains ambiguities or the original code
has errors. An example is shown in Figure 4, where the formal specification does not specify the
invariance of array length and leaves a logic gap. However, only eight examples out of 14 failures
are successfully fixed by us, demonstrating the hardness in manual annotation. All examples with
wrongly claimed ground-truth are listed in Appendix D.4 with the issues stated.

method SwapFirstAndLast(a: array<int>)
requires a.Length > 0
modifies a
######## ⇓ The added post-condition
ensures a.Length == old(a).Length
######## ⇑
ensures a[0] == old(a[a.Length - 1])
ensures a[a.Length - 1] == old(a[0])
ensures forall k :: 1 <= k < a.Length - 1 ==> a[k] ==

old(a[k])
{

var tmp := a[0];
a[0] := a[a.Length - 1];
a[a.Length - 1] := tmp;

}

Figure 4: An example of a weak specification in sample #625 that fails equivalence scoring. The
formal specification is ambiguous as it omits a post-condition on the invariance of the array’s length.

Next, we evaluate all previous benchmarks and observe a serious quality issue in previously provided
ground-truth formal specifications, shown in Table 4. It has been discussed that the equivalence
check relying on natural language provided in Clover has limitations, and it turns out that a large
number of specifications do not establish the equivalence with the code. Meanwhile, DafnyBench is
not designed for checking the completeness of specifications and thus, gives the lowest score.

Furthermore, we evaluate Grok-4’s translation ability, using Claude-4-sonnet as a judge (Wang et al.,
2025a). We test it on our filtered auto-formalized specifications derived from LeetCode and observe
a high success rate of 82.98%, validating it as a reasonable evaluation metric.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: We present the percentage of data gaining the equivalence score in previous benchmarks.

Dataset DafnySynthesis CloverBench DafnyBench

Equivalence Score 76.22% 61.29% 43.09%

4.3 VERIFIABLE CODE GENERATION

Figure 5 (b) and (c) present the pass@4 results of three proprietary LLMs on end-to-end formally
verifiable code generation, tested on CloverBench and our contamination-free synthetic set, Tag-
Comp. On the previous CloverBench benchmark, a capable model like Claude achieves a 75.81%
success rate, with most errors stemming from issues in specification writing rather than fundamental
code generation flaws. However, on our more challenging TagComp dataset, this performance col-
lapses. While the model achieves code-specification equivalence on 10.34% of the problems, more
than half of these successes are undermined by incorrect code generation, demonstrating that our
benchmark effectively tests both coding and formal reasoning abilities.

A closer look at our benchmark results reveals the challenge of verifiable code generation. While
Claude is most capable of producing syntactically correct Dafny code, all three models struggle
significantly with generating mutually equivalent code and specifications aligned with the query
intention. In our rigorous two-step evaluation, the equivalence score measures the formal alignment
of code and specifications, while the exact matching score further validates against the original
natural language intent. Ultimately, fewer than 5% of the generated solutions from any model pass
this framework. This result underscores the difficulty of formally verifiable code generation on
complex algorithmic problems, requiring strong coding and formal reasoning abilities.

(a): Dataset Quality Analysis (b) CloverBench Performance (c) VeriEquivBench Performance

Exact Matching Equivalent Verified Syntax-Correct

9/25/25, 8:32 AM Academic Performance Figures - PDF Ready

https://onecompiler.com/html/43xnt92dy 1/1

Figure 5: Exact matching score measures the percentage of data passing our two-step evaluation
framework, giving solutions aligned with the query intention. Part (a) gives the amount of verified
ground-truth solutions in our benchmark. Part (b) shows that the previous CloverBench bench-
mark is too simple to properly evaluate the advanced reasoning abilities of capable models, as evi-
denced by a high success rate. Part (c) presents the pass@4 performance of gemini-2.5-flash,
gpt-5, and claude-4-sonnet on our end-to-end verifiable code generation task.

4.4 AUXILIARY TASKS

For the two auxiliary tasks mentioned in Section 3, we provide two RL-trained baselines, with the
SFT model provided in Veri-Code Series I (2025). As stated, the verifiable code refinement task uses
passing the verifier or not as the reward to infill intermediate clauses, while the spec generation task
uses the spec superior score introduced by Yan et al. (2025). Spec superior score measures whether

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the generation specifications described the code better than our weak baseline. The choice of the
RL algorithm and hyperparameters follows their implementation as well. We split our LeetCode
transformed data into three parts with 1770 training data, 200 validation data and 204 out-of-domain
test data, using tags uncovered by the training data.

Our baseline scores 17.68% for the refinement task and 54% for the spec generation task on the val-
idation set. However, in the spec generation task, almost no data generates a complete specification,
resulting in an equivalence score. A possible reason is that the SFT model provided is trained on
overly simple problems and does not have enough exploration ability. The training curve and results
on the test set are presented in Appendix D.3.

5 RELATED WORKS

A central challenge in advancing Large Language Models is developing metrics that not only assess
performance but also provide a clear signal for improvement we desire. Outcome-based metrics,
such as final-answer accuracy in mathematical reasoning (Cobbe et al., 2021) or pass rates on unit
tests in code generation (Austin et al., 2021), are prevalent but limited. They disregard the fidelity
of the reasoning process and remain susceptible to false positives, a limitation shared by methods
employing external solvers for verification (Huang et al., 2025; Feng et al., 2025).

Formal verification offers a more rigorous evaluation alternative, using proof checkers like Dafny
(Leino, 2010) or Lean (De Moura et al., 2015) to provide an unambiguous correctness signal without
requiring a ground-truth solution. However, in verifiable code generation, this signal is fundamen-
tally unidirectional: it validates that the code satisfies a specification but offers no guarantees about
the specification’s quality. This vulnerability allows models to pass verification using trivial or
flawed specifications (Yan et al., 2025). While Yan et al. (2025) attempt to address this by compar-
ing generated specifications against ground-truth specifications using a partial order, their method
remains dependent on the quality and availability of trusted ground-truth. In contrast, our work in-
troduces a formal equivalence metric that verifies the bidirectional correspondence between code
and specification. This approach ensures the specification fully captures the program’s behavior
without relying on a ground-truth specification.

The absence of such a metric has hampered the creation of high-quality benchmarks for autoformal-
ization. Existing datasets often lack the tripartite alignment of natural language, code, and formal
specifications necessary for training (Lohn & Welleck, 2024; Loughridge et al., 2025; Dougherty &
Mehta, 2025; Yan et al., 2025) or are small-scale due to the high cost of manual annotation (Misu
et al., 2024; Sun et al., 2024; Miranda et al., 2025; Ye et al., 2025b). Attempts to automate equiva-
lence checking have proven unreliable; for instance, Clover (Sun et al., 2024) relies on LLM-based
judgments that suffer from high error rates. Addressing these deficiencies, we present VeriEquiv-
Bench, a benchmark an order of magnitude larger than prior work. Enabled by our robust equiv-
alence metric, it provides a large-scale, trustworthy resource for developing and evaluating models
for verifiable code generation.

6 CONCLUSION

In this paper, we confront a foundational challenge hindering the development of reliable verifi-
able systems: the dependence on small, manually-annotated benchmarks for formal verification.
This issue limits the scale and complexity of evaluation and has also introduced a ceiling by hu-
man knowledge. Our work breaks the dependency and introduces VeriEquivBench, a large-scale
end-to-end formally verifiable code generation benchmark. Our novel automated equivalence score
provides a rigorous evaluation signal without any need for human-written, ground-truth specifica-
tions. Second, our structured tagging system enables the scalable, automated synthesis of novel and
complex problems, directly addressing the data generation bottleneck. By using VeriEquivBench to
evaluate state-of-the-art LLMs, we have demonstrated that end-to-end verifiable code generation re-
mains an open challenge, a fact obscured by the inflated success rates on simpler, older benchmarks.
Following the recent discussions on self-evolving agents, our benchmark provides a scalable data
generation engine and a reliable auto-evaluation metric, setting the groundwork to foster trustworthy
AI agents with exact solution generation and sustainably supervise super-intelligence agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

The code and our dataset are included in the supplementary material and will be publicly available
after the double-blind review process for reproducibility.

8 ETHICS STATEMENT

This work does not present any foreseeable ethical concerns. The research involves only publicly
available datasets and does not use or analyze sensitive or personally identifiable information.

REFERENCES

Luogu online judge, 2025. URL https://www.luogu.com.cn/. Accessed: 2025-05-28.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Francois Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. Arc-agi-2:
A new challenge for frontier ai reasoning systems. arXiv preprint arXiv:2505.11831, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Domenico Cotroneo, Cristina Improta, Pietro Liguori, and Roberto Natella. Vulnerabilities in
ai code generators: Exploring targeted data poisoning attacks. In Proceedings of the 32nd
IEEE/ACM International Conference on Program Comprehension, pp. 280–292, 2024.

David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia, Steve
Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, et al. Towards guaranteed safe
ai: A framework for ensuring robust and reliable ai systems. arXiv preprint arXiv:2405.06624,
2024.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob Von Raumer. The
lean theorem prover (system description). In International Conference on Automated Deduction,
pp. 378–388. Springer, 2015.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-
context learning. 2023. doi: 10.48550/ARXIV.2301.00234. URL https://arxiv.org/
abs/2301.00234.

Quinn Dougherty and Ronak Mehta. Proving the coding interview: A benchmark for formally
verified code generation. In 2025 IEEE/ACM International Workshop on Large Language Models
for Code (LLM4Code), pp. 72–79. IEEE, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms,
2025. URL https://arxiv.org/abs/2504.11536.

András György, Tor Lattimore, Nevena Lazić, and Csaba Szepesvári. Beyond statistical learning:
Exact learning is essential for general intelligence. arXiv preprint arXiv:2506.23908, 2025.

10

https://www.luogu.com.cn/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2504.11536

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. LLMs for mathemat-
ical modeling: Towards bridging the gap between natural and mathematical languages. In Luis
Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Lin-
guistics: NAACL 2025, pp. 2678–2710, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.
146. URL https://aclanthology.org/2025.findings-naacl.146/.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In 12th Inter-
national Conference on Learning Representations, ICLR 2024, 2024.

K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In Interna-
tional conference on logic for programming artificial intelligence and reasoning, pp. 348–370.
Springer, 2010.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Evan Lohn and Sean Welleck. minicodeprops: a minimal benchmark for proving code properties.
arXiv preprint arXiv:2406.11915, 2024.

Chloe R Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano, Chuyue Sun, Ying Sheng,
Anish Mudide, Md Rakib Hossain Misu, Nada Amin, and Max Tegmark. Dafnybench: A bench-
mark for formal software verification. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=yBgTVWccIx.

Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):
308–320, 1976. doi: 10.1109/TSE.1976.233837.

Brando Miranda, Zhanke Zhou, Allen Nie, Elyas Obbad, Leni Aniva, Kai Fronsdal, Weston Kirk,
Dilara Soylu, Andrea Yu, Ying Li, et al. Veribench: End-to-end formal verification benchmark
for ai code generation in lean 4. In 2nd AI for Math Workshop@ ICML 2025, 2025.

Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble. Towards ai-assisted synthesis
of verified dafny methods. Proceedings of the ACM on Software Engineering, 1(FSE):812–835,
2024.

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating code gen-
eration capabilities of language models. In Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pp. 14116–14137, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Clo sed-loop ver ifiable code
generation. In International Symposium on AI Verification, pp. 134–155. Springer, 2024.

Amitayush Thakur, Jasper Lee, George Tsoukalas, Meghana Sistla, Matthew Zhao, Stefan Zetzsche,
Greg Durrett, Yisong Yue, and Swarat Chaudhuri. Clever: A curated benchmark for formally
verified code generation. arXiv preprint arXiv:2505.13938, 2025.

11

https://aclanthology.org/2025.findings-naacl.146/
https://openreview.net/forum?id=yBgTVWccIx

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shangqing Tu, Kejian Zhu, Yushi Bai, Zijun Yao, Lei Hou, and Juanzi Li. Dice: Detecting
in-distribution contamination in llm’s fine-tuning phase for math reasoning. arXiv preprint
arXiv:2406.04197, 2024.

Yutong Wang, Pengliang Ji, Chaoqun Yang, Kaixin Li, Ming Hu, Jiaoyang Li, and Guillaume Sar-
toretti. Mcts-judge: Test-time scaling in llm-as-a-judge for code correctness evaluation. CoRR,
2025a.

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang, Shengmai Chen, Lei Ma, and Tianyi Zhang. To-
wards understanding the characteristics of code generation errors made by large language models.
In 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE), pp. 717–717.
IEEE Computer Society, 2025b.

Zihan Wang, Jiaze Chen, Zhicheng Liu, Markus Mak, Yidi Du, Geonsik Moon, Luoqi Xu, Aaron
Tua, Kunshuo Peng, Jiayi Lu, Mingfei Xia, Boqian Zou, Chenyang Ran, Guang Tian, Shoutai
Zhu, Yeheng Duan, Zhenghui Kang, Zhenxing Lin, Shangshu Li, Qiang Luo, Qingshen Long,
Zhiyong Chen, Yihan Xiao, Yurong Wu, Daoguang Zan, Yuyi Fu, Mingxuan Wang, and Ming
Ding. Aethercode: Evaluating llms’ ability to win in premier programming competitions, 2025c.
URL https://arxiv.org/abs/2508.16402.

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code llms,
2025. URL https://arxiv.org/abs/2504.14655.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A
diverse, challenging, and verifiable synthetic dataset for coding, 2025. URL https://arxiv.
org/abs/2503.02951.

Chuanhao Yan, Fengdi Che, Xuhan Huang, Xu Xu, Xin Li, Yizhi Li, Xingwei Qu, Jingzhe Shi,
Zhuangzhuang He, Chenghua Lin, et al. Re: Form–reducing human priors in scalable formal soft-
ware verification with rl in llms: A preliminary study on dafny. arXiv preprint arXiv:2507.16331,
2025.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of Language Models: Part 2.1,
Grade-School Math and the Hidden Reasoning Process. In Proceedings of the 13th Interna-
tional Conference on Learning Representations, ICLR ’25, April 2025a. Full version available at
https://ssrn.com/abstract=5250629.

Zhe Ye, Zhengxu Yan, Jingxuan He, Timothe Kasriel, Kaiyu Yang, and Dawn Song. Verina: Bench-
marking verifiable code generation. arXiv preprint arXiv:2505.23135, 2025b.

Boxi Yu, Yuxuan Zhu, Pinjia He, and Daniel Kang. Utboost: Rigorous evaluation of coding agents
on swe-bench. arXiv preprint arXiv:2506.09289, 2025.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. arXiv preprint arXiv:2505.03335, 2025.

12

https://arxiv.org/abs/2508.16402
https://arxiv.org/abs/2504.14655
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://ssrn.com/abstract=5250629

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILS ABOUT ALGORITHM TAGS

To assemble a suitable tag vocabulary, we first collect high-quality, high-frequency labels from
Luogu—a competitive-programming platform with millions of users and an unusually fine-grained
tag taxonomy—and treat them as a seed set. For each LeetCode problem, the model is prompted
to pick the most relevant domain, data-structure, and algorithm tags from this pool, and is allowed
to introduce new tags only when no suitable match exists. All model-selected tags are pooled,
automatically partitioned into the three coarse categories, and then manually filtered in a single
pass: hallucinated labels are removed, near-duplicates merged, and overly broad or overly narrow
tags discarded. The resulting inventory contains over 500 clean triples that serve as the controlled
vocabulary for subsequent tag-composition.

Figure 6: The fifteen most frequently used tags in our
dataset.

Figure 7: Statistics of algorithm tags

Tag category Numbers
Domain 53
Data Structure 68
Algorithm 480

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The complete curated tag set is listed below, grouped under the three top-level categories: domain,
data-structure, and algorithm.

Table 5: Domain tags

Category Tags

Domain

Mathematics, Number Theory, Probability Theory, Combinatorial Mathe-
matics, Linear Algebra, Computational Geometry, Plane geometry, Three-
dimensional computational geometry, Graph Theory, Simple Graph Theory,
Game Theory, Information Theory, Dynamic Connectivity, expectation, Set
Cover Problem, allocation problem, Extremum problem, path problem, Chess
Board Problem, Stock Problem, Island Problem, Maze Problem, Josephus
problem, Frobenius problem, N-Queens Problem, Knight’s Tour Problem,
Two-dimensional partial order problem, matching problem, Pairing problem,
Interval problems, Knapsack problem, Subset Sum Problem, Jump Game,
Maximum Subarray Problem, Maximum Subsequence Problem, Largest Rect-
angle in Histogram, longest chain, Path counting, Path Statistics, Connectivity,
Reachability analysis, periodic, Discrete Event Simulation, Time constraint,
Permutations and Combinations, Counting Principles, Inclusion-Exclusion
Principle, Pigeonhole principle, Catalan number, Stirling numbers of the sec-
ond kind, Combinatorial counting, Combinatorial Optimization, Mathematical
Techniques

Table 6: Data Structure tags

Category Tags

Data Structure

array, Two-dimensional array, Multidimensional array, sorted array, Circular
array, tagged array, Difference Array, rolling array, Linked List, doubly linked
list, Circular Linked List, Queue, deque, Priority Queue, Stack, monotonic
stack, monotonic queue, tree, undirected tree, unrooted tree, Ring tree, Bi-
nary Tree, Complete Binary Tree, Perfect Binary Tree, Balanced Binary Tree,
Binary Search Tree, Tree data structure, Trie, Segment Tree, Binary Indexed
Tree, Heap, heap - min heap, Huffman tree, Set, Hash Table, Adjacency List,
Adjacency Matrix, weight graph, Bipartite graph, Complete graph, Undirected
graph, directed graph, Reverse graph, Star graph, Directed Acyclic Graph
(DAG), Balanced tree, sparse matrix, Disjoint Set Union (DSU), Red-Black
Tree, AVL Tree, B-Tree, B+ Tree, Skip List, Bloom Filter, LRU Cache, Pre-
fix Tree, Suffix Tree, Suffix Array, Cartesian Tree, Splay Tree, Scapegoat Tree,
Persistent Data Structure, Linear List, Sparse Table, Mo’s Algorithm Structure,
Leftist Tree, Fibonacci Heap, Pairing Heap

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Algorithm tags

Category Tags

Algorithm-1

Compression algorithm,Dynamic Programming,Dynamic Programming
- Linear DP,Dynamic Programming-LIS,Dynamic Programming-Prefix
Sum,Dynamic Programming - 0/1 Knapsack,Dynamic Programming - State
Compression,Dynamic Programming - Interval DP,Dynamic Programming
- 2D DP,Dynamic Programming - Prefix Sum Optimization,Dynamic Pro-
gramming - Top-Down,Dynamic Programming - Iterative,Dynamic Program-
ming,Compression algorithm,Dynamic Programming,Dynamic Programming
- Linear DP,Dynamic Programming-LIS,Dynamic Programming-Prefix
Sum,Dynamic Programming - 0/1 Knapsack,Dynamic Programming - State
Compression,Dynamic Programming - Interval DP,Dynamic Program-
ming - 2D DP,Dynamic Programming - Prefix Sum Optimization,Dynamic
Programming - Top-Down,Dynamic Programming - Iterative,Dynamic Pro-
gramming, State Compression DP,Dynamic Programming - Mathematical
Optimization,Digital DP,Count DP,Tree DP,knapsack DP,State Compression
DP,Dynamic Programming (DP),2D DP,Bidirectional DP,Sequence DP,Matrix
DP,State Machine DP,Bottom-up Dynamic Programming,Bidirectional
BFS,Multi-source BFS,0-1 BFS,Depth-First Search (DFS),Breadth-
First Search (BFS),Memoization,State space search,Heuristic search,state
search,Grid search,Path Finding,Binary search,Binary Search - Answer,Binary
Search - Right Boundary,Binary Search - Left Boundary,Binary Search -
Count,Binary Search - Peak Finding,Binary Search - Maximum Value,Binary
Search-Prefix Sum,Binary Search - Middle Element,Binary Search - Line
Search

Table 8: Algorithm tags

Category Tags

Algorithm-2

Sorting,Merge sort,Quick Sort,Three-way quicksort,Insertion Sort,Counting
Sort,Bucket Sort,Sort-Custom Sort,Sorting - Stable Sort,Sorting
- Lexicographical Order,Difference Sorting,multi-condition sort-
ing,Wiggle Sort,in-place sorting,Topological sorting,Quick Select,KMP
algorithm,Rabin-Karp algorithm,Manacher’s algorithm,suffix array,suffix
tree,Z-function,prefix function,string pattern matching,string wild-
card matching,backtracking,Enumeration,Binary Enumeration,Subset
Enumeration,Combinatorial Enumeration,Two-dimensional enumer-
ation,Simulation,Greedy,Greedy - Interval Operation,Divide and con-
quer,Divide and Conquer - String Splitting,Divide and Conquer - Closest Pair
of Points in a Plane,Central Expansion Method,Staining method,Contribution
method,sliding window,Two Pointers,Two Pointers - Sliding Window,Fast
and slow pointers,Three Pointers,path compression,Path Tracing,Path recon-
struction,Path Planning,Single-Source Shortest Path,Multi-Source Shortest
Path,Second shortest circuit,Constrained Shortest Path,shortest path,Heap-
optimized Dijkstra,Dijkstra’s algorithm,Dijkstra’s Algorithm Variant,Bellman-
Ford algorithm,Floyd’s cycle-finding algorithm,Kruskal’s algorithm,Prim’s
algorithm,Minimum Spanning Tree, Bipartite Matching,Maximum Match-
ing in Bipartite Graphs,Hungarian algorithm,Minimum Cost Maximum
Flow,Graham scan,Welzl’s algorithm,linear sieve,Euler sieve,Eratosthenes
sieve,Prime Sieve, Euclidean algorithm,Bézout’s identity,Bézout’s theo-
rem,Greatest Common Divisor (GCD),Least Common Multiple (LCM),Prime
Number Check

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Algorithm tags

Category Tags

Algorithm-3

Euclidean algorithm, Bézout’s identity, Bézout’s theorem,Greatest Common
Divisor(GCD),Least Common Multiple(LCM),Prime Number Check,Prime
factorization, Factorization,Integer factorization,Cantor expansion,Fast
exponentiation,Matrix Fast Exponentiation,Matrix multiplication,matrix
rotation,matrix transposition,Matrix operations,rotation matrix, flood fill
algorithm,A* algorithm,Tarjan’s algorithm,Morris traversal,Preorder Traver-
sal, Inorder Traversal,Postorder traversal,Level order traversal,Level Order
Traversal,Reverse inorder traversal,zigzag traversal,spiral, traversal,Vertical
traversal,Vertical Order Traversal,Boundary traversal,Diagonal Traver-
sal,2D matrix traversal,Traversal of 2D Array, Graph traversal,Linked
list traversal,Tree traversal,Directional traversal,Bidirectional traver-
sal,reverse traversal,Reverse traversal,One-pass traversal,Path Valida-
tion,Path counting,Path Statistics,Path Construction,lexicographical com-
parison,Lexicographically smallest path,Maximum Value Search,Maximum
Value Maintenance,Range Maximum,Maximum Column Value,prefix
maximum,suffix minimum,suffix product,prefix product,Prefix Sum,Prefix
Sum - Difference,Prefix Sum - Modular Arithmetic,Prefix Sum - Bi-
nary Search Optimization,2D prefix sum,suffix sum,partial sum, subarray
sum, submatrix sum, Area Sum,Area Calculation,ASCII code manipula-
tion,Character Mapping,Character Count,character frequency,Digital encod-
ing,Digital Parsing,Data Extraction,Number Reversal,Integer Reversal,Integer
Square Root,Integer Division,Fraction Addition and Subtraction,Fractional
Arithmetic,Fraction simplification,Score Calculation,percentile,Circular
shift,Loop Detection,Ring Detection,Periodic Assessment,Bracket Match-
ing,Isomorphic Strings,String comparison,String Case Conversion,String
concatenation,string concatenation,String manipulation,String search,string
matching,String-Substring Comparison,string-replacement,String replace-
ment,String trimming,string slicing,string splitting,String compression,String
decoding,string parsing,string continuity,substring matching,prefix match-
ing,Prefix Check,Longest Common Prefix,Longest Common Suffix,Longest
Common Subsequence,Longest Common Subarray,Longest Repeating
Substring,Longest Palindromic Subsequence,Longest Non-decreasing Sub-
array,Longest Consecutive Sequence,longest consecutive characters,Word
Chain,Zigzag Conversion,palindrome,Expression parsing,Expression Evalua-
tion,Reverse Polish Notation,Postfix expression,Operator precedence,Lexical
Analysis,parsing,Serialization,Deserialization,Encoding,decoding,Run-
length encoding,Set Operations,Set Intersection,Bitwise opera-
tion,Bitwise operation optimization,Bitwise Operations - State Compres-
sion,bitmask,Bitwise OR, AND operation,XOR,binary,Binary Addition,binary
splitting,Binary counting,bit count,Hamming distance,Two’s comple-
ment,Modular arithmetic,modulo 3 operation,Congruence,Congruence
theorem,divisible,Divisibility property,divisor,perfect square,square num-
ber,Perfect number,Ugly number,trailing zeros,digit separation,Digital
Processing,Digital Sum,Gray code,Permutation, Next Permuta-
tion,Arrangement,Permutation ring,Cyclic permutation,Pascal’s trian-
gle,Fermat’s theorem on sums of two, squares,Pythagorean theorem,Triangle
inequality,absolute value,absolute value inequality,Big Integer Addition,High
precision

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Algorithm tags

Category Tags

Algorithm-4

Floating-point processing,Floating-point comparison,floating-point
precision,Linear equation,polynomial,Complex Number Opera-
tions,Rational number representation,recurring decimal,factorial,Sum
of Squares,Sum,Summation formula,arithmetic sequence,Arithmetic
sequence summation,path sum,Maximum Sum Path,Maximum spac-
ing,Neighbor Count,Adjacent elements,Adjacent Element Difference,Global
Inversion,Local inversion pairs,Inversion pair,anagram,vowel substitu-
tion,coordinate,2D coordinates,coordinate system,coordinate compari-
son,coordinate translation,coordinate compression,2D offset,2D plane,3D
space,collinear points,Collinearity detection,convex hull,minimum bound-
ing rectangle,Triangle Area,Rectangle Area Calculation,Overlapping
Area Calculation,Rectangle Intersection,Circle-Rectangle Intersection
Detection,Minimum Enclosing Circle,Spatial segmentation,2D cut-
ting,Spatial optimization,Space complexity optimization,Constant space
complexity,Linear space complexity,Time complexity analysis,Linear
time complexity,Linear scan,Pruning,Preprocessing,preprocessing,Offline
processing,Dynamic update,Dynamic Maintenance,Dynamic Mainte-
nance Interval,Dynamic Range Maintenance,Single-point modifica-
tion,Range query,Interval computation,Interval Statistics,Range up-
date,Interval Merging,Interval coverage,Interval Scheduling,Range ex-
trema,Path Intersection Detection,Distance calculation,Euclidean dis-
tance,Manhattan distance,Chebyshev distance,projection,cross prod-
uct,Polar sorting,construct,Binary Construction,Tree Construction,Tree
Reconstruction,Sequence Reconstruction,Constructing the answer in
reverse order,reverse,Reverse Linked List,Linked List Reversal,String
Reversal,Array Rearrangement,Linked List Reordering,Node switch-
ing,Segmentation,Split Array,split string,Split and Merge,Convert 1D
Array to 2D Array,matrix,2D matrix,sparse matrix,ordered matrix,Rectangle
Coverage,Adjacency Matrix,Tree deletion operation,Tree depth,Tree Cen-
troid,Tree Diameter,subtree,Subtree Sum,leaf node,intermediate node,dummy
node,sentinel node,Middle of the Linked List,indegree,indegree and outde-
gree,degree,degree sequence,Monotonicity,Monotonicity Check,monotonic
array,Decision Monotonicity,Symmetric,Boolean operations,Logical Oper-
ations,Conditional statement,Filter Criteria,Polarity,Parity Check,Boundary
check,Boundary handling,Edge case handling,Status Check,Status
Log,State transition,State Machine,Finite State Automaton,Priority, han-
dling,Query Processing,Path processing,Overflow handling,Carry han-
dling,Recursion,recursive,Inductive method,derivation,traverse,Array traver-
sal,Grid traversal,directional search,State compression,Handling Duplicate
Elements,deduplication,Enumeration optimization,Sequence compari-
son,comparison function,Comparator,Regular Expression,Pointer manipula-
tion,Method chaining,Swap operation,Displacement operation,Row and Col-
umn Operations,product,Multiplication Principle,Exponentiation,Base,Base
Conversion,Clock issues,loop section,IP address,reordering,Partial Or-
dering,Equation Solving,Randomization,reverse thinking,Horse Racing
Strategy,Connected component,Connected Component,Strongly Connected
Component,Lowest Common Ancestor (LCA),Eulerian circuit,Hamiltonian
path

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PIPELINE OF TAG COMPOSITION

Figure 8 illustrates our pipeline for generating new programming problems through tag composition.
The process begins by creating a candidate pool of 36 tags, randomly selecting 12 from each of our
three categories: domain, algorithm, and data structure. This pool is provided to an LLM, which
is prompted to select a coherent subset of three to eight tags that form a promising basis for a new
problem. Using this selected combination, we then instruct the LLM to generate a complete task,
comprising a problem description, corresponding unit tests, and a Python solution. As a final quality
control step, we filter these generations by executing the unit tests. We retain only those instances
where the generated Python code passes all tests, ultimately yielding a dataset of 300 validated
programs.

Dynamic

Programming, BFS, ...

Algorithms

Mathematics, Number

Theory, ...

Domains

array, queue, ...

Data Structures

New Task

300 Samples in
Python

Randomly

Randomly

Randomly Description_i: Suppose...
 & Test cases_i: Input = ...
 & Python_Code_i

12 Domains
12 Algorithms

12 Data Structures

Tag Set:
Tag_1, ..., Tag_8LLM selector

 LLM

Unit Test
Pass Rate 85%

Figure 8: The pipeline for the tag compositon process.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C PROMPT TEMPLATES

[Task]
You have three categories of tags: domain, algorithm, and data structure, each containing 12 tags. Your task is to select a combination
of 3–8 tags from these categories to form a coherent programming problem. The problem should have a specified difficulty level:
easy, medium, or hard. Ensure the selected tags are compatible and can logically form a single problem. Provide the chosen tags, the
difficulty level.

[Requirements]

1.The task is clearly defined, specifying the need to select 3–8 tags from three categories (domain, algorithm, data structure) to form a
coherent programming problem with a specified difficulty level.
2.Requirements outline the tag selection process, ensuring compatibility and a reasonable tag collection, the need for a difficulty level.
3.The selected tags must be compatible and form a reasonable tag collection that results in a practical and solvable programming
problem.
4.The problem must be assigned one of three difficulty levels: easy, medium, or hard, reflecting the complexity of the problem based
on the selected tags.

[Domain tags]

{{ domain tags }}

[Algorithm tags]

{{ algo tags }}

[Data Structure tags]

{{ data tags }}

Output Format
This is the ouput format,You must respond in this specified output format:

{
"all_tags": "Graph Theory, Depth-First Search, Union-Find, Graph,

Disjoint Set",
"Domain": "Graph Theory",
"Algorithm": "Depth-First Search, Union-Find",
"Data_Structure":"Graph, Disjoint Set" ,
"Difficulty Level": "medium",

}

<—Problem End—>

Figure 9: The prompt is for selecting useful tags. We feed the model the 36 real tags from 3
categories randomly that will later drive new-problem generation, it returns the 3–8 tags that form
the most promising combination.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

[Task]
You are an expert algorithm problem creator. Your task is to create an easy or medium difficulty ranking original coding problem using
the given algorithm tags.Analyze the given tags to generate a new problem.The problem should be completely original coding problem
that is NOT from any existing platforms (LeetCode, Codeforces, etc.) or textbooks.

[Requirements]

1. Create a truly novel problem scenario with unique constraints
2. Combine the given tags in innovative ways
3. Ensure the problem is solvable but challenging
4. Provide clear problem statement, examples, and constraints
5. Rate the difficulty(easy, medium, hard) appropriately

[Algorithm tags]
tags

Output Format
This is the ouput format,You must respond in this specified output format:
<—Problem Begin—>

json
<—Problem End—>

[Example]
Below is an example output format .
<—Problem Begin—>

{
"title": "Find Minimum in Rotated Sorted Array",
"difficulty": "medium",
"description": "Suppose an array of length n sorted in ascending

order is rotated between 1 and n times. For example, the array
nums = [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2] if it was
rotated 4 times. Given the sorted rotated array nums of

unique elements, return the minimum element of this array. You
must write an algorithm that runs in O(log n) time.",

"input_format": "An integer array nums of length n where 1 <= n
<= 5000",

"output_format": "Return the minimum value in the array",
"constraints": [

"1 <= nums.length <= 5000",
"-5000 <= nums[i] <= 5000",
"All the integers of nums are unique",
"nums is sorted and rotated between 1 and n times"

],
"examples": [

{
"input": "[3,4,5,1,2]",
"output": "1",
"explanation": "The original array was [1,2,3,4,5]

rotated 3 times."
},
{

"input": "[4,5,6,7,0,1,2]",
"output": "0",
"explanation": "The original array was [0,1,2,4,5,6,7]

and it was rotated 4 times."
}

],
"tags_used": ["Array", "Binary Search"],
"time_complexity": "O(log n)",
"space_complexity": "O(1)"

}

<—Problem End—>

Figure 10: The prompt uses the previously obtained real tags to generate a brand-new problem
together with its unit tests.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL RESULT DETAILS

D.1 AUTOFORMALIZATION-EQUIVALENCE CHECK PASSING RATE

As shown in Figure 2 Pipeline 2, the autoformalized specifications are fed into an equivalence check
with the corresponding NL query. The step of re-generating Python code and testing the code on
unit tests filters out 13.32% of mismatched specifications. We do not further filter out data according
to the LLM-as-a-judge results, to provide a fair evaluation on how effective this validation metric
can be.

Table 11: The table reports the filter rate for autoformalization.

Dataset Average Number of Unit Tests Passing Rate

LeetCode-Train 89.15 86.68%

D.2 QUALITY ASSURANCE OF PYTHON2DAFNY TRANSFORMATION

This section lists the question ID randomly chosen to test the code transformation quality, matching
the one provided in the original LeetCode dataset.

Table 12: Our Python to Dafny transformation step gives high-quality data with 90% passing all unit
tests.

Q2914: 116/116 tests passed Q3099: 53/53 tests passed Q1419: 197/197 tests passed
Q118: 16/16 tests passed Q1278: 89/89 tests passed Q2549: 50/50 tests passed
Q767: 11/56 tests passed Q276: 103/103 tests passed Q3019: 78/78 tests passed

Q1910: 130/130 tests passed Q2414: 115/115 tests passed Q1247: 103/103 tests passed
Q2288: 106/108 tests passed Q1358: 130/130 tests passed Q3183: 56/56 tests passed
Q1155: 108/108 tests passed Q1698: 84/84 tests passed Q2582: 94/94 tests passed

Q1931: 61/61 tests passed Q2062: 110/110 tests passed

D.3 TRAINING CURVES ON AUXILIARY TASKS

We use the 14B SFT model provided by the Veri-Code Team and their code to RL-train models
using GRPO.

Training Curves for Auxiliary Tasks

0 10 20 30 40
0.16

0.17

0.18

0.19

0.2

Verifiable Code Refinement Task

Step

S
co

re

0 10 20 30 40
0

0.2

0.4

0.6

Step

S
pe

c
S
up

er
io

r
S
co

re

0 10 20 30 40
0

0.01

0.02

0.03

0.04
Validation Set OOD Test Set

Step

Eq
ui

va
le

nc
e

S
co

re

Spec Generation Task

9/24/25, 1:31 PM Verifiable Code Refinement Task

file:///Users/fengdiche/Downloads/index.html 1/1

Figure 11: During the verifiable code refinement task, the model barely improves, demonstrating
that RL training is not enough. During the spec generation task, the generated specification quality
keeps enhancing, but still fails to capture code behaviours without ambiguities.

D.4 DETAILS ABOUT DAFNYSYNTHESIS INSPECTION

This section details our analysis of 14 ground-truth samples identified as problematic. Our investi-
gation revealed that two samples failed initial verification due to implementation errors or timeouts,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

precluding further analysis. These were #566 and #632, the latter of which was previously reported
by Clover (Sun et al., 2024).

The primary issue in the remaining 12 samples was specification ambiguity stemming from in-
sufficient post-conditions. We successfully rectified this in eight cases by strengthening their post-
conditions, with the fixes validated through equivalence testing. Although our refinements improved
the specifications for two other samples, they still did not pass the equivalence check. We were un-
able to resolve the ambiguities in the final two samples.

A significant portion of these ambiguous samples were newly discovered. Specifically, eight sam-
ples (#579, #602, #625, #629, #733, #755, #793, #807) were not documented in the prior work by
Clover (Sun et al., 2024). Of these, we successfully fixed five (#625, #733, #755, #793, #807) and
refined one (#602). Corresponding code examples are shown in Figures 12-19.

Regarding the issues previously reported by Clover, our findings for samples #567, #576, #644, and
#803 largely concur. We fixed three (#567, #644, #803) and refined one (#576), with details in
Figures 20-22. Conversely, sample #472 passed our equivalence checks, which aligns with Clover’s
classification of its issue as a natural-language inconsistency rather than a specification defect. As
noted, sample #632 was excluded due to a timeout.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

predicate InArray(a: array<int>, x: int)
reads a

{
exists i :: 0 <= i < a.Length && a[i] == x

}

method DissimilarElements(a: array<int>, b: array<int>) returns (result:
seq<int>)
ensures forall x :: x in result ==> (InArray(a, x) != InArray(b, x))
ensures forall i, j :: 0 <= i < j < |result| ==> result[i] != result[

j]
######## The post-conditions here omit that the first half of result

is in array a, while the second half is in b.
{

var res: seq<int> := [];
for i := 0 to a.Length

invariant 0 <= i <= a.Length
invariant forall x :: x in res ==> InArray(a, x)
invariant forall x :: x in res ==> InArray(a, x) != InArray(b, x)
invariant forall i, j :: 0 <= i < j < |res| ==> res[i] != res[j]

{
if !InArray(b, a[i]) && a[i] !in res
{

res := res + [a[i]];
}

}

ghost var partialSize := |res|;
for i := 0 to b.Length

invariant 0 <= i <= b.Length
invariant forall k :: partialSize <= k < |res| ==> InArray(b, res

[k])
invariant forall k :: 0 <= k < |res| ==> InArray(a, res[k]) !=

InArray(b, res[k])
invariant forall i, j :: 0 <= i < j < |res| ==> res[i] != res[j]

{
if !InArray(a, b[i]) && b[i] !in res
{

res := res + [b[i]];
}

}

result := res;
}

Figure 12: An unresolved specification ambiguity in DafnySynthesis sample #579. The post-
condition is insufficient because it fails to enforce the preservation of the relative order of elements
from the input array in the output.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

method FindFirstRepeatedChar(s: string) returns (found: bool, c: char)
ensures found ==> exists i, j :: 0 <= i < j < |s| && s[i] == s[j]
&& s[i] == c && (forall k, l :: 0 <= k < l < j
&& s[k] == s[l] ==> k >= i)

ensures !found ==> (forall i, j :: 0 <= i < j < |s| ==> s[i] != s[j])
######## ⇓ The added post-condition
ensures !found ==> c == ’ ’
######## ⇑

{
c := ’ ’;
found := false;
var inner_found := false;
var i := 0;
while i < |s| && !found

invariant 0 <= i <= |s|
invariant found == inner_found

invariant found ==> exists ii, jj :: 0 <= ii < i
&& ii < jj < |s| && s[ii] == s[jj] && s[ii] == c
&& (forall k, l :: 0 <= k < l < jj && s[k] == s[l] ==> k >= ii)

invariant !found <==> (forall ii, jj :: 0 <= ii < i
&& ii < jj < |s| ==> s[ii] != s[jj])

######## ⇓ The added loop invariant
invariant !found ==> c == ’ ’
######## ⇑

{
var j := i + 1;
while j < |s| && !inner_found

invariant i < j <= |s|
invariant inner_found ==> exists k :: i < k < |s|
&& s[i] == s[k] && s[i] == c

invariant !inner_found
<==> (forall k :: i < k < j ==> s[i] != s[k])

######## ⇓ The added loop invariant
invariant !inner_found ==> c == ’ ’
invariant !found
######## ⇑

{
if s[i] == s[j] {

inner_found := true;
c := s[i];

}
j := j + 1;

}
found := inner_found;
i := i + 1;

}
}

Figure 13: A refined but unfixed specification for sample #602. While the shown refinement fails
the equivalence test, a stricter post-condition (k > i) could not be verified due to a timeout.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

method SwapFirstAndLast(a: array<int>)
requires a.Length > 0
modifies a
######## ⇓ The added post-condition
ensures a.Length == old(a.Length)
######## ⇑
ensures a[0] == old(a[a.Length - 1])
ensures a[a.Length - 1] == old(a[0])
ensures forall k :: 1 <= k < a.Length - 1 ==> a[k] == old(a[k])

{
var tmp := a[0];
a[0] := a[a.Length - 1];
a[a.Length - 1] := tmp;

}

Figure 14: A successfully resolved specification ambiguity in DafnySynthesis sample #625. The
original specification was ambiguous as it lacked a constraint on the output array’s length. The
ambiguity was rectified by introducing a post-condition ensuring the length remains invariant.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

predicate IsEven(n: int)
{

n % 2 == 0
}

method FindEvenNumbers(arr: array<int>) returns (evenList: seq<int>)

ensures forall i :: 0 <= i < |evenList| ==> IsEven(evenList[i])
&& evenList[i] in arr[..]
ensures forall i :: 0 <= i < arr.Length && IsEven(arr[i])
==> arr[i] in evenList
######## The post-conditions here do not ensures the order preserving

between the input array and output array
{

evenList := [];
for i := 0 to arr.Length

invariant 0 <= i <= arr.Length
invariant 0 <= |evenList| <= i
invariant forall k :: 0 <= k < |evenList| ==> IsEven(evenList[k])

&& evenList[k] in arr[..]
invariant forall k :: 0 <= k < i && IsEven(arr[k]) ==> arr[k] in

evenList
{

if IsEven(arr[i])
{

evenList := evenList + [arr[i]];
}

}
}
method FindEvenNumbers_check(arr: array<int>) returns (evenList: seq<int

>)
{

evenList := *;
assume forall i :: 0 <= i < |evenList| ==> IsEven(evenList[i]) &&

evenList[i] in arr[..];
assume forall i :: 0 <= i < arr.Length && IsEven(arr[i]) ==> arr[i] in

evenList;
var val_0 :=FindEvenNumbers(arr);
assert evenList[..] == val_0[..];

}

Figure 15: An unresolved specification ambiguity in DafnySynthesis sample #629. The post-
condition is insufficient because it fails to enforce the preservation of the relative order of elements
from the input array.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

method FindFirstOccurrence(arr: array<int>, target: int) returns (index:
int)
requires arr != null
requires forall i, j :: 0 <= i < j < arr.Length ==> arr[i] <= arr[j]
ensures 0 <= index < arr.Length ==> arr[index] == target
ensures index == -1 ==> forall i :: 0 <= i < arr.Length ==> arr[i] !=

target
ensures forall i :: 0 <= i < arr.Length ==> arr[i] == old(arr[i])
######## ⇓ The added post-condition
ensures 0 <= index < arr.Length || index == -1
ensures 0 <= index < arr.Length ==> ((forall i :: 0 <= i < index ==>

arr[i] < arr[index]) && (forall j :: index <= j < arr.Length ==>
arr[j] >= arr[index]))

######## ⇑
{

index := -1;
for i := 0 to arr.Length

invariant 0 <= i <= arr.Length
invariant index == -1 ==> forall k :: 0 <= k < i ==> arr[k] !=

target
invariant 0 <= index < i ==> arr[index] == target
invariant forall k :: 0 <= k < arr.Length ==> arr[k] == old(arr[k

])
{

if arr[i] == target
{

index := i;
break;

}
if arr[i] > target
{

break;
}

}
}

Figure 16: A successfully resolved specification ambiguity in DafnySynthesis sample #733. The
original specification was insufficient, lacking detail for cases where the input index is non-negative.
The issue was fixed by refining the post-condition to explicitly define the expected behavior for this
scenario.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

function MinPair(s: seq<int>) : (r: int)
requires |s| == 2
ensures s[0] <= s[1] <==> r == s[0]
ensures s[0] > s[1] ==> r == s[1]

{
if s[0] <= s[1] then s[0] else s[1]

}
function min(s: seq<int>) : (r: int)

requires |s| >= 2
ensures forall i :: 0 <= i < |s| ==> r <= s[i]

{
if |s| == 2 then MinPair(s)
else MinPair([s[0], min(s[1..])])

}
method SecondSmallest(s: array<int>) returns (secondSmallest: int)

requires s.Length >= 2
requires exists i, j :: 0 <= i < s.Length && 0 <= j < s.Length
&& i != j && s[i] == min(s[..]) && s[j] != s[i]

ensures exists i, j :: 0 <= i < s.Length && 0 <= j < s.Length
&& i != j && s[i] == min(s[..]) && s[j] == secondSmallest

ensures forall k :: 0 <= k < s.Length && s[k] != min(s[..])
==> s[k] >= secondSmallest

######## ⇓ The added post-condition
ensures (exists i, j :: i != j && 0 <= i < s.Length
&& 0 <= j < s.Length && s[i] == s[j] && s[i] == min(s[..]))
==> secondSmallest == min(s[..])

ensures !(exists i, j :: i != j && 0 <= i < s.Length
&& 0 <= j < s.Length && s[i] == s[j] && s[i] == min(s[..]))
==> ((exists k :: 0 <= k < s.Length && s[k] == secondSmallest)
&& (forall k :: 0 <= k < s.Length && s[k] > min(s[..])
==> s[k] >= secondSmallest) && secondSmallest > min(s[..]))

######## ⇑
{

var minIndex := 0;
var secondMinIndex := 1;
if s[1] < s[0] {

minIndex := 1;
secondMinIndex := 0;

}
for i := 2 to s.Length
invariant 0 <= i <= s.Length
invariant 0 <= minIndex < i
invariant 0 <= secondMinIndex < i
invariant minIndex != secondMinIndex
invariant forall k :: 0 <= k < i ==> s[k] >= s[minIndex]
invariant forall k :: 0 <= k < i && k != minIndex ==> s[k] >= s[

secondMinIndex]
{

if s[i] < s[minIndex] {
secondMinIndex := minIndex;
minIndex := i;

} else if s[i] < s[secondMinIndex] {
secondMinIndex := i;

}
}

secondSmallest := s[secondMinIndex];
}

Figure 17: A successfully resolved specification ambiguity in DafnySynthesis sample #755. The
original specification was insufficient, failing to distinguish between cases with a unique minimum
value and those with multiple occurrences of the minimum. The ambiguity was rectified by refining
the post-condition to explicitly detail the expected behavior for both scenarios.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

method LastPosition(arr: array<int>, elem: int) returns (pos: int)
requires arr.Length > 0
requires forall i, j :: 0 <= i < j < arr.Length ==> arr[i] <= arr[j]
######## ⇓ Original post-condition
// ensures pos == -1 || (0 <= pos < arr.Length && arr[pos] == elem &&

(pos <= arr.Length - 1 || arr[pos + 1] > elem))
######## ⇑
######## ⇓ The fixed post-condition
ensures pos == -1 <==> (forall j :: 0 <= j < arr.Length ==> arr[j] !=

elem)
ensures pos != -1 <==> (0 <= pos < arr.Length && arr[pos] == elem &&

(pos == arr.Length - 1 || arr[pos + 1] > elem))
######## ⇑
ensures forall i :: 0 <= i < arr.Length ==> arr[i] == old(arr[i])

{
pos := -1;
for i := 0 to arr.Length #### Originally, the upper bound is arr.

Length - 1, but it was buggy
invariant 0 <= i <= arr.Length
######## ⇓ Original loop invariant
// invariant pos == -1 || (0 <= pos < i && arr[pos] == elem && (

pos == i - 1 || arr[pos + 1] > elem))
######## ⇓ The fixed loop invariant
invariant pos == -1 <==> (forall j :: 0 <= j < i ==> arr[j] !=

elem)
invariant pos != -1 <==> (0 <= pos < i && arr[pos] == elem && (

pos == i - 1 || arr[pos + 1] > elem))
######## ⇑
invariant forall k :: 0 <= k < arr.Length ==> arr[k] == old(arr[k

])
{

if arr[i] == elem
{

pos := i;
}

}
}

Figure 18: A successfully resolved specification ambiguity in DafnySynthesis sample #793. The
original specification was insufficient as it failed to define distinct behaviors based on the sign of
the input parameter ‘pos’. The ambiguity was rectified by refining the post-condition to explicitly
handle the cases where ‘pos’ is negative and non-negative, respectively.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

predicate IsOdd(x: int)
{

x % 2 != 0
}

method FindFirstOdd(a: array<int>) returns (found: bool, index: int)
requires a != null
ensures !found ==> forall i :: 0 <= i < a.Length ==> !IsOdd(a[i])
ensures found ==> 0 <= index < a.Length && IsOdd(a[index])

&& forall i :: 0 <= i < index ==> !IsOdd(a[i])
######## ⇓ The added post-condition
ensures !found ==> index == a.Length
######## ⇑

{
found := false;
index := 0;
while (index < a.Length)

invariant 0 <= index <= a.Length
invariant !found ==> forall i :: 0 <= i < index ==> !IsOdd(a[i])
invariant found ==> IsOdd(a[index - 1]) && forall i :: 0 <= i <

index - 1 ==> !IsOdd(a[i])
{

if IsOdd(a[index])
{

found := true;
return;

}
index := index + 1;

}
}

Figure 19: A successfully resolved specification ambiguity in DafnySynthesis sample #807. The
original specification was insufficient, as it only described the behavior for successful outcomes.
The ambiguity was resolved by strengthening the post-condition to explicitly define the program’s
state in failure cases, ensuring comprehensive and predictable behavior.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

method IsSorted(a: array<int>) returns (sorted: bool)
requires a.Length > 0
######## ⇓ Original post-condition
// ensures sorted <== forall i, j :: 0 <= i < j < a.Length
==> a[i] <= a[j]

// ensures !sorted ==> exists i, j :: 0 <= i < j < a.Length
&& a[i] > a[j]

######## ⇑
######## ⇓ The fixed post-condition
ensures sorted <==> forall i, j :: 0 <= i < j < a.Length
==> a[i] <= a[j]

######## ⇑
{

sorted := true;
for i := 0 to a.Length - 1

invariant 0 <= i < a.Length
######## ⇓ Original loop invariant
// invariant sorted <== forall k, l :: 0 <= k < l < i
==> a[k] <= a[l]

// invariant !sorted ==> exists k :: 0 <= k < i && a[k] > a[k+1]
######## ⇑
######## ⇓ The fixed post-condition
invariant sorted <==> forall k, l :: 0 <= k < l <= i
==> a[k] <= a[l]

######## ⇑

{
if a[i] > a[i + 1]
{

sorted := false;
break;

}
}
sorted := sorted;

}

Figure 20: A successfully resolved specification ambiguity in DafnySynthesis sample #567, an
issue also identified by the Clover. The original post-condition was overly permissive, stating only
a sufficient condition for the desired outcome. The ambiguity was rectified by strengthening this to
a necessary and sufficient condition (an equivalence).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

method Reverse(a: array<int>)
modifies a

######## ⇓ The added post-condition
ensures a.Length == old(a.Length)

######## ⇑
ensures forall k :: 0 <= k < a.Length ==> a[k] == old(a[(a.Length-1) -

k])
{

var l := a.Length - 1;
var i := 0;
while (i < l-i)

invariant 0 <= i <= (l+1)/2
invariant forall k :: 0 <= k < i || l-i < k <= l ==> a[k] == old(a[l-

k])
invariant forall k :: i <= k <= l-i ==> a[k] == old(a[k])

{
a[i], a[l-i] := a[l-i], a[i];
i := i + 1;

}
}
method ReverseUptoK(s: array<int>, k: int)

modifies s
requires 2 <= k <= s.Length
######## ⇓ The added post-condition
ensures s.Length == old(s.Length)
######## ⇑
ensures forall i :: 0 <= i < k ==> s[i] == old(s[k - 1 - i])
ensures forall i :: k <= i < s.Length ==> s[i] == old(s[i])

{
var l := k - 1;
var i := 0;
while (i < l-i)

invariant 0 <= i <= (l+1)/2;
invariant forall p :: 0 <= p < i || l-i < p <= l ==> s[p] == old(s[l-

p]);
invariant forall p :: i <= p <= l-i ==> s[p] == old(s[p]);

invariant forall p :: k <= p < s.Length ==> s[p] == old(s[p])
{

s[i], s[l-i] := s[l-i], s[i];
i := i + 1;

}
}

Figure 21: A successfully resolved specification ambiguity in DafnySynthesis sample #644, an issue
also identified by the Clover. The original specification was ambiguous as it lacked a constraint on
the output array’s length. The ambiguity was rectified by introducing a post-condition ensuring the
length remains invariant.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

method IsPerfectSquare(n: int) returns (result: bool)
requires n >= 0
######## ⇓ Original post-condition
// ensures result == true ==> (exists i: int :: 0 <= i <= n && i * i

== n)
// ensures result == false ==> (forall a: int :: 0 < a*a < n ==> a*a

!= n)
######## ⇑
######## ⇓ The fixed post-condition
ensures result <==> (exists i: int :: 0 <= i <= n && i * i == n)
######## ⇑

{
var i := 0;
while (i * i < n)

invariant 0 <= i <= n
invariant forall k :: 0 <= k < i ==> k * k < n

{
i := i + 1;

}
return i * i == n;

}

Figure 22: A successfully resolved specification ambiguity in DafnySynthesis sample #803, an
issue also identified by the Clover. The original post-condition was overly permissive, stating only
necessary conditions for the desired outcome. The ambiguity was rectified by strengthening this to
a necessary and sufficient condition (an equivalence).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

method IsSublist(sub: seq<int>, main: seq<int>) returns (result: bool)
######## ⇓ Original post-condition
// ensures true <== (exists i :: 0 <= i <= |main| - |sub| && sub ==

main[i..i + |sub|])
######## ⇑
######## ⇓ The refined post-condition
ensures result ==> (exists i :: 0 <= i <= |main| - |sub| && sub ==

main[i..i + |sub|])
ensures result ==> (exists i :: |sub| <= i <= |main| && sub == main[i

- |sub|..i])
######## ⇑

{
if |sub| > |main| {

return false;
}
result := false;
for i := 0 to |main| - |sub| + 1

######## ⇓ The original loop invariant
// invariant result ==> (exists j :: 0 <= j < i && sub == main[j

..j + |sub|])
######## ⇑
######## ⇓ The refined loop invariant
invariant 0 <= i <= |main| - |sub| + 1
######## ⇑

{
if sub == main[i..i + |sub|] {

result := true;
}

}
result := false;

}

Figure 23: An unresolved specification ambiguity in DafnySynthesis sample #576, an issue also
identified by the Clover. The original post-condition was effectively meaningless, providing no
meaningful constraints. Although the post-condition was refined to be more specific, the resulting
specification still fails to pass the equivalence test, indicating that the ambiguity has not been fully
resolved and requires further investigation.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E THE USE OF LARGE LANGUAGE MODELS

Multiple LLM products, including GPT-5 and Gemini-2.5-pro, are deployed to polish the writing.
However, none of the paragraphs is written by LLMs directly, and all research ideas are indepen-
dently proposed by authors without any AI assistance. Claude-Opus-4.1 and Sonnet are used to
create figure generation code for Figure 5 and 11. Cursor is included to assist coding, but all gener-
ated code is then carefully inspected by authors. Other uses of LLMs in data curation and synthesis
are clearly stated in the paper.

35

	Introduction
	Benchmark Overview And Construction Pipeline
	LeetCode Autoformalization
	LeetCode Verifiable Code Generation
	Data Synthesis Through Tag Composition

	Evaluation Metrics And Tasks
	Empirical Evaluation
	Quality Metrics
	Validation of the Evaluation Metrics
	Verifiable Code Generation
	Auxiliary Tasks

	Related Works
	Conclusion
	Reproducibility statement
	Ethics Statement
	Details about algorithm tags
	Pipeline of Tag composition
	Prompt templates
	Experimental Result Details
	Autoformalization-Equivalence Check Passing Rate
	Quality Assurance of Python2Dafny Transformation
	Training Curves on Auxiliary Tasks
	Details about DafnySynthesis Inspection

	The Use of Large Language Models

