
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VeriEquivBench: An Equivalence Score for
Ground-Truth-Free Evaluation of Formally
Verifiable Code

Anonymous authors
Paper under double-blind review

Abstract

Formal verification is the next frontier for ensuring the correctness of code
generated by Large Language Models (LLMs). While methods that co-
generate code and formal specifications in formal languages, like Dafny,
can, in principle, prove alignment with user intent, progress is bottlenecked
by specification quality evaluation. Current benchmarks rely on matching
against ground-truth specifications, a manual and expertise-intensive pro-
cess that has limited existing datasets to a few hundred simple problems
and also suffers from a reliability issue. To address this, we introduce Ver-
iEquivBench, a new benchmark with 2, 389 complex algorithmic problems
that probe the limitations of current models in both code generation and
formal reasoning. Our evaluation framework replaces ground-truth match-
ing with a formally grounded metric, the equivalence score, and rigorously
verifies the quality of generated specifications and code. Our results show
that generating formally verifiable code remains a profound challenge for
state-of-the-art LLMs. This underscores both the difficulty of the task
and the need for benchmarks like VeriEquivBench to drive progress toward
scalable and reliable coding agents.

1 Introduction

Large language models (LLMs) already possess substantial capacity for following natural-
language instructions and executing a wide range of coding tasks (Li et al., 2022a; Jain et al.,
2024; Zhao et al., 2025). At the same time, the correctness of the generated code remains a
concern (Cotroneo et al., 2024; Wang et al., 2025b), where functional errors cost users extra
effort to debug and also pose significant risks in the safety-critical domain (Dalrymple et al.,
2024). A common solution is to evaluate generated code through unit tests (Jimenez et al.,
2024; Wang et al., 2025c). However, this process offers no provable guarantee of correctness,
as insufficient unit test coverage can fail to detect critical errors (Yu et al., 2025). On the
contrary, a verifiable system resolves the issue by co-generating formal specifications and
code to formally verify the alignment with the natural language query intention (Sun et al.,
2024). Our work focuses on building an end-to-end agent for formal verification, for which
we adopt Dafny (Leino, 2010). It is an ideal choice as Dafny’s automatic theorem prover
(De Moura & Bjørner, 2008) eliminates the need for manual proof writing. Furthermore,
its similarity to common languages like Python and C simplifies code transformation.
While several benchmarks (Ye et al., 2025b; Thakur et al., 2025) target at building a reliable
reasoning system by formally ensuring the exact code generation (György et al., 2025), their
progress is constrained by the reliance on manually-written, ground-truth specifications for
evaluation. This formal annotation process is incredibly labour-intensive and requires deep
expertise (Misu et al., 2024), which sets a barrier to scaling these benchmarks in both
size and complexity. As a result, prominent Dafny benchmarks, including DafnySynthesis
(Misu et al., 2024) and CloverBench (Sun et al., 2024), contain only 215 simple examples
combined, insufficient for evaluating current LLMs’ advanced reasoning abilities. Moreover,
the reliance on expert annotation is not only a scaling bottleneck; it also leads to a reliability
issue. An analysis (Sun et al., 2024) has figured that 10% of expert-written specifications

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Binary search:
Given a sorted array and a target,
return the index if found else -1.

Query Code + Spec

Hard-Coded

Statement that Spec ==> Code

Dafny Verifier

Dafny Verifier

Dafny Verified
Bidirectional
Proofs

Equiv.
Code &

Spec

The method searches for key in a sorted, non-null array
a. If the key is not found, it returns negative one and
guarantees the key is not in the array. If it finds the key,
it returns the index of an element equal to the key.

Natural Language QueryGenerated Spec

Validate The Solution

Figure 1: An end-to-end verifiable coding agent first generates code and specifications,
using the Dafny verifier to prove their mutual equivalence. Here, the script to verify the
implication from specification to code can be generated directly by our Python code. It
then translates the complete formal specification back into natural language, allowing the
user to confirm that it aligns with their original intent.

in DafnySynthesis are wrongly claimed as ground-truths, and our own review finds another
18%, containing errors or ambiguities. Such flaws undermine the validity of any benchmark
that depends on a ground-truth solution. This raises a critical question: How can we
reliably evaluate specifications’ quality without depending on the ground-truth? To answer
this question, we make the following concrete technical contributions:
Contribution 1. We propose a novel formally-grounded metric, named the equivalence
score, that measures the mutual equivalence between generated code and its specifications.
The score confirms whether a specification unambiguously describes the code’s behaviour by
using the Dafny verifier to check for bidirectional implication. This automated process has no
false positives, ensuring that only correctly matched code-specification pairs are accepted.
In order to validate the alignment with the query intention, we further include a second
evaluation step: translating formal specifications back to natural language, as used by Ying
et al. and Sun et al.. The complete pipeline is illustrated in Figure 1. Note that the effort
in translation between natural and formal languages is asymmetric, since natural language
can be ambiguous and lack necessary logic (Jiang et al.). Using Claude-4 as a judge (Wang
et al., 2025a), we observe a high success rate of 82.98% for Grok-4 translations, confirming
its viability as an evaluation metric.
Contribution 2. Equipped with our automated evaluation metric, we introduce VeriEquiv-
Bench, a benchmark of 2, 389 examples with natural language problem descriptions, code
and specifications, and additionally, 1, 678 synthetic algorithmic problems. VeriEquiv-
Bench significantly expands on prior work in both dataset size and problem complexity,
a leap demonstrated by the average Cyclomatic Complexity score, which rises from 2.44
in DafnySynthesis to 5.63. The core of our dataset is converted from the LeetCode cor-
pus (Xia et al., 2025), a large and community-validated collection of algorithmic problems
well-suited for evaluating a model’s reasoning abilities. To supplement this data, we also in-
troduce a synthesis pipeline that uses a structured tagging system to generate novel queries
by randomly combining tags for different domains, data structures, and algorithms, intro-
duced in Section 2.3. This provides a scalable method for creating large training datasets of
new problem descriptions that are fully compatible with our automated evaluation signal.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

However, Claude-4 is able to generate qualified Python code for only 15.85% of these novel
synthesis queries, reflecting the model’s limitations.
Contribution 3. We conduct a concrete evaluation of state-of-the-art LLMs, where Ver-
iEquivBench serves as a testbed for these models to explore and extend the reasoning abilities
on complex problems, beyond human-annotated data (Silver et al., 2021; Ye et al., 2025a;
Shojaee et al., 2025). Our evaluation highlights the profound difficulty of this task and the
effectiveness of our benchmark. The best-performing model, Claude-4-sonnet, which solves
75.81% of the problems in CloverBench, succeeds on only 4.83% of our data, even with a
pass@4 metric. Given this poor performance, and following prior work (Loughridge et al.,
2025; Yan et al., 2025), we include two simpler auxiliary tasks to scaffold the problem: (1)
infilling the necessary clauses to complete a given specification, and (2) generating a speci-
fication from provided Dafny code. To facilitate future research, we establish baselines for
both tasks using reinforcement learning.

2 Benchmark Overview And Construction Pipeline

In this section, we first present aggregate data statistics for VeriEquivBench. Subsequently,
we introduce the two curated subsets released with the benchmark: (i) the LeetCode-
transformed dataset, and (ii) a tag-composition dataset, called TagComp, the latter being
explicitly constructed to evaluate verifiable agents on novel data without contamination (Tu
et al., 2024; Riddell et al., 2024).
Each problem in our benchmark provides a comprehensive set of artifacts: a natural language
query, implementations in both Python and Dafny, unit tests and two versions of formal
specifications: a strong auto-formalized baseline explained in Section 2.1 and a weaker,
verifiable but incomplete version explained in Section 2.2. Additionally, each problem is
annotated with metadata, including its difficulty level and descriptive tags for the relevant
algorithm, data structure, and domain. Unlike LeetCode, our benchmark uses a more
detailed and structured set of tags to categorize problems. This new tagging system is
described in Section 2.3 for future query synthesis.
Starting from the original Leetcode split of 2, 641 training and 228 test instances, we first
curate 2, 174 cases successfully transformed to Dafny. Then we compose new problems
by merging tags, producing 1, 893 additional items; the full tag-composition procedure is
described in Section 2.3. For new problems, we ask Claude-4-sonnet to generate pairs of
Python code and corresponding unit tests. For only 300 of new problems, Claude-generated
code passes at least 85% of their corresponding unit tests, forming the cleaned TagComp
dataset. Of these, 215 samples clear the weak-baseline pipeline, giving us 2, 389 problems
in total that pair natural-language queries with formally annotated code.
Table 1 presents key metrics for our annotated Dafny code, which uses the weaker, ver-
ifiably correct specifications. Our problems are significantly more complex than those in
CloverBench, often involving multiple methods rather than a single one. Furthermore,
the corresponding specifications, while incomplete, contain a substantial number of formal
clauses.

Table 1: The table overviews several attributes of our annotated code.

Dataset Metric function method invariant ensures decreases
LeetCode mean 0.78 1.33 5.12 1.71 0.46
TagComp mean 0.96 3.18 7.34 3.14 0.70

2.1 LeetCode Autoformalization

Past formal-language sets such as DafnyBench (Loughridge et al., 2025) are still small and
narrow, because hand-written specifications are too costly to scale (Misu et al., 2024). To
obtain large, varied training data without extra human cost, we mine the classic Leetcode
pool, convert problems to formal specifications, stated in Figure 2 Pipeline 1, while keeping

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

query and specification aligned with two short tightening evaluation protocols (Sun et al.,
2024), shown in Figure 2 Pipeline 2.

Specification Generation We feed the problem description to Claude-4-sonnet to obtain
an initial Dafny specification, yet even the initial drafts often contain syntax errors. Thus,
we revise and resubmit up to ten times until the file has no parse or resolution errors. We
find that supplying two simple examples exploits the model’s in-context learning (Dong
et al., 2023) and sharply lowers the error rate (prompt template in Appendix C).
Furthermore, we constrain the model to generate specifications using only first-order logic,
prohibiting recursive or dynamic programming-style definitions. This ensures the specifi-
cation describes the problem’s declarative properties without leaking the implementation’s
structure.

Equivalence to NL The equivalence check follows the protocol proposed by Clover (2024)
and contains two steps: (1) A model (we use Grok4 here) rewrites the description so that
it cleanly mirrors the specification, then another model (Claude-4) judges the equivalence
between the original description and the rewritten one, yielding a score; (2) The specification
alone is translated into Python and executed against the ground-truth LeetCode unit tests.
The unit test passing rate is reported in Appendix G.1.

Figure 2: The figure outlines our autoformalization and code generation workflow: Pipeline
1 produces comprehensive and syntax-free specifications; Pipeline 2 checks consistency be-
tween the NL query and the specifications; Pipeline 3 emits fully annotated code that passes
the verifier.

2.2 LeetCode Verifiable Code Generation

Owing to the limited performance of state-of-the-art LLMs on challenging formal-language
coding, we adopt the multi-stage pipeline (pipeline 3 of Figure 2): prompted by the previ-
ously generated specifications, the problem description, and a reference Python solution, the
stronger model (Claude-4) produces annotated Dafny code, while a lighter model (Claude-
3.5) then polishes this output, iterating up to six times to eliminate any syntax or parsing
errors.
In practice, the vast majority of problems converge within three refinement rounds, while a
residual subset still fails to yield a well-formed artifact even after the sixth attempt, with
the success transformation rate reported in Table 2, and data statistics reported in Table 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: The table shows the number of examples without syntax errors in autoformalization
and verifiable examples in code generation.

Dataset Spec Autoformalization Dafny Code Genetation
Number Rate (%) Number Rate (%)

LeetCode 2584 90.1 2174 75.8
TagComp 296 98.7 215 71.7

2.3 Data Synthesis Through Tag Composition

We propose constructing a fine-grained, “template-level” taxonomy to provide an abstract
description of algorithmic problems via tags (Wang et al., 2025c). In our system, every task
is labelled with three orthogonal categories: domain, data-structure, and algorithm
class((Chollet et al., 2025)).
To obtain these labels, we (i) harvest a high-quality seed pool from the Luogu online judge
(luo, 2025), and (ii) manually prune hallucinated or off-topic tags. Our ontology defines
over 500 fine-grained tags, offering more than seven times the descriptive granularity of the
69 tags used by LeetCode (see Appendix A for a comparison). The tag set is designed
so that, taken together, the tags collectively reflect the complete programming knowledge
entailed by each individual problem, while retaining a modest level of abstraction.
The three categories of tags capture complementary aspects of programming knowledge.
First, the domain category encompasses the overarching problem space or application con-
text in which an algorithm operates, such as graph theory. Second, the data structure
category pertains to the foundational mechanisms for manipulating data that underpin the
algorithm’s functionality and efficiency, like arrays. Third, the algorithm category refers
to the core strategic paradigm employed, such as sorting, focusing on the decision-making
logic. These algorithm tags directly shape the overall control flow of a solution, as they
orchestrate the program logic and structure.
However, not all problems conform to highly standardized patterns. In contemporary algo-
rithmic competition problems, for instance, many challenges necessitate solvers to discern
the underlying mathematical structures, an approach commonly termed ”constructive meth-
ods”. From a coding perspective, these constructive methods typically appear as compact
code blocks that rely solely on fundamental loops or arithmetic operations. Consequently,
it is difficult to categorize them beyond a general “constructive method” tag. From the
problem setter’s viewpoint, such problems and their solutions stem from empirically ob-
served mathematical structural properties, which inherently resist exhaustive coverage by
conventional tags.
To synthesize novel queries, we select tags in the following workflow: first, we randomly pull
12 tags from each of three pools, and then let Claude-4 pick any 3–8 tags in total. This short
list is fed back to the model so that Claude can create one clear algorithm question with
roughly 40 unit tests (Xu et al., 2025). Initially, we create approximately 1, 900 problems,
but only retain the 300 that pass at least 85%of their tests (Xu et al., 2025), and call this
clean set, TagComp. The detailed pipeline and prompt templates used can be found in
Appendix B and Appendix C.

3 Evaluation Metrics And Tasks

A verifiable coding agent reduces hallucinations and provides trustworthy solutions aligned
with users’ intentions. As shown in Figure 1, our solution evaluation includes two steps,
which are

• verifying the equivalence between generated code and specifications, and
• validating the solution by translating formal specifications back to problem descrip-

tions in natural languages.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

method Check_Max_Spec(a: int, b: int) returns (max: int)
{

max := *;
assume max >= a;
var value := Max(a, b);
assert value == max;

}

Figure 3: We show an example where the equivalence score proves the given specifications
are underspecified for returning the maximum between two integers. The code presents the
statement to verify whether the specification implies the code.

To understand the need for verifying the equivalence between the code and the specifica-
tions, consider a simple binary search algorithm. The goal is to return the index of a key
in a sorted array a, or negative one if the key is not found. A weak but verifiable post-
condition might only state that the output, idx, is within a valid range: ensures -1 <=
idx < a.Length. While this specification passes the verifier, it fails to exactly describe the
code. This creates a dangerous loophole: an incorrect implementation that doesn’t actually
find the key could still satisfy this weak condition, and the verifier would not catch the error.
Existing benchmarks do not offer a metric to formally validate the quality of specifications.
Without one, there is no way to guarantee that the verified code truly aligns with its
intended behaviour. Instead, building up equivalence examines whether the specification is
complete without ambiguities. Our equivalence score accomplishes the task by proving the
bidirectional implication relationship:

• whether the code falls into the lattices described by the specifications, and
• whether specifications tightly describe the code behaviour for any inputs.

Both proofs can be automatically completed by the Dafny verifier. The first direction can
be verified by passing the annotation to the verifier. The second direction requires creating
a statement that the specification implies the code for the verifier to check.
Figure 3 presents a counterexample to illustrate how our equivalence score identifies an
underspecified function. The Max method correctly returns the maximum of two integers a
and b, but its post-condition (ensures max >= a) is too weak; it doesn’t guarantee that the
output is also greater than or equal to b. To test if the specification fully implies the code’s
behaviour, we use the Check_Max_Spec method. This method creates an arbitrary value
max, assumed to satisfy all provided pre-conditions and post-conditions. Our equivalence
score then tests the assertion that variables described by the specifications are equal to the
method outputs. The Dafny verifier is guaranteed to find this assertion to be false without
any false positives. Because the specification is not strong enough to imply the code, this
program would not receive an equivalence score.
As mentioned in the introduction, end-to-end formally verifiable code generation is still
challenging for current proprietary LLMs. Dafny has its own programming logic, such
as claiming the invariance of old elements in arrays to support the proof. Therefore, we
re-emphasize the importance of two auxiliary tasks to facilitate understanding of specific
nuances of Dafny, introduced in DafnyBench (Loughridge et al., 2025) and Veri-Code Series
I (2025):

• Verifiable Code Refinement: Given annotated but unverified Dafny code, the
model’s goal is to add the necessary intermediate clauses, such as invariants and
lemmas, to make the code pass the verifier. Success is determined by successful
verification.

• Code-To-Spec Generation: Given a Dafny implementation, the model attempts
to generate the strongest formal specification. The quality of the output is evaluated
by measuring its strength improvement over a baseline, using the spec-superior-score
(Yan et al., 2025).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Our two sets of formal specifications map onto these auxiliary tasks. For the Verifiable Code
Refinement task, models are challenged to fix our strong auto-formalized specifications. For
the Code-to-Specification Generation task, models improve upon our weaker, but already
verified, specifications.

4 Empirical Evaluation

This section validates the quality of our benchmark and the reliability of our evaluation
metric. We then present the performance of several state-of-the-art LLMs on the end-to-
end verifiable code generation task, followed by an analysis of our baselines on the two
auxiliary tasks.

4.1 Quality Metrics

Specification Quality Our strong specification baseline, generated via auto-
formalization, contains the ground-truth specification for 7.14% of the LeetCode-derived
problems and 7.87% of the synthetic TagComp problems, shown in Figure 5. In total, this
process yields 161 complex algorithmic data with rigorously verified specifications. This
significantly enriches the publicly available dataset of ground-truth specifications.

Code Transformation Quality To evaluate the quality of our Python-to-Dafny code
transformation, we attempt to validate 1, 011 Dafny programs from the LeetCode set against
the corresponding unit tests. Due to the mismatch between Python and Dafny unit test
formats, we only successfully execute 648 transformed unit test files. However, the trans-
formation is proven highly reliable, with 81.79% of the translated Dafny programs passing
all tests.

Data Complexity The average Cyclomatic Complexity (McCabe, 1976) quantitatively
manifests the increasing complexity of our data, which counts the number of linearly inde-
pendent paths in the control flow graph. It is computed using the Radon software package
for Python, listed in Table 3.
We list the score for MBPP (Austin et al., 2021), since 50 manually annotated data in
DafnySynthesis are based on MBPP-50 and the other 103 are also transformed from it.
Thus, the analysis represents a comparison to DafnySynthesis. We skip the analysis of
CloverBench due to a lack of Python implementations. Our benchmark’s average score of
5.63 is significantly higher than the 2.44 for DafnySynthesis, indicating more complicated
control flows. Notably, our synthetically generated data is even slightly more complex than
the LeetCode-derived portion, with a score that is 0.25 points higher. This complexity is
further validated by a manual rating from Claude-4, which classified the majority of our
synthetic problems as either medium or hard.

Table 3: The table compares the code complexity of a previous benchmark and VeriEquiv-
Bench, indicating a more intricate control flow of our data.

Dataset MBPP-50 MBPP LeetCode TagComp
Average Cyclomatic Complexity 2.44 2.78 5.38 5.63

4.2 Validation of the Evaluation Metrics

We first validate our equivalence score on 50 expert-written verifiable code provided in
DafnySynthesis. CloverBench has reviewed their data and reported that 10% of the data
does not give the ground-truth specification. After testing on our evaluation metric, the
equivalence score, we figure out another nine examples where the formal specification con-
tains ambiguities or the original code has errors. An example is shown in Figure 4, where the
formal specification does not specify the invariance of array length and leaves a logic gap.
However, only eight examples out of 14 failures are successfully fixed by us, demonstrating

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

method SwapFirstAndLast(a: array<int>)
requires a.Length > 0
modifies a
######## ⇓ The added post-condition
ensures a.Length == old(a).Length
######## ⇑
ensures a[0] == old(a[a.Length - 1])
ensures a[a.Length - 1] == old(a[0])
ensures forall k :: 1 <= k < a.Length - 1 ==> a[k] ==

old(a[k])
{

var tmp := a[0];
a[0] := a[a.Length - 1];
a[a.Length - 1] := tmp;

}

Figure 4: An example of a weak specification in sample #625 that fails equivalence scoring.
The formal specification is ambiguous as it omits a post-condition on the invariance of the
array’s length.

the hardness in manual annotation. All examples with wrongly claimed ground-truth are
listed in Appendix G.4 with the issues stated.
Next, we evaluate all previous benchmarks and observe a serious quality issue in previously
provided ground-truth formal specifications, shown in Table 4. It has been discussed that
the equivalence check relying on natural language provided in Clover has limitations, and
it turns out that a large number of specifications do not establish the equivalence with the
code. Meanwhile, DafnyBench is not designed for checking the completeness of specifications
and thus, gives the lowest score.
Furthermore, we evaluate Grok-4’s translation ability, using Claude-4-sonnet as a judge
(Wang et al., 2025a). We test it on our filtered auto-formalized specifications derived from
LeetCode and observe a high success rate of 82.98%, validating it as a reasonable evaluation
metric.

Table 4: We present the percentage of data gaining the equivalence score in previous bench-
marks.

Dataset DafnySynthesis CloverBench DafnyBench
Equivalence Score 76.22% 61.29% 43.09%

4.3 Verifiable Code Generation

Figure 5 (b) and (c) present the pass@4 results of three proprietary LLMs on end-to-end
formally verifiable code generation, tested on CloverBench and our contamination-free syn-
thetic set, TagComp. We also evaluate three open-source model with complete results pre-
sented in Figure 23. On the previous CloverBench benchmark, a capable model like Claude
achieves a 75.81% success rate, with most errors stemming from issues in specification writ-
ing rather than fundamental code generation flaws. However, on our more challenging
TagComp dataset, this performance collapses. While the model achieves code-specification
equivalence on 10.34% of the problems, more than half of these successes are undermined by
incorrect code generation, demonstrating that our benchmark effectively tests both coding
and formal reasoning abilities.
A closer look at our benchmark results reveals the challenge of verifiable code generation.
While Claude is most capable of producing syntactically correct Dafny code, all three models

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

struggle significantly with generating mutually equivalent code and specifications aligned
with the query intention. In our rigorous two-step evaluation, the equivalence score mea-
sures the formal alignment of code and specifications, while the exact matching score further
validates against the original natural language intent. Ultimately, fewer than 5% of the gen-
erated solutions from any model pass this framework. This result underscores the difficulty
of formally verifiable code generation on complex algorithmic problems, requiring strong
coding and formal reasoning abilities.

(a): Dataset Quality Analysis (b) CloverBench Performance (c) VeriEquivBench Performance

Exact Matching Equivalent Verified Syntax-Correct

9/25/25, 8:32 AM Academic Performance Figures - PDF Ready

https://onecompiler.com/html/43xnt92dy 1/1

Figure 5: Exact matching score measures the percentage of data passing our two-step eval-
uation framework, giving solutions aligned with the query intention. Part (a) gives the
amount of verified ground-truth solutions in our benchmark. Part (b) shows that the pre-
vious CloverBench benchmark is too simple to properly evaluate the advanced reasoning
abilities of capable models, as evidenced by a high success rate. Part (c) presents the
pass@4 performance of gemini-2.5-flash, gpt-5, and claude-4-sonnet on our end-to-
end verifiable code generation task.

4.4 Auxiliary Tasks

For the two auxiliary tasks mentioned in Section 3, we provide two RL-trained baselines,
with the SFT model provided in Veri-Code Series I (2025). As stated, the verifiable code
refinement task uses passing the verifier or not as the reward to infill intermediate clauses,
while the spec generation task uses the spec superior score introduced by Yan et al. (2025).
Spec superior score measures whether the generation specifications described the code better
than our weak baseline. The choice of the RL algorithm and hyperparameters follows their
implementation as well. We split our LeetCode transformed data into three parts with 1770
training data, 200 validation data and 204 out-of-domain test data, using tags uncovered
by the training data.
Our baseline scores 17.68% for the refinement task and 54% for the spec generation task
on the validation set. However, in the spec generation task, almost no data generates a
complete specification, resulting in an equivalence score. A possible reason is that the SFT
model provided is trained on overly simple problems and does not have enough exploration
ability. The training curve and results on the test set are presented in Appendix G.3.

5 Related Works

A central challenge in advancing LLMs is developing metrics that not only assess perfor-
mance but also provide a clear signal for improvement we desire. Outcome-based metrics,
such as final-answer accuracy in mathematical reasoning (Cobbe et al., 2021) or pass rates

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

on unit tests in code generation (Austin et al., 2021), are prevalent but limited. They
disregard the fidelity of the reasoning process and remain susceptible to false positives, a
limitation shared by methods employing external solvers for verification (Huang et al., 2025;
Feng et al., 2025).
Formal verification offers a more rigorous evaluation alternative, using proof checkers like
Dafny (Leino, 2010) or Lean (De Moura et al., 2015) to provide an unambiguous correctness
signal without requiring a ground-truth solution. However, in verifiable code generation,
this signal is fundamentally unidirectional: it validates that the code satisfies a specification
but offers no guarantees about the specification’s quality. This vulnerability allows models
to pass verification using trivial or flawed specifications (Yan et al., 2025). While Yan et al.
(2025) attempt to address this by comparing generated specifications against ground-truth
specifications using a partial order, their method remains dependent on the quality and
availability of trusted ground-truth. In contrast, our work introduces a formal equivalence
metric that verifies the bidirectional correspondence between code and specification. This
approach ensures the specification fully captures the program’s behavior without relying on
a ground-truth specification.
The absence of such a metric has hampered the creation of high-quality benchmarks for aut-
oformalization. Existing datasets often lack the tripartite alignment of natural language,
code, and formal specifications (Lohn & Welleck, 2024; Loughridge et al., 2025; Dougherty
& Mehta, 2025; Yan et al., 2025) or are small-scale due to the high cost of manual annota-
tion (Misu et al., 2024; Sun et al., 2024; Miranda et al., 2025; Ye et al., 2025b). Attempts
to automate equivalence checking have proven unreliable; for instance, Clover (Sun et al.,
2024) relies on LLM-based judgments that suffer from high error rates. Addressing these
deficiencies, we present VeriEquivBench, a benchmark an order of magnitude larger than
prior work. Enabled by our robust equivalence metric, it provides a large-scale, trustworthy
resource for developing and evaluating models for verifiable code generation.

6 Conclusion

In this paper, we confront a foundational challenge hindering the development of reliable
verifiable systems: the dependence on small, manually-annotated benchmarks for formal ver-
ification. This issue limits the scale and complexity of evaluation and has also introduced a
ceiling by human knowledge. Our work breaks the dependency and introduces VeriEquiv-
Bench, a large-scale end-to-end formally verifiable code generation benchmark. Our novel
automated equivalence score provides a rigorous evaluation signal without any need for
human-written, ground-truth specifications. Second, our structured tagging system enables
the scalable, automated synthesis of novel and complex problems, directly addressing the
data generation bottleneck. By using VeriEquivBench to evaluate state-of-the-art LLMs, we
have demonstrated that end-to-end verifiable code generation remains an open challenge, a
fact obscured by the inflated success rates on simpler, older benchmarks. Following the re-
cent discussions on self-evolving agents, our benchmark provides a scalable data generation
engine and a reliable auto-evaluation metric, setting the groundwork to foster trustworthy
AI agents with exact solution generation and sustainably supervise super-intelligence agents.

7 Reproducibility statement

The code and our dataset are included in the supplementary material and will be publicly
available after the double-blind review process for reproducibility.

8 Ethics Statement

This work does not present any foreseeable ethical concerns. The research involves only
publicly available datasets and does not use or analyze sensitive or personally identifiable
information.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

References
Luogu online judge, 2025. URL https://www.luogu.com.cn/. Accessed: 2025-05-28.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with
large language models. arXiv preprint arXiv:2108.07732, 2021.

Francois Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. Arc-
agi-2: A new challenge for frontier ai reasoning systems. arXiv preprint arXiv:2505.11831,
2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL
https://arxiv.org/abs/2110.14168.

Domenico Cotroneo, Cristina Improta, Pietro Liguori, and Roberto Natella. Vulnerabilities
in ai code generators: Exploring targeted data poisoning attacks. In Proceedings of the
32nd IEEE/ACM International Conference on Program Comprehension, pp. 280–292,
2024.

David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia,
Steve Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, et al. Towards
guaranteed safe ai: A framework for ensuring robust and reliable ai systems. arXiv
preprint arXiv:2405.06624, 2024.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pp.
337–340. Springer, 2008.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob
Von Raumer. The lean theorem prover (system description). In International Conference
on Automated Deduction, pp. 378–388. Springer, 2015.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing
Xu, Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A
survey on in-context learning. 2023. doi: 10.48550/ARXIV.2301.00234. URL https:
//arxiv.org/abs/2301.00234.

Quinn Dougherty and Ronak Mehta. Proving the coding interview: A benchmark for for-
mally verified code generation. In 2025 IEEE/ACM International Workshop on Large
Language Models for Code (LLM4Code), pp. 72–79. IEEE, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool
use in llms, 2025. URL https://arxiv.org/abs/2504.11536.

András György, Tor Lattimore, Nevena Lazić, and Csaba Szepesvári. Beyond statis-
tical learning: Exact learning is essential for general intelligence. arXiv preprint
arXiv:2506.23908, 2025.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. LLMs for
mathematical modeling: Towards bridging the gap between natural and mathematical
languages. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Associ-
ation for Computational Linguistics: NAACL 2025, pp. 2678–2710, Albuquerque, New
Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-
7. doi: 10.18653/v1/2025.findings-naacl.146. URL https://aclanthology.org/2025.
findings-naacl.146/.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contami-
nation free evaluation of large language models for code. arXiv preprint arXiv:2403.07974,
2024.

11

https://www.luogu.com.cn/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2504.11536
https://aclanthology.org/2025.findings-naacl.146/
https://aclanthology.org/2025.findings-naacl.146/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Albert Qiaochu Jiang, SeanWelleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda
Li, Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding
formal theorem provers with informal proofs. In The Eleventh International Conference
on Learning Representations.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
In 12th International Conference on Learning Representations, ICLR 2024, 2024.

K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In
International conference on logic for programming artificial intelligence and reasoning,
pp. 348–370. Springer, 2010.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, 2022a.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter
Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang,
Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. Competition-level code generation with alphacode. Science, 378(6624):
1092–1097, December 2022b. ISSN 1095-9203. doi: 10.1126/science.abq1158. URL http:
//dx.doi.org/10.1126/science.abq1158.

Evan Lohn and Sean Welleck. minicodeprops: a minimal benchmark for proving code
properties. arXiv preprint arXiv:2406.11915, 2024.

Chloe R Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano, Chuyue Sun, Ying
Sheng, Anish Mudide, Md Rakib Hossain Misu, Nada Amin, and Max Tegmark.
Dafnybench: A benchmark for formal software verification. Transactions on Machine
Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/forum?id=
yBgTVWccIx.

Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, 1976. doi: 10.1109/TSE.1976.233837.

Brando Miranda, Zhanke Zhou, Allen Nie, Elyas Obbad, Leni Aniva, Kai Fronsdal, Weston
Kirk, Dilara Soylu, Andrea Yu, Ying Li, et al. Veribench: End-to-end formal verification
benchmark for ai code generation in lean 4. In 2nd AI for Math Workshop@ ICML 2025,
2025.

Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble. Towards ai-assisted
synthesis of verified dafny methods. Proceedings of the ACM on Software Engineering, 1
(FSE):812–835, 2024.

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluat-
ing code generation capabilities of language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
14116–14137, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and
Mehrdad Farajtabar. The illusion of thinking: Understanding the strengths and lim-
itations of reasoning models via the lens of problem complexity. arXiv preprint
arXiv:2506.06941, 2025.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough.
Artificial Intelligence, 299:103535, 2021.

Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Clo sed-loop ver ifiable
code generation. In International Symposium on AI Verification, pp. 134–155. Springer,
2024.

12

http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=yBgTVWccIx
https://openreview.net/forum?id=yBgTVWccIx

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Amitayush Thakur, Jasper Lee, George Tsoukalas, Meghana Sistla, Matthew Zhao, Stefan
Zetzsche, Greg Durrett, Yisong Yue, and Swarat Chaudhuri. Clever: A curated bench-
mark for formally verified code generation. arXiv preprint arXiv:2505.13938, 2025.

Shangqing Tu, Kejian Zhu, Yushi Bai, Zijun Yao, Lei Hou, and Juanzi Li. Dice: Detecting
in-distribution contamination in llm’s fine-tuning phase for math reasoning. arXiv preprint
arXiv:2406.04197, 2024.

Yutong Wang, Pengliang Ji, Chaoqun Yang, Kaixin Li, Ming Hu, Jiaoyang Li, and Guil-
laume Sartoretti. Mcts-judge: Test-time scaling in llm-as-a-judge for code correctness
evaluation. CoRR, 2025a.

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang, Shengmai Chen, Lei Ma, and Tianyi
Zhang. Towards understanding the characteristics of code generation errors made by
large language models. In 2025 IEEE/ACM 47th International Conference on Software
Engineering (ICSE), pp. 717–717. IEEE Computer Society, 2025b.

Zihan Wang, Jiaze Chen, Zhicheng Liu, Markus Mak, Yidi Du, Geonsik Moon, Luoqi Xu,
Aaron Tua, Kunshuo Peng, Jiayi Lu, Mingfei Xia, Boqian Zou, Chenyang Ran, Guang
Tian, Shoutai Zhu, Yeheng Duan, Zhenghui Kang, Zhenxing Lin, Shangshu Li, Qiang
Luo, Qingshen Long, Zhiyong Chen, Yihan Xiao, Yurong Wu, Daoguang Zan, Yuyi Fu,
Mingxuan Wang, and Ming Ding. Aethercode: Evaluating llms’ ability to win in premier
programming competitions, 2025c. URL https://arxiv.org/abs/2508.16402.

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and
Xiaolong Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient
training of code llms, 2025. URL https://arxiv.org/abs/2504.14655.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode:
A diverse, challenging, and verifiable synthetic dataset for coding, 2025. URL https:
//arxiv.org/abs/2503.02951.

Chuanhao Yan, Fengdi Che, Xuhan Huang, Xu Xu, Xin Li, Yizhi Li, Xingwei Qu, Jingzhe
Shi, Zhuangzhuang He, Chenghua Lin, et al. Re: Form–reducing human priors in scalable
formal software verification with rl in llms: A preliminary study on dafny. arXiv preprint
arXiv:2507.16331, 2025.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of Language Models:
Part 2.1, Grade-School Math and the Hidden Reasoning Process. In Proceedings of the
13th International Conference on Learning Representations, ICLR ’25, April 2025a. Full
version available at https://ssrn.com/abstract=5250629.

Zhe Ye, Zhengxu Yan, Jingxuan He, Timothe Kasriel, Kaiyu Yang, and Dawn Song. Verina:
Benchmarking verifiable code generation. arXiv preprint arXiv:2505.23135, 2025b.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean work-
book: A large-scale lean problem set formalized from natural language math problems.
Advances in Neural Information Processing Systems, 37:105848–105863, 2024.

Boxi Yu, Yuxuan Zhu, Pinjia He, and Daniel Kang. Utboost: Rigorous evaluation of coding
agents on swe-bench. arXiv preprint arXiv:2506.09289, 2025.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang,
QingyunWu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning
with zero data. arXiv preprint arXiv:2505.03335, 2025.

13

https://arxiv.org/abs/2508.16402
https://arxiv.org/abs/2504.14655
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://ssrn.com/abstract=5250629

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A Details about algorithm tags

To assemble a suitable tag vocabulary, we first collect high-quality, high-frequency labels
from Luogu—a competitive-programming platform with millions of users and an unusually
fine-grained tag taxonomy—and treat them as a seed set. For each LeetCode problem, the
model is prompted to pick the most relevant domain, data-structure, and algorithm tags
from this pool, and is allowed to introduce new tags only when no suitable match exists. All
model-selected tags are pooled, automatically partitioned into the three coarse categories,
and then manually filtered in a single pass: hallucinated labels are removed, near-duplicates
merged, and overly broad or overly narrow tags discarded. The resulting inventory contains
over 500 clean triples that serve as the controlled vocabulary for subsequent tag-composition.

Figure 6: The fifteen most frequently used tags in
our dataset.

Table 5: Statistics of algorithm tags

Tag category Numbers
Domain 53
Data Structure 68
Algorithm 480

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The complete curated tag set is listed below, grouped under the three top-level categories:
domain, data-structure, and algorithm.

Table 6: Domain tags

Category Tags

Domain

Mathematics, Number Theory, Probability Theory, Combinatorial
Mathematics, Linear Algebra, Computational Geometry, Plane geome-
try, Three-dimensional computational geometry, Graph Theory, Simple
Graph Theory, Game Theory, Information Theory, Dynamic Connec-
tivity, expectation, Set Cover Problem, allocation problem, Extremum
problem, path problem, Chess Board Problem, Stock Problem, Island
Problem, Maze Problem, Josephus problem, Frobenius problem, N-
Queens Problem, Knight’s Tour Problem, Two-dimensional partial or-
der problem, matching problem, Pairing problem, Interval problems,
Knapsack problem, Subset Sum Problem, Jump Game, Maximum Sub-
array Problem, Maximum Subsequence Problem, Largest Rectangle in
Histogram, longest chain, Path counting, Path Statistics, Connectivity,
Reachability analysis, periodic, Discrete Event Simulation, Time con-
straint, Permutations and Combinations, Counting Principles, Inclusion-
Exclusion Principle, Pigeonhole principle, Catalan number, Stirling
numbers of the second kind, Combinatorial counting, Combinatorial Op-
timization, Mathematical Techniques

Table 7: Data Structure tags

Category Tags

Data Structure

array, Two-dimensional array, Multidimensional array, sorted array, Cir-
cular array, tagged array, Difference Array, rolling array, Linked List,
doubly linked list, Circular Linked List, Queue, deque, Priority Queue,
Stack, monotonic stack, monotonic queue, tree, undirected tree, un-
rooted tree, Ring tree, Binary Tree, Complete Binary Tree, Perfect
Binary Tree, Balanced Binary Tree, Binary Search Tree, Tree data
structure, Trie, Segment Tree, Binary Indexed Tree, Heap, heap - min
heap, Huffman tree, Set, Hash Table, Adjacency List, Adjacency Matrix,
weight graph, Bipartite graph, Complete graph, Undirected graph, di-
rected graph, Reverse graph, Star graph, Directed Acyclic Graph (DAG),
Balanced tree, sparse matrix, Disjoint Set Union (DSU), Red-Black Tree,
AVL Tree, B-Tree, B+ Tree, Skip List, Bloom Filter, LRU Cache, Prefix
Tree, Suffix Tree, Suffix Array, Cartesian Tree, Splay Tree, Scapegoat
Tree, Persistent Data Structure, Linear List, Sparse Table, Mo’s Algo-
rithm Structure, Leftist Tree, Fibonacci Heap, Pairing Heap

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Algorithm tags

Category Tags

Algorithm-1

Compression algorithm,Dynamic Programming,Dynamic Programming
- Linear DP,Dynamic Programming-LIS,Dynamic Programming-Prefix
Sum,Dynamic Programming - 0/1 Knapsack,Dynamic Programming
- State Compression,Dynamic Programming - Interval DP,Dynamic
Programming - 2D DP,Dynamic Programming - Prefix Sum Opti-
mization,Dynamic Programming - Top-Down,Dynamic Programming -
Iterative,Dynamic Programming,Compression algorithm,Dynamic Pro-
gramming,Dynamic Programming - Linear DP,Dynamic Programming-
LIS,Dynamic Programming-Prefix Sum,Dynamic Programming - 0/1
Knapsack,Dynamic Programming - State Compression,Dynamic Pro-
gramming - Interval DP,Dynamic Programming - 2D DP,Dynamic
Programming - Prefix Sum Optimization,Dynamic Programming
- Top-Down,Dynamic Programming - Iterative,Dynamic Program-
ming, State Compression DP,Dynamic Programming - Mathemati-
cal Optimization,Digital DP,Count DP,Tree DP,knapsack DP,State
Compression DP,Dynamic Programming (DP),2D DP,Bidirectional
DP,Sequence DP,Matrix DP,State Machine DP,Bottom-up Dynamic
Programming,Bidirectional BFS,Multi-source BFS,0-1 BFS,Depth-First
Search (DFS),Breadth-First Search (BFS),Memoization,State space
search,Heuristic search,state search,Grid search,Path Finding,Binary
search,Binary Search - Answer,Binary Search - Right Boundary,Binary
Search - Left Boundary,Binary Search - Count,Binary Search -
Peak Finding,Binary Search - Maximum Value,Binary Search-Prefix
Sum,Binary Search - Middle Element,Binary Search - Line Search

Table 9: Algorithm tags

Category Tags

Algorithm-2

Sorting,Merge sort,Quick Sort,Three-way quicksort,Insertion
Sort,Counting Sort,Bucket Sort,Sort-Custom Sort,Sorting - Stable
Sort,Sorting - Lexicographical Order,Difference Sorting,multi-condition
sorting,Wiggle Sort,in-place sorting,Topological sorting,Quick Se-
lect,KMP algorithm,Rabin-Karp algorithm,Manacher’s algorithm,suffix
array,suffix tree,Z-function,prefix function,string pattern match-
ing,string wildcard matching,backtracking,Enumeration,Binary
Enumeration,Subset Enumeration,Combinatorial Enumeration,Two-
dimensional enumeration,Simulation,Greedy,Greedy - Interval Opera-
tion,Divide and conquer,Divide and Conquer - String Splitting,Divide
and Conquer - Closest Pair of Points in a Plane,Central Expansion
Method,Staining method,Contribution method,sliding window,Two
Pointers,Two Pointers - Sliding Window,Fast and slow point-
ers,Three Pointers,path compression,Path Tracing,Path reconstruc-
tion,Path Planning,Single-Source Shortest Path,Multi-Source Shortest
Path,Second shortest circuit,Constrained Shortest Path,shortest
path,Heap-optimized Dijkstra,Dijkstra’s algorithm,Dijkstra’s Algo-
rithm Variant,Bellman-Ford algorithm,Floyd’s cycle-finding algo-
rithm,Kruskal’s algorithm,Prim’s algorithm,Minimum Spanning Tree,
Bipartite Matching,Maximum Matching in Bipartite Graphs,Hungarian
algorithm,Minimum Cost Maximum Flow,Graham scan,Welzl’s algo-
rithm,linear sieve,Euler sieve,Eratosthenes sieve,Prime Sieve, Euclidean
algorithm,Bézout’s identity,Bézout’s theorem,Greatest Common Divisor
(GCD),Least Common Multiple (LCM),Prime Number Check

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Algorithm tags

Category Tags

Algorithm-3

Euclidean algorithm, Bézout’s identity, Bézout’s theorem,Greatest
Common Divisor(GCD),Least Common Multiple(LCM),Prime Number
Check,Prime factorization, Factorization,Integer factorization,Cantor
expansion,Fast exponentiation,Matrix Fast Exponentiation,Matrix
multiplication,matrix rotation,matrix transposition,Matrix opera-
tions,rotation matrix, flood fill algorithm,A* algorithm,Tarjan’s algo-
rithm,Morris traversal,Preorder Traversal, Inorder Traversal,Postorder
traversal,Level order traversal,Level Order Traversal,Reverse inorder
traversal,zigzag traversal,spiral, traversal,Vertical traversal,Vertical
Order Traversal,Boundary traversal,Diagonal Traversal,2D matrix
traversal,Traversal of 2D Array, Graph traversal,Linked list traver-
sal,Tree traversal,Directional traversal,Bidirectional traversal,reverse
traversal,Reverse traversal,One-pass traversal,Path Validation,Path
counting,Path Statistics,Path Construction,lexicographical compari-
son,Lexicographically smallest path,Maximum Value Search,Maximum
Value Maintenance,Range Maximum,Maximum Column Value,prefix
maximum,suffix minimum,suffix product,prefix product,Prefix
Sum,Prefix Sum - Difference,Prefix Sum - Modular Arithmetic,Prefix
Sum - Binary Search Optimization,2D prefix sum,suffix sum,partial
sum, subarray sum, submatrix sum, Area Sum,Area Calculation,ASCII
code manipulation,Character Mapping,Character Count,character
frequency,Digital encoding,Digital Parsing,Data Extraction,Number
Reversal,Integer Reversal,Integer Square Root,Integer Division,Fraction
Addition and Subtraction,Fractional Arithmetic,Fraction simpli-
fication,Score Calculation,percentile,Circular shift,Loop Detec-
tion,Ring Detection,Periodic Assessment,Bracket Matching,Isomorphic
Strings,String comparison,String Case Conversion,String concate-
nation,string concatenation,String manipulation,String search,string
matching,String-Substring Comparison,string-replacement,String
replacement,String trimming,string slicing,string splitting,String com-
pression,String decoding,string parsing,string continuity,substring
matching,prefix matching,Prefix Check,Longest Common Pre-
fix,Longest Common Suffix,Longest Common Subsequence,Longest
Common Subarray,Longest Repeating Substring,Longest Palindromic
Subsequence,Longest Non-decreasing Subarray,Longest Consecutive
Sequence,longest consecutive characters,Word Chain,Zigzag Conver-
sion,palindrome,Expression parsing,Expression Evaluation,Reverse
Polish Notation,Postfix expression,Operator precedence,Lexical
Analysis,parsing,Serialization,Deserialization,Encoding,decoding,Run-
length encoding,Set Operations,Set Intersection,Bitwise oper-
ation,Bitwise operation optimization,Bitwise Operations - State
Compression,bitmask,Bitwise OR, AND operation,XOR,binary,Binary
Addition,binary splitting,Binary counting,bit count,Hamming dis-
tance,Two’s complement,Modular arithmetic,modulo 3 opera-
tion,Congruence,Congruence theorem,divisible,Divisibility prop-
erty,divisor,perfect square,square number,Perfect number,Ugly num-
ber,trailing zeros,digit separation,Digital Processing,Digital Sum,Gray
code,Permutation, Next Permutation,Arrangement,Permutation
ring,Cyclic permutation,Pascal’s triangle,Fermat’s theorem on sums
of two, squares,Pythagorean theorem,Triangle inequality,absolute
value,absolute value inequality,Big Integer Addition,High precision

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: Algorithm tags

Category Tags

Algorithm-4

Floating-point processing,Floating-point comparison,floating-point
precision,Linear equation,polynomial,Complex Number Opera-
tions,Rational number representation,recurring decimal,factorial,Sum
of Squares,Sum,Summation formula,arithmetic sequence,Arithmetic
sequence summation,path sum,Maximum Sum Path,Maximum spac-
ing,Neighbor Count,Adjacent elements,Adjacent Element Differ-
ence,Global Inversion,Local inversion pairs,Inversion pair,anagram,vowel
substitution,coordinate,2D coordinates,coordinate system,coordinate
comparison,coordinate translation,coordinate compression,2D off-
set,2D plane,3D space,collinear points,Collinearity detection,convex
hull,minimum bounding rectangle,Triangle Area,Rectangle Area Cal-
culation,Overlapping Area Calculation,Rectangle Intersection,Circle-
Rectangle Intersection Detection,Minimum Enclosing Circle,Spatial
segmentation,2D cutting,Spatial optimization,Space complex-
ity optimization,Constant space complexity,Linear space com-
plexity,Time complexity analysis,Linear time complexity,Linear
scan,Pruning,Preprocessing,preprocessing,Offline processing,Dynamic
update,Dynamic Maintenance,Dynamic Maintenance Interval,Dynamic
Range Maintenance,Single-point modification,Range query,Interval
computation,Interval Statistics,Range update,Interval Merging,Interval
coverage,Interval Scheduling,Range extrema,Path Intersection De-
tection,Distance calculation,Euclidean distance,Manhattan dis-
tance,Chebyshev distance,projection,cross product,Polar sort-
ing,construct,Binary Construction,Tree Construction,Tree Re-
construction,Sequence Reconstruction,Constructing the answer
in reverse order,reverse,Reverse Linked List,Linked List Rever-
sal,String Reversal,Array Rearrangement,Linked List Reorder-
ing,Node switching,Segmentation,Split Array,split string,Split
and Merge,Convert 1D Array to 2D Array,matrix,2D ma-
trix,sparse matrix,ordered matrix,Rectangle Coverage,Adjacency
Matrix,Tree deletion operation,Tree depth,Tree Centroid,Tree Di-
ameter,subtree,Subtree Sum,leaf node,intermediate node,dummy
node,sentinel node,Middle of the Linked List,indegree,indegree
and outdegree,degree,degree sequence,Monotonicity,Monotonicity
Check,monotonic array,Decision Monotonicity,Symmetric,Boolean
operations,Logical Operations,Conditional statement,Filter Cri-
teria,Polarity,Parity Check,Boundary check,Boundary han-
dling,Edge case handling,Status Check,Status Log,State tran-
sition,State Machine,Finite State Automaton,Priority, han-
dling,Query Processing,Path processing,Overflow handling,Carry han-
dling,Recursion,recursive,Inductive method,derivation,traverse,Array
traversal,Grid traversal,directional search,State compres-
sion,Handling Duplicate Elements,deduplication,Enumeration optimiza-
tion,Sequence comparison,comparison function,Comparator,Regular
Expression,Pointer manipulation,Method chaining,Swap op-
eration,Displacement operation,Row and Column Opera-
tions,product,Multiplication Principle,Exponentiation,Base,Base
Conversion,Clock issues,loop section,IP address,reordering,Partial
Ordering,Equation Solving,Randomization,reverse thinking,Horse Rac-
ing Strategy,Connected component,Connected Component,Strongly
Connected Component,Lowest Common Ancestor (LCA),Eulerian
circuit,Hamiltonian path

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B Pipeline of Tag composition

Figure 7 illustrates our pipeline for generating new programming problems through tag
composition. The process begins by creating a candidate pool of 36 tags, randomly selecting
12 from each of our three categories: domain, algorithm, and data structure. This pool is
provided to an LLM, which is prompted to select a coherent subset of three to eight tags that
form a promising basis for a new problem. Using this selected combination, we then instruct
the LLM to generate a complete task, comprising a problem description, corresponding unit
tests, and a Python solution. As a final quality control step, we filter these generations by
executing the unit tests. We retain only those instances where the generated Python code
passes all tests, ultimately yielding a dataset of 300 validated programs.

Dynamic

Programming, BFS, ...

Algorithms

Mathematics, Number

Theory, ...

Domains

array, queue, ...

Data Structures

New Task

300 Samples in
Python

Randomly

Randomly

Randomly Description_i: Suppose...
 & Test cases_i: Input = ...
 & Python_Code_i

12 Domains
12 Algorithms

12 Data Structures

Tag Set:
Tag_1, ..., Tag_8LLM selector

 LLM

Unit Test
Pass Rate 85%

Figure 7: The pipeline for the tag compositon process.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C Prompt templates

C.1 Novel Tag Combination

[Task]
You have three categories of tags: domain, algorithm, and data_structure, each
containing 12 tags. Your task is to select a combination of 3–8 tags from these
categories to form a coherent programming problem. The problem should have a
specified difficulty level: easy, medium, or hard. Ensure the selected tags are compati-
ble and can logically form a single problem. Provide the chosen tags, the difficulty level.

[Requirements]

1.The task is clearly defined, specifying the need to select 3–8 tags from three categories
(domain, algorithm, data_structure) to form a coherent programming problem with a
specified difficulty level.
2.Requirements outline the tag selection process, ensuring compatibility and a reason-
able tag collection, the need for a difficulty level.
3.The selected tags must be compatible and form a reasonable tag collection that
results in a practical and solvable programming problem.
4.The problem must be assigned one of three difficulty levels: easy, medium, or hard,
reflecting the complexity of the problem based on the selected tags.

[Domain tags]
{{ domain_tags }}

[Algorithm tags]
{{ algo_tags }}

[Data Structure tags]
{{ data_tags }}

Output Format
This is the ouput format,You must respond in this specified output format:
{

"all_tags": "Graph Theory, Depth-First Search, Union-Find, Graph,
Disjoint Set",

"Domain": "Graph Theory",
"Algorithm": "Depth-First Search, Union-Find",
"Data_Structure":"Graph, Disjoint Set" ,
"Difficulty Level": "medium",

}

<|Problem End|>

Figure 8: The prompt is for selecting useful tags. We feed the model the 36 real tags from
3 categories randomly that will later drive new-problem generation, it returns the 3–8 tags
that form the most promising combination.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 Novel Problem Synthesis

[Task]
You are an expert algorithm problem creator. Your task is to create an easy or medium
difficulty ranking original coding problem using the given algorithm tags.Analyze the
given tags to generate a new problem.The problem should be completely original
coding problem that is NOT from any existing platforms (LeetCode, Codeforces, etc.)
or textbooks.

[Requirements]

1. Create a truly novel problem scenario with constraints
2. Combine the given tags in innovative ways
3. Ensure the problem is solvable but challenging
4. Provide a clear problem statement, examples, and constraints
5. Rate the difficulty(easy, medium, hard) appropriately

[Algorithm tags]
tags

Output Format
This is the output format. You must respond in this specified output format:
<|Problem Begin|>
problem
<|Problem End|>

Figure 9: The prompt uses the previously obtained real tags to generate a brand-new
problem.

C.3 Spec-to-NL

[Prompt]

Can you think of a minimal code implementation satisfying the specification? For
example, if the spec just ensures true, then any code can work. If the specification
ensures return values within a range, then assigning any value within the range can
work. Please think of the minimum code implementation and then come up a problem
description this minimal code satisfies.
Below are the specifications:

Figure 10: The prompt asks the model to read the supplied Dafny specification and produce
a concise summary that fully describes the coding problem it defines.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.4 LLM-As-A-Judge

[Prompt]

You are an expert in analyzing algorithm problem descriptions. You need to carefully
analyze the equivalence of two algorithm descriptions based on the following dimensions:
1. Core Problem Equivalence: - Is the essence of the problem identical? - Are the
solution objectives consistent?
2. Constraint Comparison: - Input constraints - Boundary case handling - Special case
requirements
3. Complexity Requirements: - Time complexity requirements - Space complexity
requirements
4. Detail Completeness: - Information loss check - Additional information analysis
Please provide an equivalence score from 0-100 and give a detailed analysis of your
reasoning.
Please analyze the equivalence between the following two algorithm descriptions:
Original Description:
New Description:
Please analyze according to the dimensions above and provide a score with detailed
explanation.Only put the score in a code block surrounded by triple backticks (“‘)”””

Figure 11: The prompt instructs the model to determine whether the two given programming
problems are semantically equivalent.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.5 NL Query To Verifiable Code

[Prompt]

You will get a problem description. Your task is to give a fully verified Dafny program.
Refer to the Dafny examples as guidance:
Fewshot Examples:
Problem description:
Please write the Dafny code that implements the functionality while ensuring:

1. Reference the Python implementation for algorithmic insights;
2. Add appropriate loop invariants with brief explanations;
3. Ensure full verification - your code must pass the Dafny verifier.

Output the complete Dafny program, including both the specification and implemen-
tation.

Figure 12: The prompt turns a natural-language query into a fully formal, verifiable speci-
fication together with correct-by-construction code.

D Model Argument Settings

Throughout all experiments, we retained the default values for every hyperparameter except
temperature and top-p. To balance creativity with reliability, we employed a two-level
sampling strategy: during the initial specification-generation stage shown in Pipeline 1 in
Figure 2, temperature was set to 0.7 and top-p to 0.9 to encourage diversity for generating
high-quality formal specifications equivalent to the NL query(Li et al., 2022b).
In all other phases, including annotated code generation in Pipeline 3 in Figure 2 and model
evaluation, temperature was reduced to 0.5 and top-p to 0.8 to promote deterministic and
consistent outputs.
The prompts are provided in Section C.
For model evaluation, the coding agent is provided with the problem in natural language
and is asked to generate four rollouts of annotated Dafny code. The equivalence score is then
evaluated for each rollout. Next, those rollouts that gain the equivalent score are passed
to Grok-4 to translate specifications back into NL. Finally, Claude-4 judges the equivalence
between the translated new description and the original query.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E Qualitative Analysis

E.1 Examples of Verification Failures

Most failures come from unprovable clauses, including missing intermediate proofs or un-
specified conditions, as shown in Figure 13. However, to be noticed, Dafny has strict re-
quirements for writing specifications in order to pass the verifier. We have provided two
examples, whose specifications are correct and follow the syntax rules, in Figure 14 and 15.
However, the Dafny verifier requires re-expressing the code in a different way to pass the
verifier.

[Example 1]

decreases grid.Length0 * grid.Length1 -CountVisitedLandCells(grid
, visited)

Error: decreases expression might not decrease.
Error: decreases expression must be bounded below by 0 at the end of the loop iteration.
[Example 2]

totalCost := totalCost + energyCosts[reachable[i]];

Error: index out of range.

Figure 13: We provide two examples which cannot pass the verifier with missing intermediate
clauses.

while i <= |text| - |pattern|
invariant 0 <= i <= |text| - |pattern| + 1
invariant forall j :: 0 <= j < i ==> text[j..j+|pattern|] != pattern
{

if i + |pattern| <= |text| && text[i..i+|pattern|] == pattern {
return true;

}
i := i + 1;

}

Figure 14: An example of Claude-generated code and specifications that cannot be verified
by the Dafny verifier, although all specifications are correctly written.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

method MountainPathNavigation(elevations: seq<int>, queries: seq<int
>) returns (results: seq<int>)

requires |elevations| > 0
requires forall i :: 0 <= i < |elevations| - 1 ==> elevations[i] <=

elevations[i+1] // non-decreasing
requires forall k :: k in queries ==> 0 <= k < |elevations|
ensures |results| == |queries|
ensures forall i :: 0 <= i < |results| ==>

(results[i] == -1 <==> (forall pos ::
queries[i] <= pos < |elevations| ==> !HasDescendingPath(
elevations , pos))) &&

(results[i] != -1 ==> queries[i] <= results[i] < |elevations| &&
HasDescendingPath(elevations , results[i]) &&

(forall pos :: queries[i] <= pos < results[i] ==> !
HasDescendingPath(elevations , pos)))

{
// First, precompute all valid positions
var validPositions := FindValidPositions(elevations);

// Answer each query using binary search
results := [];
for i := 0 to |queries|

invariant |results| == i
invariant forall j :: 0 <= j < i ==>

(results[j] == -1 <==> (forall pos ::
queries[j] <= pos < |elevations| ==> !HasDescendingPath(
elevations , pos))) &&

(results[j] != -1 ==>
queries[j] <= results[j] < |elevations| &&
HasDescendingPath(elevations , results[j]) &&

(forall pos :: queries[j] <= pos < results[j] ==> !
HasDescendingPath(elevations , pos)))

{
var result := BinarySearchLeftmost(validPositions , queries[i

]);
results := results + [result];

}
}

predicate HasDescendingPath(elevations: seq<int>, start: int)
requires 0 <= start < |elevations|

{
exists end :: start < end < |elevations| &&

(forall k :: start <= k < end ==> elevations[k] > elevations[
k+1])

}

Figure 15: An example of Claude-generated code and specifications that cannot be verified
by the Dafny verifier. Although all specifications are correctly written, it does not follow
the Dafny grammar.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The example in Figure 15 shows the limitation of the Dafny verifier. Consider the following
two preconditions:

requires forall k :: k in queries ==> 0 <= k < |elevations|,

and

requires forall i :: 0 <= i < | queries| ==> 0 <= queries[i] < |elevations|.

Although two preconditions express the same semantic content, the first condition generated
by Claude causes verification errors for the highlighted part in Figure 15; the range of each
element in queries cannot be proven. However, switching to the second precondition solves
the issue because the second precondition limits the range of each position needed for the
verifier.

E.2 An Example of Ambiguous Specifications

In this subsection, we present an example whose specifications are too weak to describe the
code behaviour and cannot pass our whole pipeline without alignment with the original user
intention.

Problem Description You are a security consultant for a museum that has a complex
layout of interconnected rooms. The museum has motion sensors that detect when visitors
move between rooms, and you need to validate if a recorded sequence of room visits repre-
sents a valid path through the museum. The museum layout is represented as an adjacency
matrix where 1 indicates a direct connection between two rooms, and 0 indicates no direct
connection. Additionally, the museum has special ’checkpoint rooms’ that visitors must pass
through in a specific order when moving between certain sections. Your task is to validate
a given path and determine if it’s physically possible given the room connections, and also
verify that all checkpoint rooms are visited in the correct sequence.
First line of the input contains integer n (number of rooms). Next n lines contain the
adjacency matrix (n × n) representing room connections. Next line contains integer k
(number of checkpoint rooms). Next line contains k integers representing the required order
of checkpoint rooms. Finally, the last line contains the path as a sequence of room numbers
to validate.”,
Return ’VALID’ if the path is valid (all consecutive rooms are connected and checkpoints
are visited in order), ’INVALID_CONNECTION’ if there’s an invalid room transition,
’INVALID_CHECKPOINT’ if checkpoints are not visited in the required order, or ’MISS-
ING_CHECKPOINT’ if not all checkpoints are visited.

Ambiguous Spec Generated By Claude The specification is shown in Figure 16.

method ValidateMuseumPath(n: int, adjacency_matrix: array2<int>,
checkpoints: array<int>, path: array<int>)

returns (result: string)
requires n >= 0
requires adjacency_matrix.Length0 == n &&

adjacency_matrix.Length1 == n
requires forall i, j :: 0 <= i < n && 0 <= j < n ==>

adjacency_matrix[i, j] == 0 || adjacency_matrix[i, j] == 1
requires forall i :: 0 <= i < checkpoints.Length ==>

0 <= checkpoints[i] < n
ensures result in {"VALID", "INVALID_CONNECTION", "INVALID_CHECKPOINT

", "MISSING_CHECKPOINT"}

Figure 16: Here is an example whose postconditions are too loose to describe the code
behaviour.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

method ValidateMuseumPath(n: int, adjacencyMatrix: array2<int>, k:
int, checkpoints: array<int>, path: array<int>) returns (result:

int)
requires 3 <= n <= 100
requires 1 <= k <= n
requires k <= path.Length <= 1000

requires adjacencyMatrix.Length0 == n && adjacencyMatrix.Length1 == n
requires checkpoints.Length == k
requires path.Length >= 1
requires forall i, j :: 0 <= i < n && 0 <= j < n ==>

adjacencyMatrix[i, j] == 0 || adjacencyMatrix[i, j] == 1
requires forall i :: 0 <= i < k ==> 0 <= checkpoints[i] < n
requires forall i :: 0 <= i < path.Length ==> 0 <= path[i] < n
requires forall i, j :: 0 <= i < j < k ==>

checkpoints[i] != checkpoints[j]

ensures 0 <= result <= 3

ensures result == 0 <==> (
(forall i :: 0 <= i < path.Length - 1 ==>

adjacencyMatrix[path[i], path[i+1]] == 1) &&
(forall cp :: 0 <= cp < k ==> exists i ::

0 <= i < path.Length && path[i] == checkpoints[cp]) &&
(forall cp1, cp2 :: 0 <= cp1 < cp2 < k ==>

exists i1, i2 :: 0 <= i1 < i2 < path.Length &&
path[i1] == checkpoints[cp1] && path[i2] == checkpoints[cp2])

)

ensures result == 1 <==> (
exists i :: 0 <= i < path.Length - 1 &&

adjacencyMatrix[path[i], path[i+1]] == 0
)

ensures result == 3 <==> (
(forall i :: 0 <= i < path.Length - 1 ==>

adjacencyMatrix[path[i], path[i+1]] == 1) &&
(exists cp :: 0 <= cp < k && forall i :: 0 <= i < path.Length ==>

path[i] != checkpoints[cp])
)
ensures result == 2 <==> (

(forall i :: 0 <= i < path.Length - 1 ==>
adjacencyMatrix[path[i], path[i+1]] == 1) &&

(forall cp :: 0 <= cp < k ==> exists i :: 0 <= i < path.Length &&
path[i] == checkpoints[cp]) &&

(exists cp1, cp2 :: 0 <= cp1 < cp2 < k &&
forall i1, i2 :: (0 <= i1 < i2 < path.Length &&
path[i1] == checkpoints[cp1] &&

path[i2] == checkpoints[cp2]) ==> false)
)
ensures result == 1 ==> (

exists i :: 0 <= i < path.Length - 1 &&
adjacencyMatrix[path[i], path[i+1]] == 0

)
ensures (forall i :: 0 <= i < path.Length - 1 ==>

adjacencyMatrix[path[i], path[i+1]] == 1) ==>
(result == 0 || result == 2 || result == 3)

Figure 17: Here is the strong specification generated using our pipeline. Our pipeline
translates natural language to specifications first and then reinserts them into the generated
code.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Translation by Grok-4 This method addresses a simplified museum path validation
problem, where the museum is modeled as a graph with n rooms (nodes) connected via a
binary adjacency matrix, a set of checkpoint rooms that might need to be visited, and a pro-
posed path sequence through the rooms. However, due to a policy of unconditional approval
(perhaps for a prototype or always-valid scenario), the function always deems the path valid
and returns ”VALID”, without checking connections, checkpoints, or path validity. It as-
sumes all inputs are well-formed (valid matrix size, binary entries, and checkpoint ranges)
and provides no detailed error reporting, effectively serving as a placeholder validator that
optimistically approves any tour route in reinforcement learning datasets for graph traversal
experiments. If needed, it could return other statuses like ”INVALID_CONNECTION” in
variants, but here it guarantees approval to satisfy minimal validation specs.

Equivalence Judgment by Claude-4 Final Equivalence Score: 0.
These two descriptions have zero equivalence. They describe completely unrelated prob-
lems: Different domains: Mountain elevation analysis vs. graph-based museum navigation;
Different data structures: 1D sorted array vs. 2D adjacency matrix with paths; Different
operations: Search for valid positions vs. unconditional approval; Different computational
requirements: Actual algorithm vs. placeholder function; Different I/O formats: Numerical
queries/positions vs. validation strings.
The only superficial similarity is that both involve some form of path or traversal concept,
but even this is fundamentally different (descending sequences in an array vs. connected
paths in a graph). There is no meaningful relationship between these two algorithm descrip-
tions.

Specification from Our Pipeline Figure 17 presents the generated specifications using
our pipeline for the same question. Our pipeline translates natural language to specifications
first and then reinserts them into the generated code. It leads to a noticeable improvement
in quality compared to code and specification generation being done simultaneously. This
reveals an interesting weakness of current models: models can separately generate specifi-
cations and code, but fail to do them together.

E.3 A Hard Example for Spec-to-NL Translation

In the above example, we remove any post-conditions on verifying the connectivity of the
path in the specification to create a hard test example for Spec-to-NL translation. This dif-
ference is successfully captured when translating the specifications back to natural language
and observed by the Judge model.

Translation by Grok-4 Problem: Subsequence Order Validator
Given an integer n (unused, for compatibility), an n × n adjacency matrix (unused, for
compatibility), an integer k (1 <= k <= n), an array of k unique checkpoints (room indices
from 0 to n-1), and an array representing a path (sequence of room indices from 0 to n-1,
length at least k), validate whether the path contains the exact sequence of checkpoints
as a (possibly non-consecutive) subsequence. Return 0 if it does (VALID), 2 if all check-
points appear but at least one pair has all occurrences of the earlier checkpoint after all
occurrences of the later one (INVALID_CHECKPOINT order violation), 3 if at least one
checkpoint does not appear in the path (MISSING_CHECKPOINT), and never return 1
(INVALID_CONNECTION, as connections are not checked). This can be used to check if
a sequence of events includes required milestones in a specified relative order, ignoring any
graph structure.

Equivalence Judement by Claude-4 Equivalence Score: 30.
Why this low score (30/100): Missing core functionality (-40 points): The new description
explicitly removes graph connectivity validation, which is a major component of the original
problem. This is not a minor detail - it’s half the problem.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Different output behavior (-20 points): Cannot return INVALID_CONNECTION, leading
to incorrect results for inputs with connection violations.
Explicit admission of incompleteness (-10 points): The new description acknowledges inputs
are ”unused, for compatibility,” indicating it’s deliberately solving a subset problem.
Why not lower (0-30): Shared checkpoint validation (+20 points): The checkpoint ordering
logic appears identical between both descriptions.
Same input format (+5 points): Both accept the same input structure (even if new ignores
parts).
Overlapping outputs (+5 points): Three of four output codes have the same meaning.

E.4 An Example with Tight Specifications but Mismatched Code

We also provide another example of wrongly generated code. Although the generated spec-
ifications accurately describe the code, the alignment between the code and the natural-
language query is not guaranteed and requires a second-step verification. Our pipeline
successfully captures the mismatch, which cannot be achieved by any other code generation
benchmark. Considering that this incorrect code passes 85% of co-generated unit tests, we
doubt the reliability of using LLM-generated unit tests to verify code.

Problem Description A chess tournament organizer needs to create a bracket system
for N players. The tournament follows a complete binary tree structure where each leaf
represents a player, and each internal node represents a match between winners of its sub-
trees. The organizer has a sorted array of player ratings and wants to generate all possible
valid tournament brackets using backtracking. A valid bracket must satisfy: 1) Each player
appears exactly once as a leaf, 2) The tournament tree is complete (all levels filled except
possibly the last), 3) Players are assigned to positions such that the bracket can accommo-
date exactly N players. You need to find the number of distinct ways to arrange players in
valid tournament brackets.

Incorrect Code The code, with its corresponding specification, is shown in Figure 18.

Translation by Grok-4 Problem: Tournament Outcome Counter You are organizing
a single-elimination tournament where players are eliminated one by one until only the
champion remains. Given a list of players (with 1 to 16 players), write a function tourna-
ment_bracket_count that calculates the total number of possible outcomes for the tourna-
ment, assuming a fixed bracket structure. Each game has exactly two possible results (one
player wins, the other loses), and a tournament with n players requires exactly n-1 games.
Therefore, the number of possible outcomes is 2(n−1).
Input: A list of players (e.g., a sequence of integers representing player IDs).
Constraints: 1 <= number of players <= 16.
Output: An integer representing the number of possible tournament outcomes.

Equivalence Judgment by Claude-4 Equivalence Score: 5.
The score of 5/100 reflects that while the new description uses similar terminology (peaks,
revenues, maximum sum), it describes implementations that: Do not solve the original
problem - returning constant 1 or the first element is not finding a maximum mountain-
pattern subsequence; Ignore all constraints - no mountain pattern validation whatsoever;
Have no algorithmic content - O(1) stub vs.O(n×m) algorithm; Are explicitly described as
placeholders - the text itself admits these are ”simplified” versions that ”ignore the actual
revenue data”.
The 5 points are awarded only for: Using the same domain context (ski resort/mountain
revenues); Sharing vocabulary (peaks, revenues, maximum); Acknowledging the existence
of input data structures.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

function exponential(base: int, exp: nat): int
decreases exp;

{
if exp == 0 then 1
else base * exponential(base, exp-1)

}

method TournamentBracketCount(players: seq<int>) returns (count: int)
requires 1 <= |players| <= 16
ensures count == exponential(2, |players|-1)

{
var n: int := |players|;
count := 1;
var i: int := 1;
if n == 1 {

return;
}
while i < n

invariant 1 <= i <= n
invariant count == exponential(2, i-1)
decreases n - i

{
count := count * 2;
i := i + 1;

}
}

Figure 18: Here is an example whose generated code does not satisfy the user request but
has tight specifications generated along with it.

This is essentially not an equivalent algorithm but rather a pair of stub functions that might
be used as placeholders before implementing the actual solution. The new description reads
like documentation for incomplete/prototype code rather than a working implementation of
the mountain revenue problem.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F Examples of Synthesis Problems

{
"title": "Magical Crystal Collection",
"difficulty": "medium",
"description": "You are an adventurer exploring a magical cave with n

crystals, each having a power value. The cave has a special
property: you can only collect crystals whose total power equals
exactly one of k magical target values. However, there's a twist
- the cave becomes unstable after collecting crystals, so you
want to find the target value that can be achieved using the
minimum number of crystals. If multiple targets require the same
minimum number of crystals , return the smallest target value. You
need to efficiently determine which magical target is achievable
and requires the fewest crystals.",

"input_format": "First line contains two integers n and k. Second
line contains n integers representing crystal power values. Third
line contains k integers representing the magical target values

.",
"output_format": "Return the magical target value that can be

achieved with minimum crystals , or -1 if no target is achievable
.",

"constraints": [
"1 <= n <= 20",
"1 <= k <= 1000",
"1 <= crystal power <= 1000",
"1 <= target values <= 20000",
"All crystal powers are positive integers",
"All target values are distinct"

],
"examples": [

{
"input": "4 3\n2 3 5 7\n10 12 17\n",
"output": "10",
"explanation": "Target 10 can be achieved with crystals [3,7]

(2 crystals), target 12 can be achieved with [2,3,7] (3
crystals), target 17 can be achieved with [2,3,5,7] (4
crystals). Minimum is 2 crystals for target 10."

},
{

"input": "3 2\n1 4 6\n8 11\n",
"output": "11",
"explanation": "Target 8 cannot be achieved with any subset.

Target 11 can be achieved with [1,4,6] (3 crystals). So
answer is 11."

},
{

"input": "3 3\n2 4 8\n6 14 16\n",
"output": "6",
"explanation": "Target 6 can be achieved with [2,4] (2

crystals), target 14 can be achieved with [2,4,8] (3
crystals), target 16 cannot be achieved. Minimum is 2
crystals for target 6."

}
],
"tags_used": ["Subset Sum Problem", "Binary search", "bitmask", "

array", "Heap"],
"time_complexity": "O(2^n * k + k log k)",
"space_complexity": "O(2^n + k)"

}

Figure 19: Problem 301’s natural-language description and example unit test.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F.1 Qualified Python Code Generated

def magical_crystal_collection(n, k, crystals, targets):
"""
Find the magical target value that can be achieved with minimum

crystals.

Args:
n: number of crystals
k: number of target values
crystals: list of crystal power values
targets: list of magical target values

Returns:
The target value achievable with minimum crystals, or -1 if none

achievable
"""
Dictionary to store minimum crystals needed for each possible sum
min_crystals_for_sum = {}

Generate all possible subsets using bit manipulation
for mask in range(1, 1 << n): # Start from 1 to exclude empty subset

subset_sum = 0
crystal_count = 0

for i in range(n):
if mask & (1 << i):

subset_sum += crystals[i]
crystal_count += 1

Update minimum crystals needed for this sum
if subset_sum not in min_crystals_for_sum or crystal_count <

min_crystals_for_sum[subset_sum]:
min_crystals_for_sum[subset_sum] = crystal_count

Find the best target
best_target = -1
min_crystals_needed = float('inf')

for target in targets:
if target in min_crystals_for_sum:

crystals_needed = min_crystals_for_sum[target]
if (crystals_needed < min_crystals_needed or

(crystals_needed == min_crystals_needed and target <
best_target)):

min_crystals_needed = crystals_needed
best_target = target

return best_target

Figure 20: Problem 301 passes all 40 unit tests.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F.2 Unqualified Python Code Generated

def forest_fire_spread(n, firefighters , edges):
"""
Find the maximum total number of firefighters that can be impacted
when starting the fire from the optimal station.

Args:
n: number of stations
firefighters: list of firefighters at each station (0-indexed)
edges: list of tuples representing bidirectional trails

Returns:
Maximum total number of firefighters that can be impacted

"""
Build adjacency list
graph = [[] for _ in range(n)]
for u, v in edges:

graph[u-1].append(v-1) # Convert to 0-indexed
graph[v-1].append(u-1)

def dfs(start, visited, current_firefighters):
"""
Perform DFS to spread fire from current station.
Fire spreads to neighbor only if current station has more

firefighters.
"""
visited.add(start)
total_impact = firefighters[start]

for neighbor in graph[start]:
if neighbor not in visited and current_firefighters >

firefighters[neighbor]:
total_impact += dfs(neighbor , visited, firefighters[

neighbor])

return total_impact

max_impact = 0

Try starting fire from each station
for start_station in range(n):

visited = set()
impact = dfs(start_station , visited, firefighters[start_station])
max_impact = max(max_impact , impact)

return max_impact

Figure 21: Problem 1547 has 22 passing and 19 failing test-cases. The DFS function incor-
rectly propagates state.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

def digital_library_traversal(input_str):
"""
Performs preorder traversal of book dependencies starting from a

given book.

Args:
input_str: String containing book dependencies and starting book

Returns:
String with books in preorder traversal order, one per line

"""
lines = input_str.strip().split('\n')
n = int(lines[0])

Parse dependencies
dependencies = {}

for i in range(1, n + 1):
line = lines[i]
if ':' in line:

book, deps_str = line.split(':', 1)
book = book.strip()
deps_str = deps_str.strip()

if deps_str:
deps = [dep.strip() for dep in deps_str.split(',')]
Sort dependencies alphabetically
deps.sort()

else:
deps = []

dependencies[book] = deps

starting_book = lines[n + 1].strip()

Check if starting book exists
if starting_book not in dependencies:

return "Book not found"

Perform preorder traversal
result = []

def preorder_traversal(book):
Visit current book
result.append(book)

Visit dependencies in alphabetical order
if book in dependencies:

for dependency in dependencies[book]:
if dependency in dependencies:

preorder_traversal(dependency)

preorder_traversal(starting_book)

return '\n'.join(result)

Figure 22: Problem 508 has 38 passing and 2 failing test-cases. Two unit tests violate
the problem’s stated constraints, preventing the otherwise-correct solution from passing all
cases.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

VeriEquivBench Performance Analysis

11/18/25, 4:35 PM VeriEquivBench Performance Analysis

file:///Users/fengdiche/Downloads/index.html 1/1

Figure 23: We evaluate three proprietary models and three open-sourced models using our
pipeline to verify the alignment between users’ intention and code generation. It turns
out that business-purpose models in large sizes outperform small, open-sourced models,
especially in writing less ambiguous specifications.

G Experimental Result Details

G.1 Quality Assurance of Python2Dafny Transformation

With 1, 011 questions randomly selected, we transform their unit tests in Python to Dafny.
However, due to the mismatch in Dafny grammar, not all questions are successfully trans-
formed without syntax errors; for example, our script uses seq<int> to define lists, but
some Dafny code requires array<int>. Also, not all unit tests satisfy the preconditions,
in which cases, the unverified Dafny code cannot be executed. Also, a few codes take too
long to compile and are stopped after 30 minutes. The details are listed in Table 12.
Finally, with 648 successfully executed code, 530 pass all unit tests with a full pass rate at
81.79%.

Table 12: The table shows the success rate of transforming Python unit tests to Danfy.

Selected Questions Syntax Errors Verification Errors Timeout Successful Execution
1011 297 62 4 648
100% 29.38% 6.13% 0.4% 64.1%

G.2 Testing on More Open-Sourced Models

We evaluate three proprietary models and three open-sourced models using our pipeline to
verify the alignment between users’ intentions and code generation. Here, we use Claude-4-
sonnet, GPT-5, Gemini-2.5-flash, DeepSeek-R1, Qwen-2.5-Coder-14B-Instruct and Llama3-
70B. Business-purpose models significantly outperform open-sourced models in writing
syntax-correct and tight specifications.

G.3 Training Curves on Auxiliary Tasks

We use the 14B SFT model provided by the Veri-Code Team and their code to RL-train
models using GRPO.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Training Curves for Auxiliary Tasks

0 10 20 30 40
0.16

0.17

0.18

0.19

0.2

Verifiable Code Refinement Task

Step

S
co

re

0 10 20 30 40
0

0.2

0.4

0.6

Step

S
pe

c
S
up

er
io

r
S
co

re

0 10 20 30 40
0

0.01

0.02

0.03

0.04
Validation Set OOD Test Set

Step

Eq
ui

va
le

nc
e

S
co

re

Spec Generation Task

9/24/25, 1:31 PM Verifiable Code Refinement Task

file:///Users/fengdiche/Downloads/index.html 1/1

Figure 24: During the verifiable code refinement task, the model barely improves, demon-
strating that RL training is not enough. During the spec generation task, the generated
specification quality keeps enhancing, but still fails to capture code behaviours without am-
biguities.

G.4 Details about DafnySynthesis Inspection

This section details our analysis of 14 ground-truth samples identified as problematic. Our
investigation revealed that two samples failed initial verification due to implementation
errors or timeouts, precluding further analysis. These were #566 and #632, the latter of
which was previously reported by Clover (Sun et al., 2024).
The primary issue in the remaining 12 samples was specification ambiguity stemming from
insufficient post-conditions. We successfully rectified this in eight cases by strengthening
their post-conditions, with the fixes validated through equivalence testing. Although our
refinements improved the specifications for two other samples, they still did not pass the
equivalence check. We were unable to resolve the ambiguities in the final two samples.
A significant portion of these ambiguous samples were newly discovered. Specifically, eight
samples (#579, #602, #625, #629, #733, #755, #793, #807) were not documented in the
prior work by Clover (Sun et al., 2024). Of these, we successfully fixed five (#625, #733,
#755, #793, #807) and refined one (#602). Corresponding code examples are shown in
Figures 25-32.
Regarding the issues previously reported by Clover, our findings for samples #567, #576,
#644, and #803 largely concur. We fixed three (#567, #644, #803) and refined one (#576),
with details in Figures 33-35. Conversely, sample #472 passed our equivalence checks, which
aligns with Clover’s classification of its issue as a natural-language inconsistency rather than
a specification defect. As noted, sample #632 was excluded due to a timeout.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

predicate InArray(a: array<int>, x: int)
reads a

{
exists i :: 0 <= i < a.Length && a[i] == x

}

method DissimilarElements(a: array<int>, b: array<int>) returns (result:
seq<int>)
ensures forall x :: x in result ==> (InArray(a, x) != InArray(b, x))
ensures forall i, j :: 0 <= i < j < |result| ==> result[i] != result[

j]
######## The post-conditions here omit that the first half of result

is in array a, while the second half is in b.
{

var res: seq<int> := [];
for i := 0 to a.Length

invariant 0 <= i <= a.Length
invariant forall x :: x in res ==> InArray(a, x)
invariant forall x :: x in res ==> InArray(a, x) != InArray(b, x)
invariant forall i, j :: 0 <= i < j < |res| ==> res[i] != res[j]

{
if !InArray(b, a[i]) && a[i] !in res
{

res := res + [a[i]];
}

}

ghost var partialSize := |res|;
for i := 0 to b.Length

invariant 0 <= i <= b.Length
invariant forall k :: partialSize <= k < |res| ==> InArray(b, res

[k])
invariant forall k :: 0 <= k < |res| ==> InArray(a, res[k]) !=

InArray(b, res[k])
invariant forall i, j :: 0 <= i < j < |res| ==> res[i] != res[j]

{
if !InArray(a, b[i]) && b[i] !in res
{

res := res + [b[i]];
}

}

result := res;
}

Figure 25: An unresolved specification ambiguity in DafnySynthesis sample #579. The
post-condition is insufficient because it fails to enforce the preservation of the relative order
of elements from the input array in the output.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

method FindFirstRepeatedChar(s: string) returns (found: bool, c: char)
ensures found ==> exists i, j :: 0 <= i < j < |s| && s[i] == s[j]

&& s[i] == c && (forall k, l :: 0 <= k < l < j
&& s[k] == s[l] ==> k >= i)

ensures !found ==> (forall i, j :: 0 <= i < j < |s| ==> s[i] != s[j])
######## ⇓ The added post-condition
ensures !found ==> c == ' '
######## ⇑

{
c := ' ';
found := false;
var inner_found := false;
var i := 0;
while i < |s| && !found

invariant 0 <= i <= |s|
invariant found == inner_found

invariant found ==> exists ii, jj :: 0 <= ii < i
&& ii < jj < |s| && s[ii] == s[jj] && s[ii] == c
&& (forall k, l :: 0 <= k < l < jj && s[k] == s[l] ==> k >= ii)

invariant !found <==> (forall ii, jj :: 0 <= ii < i
&& ii < jj < |s| ==> s[ii] != s[jj])

######## ⇓ The added loop invariant
invariant !found ==> c == ' '
######## ⇑

{
var j := i + 1;
while j < |s| && !inner_found

invariant i < j <= |s|
invariant inner_found ==> exists k :: i < k < |s|

&& s[i] == s[k] && s[i] == c
invariant !inner_found

<==> (forall k :: i < k < j ==> s[i] != s[k])
######## ⇓ The added loop invariant
invariant !inner_found ==> c == ' '
invariant !found
######## ⇑

{
if s[i] == s[j] {

inner_found := true;
c := s[i];

}
j := j + 1;

}
found := inner_found;
i := i + 1;

}
}

Figure 26: A refined but unfixed specification for sample #602. While the shown refinement
fails the equivalence test, a stricter post-condition (k > i) could not be verified due to a
timeout.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

method SwapFirstAndLast(a: array<int>)
requires a.Length > 0
modifies a
######## ⇓ The added post-condition
ensures a.Length == old(a.Length)
######## ⇑
ensures a[0] == old(a[a.Length - 1])
ensures a[a.Length - 1] == old(a[0])
ensures forall k :: 1 <= k < a.Length - 1 ==> a[k] == old(a[k])

{
var tmp := a[0];
a[0] := a[a.Length - 1];
a[a.Length - 1] := tmp;

}

Figure 27: A successfully resolved specification ambiguity in DafnySynthesis sample #625.
The original specification was ambiguous as it lacked a constraint on the output array’s
length. The ambiguity was rectified by introducing a post-condition ensuring the length
remains invariant.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

predicate IsEven(n: int)
{

n % 2 == 0
}

method FindEvenNumbers(arr: array<int>) returns (evenList: seq<int>)

ensures forall i :: 0 <= i < |evenList| ==> IsEven(evenList[i])
&& evenList[i] in arr[..]
ensures forall i :: 0 <= i < arr.Length && IsEven(arr[i])
==> arr[i] in evenList
######## The post-conditions here do not ensures the order preserving

between the input array and output array
{

evenList := [];
for i := 0 to arr.Length

invariant 0 <= i <= arr.Length
invariant 0 <= |evenList| <= i
invariant forall k :: 0 <= k < |evenList| ==> IsEven(evenList[k])

&& evenList[k] in arr[..]
invariant forall k :: 0 <= k < i && IsEven(arr[k]) ==> arr[k] in

evenList
{

if IsEven(arr[i])
{

evenList := evenList + [arr[i]];
}

}
}
method FindEvenNumbers_check(arr: array<int>) returns (evenList: seq<int

>)
{

evenList := *;
assume forall i :: 0 <= i < |evenList| ==> IsEven(evenList[i]) &&

evenList[i] in arr[..];
assume forall i :: 0 <= i < arr.Length && IsEven(arr[i]) ==> arr[i] in

evenList;
var val_0 :=FindEvenNumbers(arr);
assert evenList[..] == val_0[..];

}

Figure 28: An unresolved specification ambiguity in DafnySynthesis sample #629. The
post-condition is insufficient because it fails to enforce the preservation of the relative order
of elements from the input array.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

method FindFirstOccurrence(arr: array<int>, target: int) returns (index:
int)
requires arr != null
requires forall i, j :: 0 <= i < j < arr.Length ==> arr[i] <= arr[j]
ensures 0 <= index < arr.Length ==> arr[index] == target
ensures index == -1 ==> forall i :: 0 <= i < arr.Length ==> arr[i] !=

target
ensures forall i :: 0 <= i < arr.Length ==> arr[i] == old(arr[i])
######## ⇓ The added post-condition
ensures 0 <= index < arr.Length || index == -1
ensures 0 <= index < arr.Length ==> ((forall i :: 0 <= i < index ==>

arr[i] < arr[index]) && (forall j :: index <= j < arr.Length ==>
arr[j] >= arr[index]))

######## ⇑
{

index := -1;
for i := 0 to arr.Length

invariant 0 <= i <= arr.Length
invariant index == -1 ==> forall k :: 0 <= k < i ==> arr[k] !=

target
invariant 0 <= index < i ==> arr[index] == target
invariant forall k :: 0 <= k < arr.Length ==> arr[k] == old(arr[k

])
{

if arr[i] == target
{

index := i;
break;

}
if arr[i] > target
{

break;
}

}
}

Figure 29: A successfully resolved specification ambiguity in DafnySynthesis sample #733.
The original specification was insufficient, lacking detail for cases where the input index
is non-negative. The issue was fixed by refining the post-condition to explicitly define the
expected behavior for this scenario.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

function MinPair(s: seq<int>) : (r: int)
requires |s| == 2
ensures s[0] <= s[1] <==> r == s[0]
ensures s[0] > s[1] ==> r == s[1]

{
if s[0] <= s[1] then s[0] else s[1]

}
function min(s: seq<int>) : (r: int)

requires |s| >= 2
ensures forall i :: 0 <= i < |s| ==> r <= s[i]

{
if |s| == 2 then MinPair(s)
else MinPair([s[0], min(s[1..])])

}
method SecondSmallest(s: array<int>) returns (secondSmallest: int)

requires s.Length >= 2
requires exists i, j :: 0 <= i < s.Length && 0 <= j < s.Length

&& i != j && s[i] == min(s[..]) && s[j] != s[i]
ensures exists i, j :: 0 <= i < s.Length && 0 <= j < s.Length

&& i != j && s[i] == min(s[..]) && s[j] == secondSmallest
ensures forall k :: 0 <= k < s.Length && s[k] != min(s[..])

==> s[k] >= secondSmallest
######## ⇓ The added post-condition
ensures (exists i, j :: i != j && 0 <= i < s.Length

&& 0 <= j < s.Length && s[i] == s[j] && s[i] == min(s[..]))
==> secondSmallest == min(s[..])

ensures !(exists i, j :: i != j && 0 <= i < s.Length
&& 0 <= j < s.Length && s[i] == s[j] && s[i] == min(s[..]))
==> ((exists k :: 0 <= k < s.Length && s[k] == secondSmallest)

&& (forall k :: 0 <= k < s.Length && s[k] > min(s[..])
==> s[k] >= secondSmallest) && secondSmallest > min(s[..]))

######## ⇑
{

var minIndex := 0;
var secondMinIndex := 1;
if s[1] < s[0] {

minIndex := 1;
secondMinIndex := 0;

}
for i := 2 to s.Length
invariant 0 <= i <= s.Length
invariant 0 <= minIndex < i
invariant 0 <= secondMinIndex < i
invariant minIndex != secondMinIndex
invariant forall k :: 0 <= k < i ==> s[k] >= s[minIndex]
invariant forall k :: 0 <= k < i && k != minIndex ==> s[k] >= s[

secondMinIndex]
{

if s[i] < s[minIndex] {
secondMinIndex := minIndex;
minIndex := i;

} else if s[i] < s[secondMinIndex] {
secondMinIndex := i;

}
}

secondSmallest := s[secondMinIndex];
}

Figure 30: A successfully resolved specification ambiguity in DafnySynthesis sample #755.
The original specification was insufficient, failing to distinguish between cases with a unique
minimum value and those with multiple occurrences of the minimum. The ambiguity was
rectified by refining the post-condition to explicitly detail the expected behavior for both
scenarios.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

method LastPosition(arr: array<int>, elem: int) returns (pos: int)
requires arr.Length > 0
requires forall i, j :: 0 <= i < j < arr.Length ==> arr[i] <= arr[j]
######## ⇓ Original post-condition
// ensures pos == -1 || (0 <= pos < arr.Length && arr[pos] == elem &&

(pos <= arr.Length - 1 || arr[pos + 1] > elem))
######## ⇑
######## ⇓ The fixed post-condition
ensures pos == -1 <==> (forall j :: 0 <= j < arr.Length ==> arr[j] !=

elem)
ensures pos != -1 <==> (0 <= pos < arr.Length && arr[pos] == elem &&

(pos == arr.Length - 1 || arr[pos + 1] > elem))
######## ⇑
ensures forall i :: 0 <= i < arr.Length ==> arr[i] == old(arr[i])

{
pos := -1;
for i := 0 to arr.Length #### Originally , the upper bound is arr.

Length - 1, but it was buggy
invariant 0 <= i <= arr.Length
######## ⇓ Original loop invariant
// invariant pos == -1 || (0 <= pos < i && arr[pos] == elem && (

pos == i - 1 || arr[pos + 1] > elem))
######## ⇓ The fixed loop invariant
invariant pos == -1 <==> (forall j :: 0 <= j < i ==> arr[j] !=

elem)
invariant pos != -1 <==> (0 <= pos < i && arr[pos] == elem && (

pos == i - 1 || arr[pos + 1] > elem))
######## ⇑
invariant forall k :: 0 <= k < arr.Length ==> arr[k] == old(arr[k

])
{

if arr[i] == elem
{

pos := i;
}

}
}

Figure 31: A successfully resolved specification ambiguity in DafnySynthesis sample #793.
The original specification was insufficient as it failed to define distinct behaviors based on the
sign of the input parameter ‘pos’. The ambiguity was rectified by refining the post-condition
to explicitly handle the cases where ‘pos’ is negative and non-negative, respectively.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

predicate IsOdd(x: int)
{

x % 2 != 0
}

method FindFirstOdd(a: array<int>) returns (found: bool, index: int)
requires a != null
ensures !found ==> forall i :: 0 <= i < a.Length ==> !IsOdd(a[i])
ensures found ==> 0 <= index < a.Length && IsOdd(a[index])

&& forall i :: 0 <= i < index ==> !IsOdd(a[i])
######## ⇓ The added post-condition
ensures !found ==> index == a.Length
######## ⇑

{
found := false;
index := 0;
while (index < a.Length)

invariant 0 <= index <= a.Length
invariant !found ==> forall i :: 0 <= i < index ==> !IsOdd(a[i])
invariant found ==> IsOdd(a[index - 1]) && forall i :: 0 <= i <

index - 1 ==> !IsOdd(a[i])
{

if IsOdd(a[index])
{

found := true;
return;

}
index := index + 1;

}
}

Figure 32: A successfully resolved specification ambiguity in DafnySynthesis sample #807.
The original specification was insufficient, as it only described the behavior for successful
outcomes. The ambiguity was resolved by strengthening the post-condition to explicitly
define the program’s state in failure cases, ensuring comprehensive and predictable behavior.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

method IsSorted(a: array<int>) returns (sorted: bool)
requires a.Length > 0
######## ⇓ Original post-condition
// ensures sorted <== forall i, j :: 0 <= i < j < a.Length

==> a[i] <= a[j]
// ensures !sorted ==> exists i, j :: 0 <= i < j < a.Length

&& a[i] > a[j]
######## ⇑
######## ⇓ The fixed post-condition
ensures sorted <==> forall i, j :: 0 <= i < j < a.Length

==> a[i] <= a[j]
######## ⇑

{
sorted := true;
for i := 0 to a.Length - 1

invariant 0 <= i < a.Length
######## ⇓ Original loop invariant
// invariant sorted <== forall k, l :: 0 <= k < l < i

==> a[k] <= a[l]
// invariant !sorted ==> exists k :: 0 <= k < i && a[k] > a[k+1]
######## ⇑
######## ⇓ The fixed post-condition
invariant sorted <==> forall k, l :: 0 <= k < l <= i

==> a[k] <= a[l]
######## ⇑

{
if a[i] > a[i + 1]
{

sorted := false;
break;

}
}
sorted := sorted;

}

Figure 33: A successfully resolved specification ambiguity in DafnySynthesis sample #567,
an issue also identified by the Clover. The original post-condition was overly permissive,
stating only a sufficient condition for the desired outcome. The ambiguity was rectified by
strengthening this to a necessary and sufficient condition (an equivalence).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

method Reverse(a: array<int>)
modifies a

######## ⇓ The added post-condition
ensures a.Length == old(a.Length)

######## ⇑
ensures forall k :: 0 <= k < a.Length ==> a[k] == old(a[(a.Length -1) -

k])
{

var l := a.Length - 1;
var i := 0;
while (i < l-i)

invariant 0 <= i <= (l+1)/2
invariant forall k :: 0 <= k < i || l-i < k <= l ==> a[k] == old(a[l-

k])
invariant forall k :: i <= k <= l-i ==> a[k] == old(a[k])

{
a[i], a[l-i] := a[l-i], a[i];
i := i + 1;

}
}
method ReverseUptoK(s: array<int>, k: int)

modifies s
requires 2 <= k <= s.Length
######## ⇓ The added post-condition
ensures s.Length == old(s.Length)
######## ⇑
ensures forall i :: 0 <= i < k ==> s[i] == old(s[k - 1 - i])
ensures forall i :: k <= i < s.Length ==> s[i] == old(s[i])

{
var l := k - 1;
var i := 0;
while (i < l-i)

invariant 0 <= i <= (l+1)/2;
invariant forall p :: 0 <= p < i || l-i < p <= l ==> s[p] == old(s[l-

p]);
invariant forall p :: i <= p <= l-i ==> s[p] == old(s[p]);

invariant forall p :: k <= p < s.Length ==> s[p] == old(s[p])
{

s[i], s[l-i] := s[l-i], s[i];
i := i + 1;

}
}

Figure 34: A successfully resolved specification ambiguity in DafnySynthesis sample #644,
an issue also identified by the Clover. The original specification was ambiguous as it lacked
a constraint on the output array’s length. The ambiguity was rectified by introducing a
post-condition ensuring the length remains invariant.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

method IsPerfectSquare(n: int) returns (result: bool)
requires n >= 0
######## ⇓ Original post-condition
// ensures result == true ==> (exists i: int :: 0 <= i <= n && i * i

== n)
// ensures result == false ==> (forall a: int :: 0 < a*a < n ==> a*a

!= n)
######## ⇑
######## ⇓ The fixed post-condition
ensures result <==> (exists i: int :: 0 <= i <= n && i * i == n)
######## ⇑

{
var i := 0;
while (i * i < n)

invariant 0 <= i <= n
invariant forall k :: 0 <= k < i ==> k * k < n

{
i := i + 1;

}
return i * i == n;

}

Figure 35: A successfully resolved specification ambiguity in DafnySynthesis sample #803,
an issue also identified by the Clover. The original post-condition was overly permissive,
stating only necessary conditions for the desired outcome. The ambiguity was rectified by
strengthening this to a necessary and sufficient condition (an equivalence).

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

method IsSublist(sub: seq<int>, main: seq<int>) returns (result: bool)
######## ⇓ Original post-condition
// ensures true <== (exists i :: 0 <= i <= |main| - |sub| && sub ==

main[i..i + |sub|])
######## ⇑
######## ⇓ The refined post-condition
ensures result ==> (exists i :: 0 <= i <= |main| - |sub| && sub ==

main[i..i + |sub|])
ensures result ==> (exists i :: |sub| <= i <= |main| && sub == main[i

- |sub|..i])
######## ⇑

{
if |sub| > |main| {

return false;
}
result := false;
for i := 0 to |main| - |sub| + 1

######## ⇓ The original loop invariant
// invariant result ==> (exists j :: 0 <= j < i && sub == main[j

..j + |sub|])
######## ⇑
######## ⇓ The refined loop invariant
invariant 0 <= i <= |main| - |sub| + 1
######## ⇑

{
if sub == main[i..i + |sub|] {

result := true;
}

}
result := false;

}

Figure 36: An unresolved specification ambiguity in DafnySynthesis sample #576, an is-
sue also identified by the Clover. The original post-condition was effectively meaningless,
providing no meaningful constraints. Although the post-condition was refined to be more
specific, the resulting specification still fails to pass the equivalence test, indicating that the
ambiguity has not been fully resolved and requires further investigation.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

H The Use of Large Language Models

Multiple LLM products, including GPT-5 and Gemini-2.5-pro, are deployed to polish the
writing. However, none of the paragraphs is written by LLMs directly, and all research
ideas are independently proposed by authors without any AI assistance. Claude-Opus-4.1
and Sonnet are used to create figure generation code for Figure 5 and 24. Cursor is included
to assist coding, but all generated code is then carefully inspected by authors. Other uses
of LLMs in data curation and synthesis are clearly stated in the paper.

49

	Introduction
	Benchmark Overview And Construction Pipeline
	LeetCode Autoformalization
	LeetCode Verifiable Code Generation
	Data Synthesis Through Tag Composition

	Evaluation Metrics And Tasks
	Empirical Evaluation
	Quality Metrics
	Validation of the Evaluation Metrics
	Verifiable Code Generation
	Auxiliary Tasks

	Related Works
	Conclusion
	Reproducibility statement
	Ethics Statement
	Details about algorithm tags
	Pipeline of Tag composition
	Prompt templates
	Novel Tag Combination
	Novel Problem Synthesis
	Spec-to-NL
	LLM-As-A-Judge
	NL Query To Verifiable Code

	Model Argument Settings
	Qualitative Analysis
	Examples of Verification Failures
	An Example of Ambiguous Specifications
	A Hard Example for Spec-to-NL Translation
	An Example with Tight Specifications but Mismatched Code

	Examples of Synthesis Problems
	Qualified Python Code Generated
	Unqualified Python Code Generated

	Experimental Result Details
	Quality Assurance of Python2Dafny Transformation
	Testing on More Open-Sourced Models
	Training Curves on Auxiliary Tasks
	Details about DafnySynthesis Inspection

	The Use of Large Language Models

