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Abstract

Formal verification is the next frontier for ensuring the correctness of code
generated by Large Language Models (LLMs). While methods that co-
generate code and formal specifications in formal languages, like Dafny,
can, in principle, prove alignment with user intent, progress is bottlenecked
by specification quality evaluation. Current benchmarks rely on matching
against ground-truth specifications, a manual and expertise-intensive pro-
cess that has limited existing datasets to a few hundred simple problems
and also suffers from a reliability issue. To address this, we introduce Ver-
iEquivBench, a new benchmark with 2, 389 complex algorithmic problems
that probe the limitations of current models in both code generation and
formal reasoning. Our evaluation framework replaces ground-truth match-
ing with a formally grounded metric, the equivalence score, and rigorously
verifies the quality of generated specifications and code. Our results show
that generating formally verifiable code remains a profound challenge for
state-of-the-art LLMs. This underscores both the difficulty of the task
and the need for benchmarks like VeriEquivBench to drive progress toward
scalable and reliable coding agents.

1 Introduction

Large language models (LLMs) already possess substantial capacity for following natural-
language instructions and executing a wide range of coding tasks (Li et al., 2022a; Jain et al.,
2024; Zhao et al., 2025). At the same time, the correctness of the generated code remains a
concern (Cotroneo et al., 2024; Wang et al., 2025b), where functional errors cost users extra
effort to debug and also pose significant risks in the safety-critical domain (Dalrymple et al.,
2024). A common solution is to evaluate generated code through unit tests (Jimenez et al.,
2024; Wang et al., 2025c). However, this process offers no provable guarantee of correctness,
as insufficient unit test coverage can fail to detect critical errors (Yu et al., 2025). On the
contrary, a verifiable system resolves the issue by co-generating formal specifications and
code to formally verify the alignment with the natural language query intention (Sun et al.,
2024). Our work focuses on building an end-to-end agent for formal verification, for which
we adopt Dafny (Leino, 2010). It is an ideal choice as Dafny’s automatic theorem prover
(De Moura & Bjørner, 2008) eliminates the need for manual proof writing. Furthermore,
its similarity to common languages like Python and C simplifies code transformation.
While several benchmarks (Ye et al., 2025b; Thakur et al., 2025) target at building a reliable
reasoning system by formally ensuring the exact code generation (György et al., 2025), their
progress is constrained by the reliance on manually-written, ground-truth specifications for
evaluation. This formal annotation process is incredibly labour-intensive and requires deep
expertise (Misu et al., 2024), which sets a barrier to scaling these benchmarks in both
size and complexity. As a result, prominent Dafny benchmarks, including DafnySynthesis
(Misu et al., 2024) and CloverBench (Sun et al., 2024), contain only 215 simple examples
combined, insufficient for evaluating current LLMs’ advanced reasoning abilities. Moreover,
the reliance on expert annotation is not only a scaling bottleneck; it also leads to a reliability
issue. An analysis (Sun et al., 2024) has figured that 10% of expert-written specifications
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Binary search: 
Given a sorted array and a target, 
return the index if found else -1.

Query Code + Spec

Hard-Coded

Statement that Spec ==> Code

Dafny Verifier

Dafny Verifier

Dafny Verified 
Bidirectional 
Proofs

Equiv.
Code & 

Spec

The method searches for key in a sorted, non-null array 
a. If the key is not found, it returns negative one and 
guarantees the key is not in the array. If it finds the key, 
it returns the index of an element equal to the key.

Natural Language QueryGenerated Spec

Validate The Solution

Figure 1: An end-to-end verifiable coding agent first generates code and specifications,
using the Dafny verifier to prove their mutual equivalence. Here, the script to verify the
implication from specification to code can be generated directly by our Python code. It
then translates the complete formal specification back into natural language, allowing the
user to confirm that it aligns with their original intent.

in DafnySynthesis are wrongly claimed as ground-truths, and our own review finds another
18%, containing errors or ambiguities. Such flaws undermine the validity of any benchmark
that depends on a ground-truth solution. This raises a critical question: How can we
reliably evaluate specifications’ quality without depending on the ground-truth? To answer
this question, we make the following concrete technical contributions:
Contribution 1. We propose a novel formally-grounded metric, named the equivalence
score, that measures the mutual equivalence between generated code and its specifications.
The score confirms whether a specification unambiguously describes the code’s behaviour by
using the Dafny verifier to check for bidirectional implication. This automated process has no
false positives, ensuring that only correctly matched code-specification pairs are accepted.
In order to validate the alignment with the query intention, we further include a second
evaluation step: translating formal specifications back to natural language, as used by Ying
et al. and Sun et al.. The complete pipeline is illustrated in Figure 1. Note that the effort
in translation between natural and formal languages is asymmetric, since natural language
can be ambiguous and lack necessary logic (Jiang et al.). Using Claude-4 as a judge (Wang
et al., 2025a), we observe a high success rate of 82.98% for Grok-4 translations, confirming
its viability as an evaluation metric.
Contribution 2. Equipped with our automated evaluation metric, we introduce VeriEquiv-
Bench, a benchmark of 2, 389 examples with natural language problem descriptions, code
and specifications, and additionally, 1, 678 synthetic algorithmic problems. VeriEquiv-
Bench significantly expands on prior work in both dataset size and problem complexity,
a leap demonstrated by the average Cyclomatic Complexity score, which rises from 2.44
in DafnySynthesis to 5.63. The core of our dataset is converted from the LeetCode cor-
pus (Xia et al., 2025), a large and community-validated collection of algorithmic problems
well-suited for evaluating a model’s reasoning abilities. To supplement this data, we also in-
troduce a synthesis pipeline that uses a structured tagging system to generate novel queries
by randomly combining tags for different domains, data structures, and algorithms, intro-
duced in Section 2.3. This provides a scalable method for creating large training datasets of
new problem descriptions that are fully compatible with our automated evaluation signal.
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However, Claude-4 is able to generate qualified Python code for only 15.85% of these novel
synthesis queries, reflecting the model’s limitations.
Contribution 3. We conduct a concrete evaluation of state-of-the-art LLMs, where Ver-
iEquivBench serves as a testbed for these models to explore and extend the reasoning abilities
on complex problems, beyond human-annotated data (Silver et al., 2021; Ye et al., 2025a;
Shojaee et al., 2025). Our evaluation highlights the profound difficulty of this task and the
effectiveness of our benchmark. The best-performing model, Claude-4-sonnet, which solves
75.81% of the problems in CloverBench, succeeds on only 4.83% of our data, even with a
pass@4 metric. Given this poor performance, and following prior work (Loughridge et al.,
2025; Yan et al., 2025), we include two simpler auxiliary tasks to scaffold the problem: (1)
infilling the necessary clauses to complete a given specification, and (2) generating a speci-
fication from provided Dafny code. To facilitate future research, we establish baselines for
both tasks using reinforcement learning.

2 Benchmark Overview And Construction Pipeline

In this section, we first present aggregate data statistics for VeriEquivBench. Subsequently,
we introduce the two curated subsets released with the benchmark: (i) the LeetCode-
transformed dataset, and (ii) a tag-composition dataset, called TagComp, the latter being
explicitly constructed to evaluate verifiable agents on novel data without contamination (Tu
et al., 2024; Riddell et al., 2024).
Each problem in our benchmark provides a comprehensive set of artifacts: a natural language
query, implementations in both Python and Dafny, unit tests and two versions of formal
specifications: a strong auto-formalized baseline explained in Section 2.1 and a weaker,
verifiable but incomplete version explained in Section 2.2. Additionally, each problem is
annotated with metadata, including its difficulty level and descriptive tags for the relevant
algorithm, data structure, and domain. Unlike LeetCode, our benchmark uses a more
detailed and structured set of tags to categorize problems. This new tagging system is
described in Section 2.3 for future query synthesis.
Starting from the original Leetcode split of 2, 641 training and 228 test instances, we first
curate 2, 174 cases successfully transformed to Dafny. Then we compose new problems
by merging tags, producing 1, 893 additional items; the full tag-composition procedure is
described in Section 2.3. For new problems, we ask Claude-4-sonnet to generate pairs of
Python code and corresponding unit tests. For only 300 of new problems, Claude-generated
code passes at least 85% of their corresponding unit tests, forming the cleaned TagComp
dataset. Of these, 215 samples clear the weak-baseline pipeline, giving us 2, 389 problems
in total that pair natural-language queries with formally annotated code.
Table 1 presents key metrics for our annotated Dafny code, which uses the weaker, ver-
ifiably correct specifications. Our problems are significantly more complex than those in
CloverBench, often involving multiple methods rather than a single one. Furthermore,
the corresponding specifications, while incomplete, contain a substantial number of formal
clauses.

Table 1: The table overviews several attributes of our annotated code.

Dataset Metric function method invariant ensures decreases
LeetCode mean 0.78 1.33 5.12 1.71 0.46
TagComp mean 0.96 3.18 7.34 3.14 0.70

2.1 LeetCode Autoformalization

Past formal-language sets such as DafnyBench (Loughridge et al., 2025) are still small and
narrow, because hand-written specifications are too costly to scale (Misu et al., 2024). To
obtain large, varied training data without extra human cost, we mine the classic Leetcode
pool, convert problems to formal specifications, stated in Figure 2 Pipeline 1, while keeping
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query and specification aligned with two short tightening evaluation protocols (Sun et al.,
2024), shown in Figure 2 Pipeline 2.

Specification Generation We feed the problem description to Claude-4-sonnet to obtain
an initial Dafny specification, yet even the initial drafts often contain syntax errors. Thus,
we revise and resubmit up to ten times until the file has no parse or resolution errors. We
find that supplying two simple examples exploits the model’s in-context learning (Dong
et al., 2023) and sharply lowers the error rate (prompt template in Appendix C).
Furthermore, we constrain the model to generate specifications using only first-order logic,
prohibiting recursive or dynamic programming-style definitions. This ensures the specifi-
cation describes the problem’s declarative properties without leaking the implementation’s
structure.

Equivalence to NL The equivalence check follows the protocol proposed by Clover (2024)
and contains two steps: (1) A model (we use Grok4 here) rewrites the description so that
it cleanly mirrors the specification, then another model (Claude-4) judges the equivalence
between the original description and the rewritten one, yielding a score; (2) The specification
alone is translated into Python and executed against the ground-truth LeetCode unit tests.
The unit test passing rate is reported in Appendix G.1.

Figure 2: The figure outlines our autoformalization and code generation workflow: Pipeline
1 produces comprehensive and syntax-free specifications; Pipeline 2 checks consistency be-
tween the NL query and the specifications; Pipeline 3 emits fully annotated code that passes
the verifier.

2.2 LeetCode Verifiable Code Generation

Owing to the limited performance of state-of-the-art LLMs on challenging formal-language
coding, we adopt the multi-stage pipeline (pipeline 3 of Figure 2): prompted by the previ-
ously generated specifications, the problem description, and a reference Python solution, the
stronger model (Claude-4) produces annotated Dafny code, while a lighter model (Claude-
3.5) then polishes this output, iterating up to six times to eliminate any syntax or parsing
errors.
In practice, the vast majority of problems converge within three refinement rounds, while a
residual subset still fails to yield a well-formed artifact even after the sixth attempt, with
the success transformation rate reported in Table 2, and data statistics reported in Table 1.
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Table 2: The table shows the number of examples without syntax errors in autoformalization
and verifiable examples in code generation.

Dataset Spec Autoformalization Dafny Code Genetation
Number Rate (%) Number Rate (%)

LeetCode 2584 90.1 2174 75.8
TagComp 296 98.7 215 71.7

2.3 Data Synthesis Through Tag Composition

We propose constructing a fine-grained, “template-level” taxonomy to provide an abstract
description of algorithmic problems via tags (Wang et al., 2025c). In our system, every task
is labelled with three orthogonal categories: domain, data-structure, and algorithm
class((Chollet et al., 2025)).
To obtain these labels, we (i) harvest a high-quality seed pool from the Luogu online judge
(luo, 2025), and (ii) manually prune hallucinated or off-topic tags. Our ontology defines
over 500 fine-grained tags, offering more than seven times the descriptive granularity of the
69 tags used by LeetCode (see Appendix A for a comparison). The tag set is designed
so that, taken together, the tags collectively reflect the complete programming knowledge
entailed by each individual problem, while retaining a modest level of abstraction.
The three categories of tags capture complementary aspects of programming knowledge.
First, the domain category encompasses the overarching problem space or application con-
text in which an algorithm operates, such as graph theory. Second, the data structure
category pertains to the foundational mechanisms for manipulating data that underpin the
algorithm’s functionality and efficiency, like arrays. Third, the algorithm category refers
to the core strategic paradigm employed, such as sorting, focusing on the decision-making
logic. These algorithm tags directly shape the overall control flow of a solution, as they
orchestrate the program logic and structure.
However, not all problems conform to highly standardized patterns. In contemporary algo-
rithmic competition problems, for instance, many challenges necessitate solvers to discern
the underlying mathematical structures, an approach commonly termed ”constructive meth-
ods”. From a coding perspective, these constructive methods typically appear as compact
code blocks that rely solely on fundamental loops or arithmetic operations. Consequently,
it is difficult to categorize them beyond a general “constructive method” tag. From the
problem setter’s viewpoint, such problems and their solutions stem from empirically ob-
served mathematical structural properties, which inherently resist exhaustive coverage by
conventional tags.
To synthesize novel queries, we select tags in the following workflow: first, we randomly pull
12 tags from each of three pools, and then let Claude-4 pick any 3–8 tags in total. This short
list is fed back to the model so that Claude can create one clear algorithm question with
roughly 40 unit tests (Xu et al., 2025). Initially, we create approximately 1, 900 problems,
but only retain the 300 that pass at least 85%of their tests (Xu et al., 2025), and call this
clean set, TagComp. The detailed pipeline and prompt templates used can be found in
Appendix B and Appendix C.

3 Evaluation Metrics And Tasks

A verifiable coding agent reduces hallucinations and provides trustworthy solutions aligned
with users’ intentions. As shown in Figure 1, our solution evaluation includes two steps,
which are

• verifying the equivalence between generated code and specifications, and
• validating the solution by translating formal specifications back to problem descrip-

tions in natural languages.
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method Check_Max_Spec(a: int, b: int) returns (max: int)
{

max := *;
assume max >= a;
var value := Max( a, b);
assert value == max;

}

Figure 3: We show an example where the equivalence score proves the given specifications
are underspecified for returning the maximum between two integers. The code presents the
statement to verify whether the specification implies the code.

To understand the need for verifying the equivalence between the code and the specifica-
tions, consider a simple binary search algorithm. The goal is to return the index of a key
in a sorted array a, or negative one if the key is not found. A weak but verifiable post-
condition might only state that the output, idx, is within a valid range: ensures -1 <=
idx < a.Length. While this specification passes the verifier, it fails to exactly describe the
code. This creates a dangerous loophole: an incorrect implementation that doesn’t actually
find the key could still satisfy this weak condition, and the verifier would not catch the error.
Existing benchmarks do not offer a metric to formally validate the quality of specifications.
Without one, there is no way to guarantee that the verified code truly aligns with its
intended behaviour. Instead, building up equivalence examines whether the specification is
complete without ambiguities. Our equivalence score accomplishes the task by proving the
bidirectional implication relationship:

• whether the code falls into the lattices described by the specifications, and
• whether specifications tightly describe the code behaviour for any inputs.

Both proofs can be automatically completed by the Dafny verifier. The first direction can
be verified by passing the annotation to the verifier. The second direction requires creating
a statement that the specification implies the code for the verifier to check.
Figure 3 presents a counterexample to illustrate how our equivalence score identifies an
underspecified function. The Max method correctly returns the maximum of two integers a
and b, but its post-condition (ensures max >= a) is too weak; it doesn’t guarantee that the
output is also greater than or equal to b. To test if the specification fully implies the code’s
behaviour, we use the Check_Max_Spec method. This method creates an arbitrary value
max, assumed to satisfy all provided pre-conditions and post-conditions. Our equivalence
score then tests the assertion that variables described by the specifications are equal to the
method outputs. The Dafny verifier is guaranteed to find this assertion to be false without
any false positives. Because the specification is not strong enough to imply the code, this
program would not receive an equivalence score.
As mentioned in the introduction, end-to-end formally verifiable code generation is still
challenging for current proprietary LLMs. Dafny has its own programming logic, such
as claiming the invariance of old elements in arrays to support the proof. Therefore, we
re-emphasize the importance of two auxiliary tasks to facilitate understanding of specific
nuances of Dafny, introduced in DafnyBench (Loughridge et al., 2025) and Veri-Code Series
I (2025):

• Verifiable Code Refinement: Given annotated but unverified Dafny code, the
model’s goal is to add the necessary intermediate clauses, such as invariants and
lemmas, to make the code pass the verifier. Success is determined by successful
verification.

• Code-To-Spec Generation: Given a Dafny implementation, the model attempts
to generate the strongest formal specification. The quality of the output is evaluated
by measuring its strength improvement over a baseline, using the spec-superior-score
(Yan et al., 2025).
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Our two sets of formal specifications map onto these auxiliary tasks. For the Verifiable Code
Refinement task, models are challenged to fix our strong auto-formalized specifications. For
the Code-to-Specification Generation task, models improve upon our weaker, but already
verified, specifications.

4 Empirical Evaluation

This section validates the quality of our benchmark and the reliability of our evaluation
metric. We then present the performance of several state-of-the-art LLMs on the end-to-
end verifiable code generation task, followed by an analysis of our baselines on the two
auxiliary tasks.

4.1 Quality Metrics

Specification Quality Our strong specification baseline, generated via auto-
formalization, contains the ground-truth specification for 7.14% of the LeetCode-derived
problems and 7.87% of the synthetic TagComp problems, shown in Figure 5. In total, this
process yields 161 complex algorithmic data with rigorously verified specifications. This
significantly enriches the publicly available dataset of ground-truth specifications.

Code Transformation Quality To evaluate the quality of our Python-to-Dafny code
transformation, we attempt to validate 1, 011 Dafny programs from the LeetCode set against
the corresponding unit tests. Due to the mismatch between Python and Dafny unit test
formats, we only successfully execute 648 transformed unit test files. However, the trans-
formation is proven highly reliable, with 81.79% of the translated Dafny programs passing
all tests.

Data Complexity The average Cyclomatic Complexity (McCabe, 1976) quantitatively
manifests the increasing complexity of our data, which counts the number of linearly inde-
pendent paths in the control flow graph. It is computed using the Radon software package
for Python, listed in Table 3.
We list the score for MBPP (Austin et al., 2021), since 50 manually annotated data in
DafnySynthesis are based on MBPP-50 and the other 103 are also transformed from it.
Thus, the analysis represents a comparison to DafnySynthesis. We skip the analysis of
CloverBench due to a lack of Python implementations. Our benchmark’s average score of
5.63 is significantly higher than the 2.44 for DafnySynthesis, indicating more complicated
control flows. Notably, our synthetically generated data is even slightly more complex than
the LeetCode-derived portion, with a score that is 0.25 points higher. This complexity is
further validated by a manual rating from Claude-4, which classified the majority of our
synthetic problems as either medium or hard.

Table 3: The table compares the code complexity of a previous benchmark and VeriEquiv-
Bench, indicating a more intricate control flow of our data.

Dataset MBPP-50 MBPP LeetCode TagComp
Average Cyclomatic Complexity 2.44 2.78 5.38 5.63

4.2 Validation of the Evaluation Metrics

We first validate our equivalence score on 50 expert-written verifiable code provided in
DafnySynthesis. CloverBench has reviewed their data and reported that 10% of the data
does not give the ground-truth specification. After testing on our evaluation metric, the
equivalence score, we figure out another nine examples where the formal specification con-
tains ambiguities or the original code has errors. An example is shown in Figure 4, where the
formal specification does not specify the invariance of array length and leaves a logic gap.
However, only eight examples out of 14 failures are successfully fixed by us, demonstrating
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method SwapFirstAndLast(a: array<int>)
requires a.Length > 0
modifies a
######## ⇓ The added post-condition
ensures a.Length == old(a).Length
######## ⇑
ensures a[0] == old(a[a.Length - 1])
ensures a[a.Length - 1] == old(a[0])
ensures forall k :: 1 <= k < a.Length - 1 ==> a[k] ==

old(a[k])
{

var tmp := a[0];
a[0] := a[a.Length - 1];
a[a.Length - 1] := tmp;

}

Figure 4: An example of a weak specification in sample #625 that fails equivalence scoring.
The formal specification is ambiguous as it omits a post-condition on the invariance of the
array’s length.

the hardness in manual annotation. All examples with wrongly claimed ground-truth are
listed in Appendix G.4 with the issues stated.
Next, we evaluate all previous benchmarks and observe a serious quality issue in previously
provided ground-truth formal specifications, shown in Table 4. It has been discussed that
the equivalence check relying on natural language provided in Clover has limitations, and
it turns out that a large number of specifications do not establish the equivalence with the
code. Meanwhile, DafnyBench is not designed for checking the completeness of specifications
and thus, gives the lowest score.
Furthermore, we evaluate Grok-4’s translation ability, using Claude-4-sonnet as a judge
(Wang et al., 2025a). We test it on our filtered auto-formalized specifications derived from
LeetCode and observe a high success rate of 82.98%, validating it as a reasonable evaluation
metric.

Table 4: We present the percentage of data gaining the equivalence score in previous bench-
marks.

Dataset DafnySynthesis CloverBench DafnyBench
Equivalence Score 76.22% 61.29% 43.09%

4.3 Verifiable Code Generation

Figure 5 (b) and (c) present the pass@4 results of three proprietary LLMs on end-to-end
formally verifiable code generation, tested on CloverBench and our contamination-free syn-
thetic set, TagComp. We also evaluate three open-source model with complete results pre-
sented in Figure 23. On the previous CloverBench benchmark, a capable model like Claude
achieves a 75.81% success rate, with most errors stemming from issues in specification writ-
ing rather than fundamental code generation flaws. However, on our more challenging
TagComp dataset, this performance collapses. While the model achieves code-specification
equivalence on 10.34% of the problems, more than half of these successes are undermined by
incorrect code generation, demonstrating that our benchmark effectively tests both coding
and formal reasoning abilities.
A closer look at our benchmark results reveals the challenge of verifiable code generation.
While Claude is most capable of producing syntactically correct Dafny code, all three models

8
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struggle significantly with generating mutually equivalent code and specifications aligned
with the query intention. In our rigorous two-step evaluation, the equivalence score mea-
sures the formal alignment of code and specifications, while the exact matching score further
validates against the original natural language intent. Ultimately, fewer than 5% of the gen-
erated solutions from any model pass this framework. This result underscores the difficulty
of formally verifiable code generation on complex algorithmic problems, requiring strong
coding and formal reasoning abilities.

(a): Dataset Quality Analysis (b) CloverBench Performance (c) VeriEquivBench Performance

Exact Matching Equivalent Verified Syntax-Correct

9/25/25, 8:32 AM Academic Performance Figures - PDF Ready

https://onecompiler.com/html/43xnt92dy 1/1

Figure 5: Exact matching score measures the percentage of data passing our two-step eval-
uation framework, giving solutions aligned with the query intention. Part (a) gives the
amount of verified ground-truth solutions in our benchmark. Part (b) shows that the pre-
vious CloverBench benchmark is too simple to properly evaluate the advanced reasoning
abilities of capable models, as evidenced by a high success rate. Part (c) presents the
pass@4 performance of gemini-2.5-flash, gpt-5, and claude-4-sonnet on our end-to-
end verifiable code generation task.

4.4 Auxiliary Tasks

For the two auxiliary tasks mentioned in Section 3, we provide two RL-trained baselines,
with the SFT model provided in Veri-Code Series I (2025). As stated, the verifiable code
refinement task uses passing the verifier or not as the reward to infill intermediate clauses,
while the spec generation task uses the spec superior score introduced by Yan et al. (2025).
Spec superior score measures whether the generation specifications described the code better
than our weak baseline. The choice of the RL algorithm and hyperparameters follows their
implementation as well. We split our LeetCode transformed data into three parts with 1770
training data, 200 validation data and 204 out-of-domain test data, using tags uncovered
by the training data.
Our baseline scores 17.68% for the refinement task and 54% for the spec generation task
on the validation set. However, in the spec generation task, almost no data generates a
complete specification, resulting in an equivalence score. A possible reason is that the SFT
model provided is trained on overly simple problems and does not have enough exploration
ability. The training curve and results on the test set are presented in Appendix G.3.

5 Related Works

A central challenge in advancing LLMs is developing metrics that not only assess perfor-
mance but also provide a clear signal for improvement we desire. Outcome-based metrics,
such as final-answer accuracy in mathematical reasoning (Cobbe et al., 2021) or pass rates

9
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on unit tests in code generation (Austin et al., 2021), are prevalent but limited. They
disregard the fidelity of the reasoning process and remain susceptible to false positives, a
limitation shared by methods employing external solvers for verification (Huang et al., 2025;
Feng et al., 2025).
Formal verification offers a more rigorous evaluation alternative, using proof checkers like
Dafny (Leino, 2010) or Lean (De Moura et al., 2015) to provide an unambiguous correctness
signal without requiring a ground-truth solution. However, in verifiable code generation,
this signal is fundamentally unidirectional: it validates that the code satisfies a specification
but offers no guarantees about the specification’s quality. This vulnerability allows models
to pass verification using trivial or flawed specifications (Yan et al., 2025). While Yan et al.
(2025) attempt to address this by comparing generated specifications against ground-truth
specifications using a partial order, their method remains dependent on the quality and
availability of trusted ground-truth. In contrast, our work introduces a formal equivalence
metric that verifies the bidirectional correspondence between code and specification. This
approach ensures the specification fully captures the program’s behavior without relying on
a ground-truth specification.
The absence of such a metric has hampered the creation of high-quality benchmarks for aut-
oformalization. Existing datasets often lack the tripartite alignment of natural language,
code, and formal specifications (Lohn & Welleck, 2024; Loughridge et al., 2025; Dougherty
& Mehta, 2025; Yan et al., 2025) or are small-scale due to the high cost of manual annota-
tion (Misu et al., 2024; Sun et al., 2024; Miranda et al., 2025; Ye et al., 2025b). Attempts
to automate equivalence checking have proven unreliable; for instance, Clover (Sun et al.,
2024) relies on LLM-based judgments that suffer from high error rates. Addressing these
deficiencies, we present VeriEquivBench, a benchmark an order of magnitude larger than
prior work. Enabled by our robust equivalence metric, it provides a large-scale, trustworthy
resource for developing and evaluating models for verifiable code generation.

6 Conclusion

In this paper, we confront a foundational challenge hindering the development of reliable
verifiable systems: the dependence on small, manually-annotated benchmarks for formal ver-
ification. This issue limits the scale and complexity of evaluation and has also introduced a
ceiling by human knowledge. Our work breaks the dependency and introduces VeriEquiv-
Bench, a large-scale end-to-end formally verifiable code generation benchmark. Our novel
automated equivalence score provides a rigorous evaluation signal without any need for
human-written, ground-truth specifications. Second, our structured tagging system enables
the scalable, automated synthesis of novel and complex problems, directly addressing the
data generation bottleneck. By using VeriEquivBench to evaluate state-of-the-art LLMs, we
have demonstrated that end-to-end verifiable code generation remains an open challenge, a
fact obscured by the inflated success rates on simpler, older benchmarks. Following the re-
cent discussions on self-evolving agents, our benchmark provides a scalable data generation
engine and a reliable auto-evaluation metric, setting the groundwork to foster trustworthy
AI agents with exact solution generation and sustainably supervise super-intelligence agents.

7 Reproducibility statement

The code and our dataset are included in the supplementary material and will be publicly
available after the double-blind review process for reproducibility.

8 Ethics Statement

This work does not present any foreseeable ethical concerns. The research involves only
publicly available datasets and does not use or analyze sensitive or personally identifiable
information.
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A Details about algorithm tags

To assemble a suitable tag vocabulary, we first collect high-quality, high-frequency labels
from Luogu—a competitive-programming platform with millions of users and an unusually
fine-grained tag taxonomy—and treat them as a seed set. For each LeetCode problem, the
model is prompted to pick the most relevant domain, data-structure, and algorithm tags
from this pool, and is allowed to introduce new tags only when no suitable match exists. All
model-selected tags are pooled, automatically partitioned into the three coarse categories,
and then manually filtered in a single pass: hallucinated labels are removed, near-duplicates
merged, and overly broad or overly narrow tags discarded. The resulting inventory contains
over 500 clean triples that serve as the controlled vocabulary for subsequent tag-composition.

Figure 6: The fifteen most frequently used tags in
our dataset.

Table 5: Statistics of algorithm tags

Tag category Numbers
Domain 53
Data Structure 68
Algorithm 480
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The complete curated tag set is listed below, grouped under the three top-level categories:
domain, data-structure, and algorithm.

Table 6: Domain tags

Category Tags

Domain

Mathematics, Number Theory, Probability Theory, Combinatorial
Mathematics, Linear Algebra, Computational Geometry, Plane geome-
try, Three-dimensional computational geometry, Graph Theory, Simple
Graph Theory, Game Theory, Information Theory, Dynamic Connec-
tivity, expectation, Set Cover Problem, allocation problem, Extremum
problem, path problem, Chess Board Problem, Stock Problem, Island
Problem, Maze Problem, Josephus problem, Frobenius problem, N-
Queens Problem, Knight’s Tour Problem, Two-dimensional partial or-
der problem, matching problem, Pairing problem, Interval problems,
Knapsack problem, Subset Sum Problem, Jump Game, Maximum Sub-
array Problem, Maximum Subsequence Problem, Largest Rectangle in
Histogram, longest chain, Path counting, Path Statistics, Connectivity,
Reachability analysis, periodic, Discrete Event Simulation, Time con-
straint, Permutations and Combinations, Counting Principles, Inclusion-
Exclusion Principle, Pigeonhole principle, Catalan number, Stirling
numbers of the second kind, Combinatorial counting, Combinatorial Op-
timization, Mathematical Techniques

Table 7: Data Structure tags

Category Tags

Data Structure

array, Two-dimensional array, Multidimensional array, sorted array, Cir-
cular array, tagged array, Difference Array, rolling array, Linked List,
doubly linked list, Circular Linked List, Queue, deque, Priority Queue,
Stack, monotonic stack, monotonic queue, tree, undirected tree, un-
rooted tree, Ring tree, Binary Tree, Complete Binary Tree, Perfect
Binary Tree, Balanced Binary Tree, Binary Search Tree, Tree data
structure, Trie, Segment Tree, Binary Indexed Tree, Heap, heap - min
heap, Huffman tree, Set, Hash Table, Adjacency List, Adjacency Matrix,
weight graph, Bipartite graph, Complete graph, Undirected graph, di-
rected graph, Reverse graph, Star graph, Directed Acyclic Graph (DAG),
Balanced tree, sparse matrix, Disjoint Set Union (DSU), Red-Black Tree,
AVL Tree, B-Tree, B+ Tree, Skip List, Bloom Filter, LRU Cache, Prefix
Tree, Suffix Tree, Suffix Array, Cartesian Tree, Splay Tree, Scapegoat
Tree, Persistent Data Structure, Linear List, Sparse Table, Mo’s Algo-
rithm Structure, Leftist Tree, Fibonacci Heap, Pairing Heap
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Table 8: Algorithm tags

Category Tags

Algorithm-1

Compression algorithm,Dynamic Programming,Dynamic Programming
- Linear DP,Dynamic Programming-LIS,Dynamic Programming-Prefix
Sum,Dynamic Programming - 0/1 Knapsack,Dynamic Programming
- State Compression,Dynamic Programming - Interval DP,Dynamic
Programming - 2D DP,Dynamic Programming - Prefix Sum Opti-
mization,Dynamic Programming - Top-Down,Dynamic Programming -
Iterative,Dynamic Programming,Compression algorithm,Dynamic Pro-
gramming,Dynamic Programming - Linear DP,Dynamic Programming-
LIS,Dynamic Programming-Prefix Sum,Dynamic Programming - 0/1
Knapsack,Dynamic Programming - State Compression,Dynamic Pro-
gramming - Interval DP,Dynamic Programming - 2D DP,Dynamic
Programming - Prefix Sum Optimization,Dynamic Programming
- Top-Down,Dynamic Programming - Iterative,Dynamic Program-
ming, State Compression DP,Dynamic Programming - Mathemati-
cal Optimization,Digital DP,Count DP,Tree DP,knapsack DP,State
Compression DP,Dynamic Programming (DP),2D DP,Bidirectional
DP,Sequence DP,Matrix DP,State Machine DP,Bottom-up Dynamic
Programming,Bidirectional BFS,Multi-source BFS,0-1 BFS,Depth-First
Search (DFS),Breadth-First Search (BFS),Memoization,State space
search,Heuristic search,state search,Grid search,Path Finding,Binary
search,Binary Search - Answer,Binary Search - Right Boundary,Binary
Search - Left Boundary,Binary Search - Count,Binary Search -
Peak Finding,Binary Search - Maximum Value,Binary Search-Prefix
Sum,Binary Search - Middle Element,Binary Search - Line Search

Table 9: Algorithm tags

Category Tags

Algorithm-2

Sorting,Merge sort,Quick Sort,Three-way quicksort,Insertion
Sort,Counting Sort,Bucket Sort,Sort-Custom Sort,Sorting - Stable
Sort,Sorting - Lexicographical Order,Difference Sorting,multi-condition
sorting,Wiggle Sort,in-place sorting,Topological sorting,Quick Se-
lect,KMP algorithm,Rabin-Karp algorithm,Manacher’s algorithm,suffix
array,suffix tree,Z-function,prefix function,string pattern match-
ing,string wildcard matching,backtracking,Enumeration,Binary
Enumeration,Subset Enumeration,Combinatorial Enumeration,Two-
dimensional enumeration,Simulation,Greedy,Greedy - Interval Opera-
tion,Divide and conquer,Divide and Conquer - String Splitting,Divide
and Conquer - Closest Pair of Points in a Plane,Central Expansion
Method,Staining method,Contribution method,sliding window,Two
Pointers,Two Pointers - Sliding Window,Fast and slow point-
ers,Three Pointers,path compression,Path Tracing,Path reconstruc-
tion,Path Planning,Single-Source Shortest Path,Multi-Source Shortest
Path,Second shortest circuit,Constrained Shortest Path,shortest
path,Heap-optimized Dijkstra,Dijkstra’s algorithm,Dijkstra’s Algo-
rithm Variant,Bellman-Ford algorithm,Floyd’s cycle-finding algo-
rithm,Kruskal’s algorithm,Prim’s algorithm,Minimum Spanning Tree,
Bipartite Matching,Maximum Matching in Bipartite Graphs,Hungarian
algorithm,Minimum Cost Maximum Flow,Graham scan,Welzl’s algo-
rithm,linear sieve,Euler sieve,Eratosthenes sieve,Prime Sieve, Euclidean
algorithm,Bézout’s identity,Bézout’s theorem,Greatest Common Divisor
(GCD),Least Common Multiple (LCM),Prime Number Check
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Table 10: Algorithm tags

Category Tags

Algorithm-3

Euclidean algorithm, Bézout’s identity, Bézout’s theorem,Greatest
Common Divisor(GCD),Least Common Multiple(LCM),Prime Number
Check,Prime factorization, Factorization,Integer factorization,Cantor
expansion,Fast exponentiation,Matrix Fast Exponentiation,Matrix
multiplication,matrix rotation,matrix transposition,Matrix opera-
tions,rotation matrix, flood fill algorithm,A* algorithm,Tarjan’s algo-
rithm,Morris traversal,Preorder Traversal, Inorder Traversal,Postorder
traversal,Level order traversal,Level Order Traversal,Reverse inorder
traversal,zigzag traversal,spiral, traversal,Vertical traversal,Vertical
Order Traversal,Boundary traversal,Diagonal Traversal,2D matrix
traversal,Traversal of 2D Array, Graph traversal,Linked list traver-
sal,Tree traversal,Directional traversal,Bidirectional traversal,reverse
traversal,Reverse traversal,One-pass traversal,Path Validation,Path
counting,Path Statistics,Path Construction,lexicographical compari-
son,Lexicographically smallest path,Maximum Value Search,Maximum
Value Maintenance,Range Maximum,Maximum Column Value,prefix
maximum,suffix minimum,suffix product,prefix product,Prefix
Sum,Prefix Sum - Difference,Prefix Sum - Modular Arithmetic,Prefix
Sum - Binary Search Optimization,2D prefix sum,suffix sum,partial
sum, subarray sum, submatrix sum, Area Sum,Area Calculation,ASCII
code manipulation,Character Mapping,Character Count,character
frequency,Digital encoding,Digital Parsing,Data Extraction,Number
Reversal,Integer Reversal,Integer Square Root,Integer Division,Fraction
Addition and Subtraction,Fractional Arithmetic,Fraction simpli-
fication,Score Calculation,percentile,Circular shift,Loop Detec-
tion,Ring Detection,Periodic Assessment,Bracket Matching,Isomorphic
Strings,String comparison,String Case Conversion,String concate-
nation,string concatenation,String manipulation,String search,string
matching,String-Substring Comparison,string-replacement,String
replacement,String trimming,string slicing,string splitting,String com-
pression,String decoding,string parsing,string continuity,substring
matching,prefix matching,Prefix Check,Longest Common Pre-
fix,Longest Common Suffix,Longest Common Subsequence,Longest
Common Subarray,Longest Repeating Substring,Longest Palindromic
Subsequence,Longest Non-decreasing Subarray,Longest Consecutive
Sequence,longest consecutive characters,Word Chain,Zigzag Conver-
sion,palindrome,Expression parsing,Expression Evaluation,Reverse
Polish Notation,Postfix expression,Operator precedence,Lexical
Analysis,parsing,Serialization,Deserialization,Encoding,decoding,Run-
length encoding,Set Operations,Set Intersection,Bitwise oper-
ation,Bitwise operation optimization,Bitwise Operations - State
Compression,bitmask,Bitwise OR, AND operation,XOR,binary,Binary
Addition,binary splitting,Binary counting,bit count,Hamming dis-
tance,Two’s complement,Modular arithmetic,modulo 3 opera-
tion,Congruence,Congruence theorem,divisible,Divisibility prop-
erty,divisor,perfect square,square number,Perfect number,Ugly num-
ber,trailing zeros,digit separation,Digital Processing,Digital Sum,Gray
code,Permutation, Next Permutation,Arrangement,Permutation
ring,Cyclic permutation,Pascal’s triangle,Fermat’s theorem on sums
of two, squares,Pythagorean theorem,Triangle inequality,absolute
value,absolute value inequality,Big Integer Addition,High precision

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: Algorithm tags

Category Tags

Algorithm-4

Floating-point processing,Floating-point comparison,floating-point
precision,Linear equation,polynomial,Complex Number Opera-
tions,Rational number representation,recurring decimal,factorial,Sum
of Squares,Sum,Summation formula,arithmetic sequence,Arithmetic
sequence summation,path sum,Maximum Sum Path,Maximum spac-
ing,Neighbor Count,Adjacent elements,Adjacent Element Differ-
ence,Global Inversion,Local inversion pairs,Inversion pair,anagram,vowel
substitution,coordinate,2D coordinates,coordinate system,coordinate
comparison,coordinate translation,coordinate compression,2D off-
set,2D plane,3D space,collinear points,Collinearity detection,convex
hull,minimum bounding rectangle,Triangle Area,Rectangle Area Cal-
culation,Overlapping Area Calculation,Rectangle Intersection,Circle-
Rectangle Intersection Detection,Minimum Enclosing Circle,Spatial
segmentation,2D cutting,Spatial optimization,Space complex-
ity optimization,Constant space complexity,Linear space com-
plexity,Time complexity analysis,Linear time complexity,Linear
scan,Pruning,Preprocessing,preprocessing,Offline processing,Dynamic
update,Dynamic Maintenance,Dynamic Maintenance Interval,Dynamic
Range Maintenance,Single-point modification,Range query,Interval
computation,Interval Statistics,Range update,Interval Merging,Interval
coverage,Interval Scheduling,Range extrema,Path Intersection De-
tection,Distance calculation,Euclidean distance,Manhattan dis-
tance,Chebyshev distance,projection,cross product,Polar sort-
ing,construct,Binary Construction,Tree Construction,Tree Re-
construction,Sequence Reconstruction,Constructing the answer
in reverse order,reverse,Reverse Linked List,Linked List Rever-
sal,String Reversal,Array Rearrangement,Linked List Reorder-
ing,Node switching,Segmentation,Split Array,split string,Split
and Merge,Convert 1D Array to 2D Array,matrix,2D ma-
trix,sparse matrix,ordered matrix,Rectangle Coverage,Adjacency
Matrix,Tree deletion operation,Tree depth,Tree Centroid,Tree Di-
ameter,subtree,Subtree Sum,leaf node,intermediate node,dummy
node,sentinel node,Middle of the Linked List,indegree,indegree
and outdegree,degree,degree sequence,Monotonicity,Monotonicity
Check,monotonic array,Decision Monotonicity,Symmetric,Boolean
operations,Logical Operations,Conditional statement,Filter Cri-
teria,Polarity,Parity Check,Boundary check,Boundary han-
dling,Edge case handling,Status Check,Status Log,State tran-
sition,State Machine,Finite State Automaton,Priority, han-
dling,Query Processing,Path processing,Overflow handling,Carry han-
dling,Recursion,recursive,Inductive method,derivation,traverse,Array
traversal,Grid traversal,directional search,State compres-
sion,Handling Duplicate Elements,deduplication,Enumeration optimiza-
tion,Sequence comparison,comparison function,Comparator,Regular
Expression,Pointer manipulation,Method chaining,Swap op-
eration,Displacement operation,Row and Column Opera-
tions,product,Multiplication Principle,Exponentiation,Base,Base
Conversion,Clock issues,loop section,IP address,reordering,Partial
Ordering,Equation Solving,Randomization,reverse thinking,Horse Rac-
ing Strategy,Connected component,Connected Component,Strongly
Connected Component,Lowest Common Ancestor (LCA),Eulerian
circuit,Hamiltonian path
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B Pipeline of Tag composition

Figure 7 illustrates our pipeline for generating new programming problems through tag
composition. The process begins by creating a candidate pool of 36 tags, randomly selecting
12 from each of our three categories: domain, algorithm, and data structure. This pool is
provided to an LLM, which is prompted to select a coherent subset of three to eight tags that
form a promising basis for a new problem. Using this selected combination, we then instruct
the LLM to generate a complete task, comprising a problem description, corresponding unit
tests, and a Python solution. As a final quality control step, we filter these generations by
executing the unit tests. We retain only those instances where the generated Python code
passes all tests, ultimately yielding a dataset of 300 validated programs.

Dynamic

Programming,  BFS, ...

Algorithms

Mathematics, Number

Theory, ...

Domains

array, queue, ...

Data Structures

New Task

300 Samples in
Python

Randomly

Randomly

Randomly   Description_i: Suppose...
  & Test cases_i: Input = ...
  & Python_Code_i

12 Domains
12 Algorithms

12 Data Structures

Tag Set:
Tag_1, ..., Tag_8LLM selector

       LLM

Unit Test 
Pass Rate  85%

Figure 7: The pipeline for the tag compositon process.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C Prompt templates

C.1 Novel Tag Combination

[Task]
You have three categories of tags: domain, algorithm, and data_structure, each
containing 12 tags. Your task is to select a combination of 3–8 tags from these
categories to form a coherent programming problem. The problem should have a
specified difficulty level: easy, medium, or hard. Ensure the selected tags are compati-
ble and can logically form a single problem. Provide the chosen tags, the difficulty level.

[Requirements]

1.The task is clearly defined, specifying the need to select 3–8 tags from three categories
(domain, algorithm, data_structure) to form a coherent programming problem with a
specified difficulty level.
2.Requirements outline the tag selection process, ensuring compatibility and a reason-
able tag collection, the need for a difficulty level.
3.The selected tags must be compatible and form a reasonable tag collection that
results in a practical and solvable programming problem.
4.The problem must be assigned one of three difficulty levels: easy, medium, or hard,
reflecting the complexity of the problem based on the selected tags.

[Domain tags]
{{ domain_tags }}

[Algorithm tags]
{{ algo_tags }}

[Data Structure tags]
{{ data_tags }}

Output Format
This is the ouput format,You must respond in this specified output format:
{

"all_tags": "Graph Theory, Depth-First Search, Union-Find, Graph,
Disjoint Set",

"Domain": "Graph Theory",
"Algorithm": "Depth-First Search, Union-Find",
"Data_Structure":"Graph, Disjoint Set" ,
"Difficulty Level": "medium",

}

<|Problem End|>

Figure 8: The prompt is for selecting useful tags. We feed the model the 36 real tags from
3 categories randomly that will later drive new-problem generation, it returns the 3–8 tags
that form the most promising combination.
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C.2 Novel Problem Synthesis

[Task]
You are an expert algorithm problem creator. Your task is to create an easy or medium
difficulty ranking original coding problem using the given algorithm tags.Analyze the
given tags to generate a new problem.The problem should be completely original
coding problem that is NOT from any existing platforms (LeetCode, Codeforces, etc.)
or textbooks.

[Requirements]

1. Create a truly novel problem scenario with constraints
2. Combine the given tags in innovative ways
3. Ensure the problem is solvable but challenging
4. Provide a clear problem statement, examples, and constraints
5. Rate the difficulty(easy, medium, hard) appropriately

[Algorithm tags]
tags

Output Format
This is the output format. You must respond in this specified output format:
<|Problem Begin|>
problem
<|Problem End|>

Figure 9: The prompt uses the previously obtained real tags to generate a brand-new
problem.

C.3 Spec-to-NL

[Prompt]

Can you think of a minimal code implementation satisfying the specification? For
example, if the spec just ensures true, then any code can work. If the specification
ensures return values within a range, then assigning any value within the range can
work. Please think of the minimum code implementation and then come up a problem
description this minimal code satisfies.
Below are the specifications:

Figure 10: The prompt asks the model to read the supplied Dafny specification and produce
a concise summary that fully describes the coding problem it defines.
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C.4 LLM-As-A-Judge

[Prompt]

You are an expert in analyzing algorithm problem descriptions. You need to carefully
analyze the equivalence of two algorithm descriptions based on the following dimensions:
1. Core Problem Equivalence: - Is the essence of the problem identical? - Are the
solution objectives consistent?
2. Constraint Comparison: - Input constraints - Boundary case handling - Special case
requirements
3. Complexity Requirements: - Time complexity requirements - Space complexity
requirements
4. Detail Completeness: - Information loss check - Additional information analysis
Please provide an equivalence score from 0-100 and give a detailed analysis of your
reasoning.
Please analyze the equivalence between the following two algorithm descriptions:
Original Description:
New Description:
Please analyze according to the dimensions above and provide a score with detailed
explanation.Only put the score in a code block surrounded by triple backticks (“‘)”””

Figure 11: The prompt instructs the model to determine whether the two given programming
problems are semantically equivalent.
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C.5 NL Query To Verifiable Code

[Prompt]

You will get a problem description. Your task is to give a fully verified Dafny program.
Refer to the Dafny examples as guidance:
Fewshot Examples:
Problem description:
Please write the Dafny code that implements the functionality while ensuring:

1. Reference the Python implementation for algorithmic insights;
2. Add appropriate loop invariants with brief explanations;
3. Ensure full verification - your code must pass the Dafny verifier.

Output the complete Dafny program, including both the specification and implemen-
tation.

Figure 12: The prompt turns a natural-language query into a fully formal, verifiable speci-
fication together with correct-by-construction code.

D Model Argument Settings

Throughout all experiments, we retained the default values for every hyperparameter except
temperature and top-p. To balance creativity with reliability, we employed a two-level
sampling strategy: during the initial specification-generation stage shown in Pipeline 1 in
Figure 2, temperature was set to 0.7 and top-p to 0.9 to encourage diversity for generating
high-quality formal specifications equivalent to the NL query(Li et al., 2022b).
In all other phases, including annotated code generation in Pipeline 3 in Figure 2 and model
evaluation, temperature was reduced to 0.5 and top-p to 0.8 to promote deterministic and
consistent outputs.
The prompts are provided in Section C.
For model evaluation, the coding agent is provided with the problem in natural language
and is asked to generate four rollouts of annotated Dafny code. The equivalence score is then
evaluated for each rollout. Next, those rollouts that gain the equivalent score are passed
to Grok-4 to translate specifications back into NL. Finally, Claude-4 judges the equivalence
between the translated new description and the original query.
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E Qualitative Analysis

E.1 Examples of Verification Failures

Most failures come from unprovable clauses, including missing intermediate proofs or un-
specified conditions, as shown in Figure 13. However, to be noticed, Dafny has strict re-
quirements for writing specifications in order to pass the verifier. We have provided two
examples, whose specifications are correct and follow the syntax rules, in Figure 14 and 15.
However, the Dafny verifier requires re-expressing the code in a different way to pass the
verifier.

[Example 1]

decreases grid.Length0 * grid.Length1 -CountVisitedLandCells(grid
, visited)

Error: decreases expression might not decrease.
Error: decreases expression must be bounded below by 0 at the end of the loop iteration.
[Example 2]

totalCost := totalCost + energyCosts[reachable[i]];

Error: index out of range.

Figure 13: We provide two examples which cannot pass the verifier with missing intermediate
clauses.

while i <= |text| - |pattern|
invariant 0 <= i <= |text| - |pattern| + 1
invariant forall j :: 0 <= j < i ==> text[j..j+|pattern|] != pattern
{

if i + |pattern| <= |text| && text[i..i+|pattern|] == pattern {
return true;

}
i := i + 1;

}

Figure 14: An example of Claude-generated code and specifications that cannot be verified
by the Dafny verifier, although all specifications are correctly written.
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method MountainPathNavigation(elevations: seq<int>, queries: seq<int
>) returns (results: seq<int>)

requires |elevations| > 0
requires forall i :: 0 <= i < |elevations| - 1 ==> elevations[i] <=

elevations[i+1] // non-decreasing
requires forall k :: k in queries ==> 0 <= k < |elevations|
ensures |results| == |queries|
ensures forall i :: 0 <= i < |results| ==>

(results[i] == -1 <==> (forall pos ::
queries[i] <= pos < |elevations| ==> !HasDescendingPath(
elevations , pos))) &&

(results[i] != -1 ==> queries[i] <= results[i] < |elevations| &&
HasDescendingPath(elevations , results[i]) &&

(forall pos :: queries[i] <= pos < results[i] ==> !
HasDescendingPath(elevations , pos)))

{
// First, precompute all valid positions
var validPositions := FindValidPositions(elevations);

// Answer each query using binary search
results := [];
for i := 0 to |queries|

invariant |results| == i
invariant forall j :: 0 <= j < i ==>

(results[j] == -1 <==> (forall pos ::
queries[j] <= pos < |elevations| ==> !HasDescendingPath(
elevations , pos))) &&

(results[j] != -1 ==>
queries[j] <= results[j] < |elevations| &&
HasDescendingPath(elevations , results[j]) &&

(forall pos :: queries[j] <= pos < results[j] ==> !
HasDescendingPath(elevations , pos)))

{
var result := BinarySearchLeftmost(validPositions , queries[i

]);
results := results + [result];

}
}

predicate HasDescendingPath(elevations: seq<int>, start: int)
requires 0 <= start < |elevations|

{
exists end :: start < end < |elevations| &&

(forall k :: start <= k < end ==> elevations[k] > elevations[
k+1])

}

Figure 15: An example of Claude-generated code and specifications that cannot be verified
by the Dafny verifier. Although all specifications are correctly written, it does not follow
the Dafny grammar.
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The example in Figure 15 shows the limitation of the Dafny verifier. Consider the following
two preconditions:

requires forall k :: k in queries ==> 0 <= k < |elevations|,

and

requires forall i :: 0 <= i < | queries| ==> 0 <= queries[i] < |elevations|.

Although two preconditions express the same semantic content, the first condition generated
by Claude causes verification errors for the highlighted part in Figure 15; the range of each
element in queries cannot be proven. However, switching to the second precondition solves
the issue because the second precondition limits the range of each position needed for the
verifier.

E.2 An Example of Ambiguous Specifications

In this subsection, we present an example whose specifications are too weak to describe the
code behaviour and cannot pass our whole pipeline without alignment with the original user
intention.

Problem Description You are a security consultant for a museum that has a complex
layout of interconnected rooms. The museum has motion sensors that detect when visitors
move between rooms, and you need to validate if a recorded sequence of room visits repre-
sents a valid path through the museum. The museum layout is represented as an adjacency
matrix where 1 indicates a direct connection between two rooms, and 0 indicates no direct
connection. Additionally, the museum has special ’checkpoint rooms’ that visitors must pass
through in a specific order when moving between certain sections. Your task is to validate
a given path and determine if it’s physically possible given the room connections, and also
verify that all checkpoint rooms are visited in the correct sequence.
First line of the input contains integer n (number of rooms). Next n lines contain the
adjacency matrix (n × n) representing room connections. Next line contains integer k
(number of checkpoint rooms). Next line contains k integers representing the required order
of checkpoint rooms. Finally, the last line contains the path as a sequence of room numbers
to validate.”,
Return ’VALID’ if the path is valid (all consecutive rooms are connected and checkpoints
are visited in order), ’INVALID_CONNECTION’ if there’s an invalid room transition,
’INVALID_CHECKPOINT’ if checkpoints are not visited in the required order, or ’MISS-
ING_CHECKPOINT’ if not all checkpoints are visited.

Ambiguous Spec Generated By Claude The specification is shown in Figure 16.

method ValidateMuseumPath(n: int, adjacency_matrix: array2<int>,
checkpoints: array<int>, path: array<int>)

returns (result: string)
requires n >= 0
requires adjacency_matrix.Length0 == n &&

adjacency_matrix.Length1 == n
requires forall i, j :: 0 <= i < n && 0 <= j < n ==>

adjacency_matrix[i, j] == 0 || adjacency_matrix[i, j] == 1
requires forall i :: 0 <= i < checkpoints.Length ==>

0 <= checkpoints[i] < n
ensures result in {"VALID", "INVALID_CONNECTION", "INVALID_CHECKPOINT

", "MISSING_CHECKPOINT"}

Figure 16: Here is an example whose postconditions are too loose to describe the code
behaviour.
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method ValidateMuseumPath(n: int, adjacencyMatrix: array2<int>, k:
int, checkpoints: array<int>, path: array<int> ) returns (result:

int)
requires 3 <= n <= 100
requires 1 <= k <= n
requires k <= path.Length <= 1000

requires adjacencyMatrix.Length0 == n && adjacencyMatrix.Length1 == n
requires checkpoints.Length == k
requires path.Length >= 1
requires forall i, j :: 0 <= i < n && 0 <= j < n ==>

adjacencyMatrix[i, j] == 0 || adjacencyMatrix[i, j] == 1
requires forall i :: 0 <= i < k ==> 0 <= checkpoints[i] < n
requires forall i :: 0 <= i < path.Length ==> 0 <= path[i] < n
requires forall i, j :: 0 <= i < j < k ==>

checkpoints[i] != checkpoints[j]

ensures 0 <= result <= 3

ensures result == 0 <==> (
(forall i :: 0 <= i < path.Length - 1 ==>

adjacencyMatrix[path[i], path[i+1]] == 1) &&
(forall cp :: 0 <= cp < k ==> exists i ::

0 <= i < path.Length && path[i] == checkpoints[cp]) &&
(forall cp1, cp2 :: 0 <= cp1 < cp2 < k ==>

exists i1, i2 :: 0 <= i1 < i2 < path.Length &&
path[i1] == checkpoints[cp1] && path[i2] == checkpoints[cp2])

)

ensures result == 1 <==> (
exists i :: 0 <= i < path.Length - 1 &&

adjacencyMatrix[path[i], path[i+1]] == 0
)

ensures result == 3 <==> (
(forall i :: 0 <= i < path.Length - 1 ==>

adjacencyMatrix[path[i], path[i+1]] == 1) &&
(exists cp :: 0 <= cp < k && forall i :: 0 <= i < path.Length ==>

path[i] != checkpoints[cp])
)
ensures result == 2 <==> (

(forall i :: 0 <= i < path.Length - 1 ==>
adjacencyMatrix[path[i], path[i+1]] == 1) &&

(forall cp :: 0 <= cp < k ==> exists i :: 0 <= i < path.Length &&
path[i] == checkpoints[cp]) &&

(exists cp1, cp2 :: 0 <= cp1 < cp2 < k &&
forall i1, i2 :: (0 <= i1 < i2 < path.Length &&
path[i1] == checkpoints[cp1] &&

path[i2] == checkpoints[cp2]) ==> false)
)
ensures result == 1 ==> (

exists i :: 0 <= i < path.Length - 1 &&
adjacencyMatrix[path[i], path[i+1]] == 0

)
ensures (forall i :: 0 <= i < path.Length - 1 ==>

adjacencyMatrix[path[i], path[i+1]] == 1) ==>
(result == 0 || result == 2 || result == 3)

Figure 17: Here is the strong specification generated using our pipeline. Our pipeline
translates natural language to specifications first and then reinserts them into the generated
code.
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Translation by Grok-4 This method addresses a simplified museum path validation
problem, where the museum is modeled as a graph with n rooms (nodes) connected via a
binary adjacency matrix, a set of checkpoint rooms that might need to be visited, and a pro-
posed path sequence through the rooms. However, due to a policy of unconditional approval
(perhaps for a prototype or always-valid scenario), the function always deems the path valid
and returns ”VALID”, without checking connections, checkpoints, or path validity. It as-
sumes all inputs are well-formed (valid matrix size, binary entries, and checkpoint ranges)
and provides no detailed error reporting, effectively serving as a placeholder validator that
optimistically approves any tour route in reinforcement learning datasets for graph traversal
experiments. If needed, it could return other statuses like ”INVALID_CONNECTION” in
variants, but here it guarantees approval to satisfy minimal validation specs.

Equivalence Judgment by Claude-4 Final Equivalence Score: 0.
These two descriptions have zero equivalence. They describe completely unrelated prob-
lems: Different domains: Mountain elevation analysis vs. graph-based museum navigation;
Different data structures: 1D sorted array vs. 2D adjacency matrix with paths; Different
operations: Search for valid positions vs. unconditional approval; Different computational
requirements: Actual algorithm vs. placeholder function; Different I/O formats: Numerical
queries/positions vs. validation strings.
The only superficial similarity is that both involve some form of path or traversal concept,
but even this is fundamentally different (descending sequences in an array vs. connected
paths in a graph). There is no meaningful relationship between these two algorithm descrip-
tions.

Specification from Our Pipeline Figure 17 presents the generated specifications using
our pipeline for the same question. Our pipeline translates natural language to specifications
first and then reinserts them into the generated code. It leads to a noticeable improvement
in quality compared to code and specification generation being done simultaneously. This
reveals an interesting weakness of current models: models can separately generate specifi-
cations and code, but fail to do them together.

E.3 A Hard Example for Spec-to-NL Translation

In the above example, we remove any post-conditions on verifying the connectivity of the
path in the specification to create a hard test example for Spec-to-NL translation. This dif-
ference is successfully captured when translating the specifications back to natural language
and observed by the Judge model.

Translation by Grok-4 Problem: Subsequence Order Validator
Given an integer n (unused, for compatibility), an n × n adjacency matrix (unused, for
compatibility), an integer k (1 <= k <= n), an array of k unique checkpoints (room indices
from 0 to n-1), and an array representing a path (sequence of room indices from 0 to n-1,
length at least k), validate whether the path contains the exact sequence of checkpoints
as a (possibly non-consecutive) subsequence. Return 0 if it does (VALID), 2 if all check-
points appear but at least one pair has all occurrences of the earlier checkpoint after all
occurrences of the later one (INVALID_CHECKPOINT order violation), 3 if at least one
checkpoint does not appear in the path (MISSING_CHECKPOINT), and never return 1
(INVALID_CONNECTION, as connections are not checked). This can be used to check if
a sequence of events includes required milestones in a specified relative order, ignoring any
graph structure.

Equivalence Judement by Claude-4 Equivalence Score: 30.
Why this low score (30/100): Missing core functionality (-40 points): The new description
explicitly removes graph connectivity validation, which is a major component of the original
problem. This is not a minor detail - it’s half the problem.
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Different output behavior (-20 points): Cannot return INVALID_CONNECTION, leading
to incorrect results for inputs with connection violations.
Explicit admission of incompleteness (-10 points): The new description acknowledges inputs
are ”unused, for compatibility,” indicating it’s deliberately solving a subset problem.
Why not lower (0-30): Shared checkpoint validation (+20 points): The checkpoint ordering
logic appears identical between both descriptions.
Same input format (+5 points): Both accept the same input structure (even if new ignores
parts).
Overlapping outputs (+5 points): Three of four output codes have the same meaning.

E.4 An Example with Tight Specifications but Mismatched Code

We also provide another example of wrongly generated code. Although the generated spec-
ifications accurately describe the code, the alignment between the code and the natural-
language query is not guaranteed and requires a second-step verification. Our pipeline
successfully captures the mismatch, which cannot be achieved by any other code generation
benchmark. Considering that this incorrect code passes 85% of co-generated unit tests, we
doubt the reliability of using LLM-generated unit tests to verify code.

Problem Description A chess tournament organizer needs to create a bracket system
for N players. The tournament follows a complete binary tree structure where each leaf
represents a player, and each internal node represents a match between winners of its sub-
trees. The organizer has a sorted array of player ratings and wants to generate all possible
valid tournament brackets using backtracking. A valid bracket must satisfy: 1) Each player
appears exactly once as a leaf, 2) The tournament tree is complete (all levels filled except
possibly the last), 3) Players are assigned to positions such that the bracket can accommo-
date exactly N players. You need to find the number of distinct ways to arrange players in
valid tournament brackets.

Incorrect Code The code, with its corresponding specification, is shown in Figure 18.

Translation by Grok-4 Problem: Tournament Outcome Counter You are organizing
a single-elimination tournament where players are eliminated one by one until only the
champion remains. Given a list of players (with 1 to 16 players), write a function tourna-
ment_bracket_count that calculates the total number of possible outcomes for the tourna-
ment, assuming a fixed bracket structure. Each game has exactly two possible results (one
player wins, the other loses), and a tournament with n players requires exactly n-1 games.
Therefore, the number of possible outcomes is 2(n−1).
Input: A list of players (e.g., a sequence of integers representing player IDs).
Constraints: 1 <= number of players <= 16.
Output: An integer representing the number of possible tournament outcomes.

Equivalence Judgment by Claude-4 Equivalence Score: 5.
The score of 5/100 reflects that while the new description uses similar terminology (peaks,
revenues, maximum sum), it describes implementations that: Do not solve the original
problem - returning constant 1 or the first element is not finding a maximum mountain-
pattern subsequence; Ignore all constraints - no mountain pattern validation whatsoever;
Have no algorithmic content - O(1) stub vs.O(n×m) algorithm; Are explicitly described as
placeholders - the text itself admits these are ”simplified” versions that ”ignore the actual
revenue data”.
The 5 points are awarded only for: Using the same domain context (ski resort/mountain
revenues); Sharing vocabulary (peaks, revenues, maximum); Acknowledging the existence
of input data structures.
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function exponential(base: int, exp: nat): int
decreases exp;

{
if exp == 0 then 1
else base * exponential(base, exp-1)

}

method TournamentBracketCount(players: seq<int>) returns (count: int)
requires 1 <= |players| <= 16
ensures count == exponential(2, |players|-1)

{
var n: int := |players|;
count := 1;
var i: int := 1;
if n == 1 {

return;
}
while i < n

invariant 1 <= i <= n
invariant count == exponential(2, i-1)
decreases n - i

{
count := count * 2;
i := i + 1;

}
}

Figure 18: Here is an example whose generated code does not satisfy the user request but
has tight specifications generated along with it.

This is essentially not an equivalent algorithm but rather a pair of stub functions that might
be used as placeholders before implementing the actual solution. The new description reads
like documentation for incomplete/prototype code rather than a working implementation of
the mountain revenue problem.
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F Examples of Synthesis Problems

{
"title": "Magical Crystal Collection",
"difficulty": "medium",
"description": "You are an adventurer exploring a magical cave with n

crystals, each having a power value. The cave has a special
property: you can only collect crystals whose total power equals
exactly one of k magical target values. However, there's a twist
- the cave becomes unstable after collecting crystals, so you
want to find the target value that can be achieved using the
minimum number of crystals. If multiple targets require the same
minimum number of crystals , return the smallest target value. You
need to efficiently determine which magical target is achievable
and requires the fewest crystals.",

"input_format": "First line contains two integers n and k. Second
line contains n integers representing crystal power values. Third
line contains k integers representing the magical target values

.",
"output_format": "Return the magical target value that can be

achieved with minimum crystals , or -1 if no target is achievable
.",

"constraints": [
"1 <= n <= 20",
"1 <= k <= 1000",
"1 <= crystal power <= 1000",
"1 <= target values <= 20000",
"All crystal powers are positive integers",
"All target values are distinct"

],
"examples": [

{
"input": "4 3\n2 3 5 7\n10 12 17\n",
"output": "10",
"explanation": "Target 10 can be achieved with crystals [3,7]

(2 crystals), target 12 can be achieved with [2,3,7] (3
crystals), target 17 can be achieved with [2,3,5,7] (4
crystals). Minimum is 2 crystals for target 10."

},
{

"input": "3 2\n1 4 6\n8 11\n",
"output": "11",
"explanation": "Target 8 cannot be achieved with any subset.

Target 11 can be achieved with [1,4,6] (3 crystals). So
answer is 11."

},
{

"input": "3 3\n2 4 8\n6 14 16\n",
"output": "6",
"explanation": "Target 6 can be achieved with [2,4] (2

crystals), target 14 can be achieved with [2,4,8] (3
crystals), target 16 cannot be achieved. Minimum is 2
crystals for target 6."

}
],
"tags_used": ["Subset Sum Problem", "Binary search", "bitmask", "

array", "Heap"],
"time_complexity": "O(2^n * k + k log k)",
"space_complexity": "O(2^n + k)"

}

Figure 19: Problem 301’s natural-language description and example unit test.
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F.1 Qualified Python Code Generated

def magical_crystal_collection(n, k, crystals, targets):
"""
Find the magical target value that can be achieved with minimum

crystals.

Args:
n: number of crystals
k: number of target values
crystals: list of crystal power values
targets: list of magical target values

Returns:
The target value achievable with minimum crystals, or -1 if none

achievable
"""
# Dictionary to store minimum crystals needed for each possible sum
min_crystals_for_sum = {}

# Generate all possible subsets using bit manipulation
for mask in range(1, 1 << n): # Start from 1 to exclude empty subset

subset_sum = 0
crystal_count = 0

for i in range(n):
if mask & (1 << i):

subset_sum += crystals[i]
crystal_count += 1

# Update minimum crystals needed for this sum
if subset_sum not in min_crystals_for_sum or crystal_count <

min_crystals_for_sum[subset_sum]:
min_crystals_for_sum[subset_sum] = crystal_count

# Find the best target
best_target = -1
min_crystals_needed = float('inf')

for target in targets:
if target in min_crystals_for_sum:

crystals_needed = min_crystals_for_sum[target]
if (crystals_needed < min_crystals_needed or

(crystals_needed == min_crystals_needed and target <
best_target)):

min_crystals_needed = crystals_needed
best_target = target

return best_target

Figure 20: Problem 301 passes all 40 unit tests.
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F.2 Unqualified Python Code Generated

def forest_fire_spread(n, firefighters , edges):
"""
Find the maximum total number of firefighters that can be impacted
when starting the fire from the optimal station.

Args:
n: number of stations
firefighters: list of firefighters at each station (0-indexed)
edges: list of tuples representing bidirectional trails

Returns:
Maximum total number of firefighters that can be impacted

"""
# Build adjacency list
graph = [[] for _ in range(n)]
for u, v in edges:

graph[u-1].append(v-1) # Convert to 0-indexed
graph[v-1].append(u-1)

def dfs(start, visited, current_firefighters):
"""
Perform DFS to spread fire from current station.
Fire spreads to neighbor only if current station has more

firefighters.
"""
visited.add(start)
total_impact = firefighters[start]

for neighbor in graph[start]:
if neighbor not in visited and current_firefighters >

firefighters[neighbor]:
total_impact += dfs(neighbor , visited, firefighters[

neighbor])

return total_impact

max_impact = 0

# Try starting fire from each station
for start_station in range(n):

visited = set()
impact = dfs(start_station , visited, firefighters[start_station])
max_impact = max(max_impact , impact)

return max_impact

Figure 21: Problem 1547 has 22 passing and 19 failing test-cases. The DFS function incor-
rectly propagates state.
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def digital_library_traversal(input_str):
"""
Performs preorder traversal of book dependencies starting from a

given book.

Args:
input_str: String containing book dependencies and starting book

Returns:
String with books in preorder traversal order, one per line

"""
lines = input_str.strip().split('\n')
n = int(lines[0])

# Parse dependencies
dependencies = {}

for i in range(1, n + 1):
line = lines[i]
if ':' in line:

book, deps_str = line.split(':', 1)
book = book.strip()
deps_str = deps_str.strip()

if deps_str:
deps = [dep.strip() for dep in deps_str.split(',')]
# Sort dependencies alphabetically
deps.sort()

else:
deps = []

dependencies[book] = deps

starting_book = lines[n + 1].strip()

# Check if starting book exists
if starting_book not in dependencies:

return "Book not found"

# Perform preorder traversal
result = []

def preorder_traversal(book):
# Visit current book
result.append(book)

# Visit dependencies in alphabetical order
if book in dependencies:

for dependency in dependencies[book]:
if dependency in dependencies:

preorder_traversal(dependency)

preorder_traversal(starting_book)

return '\n'.join(result)

Figure 22: Problem 508 has 38 passing and 2 failing test-cases. Two unit tests violate
the problem’s stated constraints, preventing the otherwise-correct solution from passing all
cases.
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VeriEquivBench Performance Analysis
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Figure 23: We evaluate three proprietary models and three open-sourced models using our
pipeline to verify the alignment between users’ intention and code generation. It turns
out that business-purpose models in large sizes outperform small, open-sourced models,
especially in writing less ambiguous specifications.

G Experimental Result Details

G.1 Quality Assurance of Python2Dafny Transformation

With 1, 011 questions randomly selected, we transform their unit tests in Python to Dafny.
However, due to the mismatch in Dafny grammar, not all questions are successfully trans-
formed without syntax errors; for example, our script uses seq<int> to define lists, but
some Dafny code requires array<int>. Also, not all unit tests satisfy the preconditions,
in which cases, the unverified Dafny code cannot be executed. Also, a few codes take too
long to compile and are stopped after 30 minutes. The details are listed in Table 12.
Finally, with 648 successfully executed code, 530 pass all unit tests with a full pass rate at
81.79%.

Table 12: The table shows the success rate of transforming Python unit tests to Danfy.

Selected Questions Syntax Errors Verification Errors Timeout Successful Execution
1011 297 62 4 648
100% 29.38% 6.13% 0.4% 64.1%

G.2 Testing on More Open-Sourced Models

We evaluate three proprietary models and three open-sourced models using our pipeline to
verify the alignment between users’ intentions and code generation. Here, we use Claude-4-
sonnet, GPT-5, Gemini-2.5-flash, DeepSeek-R1, Qwen-2.5-Coder-14B-Instruct and Llama3-
70B. Business-purpose models significantly outperform open-sourced models in writing
syntax-correct and tight specifications.

G.3 Training Curves on Auxiliary Tasks

We use the 14B SFT model provided by the Veri-Code Team and their code to RL-train
models using GRPO.
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Training Curves for Auxiliary Tasks
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Figure 24: During the verifiable code refinement task, the model barely improves, demon-
strating that RL training is not enough. During the spec generation task, the generated
specification quality keeps enhancing, but still fails to capture code behaviours without am-
biguities.

G.4 Details about DafnySynthesis Inspection

This section details our analysis of 14 ground-truth samples identified as problematic. Our
investigation revealed that two samples failed initial verification due to implementation
errors or timeouts, precluding further analysis. These were #566 and #632, the latter of
which was previously reported by Clover (Sun et al., 2024).
The primary issue in the remaining 12 samples was specification ambiguity stemming from
insufficient post-conditions. We successfully rectified this in eight cases by strengthening
their post-conditions, with the fixes validated through equivalence testing. Although our
refinements improved the specifications for two other samples, they still did not pass the
equivalence check. We were unable to resolve the ambiguities in the final two samples.
A significant portion of these ambiguous samples were newly discovered. Specifically, eight
samples (#579, #602, #625, #629, #733, #755, #793, #807) were not documented in the
prior work by Clover (Sun et al., 2024). Of these, we successfully fixed five (#625, #733,
#755, #793, #807) and refined one (#602). Corresponding code examples are shown in
Figures 25-32.
Regarding the issues previously reported by Clover, our findings for samples #567, #576,
#644, and #803 largely concur. We fixed three (#567, #644, #803) and refined one (#576),
with details in Figures 33-35. Conversely, sample #472 passed our equivalence checks, which
aligns with Clover’s classification of its issue as a natural-language inconsistency rather than
a specification defect. As noted, sample #632 was excluded due to a timeout.
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predicate InArray(a: array<int>, x: int)
reads a

{
exists i :: 0 <= i < a.Length && a[i] == x

}

method DissimilarElements(a: array<int>, b: array<int>) returns (result:
seq<int>)
ensures forall x :: x in result ==> (InArray(a, x) != InArray(b, x))
ensures forall i, j :: 0 <= i < j < |result| ==> result[i] != result[

j]
######## The post-conditions here omit that the first half of result

is in array a, while the second half is in b.
{

var res: seq<int> := [];
for i := 0 to a.Length

invariant 0 <= i <= a.Length
invariant forall x :: x in res ==> InArray(a, x)
invariant forall x :: x in res ==> InArray(a, x) != InArray(b, x)
invariant forall i, j :: 0 <= i < j < |res| ==> res[i] != res[j]

{
if !InArray(b, a[i]) && a[i] !in res
{

res := res + [a[i]];
}

}

ghost var partialSize := |res|;
for i := 0 to b.Length

invariant 0 <= i <= b.Length
invariant forall k :: partialSize <= k < |res| ==> InArray(b, res

[k])
invariant forall k :: 0 <= k < |res| ==> InArray(a, res[k]) !=

InArray(b, res[k])
invariant forall i, j :: 0 <= i < j < |res| ==> res[i] != res[j]

{
if !InArray(a, b[i]) && b[i] !in res
{

res := res + [b[i]];
}

}

result := res;
}

Figure 25: An unresolved specification ambiguity in DafnySynthesis sample #579. The
post-condition is insufficient because it fails to enforce the preservation of the relative order
of elements from the input array in the output.
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method FindFirstRepeatedChar(s: string) returns (found: bool, c: char)
ensures found ==> exists i, j :: 0 <= i < j < |s| && s[i] == s[j]

&& s[i] == c && (forall k, l :: 0 <= k < l < j
&& s[k] == s[l] ==> k >= i)

ensures !found ==> (forall i, j :: 0 <= i < j < |s| ==> s[i] != s[j])
######## ⇓ The added post-condition
ensures !found ==> c == ' '
######## ⇑

{
c := ' ';
found := false;
var inner_found := false;
var i := 0;
while i < |s| && !found

invariant 0 <= i <= |s|
invariant found == inner_found

invariant found ==> exists ii, jj :: 0 <= ii < i
&& ii < jj < |s| && s[ii] == s[jj] && s[ii] == c
&& (forall k, l :: 0 <= k < l < jj && s[k] == s[l] ==> k >= ii)

invariant !found <==> (forall ii, jj :: 0 <= ii < i
&& ii < jj < |s| ==> s[ii] != s[jj])

######## ⇓ The added loop invariant
invariant !found ==> c == ' '
######## ⇑

{
var j := i + 1;
while j < |s| && !inner_found

invariant i < j <= |s|
invariant inner_found ==> exists k :: i < k < |s|

&& s[i] == s[k] && s[i] == c
invariant !inner_found

<==> (forall k :: i < k < j ==> s[i] != s[k])
######## ⇓ The added loop invariant
invariant !inner_found ==> c == ' '
invariant !found
######## ⇑

{
if s[i] == s[j] {

inner_found := true;
c := s[i];

}
j := j + 1;

}
found := inner_found;
i := i + 1;

}
}

Figure 26: A refined but unfixed specification for sample #602. While the shown refinement
fails the equivalence test, a stricter post-condition (k > i) could not be verified due to a
timeout.
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method SwapFirstAndLast(a: array<int>)
requires a.Length > 0
modifies a
######## ⇓ The added post-condition
ensures a.Length == old(a.Length)
######## ⇑
ensures a[0] == old(a[a.Length - 1])
ensures a[a.Length - 1] == old(a[0])
ensures forall k :: 1 <= k < a.Length - 1 ==> a[k] == old(a[k])

{
var tmp := a[0];
a[0] := a[a.Length - 1];
a[a.Length - 1] := tmp;

}

Figure 27: A successfully resolved specification ambiguity in DafnySynthesis sample #625.
The original specification was ambiguous as it lacked a constraint on the output array’s
length. The ambiguity was rectified by introducing a post-condition ensuring the length
remains invariant.
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predicate IsEven(n: int)
{

n % 2 == 0
}

method FindEvenNumbers(arr: array<int>) returns (evenList: seq<int>)

ensures forall i :: 0 <= i < |evenList| ==> IsEven(evenList[i])
&& evenList[i] in arr[..]
ensures forall i :: 0 <= i < arr.Length && IsEven(arr[i])
==> arr[i] in evenList
######## The post-conditions here do not ensures the order preserving

between the input array and output array
{

evenList := [];
for i := 0 to arr.Length

invariant 0 <= i <= arr.Length
invariant 0 <= |evenList| <= i
invariant forall k :: 0 <= k < |evenList| ==> IsEven(evenList[k])

&& evenList[k] in arr[..]
invariant forall k :: 0 <= k < i && IsEven(arr[k]) ==> arr[k] in

evenList
{

if IsEven(arr[i])
{

evenList := evenList + [arr[i]];
}

}
}
method FindEvenNumbers_check(arr: array<int>) returns (evenList: seq<int

>)
{

evenList := *;
assume forall i :: 0 <= i < |evenList| ==> IsEven(evenList[i]) &&

evenList[i] in arr[..];
assume forall i :: 0 <= i < arr.Length && IsEven(arr[i]) ==> arr[i] in

evenList;
var val_0 :=FindEvenNumbers(arr);
assert evenList[..] == val_0[..];

}

Figure 28: An unresolved specification ambiguity in DafnySynthesis sample #629. The
post-condition is insufficient because it fails to enforce the preservation of the relative order
of elements from the input array.
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method FindFirstOccurrence(arr: array<int>, target: int) returns (index:
int)
requires arr != null
requires forall i, j :: 0 <= i < j < arr.Length ==> arr[i] <= arr[j]
ensures 0 <= index < arr.Length ==> arr[index] == target
ensures index == -1 ==> forall i :: 0 <= i < arr.Length ==> arr[i] !=

target
ensures forall i :: 0 <= i < arr.Length ==> arr[i] == old(arr[i])
######## ⇓ The added post-condition
ensures 0 <= index < arr.Length || index == -1
ensures 0 <= index < arr.Length ==> ((forall i :: 0 <= i < index ==>

arr[i] < arr[index]) && (forall j :: index <= j < arr.Length ==>
arr[j] >= arr[index]))

######## ⇑
{

index := -1;
for i := 0 to arr.Length

invariant 0 <= i <= arr.Length
invariant index == -1 ==> forall k :: 0 <= k < i ==> arr[k] !=

target
invariant 0 <= index < i ==> arr[index] == target
invariant forall k :: 0 <= k < arr.Length ==> arr[k] == old(arr[k

])
{

if arr[i] == target
{

index := i;
break;

}
if arr[i] > target
{

break;
}

}
}

Figure 29: A successfully resolved specification ambiguity in DafnySynthesis sample #733.
The original specification was insufficient, lacking detail for cases where the input index
is non-negative. The issue was fixed by refining the post-condition to explicitly define the
expected behavior for this scenario.
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function MinPair(s: seq<int>) : (r: int)
requires |s| == 2
ensures s[0] <= s[1] <==> r == s[0]
ensures s[0] > s[1] ==> r == s[1]

{
if s[0] <= s[1] then s[0] else s[1]

}
function min(s: seq<int>) : (r: int)

requires |s| >= 2
ensures forall i :: 0 <= i < |s| ==> r <= s[i]

{
if |s| == 2 then MinPair(s)
else MinPair([s[0], min(s[1..])])

}
method SecondSmallest(s: array<int>) returns (secondSmallest: int)

requires s.Length >= 2
requires exists i, j :: 0 <= i < s.Length && 0 <= j < s.Length

&& i != j && s[i] == min(s[..]) && s[j] != s[i]
ensures exists i, j :: 0 <= i < s.Length && 0 <= j < s.Length

&& i != j && s[i] == min(s[..]) && s[j] == secondSmallest
ensures forall k :: 0 <= k < s.Length && s[k] != min(s[..])

==> s[k] >= secondSmallest
######## ⇓ The added post-condition
ensures (exists i, j :: i != j && 0 <= i < s.Length

&& 0 <= j < s.Length && s[i] == s[j] && s[i] == min(s[..]))
==> secondSmallest == min(s[..])

ensures !(exists i, j :: i != j && 0 <= i < s.Length
&& 0 <= j < s.Length && s[i] == s[j] && s[i] == min(s[..]))
==> ( (exists k :: 0 <= k < s.Length && s[k] == secondSmallest)

&& (forall k :: 0 <= k < s.Length && s[k] > min(s[..])
==> s[k] >= secondSmallest) && secondSmallest > min(s[..]) )

######## ⇑
{

var minIndex := 0;
var secondMinIndex := 1;
if s[1] < s[0] {

minIndex := 1;
secondMinIndex := 0;

}
for i := 2 to s.Length
invariant 0 <= i <= s.Length
invariant 0 <= minIndex < i
invariant 0 <= secondMinIndex < i
invariant minIndex != secondMinIndex
invariant forall k :: 0 <= k < i ==> s[k] >= s[minIndex]
invariant forall k :: 0 <= k < i && k != minIndex ==> s[k] >= s[

secondMinIndex]
{

if s[i] < s[minIndex] {
secondMinIndex := minIndex;
minIndex := i;

} else if s[i] < s[secondMinIndex] {
secondMinIndex := i;

}
}

secondSmallest := s[secondMinIndex];
}

Figure 30: A successfully resolved specification ambiguity in DafnySynthesis sample #755.
The original specification was insufficient, failing to distinguish between cases with a unique
minimum value and those with multiple occurrences of the minimum. The ambiguity was
rectified by refining the post-condition to explicitly detail the expected behavior for both
scenarios.
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method LastPosition(arr: array<int>, elem: int) returns (pos: int)
requires arr.Length > 0
requires forall i, j :: 0 <= i < j < arr.Length ==> arr[i] <= arr[j]
######## ⇓ Original post-condition
// ensures pos == -1 || (0 <= pos < arr.Length && arr[pos] == elem &&

(pos <= arr.Length - 1 || arr[pos + 1] > elem))
######## ⇑
######## ⇓ The fixed post-condition
ensures pos == -1 <==> (forall j :: 0 <= j < arr.Length ==> arr[j] !=

elem)
ensures pos != -1 <==> (0 <= pos < arr.Length && arr[pos] == elem &&

(pos == arr.Length - 1 || arr[pos + 1] > elem))
######## ⇑
ensures forall i :: 0 <= i < arr.Length ==> arr[i] == old(arr[i])

{
pos := -1;
for i := 0 to arr.Length #### Originally , the upper bound is arr.

Length - 1, but it was buggy
invariant 0 <= i <= arr.Length
######## ⇓ Original loop invariant
// invariant pos == -1 || (0 <= pos < i && arr[pos] == elem && (

pos == i - 1 || arr[pos + 1] > elem))
######## ⇓ The fixed loop invariant
invariant pos == -1 <==> (forall j :: 0 <= j < i ==> arr[j] !=

elem)
invariant pos != -1 <==> (0 <= pos < i && arr[pos] == elem && (

pos == i - 1 || arr[pos + 1] > elem))
######## ⇑
invariant forall k :: 0 <= k < arr.Length ==> arr[k] == old(arr[k

])
{

if arr[i] == elem
{

pos := i;
}

}
}

Figure 31: A successfully resolved specification ambiguity in DafnySynthesis sample #793.
The original specification was insufficient as it failed to define distinct behaviors based on the
sign of the input parameter ‘pos’. The ambiguity was rectified by refining the post-condition
to explicitly handle the cases where ‘pos’ is negative and non-negative, respectively.
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predicate IsOdd(x: int)
{

x % 2 != 0
}

method FindFirstOdd(a: array<int>) returns (found: bool, index: int)
requires a != null
ensures !found ==> forall i :: 0 <= i < a.Length ==> !IsOdd(a[i])
ensures found ==> 0 <= index < a.Length && IsOdd(a[index])

&& forall i :: 0 <= i < index ==> !IsOdd(a[i])
######## ⇓ The added post-condition
ensures !found ==> index == a.Length
######## ⇑

{
found := false;
index := 0;
while (index < a.Length)

invariant 0 <= index <= a.Length
invariant !found ==> forall i :: 0 <= i < index ==> !IsOdd(a[i])
invariant found ==> IsOdd(a[index - 1]) && forall i :: 0 <= i <

index - 1 ==> !IsOdd(a[i])
{

if IsOdd(a[index])
{

found := true;
return;

}
index := index + 1;

}
}

Figure 32: A successfully resolved specification ambiguity in DafnySynthesis sample #807.
The original specification was insufficient, as it only described the behavior for successful
outcomes. The ambiguity was resolved by strengthening the post-condition to explicitly
define the program’s state in failure cases, ensuring comprehensive and predictable behavior.
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method IsSorted(a: array<int>) returns (sorted: bool)
requires a.Length > 0
######## ⇓ Original post-condition
// ensures sorted <== forall i, j :: 0 <= i < j < a.Length

==> a[i] <= a[j]
// ensures !sorted ==> exists i, j :: 0 <= i < j < a.Length

&& a[i] > a[j]
######## ⇑
######## ⇓ The fixed post-condition
ensures sorted <==> forall i, j :: 0 <= i < j < a.Length

==> a[i] <= a[j]
######## ⇑

{
sorted := true;
for i := 0 to a.Length - 1

invariant 0 <= i < a.Length
######## ⇓ Original loop invariant
// invariant sorted <== forall k, l :: 0 <= k < l < i

==> a[k] <= a[l]
// invariant !sorted ==> exists k :: 0 <= k < i && a[k] > a[k+1]
######## ⇑
######## ⇓ The fixed post-condition
invariant sorted <==> forall k, l :: 0 <= k < l <= i

==> a[k] <= a[l]
######## ⇑

{
if a[i] > a[i + 1]
{

sorted := false;
break;

}
}
sorted := sorted;

}

Figure 33: A successfully resolved specification ambiguity in DafnySynthesis sample #567,
an issue also identified by the Clover. The original post-condition was overly permissive,
stating only a sufficient condition for the desired outcome. The ambiguity was rectified by
strengthening this to a necessary and sufficient condition (an equivalence).
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method Reverse(a: array<int>)
modifies a

######## ⇓ The added post-condition
ensures a.Length == old(a.Length)

######## ⇑
ensures forall k :: 0 <= k < a.Length ==> a[k] == old(a[(a.Length -1) -

k])
{

var l := a.Length - 1;
var i := 0;
while (i < l-i)

invariant 0 <= i <= (l+1)/2
invariant forall k :: 0 <= k < i || l-i < k <= l ==> a[k] == old(a[l-

k])
invariant forall k :: i <= k <= l-i ==> a[k] == old(a[k])

{
a[i], a[l-i] := a[l-i], a[i];
i := i + 1;

}
}
method ReverseUptoK(s: array<int>, k: int)

modifies s
requires 2 <= k <= s.Length
######## ⇓ The added post-condition
ensures s.Length == old(s.Length)
######## ⇑
ensures forall i :: 0 <= i < k ==> s[i] == old(s[k - 1 - i])
ensures forall i :: k <= i < s.Length ==> s[i] == old(s[i])

{
var l := k - 1;
var i := 0;
while (i < l-i)

invariant 0 <= i <= (l+1)/2;
invariant forall p :: 0 <= p < i || l-i < p <= l ==> s[p] == old(s[l-

p]);
invariant forall p :: i <= p <= l-i ==> s[p] == old(s[p]);

invariant forall p :: k <= p < s.Length ==> s[p] == old(s[p])
{

s[i], s[l-i] := s[l-i], s[i];
i := i + 1;

}
}

Figure 34: A successfully resolved specification ambiguity in DafnySynthesis sample #644,
an issue also identified by the Clover. The original specification was ambiguous as it lacked
a constraint on the output array’s length. The ambiguity was rectified by introducing a
post-condition ensuring the length remains invariant.
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method IsPerfectSquare(n: int) returns (result: bool)
requires n >= 0
######## ⇓ Original post-condition
// ensures result == true ==> (exists i: int :: 0 <= i <= n && i * i

== n)
// ensures result == false ==> (forall a: int :: 0 < a*a < n ==> a*a

!= n)
######## ⇑
######## ⇓ The fixed post-condition
ensures result <==> (exists i: int :: 0 <= i <= n && i * i == n)
######## ⇑

{
var i := 0;
while (i * i < n)

invariant 0 <= i <= n
invariant forall k :: 0 <= k < i ==> k * k < n

{
i := i + 1;

}
return i * i == n;

}

Figure 35: A successfully resolved specification ambiguity in DafnySynthesis sample #803,
an issue also identified by the Clover. The original post-condition was overly permissive,
stating only necessary conditions for the desired outcome. The ambiguity was rectified by
strengthening this to a necessary and sufficient condition (an equivalence).
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method IsSublist(sub: seq<int>, main: seq<int>) returns (result: bool)
######## ⇓ Original post-condition
// ensures true <== (exists i :: 0 <= i <= |main| - |sub| && sub ==

main[i..i + |sub|])
######## ⇑
######## ⇓ The refined post-condition
ensures result ==> (exists i :: 0 <= i <= |main| - |sub| && sub ==

main[i..i + |sub|])
ensures result ==> (exists i :: |sub| <= i <= |main| && sub == main[i

- |sub|..i])
######## ⇑

{
if |sub| > |main| {

return false;
}
result := false;
for i := 0 to |main| - |sub| + 1

######## ⇓ The original loop invariant
// invariant result ==> (exists j :: 0 <= j < i && sub == main[j

..j + |sub|])
######## ⇑
######## ⇓ The refined loop invariant
invariant 0 <= i <= |main| - |sub| + 1
######## ⇑

{
if sub == main[i..i + |sub|] {

result := true;
}

}
result := false;

}

Figure 36: An unresolved specification ambiguity in DafnySynthesis sample #576, an is-
sue also identified by the Clover. The original post-condition was effectively meaningless,
providing no meaningful constraints. Although the post-condition was refined to be more
specific, the resulting specification still fails to pass the equivalence test, indicating that the
ambiguity has not been fully resolved and requires further investigation.
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H The Use of Large Language Models

Multiple LLM products, including GPT-5 and Gemini-2.5-pro, are deployed to polish the
writing. However, none of the paragraphs is written by LLMs directly, and all research
ideas are independently proposed by authors without any AI assistance. Claude-Opus-4.1
and Sonnet are used to create figure generation code for Figure 5 and 24. Cursor is included
to assist coding, but all generated code is then carefully inspected by authors. Other uses
of LLMs in data curation and synthesis are clearly stated in the paper.
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