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Abstract

Although text-to-image (T2I) models exhibit remarkable generation capabilities,
they frequently fail to accurately bind semantically related objects or attributes
in the input prompts; a challenge termed semantic binding. Previous approaches
either involve intensive fine-tuning of the entire T2I model or require users or
large language models to specify generation layouts, adding complexity. In this
paper, we define semantic binding as the task of associating a given object with its
attribute, termed attribute binding, or linking it to other related sub-objects, referred
to as object binding. We introduce a novel method called Token Merging (ToMe),
which enhances semantic binding by aggregating relevant tokens into a single
composite token. This ensures that the object, its attributes and sub-objects all share
the same cross-attention map. Additionally, to address potential confusion among
main objects with complex textual prompts, we propose end token substitution as
a complementary strategy. To further refine our approach in the initial stages of
T2I generation, where layouts are determined, we incorporate two auxiliary losses,
an entropy loss and a semantic binding loss, to iteratively update the composite
token to improve the generation integrity. We conducted extensive experiments to
validate the effectiveness of ToMe, comparing it against various existing methods
on the T2I-CompBench and our proposed GPT-4o object binding benchmark. Our
method is particularly effective in complex scenarios that involve multiple objects
and attributes, which previous methods often fail to address. The code will be
publicly available at https://github.com/hutaihang/ToMe.

1 Introduction

Text-to-image generation has seen significant advancements with the recent introduction of diffusion
models [57, 59, 62], with their capabilities of generating high-fidelity images from text prompts.
Despite these achievements, aligning the generated images with the text prompts, which is referred to
as semantic alignment [30, 43], remains a notable challenge. One of the most common issues observed
in existing text-to-image (T2I) generation models is the lack of proper semantic binding, where a
given object is not properly binding to its attributes or related objects. For example, as illustrated in
Fig. 1, even a state-of-the-art T2I model such as SDXL [53] can struggle to generate content that
accurately reflects the intended nuances of text prompts. To address the persistent challenges of
aligning T2I diffusion models with the intricate semantics of text prompts, a variety of enhancement
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Figure 1: Current state-of-the-art T2I models often struggle with semantic binding in generated
images according to textual prompts. For example, hats and sunglasses are placed on incorrect objects.
We introduce a novel method ToMe to address these challenges.

strategies [35, 46, 87] are proposed, either by optimizing the latent representations [69, 82, 83],
guiding the generation by layout priors [54, 71, 85] or fine-tuning the T2I models [21, 34]. Despite
these advancements, these methods still encounter limitations, particularly in generating high-fidelity
images involving complex scenarios where an object is binding with multiple objects or attributes.

In this paper, we categorize semantic binding into two categories. First, attribute binding involves
correctly associating objects with their attributes, a topic that has been studied in prior work [58].
Second, object binding, which entails effectively linking objects to their related sub-objects (for
example, a ‘hat’ and ‘glasses’), is less explored in the existing literature. Previous methods often
struggled to address this aspect of semantic binding. One of the main problems is the misalignment
of objects with their corresponding sub-objects. Existing solutions address this through an explicit
alignment process of the attention maps [7, 43] or by factorizing the generation projects into layout
phases and generation phase [55]. In this paper, we propose a simple solution to the attention
alignment problem called token merging (ToMe). Instead of multiple attention maps, which can
be misaligned, we join these objects in a single composite token that represents the object and its
attributes and sub-objects. This composite token has a single cross-attention map that ensures semantic
alignment. The composite token is simply constructed by summing the CLIP text embeddings of the
various tokens it represents. For example, the phrase “a dog with hat” is abbreviated as “a dog*” by
aggregating the text embeddings corresponding to the last three words, as shown in Fig. 4. To justify
the applied embedding addition in ToMe, we experimented with the semantic additivity of the text
embeddings (in Fig. 3). Furthermore, to mitigate potential semantic misalignment in the end tokens
from the long sequences, we propose end token substitution (ETS) technique.

As the T2I generation predominantly determines the layout during earlier phases [27], we introduce
an entropy loss and a semantic binding loss to update the token embeddings in early steps, integrating
ToMe with an iterative update for the composite tokens. The entropy loss is defined as the entropy of
the cross-attention map corresponding to the updated composite token. This loss aims to enhance
generation integrity by ensuring diverse attention across relevant areas of the image, thereby pre-
venting focusing on non-essential regions. The semantic binding loss encourages the new learned
token to infer the same noise prediction as the original corresponding phrase. This alignment further
reinforces the semantic coherence between the text and the generated image.

Our final method ToMe is quantitatively assessed using the widely adopted T2I-CompBench [31] and
our proposed GPT-4o [1] object binding benchmark. Comparative evaluations against various types
of approaches reveal that ToMe outperforms them by a significant margin. Remarkably, our approach
is user-friendly, requiring no dependence on large language models or specific layout information.
In qualitative evaluations, we notably achieve superior generation quality, particularly in scenarios
involving multi-object multi-attribute generation. This further underscores the superiority of our
method. In summary, the main contributions of this paper are as follows:

• We analyze the problem of semantic binding, and highlight the role of the [EOT] token (Fig. 2),
and the problems with misaligned cross-attention maps (Fig. 7). In addition, we explore token
additivity as a possible solution (Fig. 3).
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• We introduce a training-free approach called Token Merging (Fig. 4), denoted as ToMe, as a more
efficient and robust solution for semantic binding. It is further enhanced by our proposed end token
substitution and iterative composite token updates techniques.

• In experiments conducted on the widely used T2I-CompBench benchmark and our GPT-4o object
binding benchmark, we compared ToMe with various state-of-the-art approaches and consistently
outperformed them by significant margins.

2 Related works

A critical drawback of current text-to-image models is related to their limited ability to faithfully
represent the precise semantics of input prompts, commonly referred to as semantic alignment.
Various studies have identified common semantic failures and proposed mitigation strategies. They
can be roughly categorized into four main streams.

Optimization-based methods primarily adjust text embeddings [20, 65] or optimize noisy signals
to strengthen attention maps [26, 48, 63, 69, 82, 83]. These methods are basically inspired by the
observations from text-based image editing methods [27, 40, 64, 66], suggesting that the layouts of
objects are determined by self-attention and cross-attention maps from the UNet of the T2I diffusion
models. For example, Attend-and-Excite [7] improves object existence by exciting the attention score
of each object. Divide-and-Bind [43] improves by maximizing the total variation of the attention map
to prompt multiple spatially distinct attention excitations. SynGen [58] syntactically analyzes the
prompt to identify entities and their modifiers, and then uses attention loss functions to encourage
the cross-attention maps to agree with the linguistic binding reflected in the syntax. A-star [2]
proposes to minimize concept overlap and change in attention maps through iterations. Composable
Diffusion [45] decomposes complex texts into simpler segments and then composes the image from
these segments. Structure Diffusion [20] attempts to address this by leveraging linguistic structures
to guide the cross-attention maps. Rich-Text [24] enriches textual prompts by incorporating various
formatting controls and decomposes the generation task into merging inferences from multiple region-
based diffusions. However, these methods often fail in complex scenarios that generate multiple
objects or multiple attributes.

Layout-to-Image methods [4, 9, 14, 17, 25, 32, 36, 47] are widely using layouts, particularly in the
form of bounding boxes or segmentation maps, as a popular intermediary to bridge the gap between
text input and the generated images. For example, BoxDiff [73] encourages the desired objects to
appear in the specified region by calculating losses based on the maximum values in cross-attention
maps. Similarly, Attention-Refocusing [52] modifies both cross-attention and self-attention maps
to control object positions. BoxNet [67] first trains a network to predict the box for each entity that
possesses the attribute specified in the prompt, and then force the generation to follow the attention
mask control. Additionally, InstanceDiffusion [68] enhances text-to-image models by providing
extra instance-level control. There are also finetuning methods [5, 42, 50, 79] allow for additional
layout conditions after fine-tuning over pair images, which are not specifically designed to solve the
semantic alignment problem. Despite their promise, these methods obviously prolong the training
time. Furthermore, the application of layout priors is challenging when it comes to global background
descriptions or abstract elements. This limitation constrains the versatility of these techniques, making
it difficult to deploy them effectively across real scenarios where non-specific spatial arrangements
are crucial.

LLM-augmented methods are mainly following text-to-layout-to-image generation pipelines [15,
23, 33, 44, 55, 65, 80, 81, 86], first to generate layouts from large language models (LLMs) and
force the T2I generations to follow this guidance as the previous layout-guided methods. Some
methods, such as RPG [75] and MuLan [39], harness the powerful chain of thought reasoning ability
of multimodal LLMs to enhance the compositionality of text-to-image diffusion models.

Finetuning-based methods [13, 76] update the model parameters over huge datasets to augment
the semantic alignment. Among them, CoMat [34] proposes an end-to-end fine-tuning strategy
for text-to-image diffusion models by incorporating image-to-text concept matching. ELLA [30]
equips text-to-image diffusion models with powerful Large Language Models (LLM) to enhance text
alignment by bridging these two pre-trained models with trainable semantic alignment connectors.
More recently, Ranni [21] improves T2I generation by bridging the text and image with a semantic
panel with LLMs and is fine-tuned over an automatically prepared semantic panel dataset. There
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a and awear-
ing

sun-
glassescat dog hatwith[SOT] [EOT]

Text Encoder"a cat wearing sunglasses
and a dog with hat"

Conditional Denoising UNet

Full Sentence [dog] token [EOT] tokens

(a) T2I generation with various tokens (b) DetScore probabilities

Figure 2: We generate images with various input prompts in (a): “a cat wearing sunglasses and a dog
wearing a hat”; the single-token embedding [dog]; the end token [EOT] . (b) After that, we compute
the probability of containing “sunglasses” in the generated images in subfigure .

are also improved T2I models [10, 11, 51] learning from scratch over huge datasets. These methods
improve semantic alignment implicitly by better architecture design and larger amount of training
data. They further demand marvelous computational resources to achieve the purpose.

In this paper, we tackle the semantic binding problem, which is a broad subcase of semantic alignment,
in a training-free manner, neither needing the LLMs nor any training over additional datasets.
Furthermore, we achieve better performance when facing complex T2I generation scenarios where
users require multiple objects or multiple attributes related to a specific object.

3 Methods

Semantic binding in T2I generation refers to the crucial requirement of establishing accurate associa-
tions between objects and their relevant attributes or related sub-objects. This process avoids semantic
misalignment in the generated images, ensuring that each visual element aligns correctly with its
descriptive cues in the text. In this section, we begin by providing the preliminaries. Subsequently,
we illustrate the motivation through a series of experimental analyses (Sec. 3.1). Finally, we elaborate
on our methods in detail (Sec. 3.2). An illustration of our method ToMe is shown in Fig. 4.

Latent Diffusion Models. We build our novel approach for semantic alignment on the standard
SDXL [53] model. The model is composed of two main parts: an autoencoder (i.e., a encoder E and
a decoder D ) and a diffusion model (i.e., ϵθ with parameter θ). The model ϵθ is updated by the loss:

LLDM := Ez0∼E(x),y,ϵ∼N (0,1),t∼Uniform(1,T )

[
∥ϵ− ϵθ(zt, t, τξ(P))∥22

]
, (1)

where ϵθ is a UNet, conditioning a latent input zt, a text embedding τξ(P) and a timestep t ∼
Uniform(1, T ). More specifically, text-guided diffusion models aim to generate an image from
random noise zT and a conditional input prompt P . To distinguish from the general conditions in
LDMs, we itemize the textual condition as C = τξ(P), where τξ is the CLIP text encoder [56]†. The
cross-attention map is obtained from ϵθ(zt, t, C). Let fzt be a feature map output of the network
ϵθ. We get a query matrix Qt = lQ(fzt) with projection network lQ. Similarly, given a textual
embedding C, we compute a key matrix K = lK(C) with projection network lK. Then the attention
map is computed according to: At = softmax(Qt · KT /

√
d) where d is the latent dimension, and

the cell [At]ij defines the weight of the j-th token on the i-th token.

3.1 Text Embedding Analysis

To address the semantic binding problem, we concentrate on the text embeddings utilized during
the diffusion model generation process, as they predominantly dictate the content of the generated
images. For a given text prompt P , it is tokenized by the CLIP text model by padding a start

†SDXL uses two CLIP text encoders and concatenate the two text embeddings as the final text embedding.
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dog [dog+hat] doctor [doctor-glasses]

king [king-crown] queen [queen-woman+man]

man

woman

queen

king

[queen-
woman+man]

[king-man
+woman]

(a) Additivity Text-to-Image Generations (b) PCA plot of text embeddings

Figure 3: (a) Image generations with the property of token additivity. All images are generated by the
prompt template “a photo of a {object}.” (b) PCA plot for additivity of text embeddings.

token [SOT] and several end tokens [EOT] to extend its length to M (=77 by default). After the
CLIP text encoder τξ, the condition is formulated as C = τξ(P). Each row in C represents a
corresponding token embedding after the CLIP text transformers. For example, the text embedding
for the sentence P =“a cat wearing sunglasses and a dog wearing a hat” is represented as: C =

[cSOT
0 , ca1 , c

cat
2 , · · · , cdog7 , cwearing

8 , chat9 , cEOT
10 , · · · , cEOT

M−1]. In the following analysis, we take this
as a default example (except when defined differently).

Information Coupling. We begin by generating images conditioning on the textual embedding C, as
illustrated in the first two columns at the bottom of Fig. 2-(a). We observe that the attributes appear
in a misalignment between the dog and the cat. Subsequently, we extract the token embedding cdog7

from the textual embedding and input it to the UNet ϵθ (i.e., C = [cdog7 ])‡. As depicted in the middle
columns of Fig. 2-(a). The dog object is frequently wearing glasses, further highlighting the semantic
leakage issue. Furthermore, when we take C[EOT ] = [cEOT

10 , · · · , cEOT
M−1] as input, the generated

images closely resemble all information obtained using the entire textual embedding C. As the [EOT]
interacts with all tokens, it often encapsulates the entire semantic information [41, 72].We further
report the DetScore [12] to show the probability of containing the corresponding object (“sunglasses”)
in the generated 100 images. As illustrated in Fig. 2-(b), for these three different cases, the DetScore
is 22.6%, 69.6% and 75.0%, respectively. These findings also align with our observations above.

Additivity Property. Inspired by the semantic additivity of the text embeddings in previ-
ous research[6, 49], we experiment the additive property of the CLIP textual embedding. We
represent the textual embedding corresponding to the prompt “a photo of a dog” as C1 =

[cSOT
0 , ca1 , · · · , c

dog
5 , cEOT

6 , · · · , cSOT
M−1]. The textual embedding for the prompt “a photo of a hat” is

represented as C2 = [cSOT
0 , ca1 , · · · , chat5 , cEOT

6 , · · · , cEOT
M−1]. Next, we perform element-wise addi-

tion between the object tokens (i.e., cdog5 and chat5 ) and the corresponding [EOT] tokens. Specifically,
the resulting new embedding is C′ = Concat (C1[0 : 4], C1[5 : M − 1] + C2[5 : M − 1]). Afterward,
the textual embeddings C′ are input into the diffusion UNet to generate the images shown in Fig. 3-(a).
We can observe that this additivity property allows adding objects (up-left), removing objects (up-
right, down-left) and even complex semantic computations (down-right). To explore the mechanism
behind this phenomenon, we conducted PCA dimensionality reduction visualization on the token
representations of each prompt, as illustrated in Fig. 3-(b). The directional vector obtained from
“queen-king” is approximately identical to that of “woman-man” with the cosine similarity of 0.998.

In conclusion, our analysis shows that the semantic content of text tokens is coupled and entangled,
resulting in attribute confusion across different subjects. Moreover, we found that in diffusion models,
text embeddings exhibit semantically additive properties. This implies that the diffusion model is
capable of interpreting a composite token, derived from the summation of multiple individual tokens,
integrating the semantic attributes of the combined tokens.

‡Note in this case, the size of the input textual embedding is 1× 2048 instead 77× 2048.
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(a) Token Merging and End Token Substitution (b) Iterative Composite Token Update

Cross-Attn

Figure 4: ToMe is composed of two parts: one with Token Merging and end token substitution, and
the other token updating part with two auxiliary losses for iterative composite token update.

3.2 ToMe: Token Merging

Suppose the initial prompt P contains K entities indicated by noun words and their corresponding
tokens as {n1, ..., nk..., nK}. Each entity is often related to a token with relevant objects or attributes
set as (nk, ak). For example, in the sentence “a cat wearing glasses and a dog with a hat”, n1 =
<cat>, a1 = {<wearing>,<glasses>}, n2 = <dog>, a2 = {<with>,<a>,<hat>}.

3.2.1 Token Merging techniques

The semantic additivity of token embeddings inspires us to achieve co-expression of entities and
attributes by explicitly binding tokens together. We employ element-wise addition to accomplish
semantic merging of tokens. For a prompt P containing K entities, we fuse each subject-attribute pair
(nk, ak) into ĉk = nk +

∑
ak, referred to as a composite token. This innovative approach introduces

an additional benefit by utilizing a single composite token to condense a lengthy prompt sequence,
resulting in a unified cross-attention map, thus avoid semantic misalignment. Such observations are
further shown in the ablation study and appendix.

End Token Substitution (ETS). Meanwhile, as the semantic information contained in [EOT] can
interfere with attribute expression, we mitigate this interference by replacing [EOT] to eliminate
attribute information contained within them, retaining only the semantic information of each subject.
For instance, when the prompt is "a cat wearing hat and a dog wearing sunglasses," we use the
[EOT] obtained from the prompt "a cat and a dog" to replace the original [EOT] . As illustrated
in Fig. 4-a, the final text embedding after subject-attribute enhancement and EOT replacement is
C =

[
cSOT
0 , ca1 , c

dog∗
2 , · · · , ccat∗5 , cEOT∗

6 , · · · , cEOT∗
76

]
. Here, dog* and EOT* respectively denote

tokens after token merging and end token substitution.

3.2.2 Iterative composite Token Update

Semantic binding loss. As stated in section 3.1, the semantic information of each token embedding
is inherently linked. After strengthening the relationship between subjects and their attributes, it
becomes crucial to eliminate any irrelevant semantic information within the composite tokens to
prevent misrepresentation of attributes. As illustrated in Fig. 4-(b), to ensure that the semantics of
the composite tokens correspond accurately to the noun phrases they are meant to represent, we
employ a clean prompt as a supervisory signal. Specifically, for a composite token embedding ĉdog,
which corresponds to the noun phrase “a dog wearing hat”, we aim for the diffusion model to exhibit
consistent noise prediction for this composite token and the full phrase. In mathematical terms,
this objective can be expressed as ensuring that ϵθ(zt, ĉdog, t) ≈ ϵθ(zt, C, t). This effectively aligns
∇zt logPθ(zt|ĉdog) ≈ ∇zt logPθ(zt|C) [18, 28]. At time step t, we use the semantic binding loss to
align token semantics Lsem =

∑
k∈[1,K] ∥ϵθ(zt, ĉk, t)− ϵθ(zt, C, t)∥22.
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Entropy loss. Following that, we calculate the information carried by each token embedding through
entropy statistics. As shown in Fig. 7, we extract the cross-attention map Ak corresponding to
the k-th token[27]. After normalizing the cross-attention map as

∑
pi∈Ak

pi = 1, we compute the
entropy of each token as entropy(tokenk) =

∑
pi∈Ak

−pi log(pi). Decreasing the entropy of
the cross-attention maps can help ensure that tokens focus exclusively on their designated regions,
thereby preventing the cross-attention map from becoming overly divergent. This is further depicted
in Fig. 7, where we observe instances of attribute confusion, characterized by different tokens
inappropriately influencing the same image region. The entropy regularization loss is defined as
Lent =

∑
k∈[1,K]

∑
pi∈Ak

−pi log(pi) during time step t.

Finally, the overall L = Lent + λ · Lsem is computed by these two novel losses to update the
composite token during each time t < Topt and λ is the trade-off hyperparameter.

4 Experiments

4.1 Experimental Setups

Evaluation Benchmarks and Metrics. We evaluate the effectiveness of ToMe over T2I-
CompBench [31], a comprehensive benchmark for open-world compositional T2I generations,
encompassing attribute binding and object relationships. We focus on the semantic binding problem,
where T2I-CompBench predominantly evaluates through three attribute subsets (i.e., color, shape,
and texture). We follow the evaluation protocol [21, 30, 34] that using 300 validation prompts for
evaluation under each subset and the BLIP-VQA score[31] as the evaluation metrics. Following that,
we adopt the ImageReward [74] model to evaluate human preference scores, which comprehensively
measure image quality and prompt alignment. To comprehensively evaluate object binding perfor-
mance, we introduce a new GPT-4o Benchmark of 50 prompts using the template “a [objectA] with
a [itemA] and a [objectB] with a [itemB].”. For example, objectA and objectB are objects like “cat”
and “dog” while itemA and itemB are associated items “hat” and “glasses”. Afterward, we used the
multimodal model GPT-4o [1] to compute the consistency score between the generated images and
the prompts for objective assessment. More details are available in the Appendix C.5.

Implementation Details. We used SDXL [53] as our base model. To automate image generation
for evaluation, we employed SpaCy [29] for syntactic parsing of prompts to identify each object and
its corresponding attributes for token merging. The iterative composite token update is performed
during the first 20% of the denoising steps Topt = 0.2T .

Comparison Methods. To evaluate our method’s effectiveness, we compared the current state-of-
the-art methods. These primarily encompass: (1) state-of-the-art T2I diffusion models, including
SDXL [53], Playground-v2 [37] (2) Finetuning-based methods, including CoMat [34], ELLA [30] (3)
Optimization-based method SynGen [58] (4) LLM-augmented finetuning-based method Ranni [21].
More comparison results are shown in the Appendix E.

4.2 Experimental Results

Quantitative Comparison. As shown in Table 1, ToMe consistently outperforms or performs
comparably to existing methods in BLIP-VQA scores across the color, texture, and shape attribute
binding subsets, indicating its effectiveness in avoiding attribute confusion. Human-preference scores
evaluated through the ImageReward[74] model(note that the model scores are logits and can be
negative) suggest that images generated by ToMe can better align with prompts. Specifically, despite
ELLA’s[30] use of LLama or T5-XL to replace the CLIP Text Encoder for stronger text embeddings,
our method still achieves higher BLIP-VQA scores compared to ELLA. The significant improvement
in GPT-4o scores also demonstrates the effectivenes of ToMe in object binding.

Qualitative Comparison. Following SynGen [58], we classify the failure cases of attribute binding
into three main categories. (i) Semantic leak in prompt, where the attribute ak is not corresponding to
its entity nk; (ii) Semantic leak out of prompt, where the attribute ak is describing the background
or some entity not referred to in the prompt P; (iii) Attribute neglect, where the attribute ak is
totally ignored in the image generation. Fig. 5 presents our qualitative comparison results with other
methods. The first three rows show more complex object binding results, while the last two rows
demonstrate attribute binding results. The semantic binding errors in images generated by SDXL[53]
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Figure 5: Qualitative comparison among various T2I generation methods with complex prompts.

can largely be attributed to (i) semantic leak in the prompt, as evidenced in the first and second row.
Playground-v2[37] confronts similar semantic binding issue as SDXL. ELLA[30] can occasionally
succeed in simple attribute binding as in the fifth row, but it frequently encounters (i) semantic leak in
the prompt and (iii) attribute neglect errors as shown in the first three prompts. Ranni [21] generates
images based on layouts created by a large language model, which can partially address more complex
object binding (second row). However, layout-based methods may encounter constrains in achieving
proper image layouts, such as shown in the first row with complex descriptions. SynGen [58], which
focus on attribute binding problems, achieves good results in color and shape binding but fails in
object binding, exhibiting varying degrees of (i) and (iii) failures. Compared to these methods, our

Table 1: Quantitative results for semantic binding assessment on various benchmarking subsets. We
denote the best score in blue , and the second-best score in green .

Method Base
Model Train BLIP-VQA ↑ Human-preference ↑ GPT-4o ↑Color Texture Shape Color Texture Shape

SDXL[53] - ✓ 0.6369 0.5637 0.5408 0.7798 0.5140 0.4029 0.4907
PlayG-v2[37] - ✓ 0.6208 0.6125 0.5087 - - - 0.5417

Ranni[21]

SD1.5

✓ 0.2414 0.3029 0.2857 -0.8554 -0.6853 -0.8051 0.4166
ELLA[30] ✓ 0.6911 0.6308 0.4938 0.6586 0.2963 0.0565 0.6481

SynGen[58] ✗ 0.6619 0.6451 0.4661 0.4326 0.5072 0.0426 0.5545
CoMat[34] ✓ 0.6561 0.6190 0.4975 - - - -

Ranni[21]

SDXL

✓ 0.6893 0.6325 0.4934 - - - -
ELLA[30] ✓ 0.7260 0.6686 0.5634 - - - -

SynGen[58] ✗ 0.7010 0.6044 0.5069 1.016 0.7867 0.4016 0.6458
CoMat[34] ✓ 0.7774 0.6591 0.5262 - - - -

ToMe (Ours) SDXL ✗ 0.7656 0.6894 0.6051 1.074 0.9281 0.5916 0.9549
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Table 2: Ablation Study conducted on the T2I-
CompBench benchmark.

Conf. ToMe Lent Lsem
BLIP-VQA

Color Texture Shape

A × × × 0.6369 0.5637 0.5408
B ✓ × × 0.6577 0.5828 0.5437
C ✓ ✓ × 0.7525 0.6775 0.5797
D × ✓ ✓ 0.5881 0.6194 0.5386
E × ✓ × 0.5983 0.5798 0.5125
F ✓ × ✓ 0.6804 0.6263 0.5645

Ours ✓ ✓ ✓ 0.7656 0.6894 0.6051

A B C D
E F Ours

Figure 6: Text-to-Image generation with various
configurations.

Config A Config C ToMe (Ours)

cat sunglasses dog hat [cat*] [cat*][dog*] [dog*]

Figure 7: Cross-Attention maps visualization with various configurations.

Add objects

elephant

[elephant+glasses]

cat and dog

[cat+glasses] with dog

Remove objects

girl with earrings

girl with earrings

man with glasses

man with glasses [queen-crown] with cats

Eliminate generation bias

queen with cats nurse

[nurse-woman]

Figure 8: Additional applications of semantic additivity in text embedding.

approach ToMe shows improved performance in both object and attribute binding scenarios, which is
consistent with the quantitative metrics reflected in Table 1.

Ablation Study over each component is quantitatively shown in Table 2. We can observe that using
only token merging techniques (with ToMe and ETS as config.B) results in a slight performance
improvement, which is consistent with the qualitative results in Fig. 6. However, token merging
serve as the foundation for subsequent optimizations. When they are combined with the entropy
loss Lent as config.C, the performance improves significantly. We hypothesize that is partly due
to the more regularized cross-attention maps as shown in Fig. 7. Nevertheless, conifg.C without
the semantic binding loss still leads to worse generation performance in Fig. 6, as the dog on the
right side still exhibits cat-like features. Incorporating the semantic alignment loss Lsem (as our
default configuration) ensures that the two subjects correctly bind to their respective attributes without
appearance confusion, achieving the best results quantitatively and qualitatively. Suppose token
merging is ignored, and we only apply the optimization (Config D and Config E), the performances
are only comparable to the baseline. Removing Lent from ToMe (Config F) can also improve over the
baseline, but the generation is with noticeable artifacts, which is mainly due to the less regularized
cross-attention map. In conclusion, each element of these three novel techniques in ToMe contributes
to achieving state-of-the-art performance. See Appendix D for more detailed ablation experiments.

Additional Applications of ToMe are shown in Fig. 8. ToMe can not only successfully address the
semantic binding problem, it can also be applied to other problems widely exist in T2I generations,
including adding objects [84, 70], removing objects [3, 22] and even bias mitigation [16, 61, 77, 78].
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5 Conclusion

In this paper, we investigate a critical issue in text-to-image (T2I) generation models known as
semantic binding. This phenomenon refers to instances where T2I models struggle to accurately
interpret and visually bind the related semantics. Recognizing that previous methods often entail
extensive fine-tuning of the entire T2I model or necessitate explicit specification of generation
layouts by large language models, we introduce a novel training-free approach called Token Merging,
denoted as ToMe, to tackle semantic binding issues in T2I generation. ToMe incorporates innovative
techniques by stacking up the object token with its relevant tokens into a single composite token. This
mechanism eliminate the semantic misalignment by unifying the cross-attention maps. Furthermore,
we assist the ToMe with end token substitution, and iterative composite token updates technique
to strengthen the semantic binding. In extensive experiments, we quantitatively compare it against
various existing methods using the T2I-Compbench and our proposed GPT-4o benchmarks. The
results demonstrate its ability to handle intricate and demanding generation tasks more effectively
than current methods, especially for object binding cases that are ignored in previous research.
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Appendix

A Limitations

Since our method is optimized for inference based on SDXL, it inherits some inherent limitations of
SDXL. For example, it may produce artifacts in generated images and is unable to create images with
complex layouts. Additionally, the ToMe technique relies on the CLIP text encoder to generate text
embeddings, which may be subject to the limitations of the encoder itself. For instance, the CLIP
encoder might not fully capture all the subtle semantic nuances in the text, which could restrict the
performance of ToMe when processing certain types of text prompts. Addressing these limitations
and advancing our understanding in these areas will help improve image generation technology.

B Broader Impacts

ToMe enhances the semantic binding capability in text-to-image synthesis by enhancing text embed-
dings. However, it also carries potential negative implications. It could be used to generate false
or misleading images, thereby spreading misinformation. If ToMe is applied to generate images
of public figures, it poses a risk of infringing on personal privacy. Additionally, the automatically
generated images may also touch upon copyright and intellectual property issues.

C Implementation Details

C.1 Method details

We extract the cross attention maps from the first three layers of the decoder in the UNet backbone,
which contain rich semantic information, with a resolution of 32× 32. For Iterative composite Token
Update, since the early timesteps of the denoising process determine the layout of the image[27], we
execute it only during the first 20% of the denoising process. All experiments were conducted on an
NVIDIA-A40 GPU.

C.2 Baseline methods implementation

For the quantitative comparison in Tab. 1, we used the official implementations of Ranni[21],
ELLA[30], SyGen[58], and CoMat[34]. Since the SDXL versions of the Ranni[21], ELLA[30], and
CoMat[34] methods have not been open-sourced, we refer to the BLIP-VQA scores reported in their
respective papers. SynGen[58], like our method, performs optimization during inference. To ensure a
fairer comparison, we adapted SynGen to SDXL.

C.3 Text embedding analysis

Fig. 9‘s statistical analysis further demonstrates the information coupling property and semantic
additivity of text embeddings. We employed MMDetection[12]and GLIP[38] to detect the probability
of specified objects in images, referred to as DetScore, as shown in Fig. 9-(a). Fig. 9-(b) presents
statistical results on 100 generated images, showing that the probability of detecting a hat in images
generated from the text embedding corresponding to “a dog” is 0%. However, in images generated
from the element-wise “[dog+hat]” additive embedding, the probability of detecting a hat is 68.61%,
which is close to the probability of 73.12% for images generated using the prompt ’a dog wearing a
hat’.

The information coupling of token embeddings is also reflected in the entropy of cross-attention for
each token. Taking the prompt “a cat wearing sunglasses and a dog wearing a hat” as an example, we
can extract the cross-attn map Ak ∈ R1024 for each token, averaged over 50 time steps and multiple
heads. After normalizing each map to 1.0(i.e., Ak[i] :=

Ak[i]∑
i∈[1,32] Ak[i]

), we calculate the token’s

infomation entropy as
∑

pi∈Ak
−pi log(pi). As shown in Fig. 9-(c), we conducted statistics on 100

generated images and found that tokens positioned later in the prompt tend to have higher entropy,
indicating more dispersed cross-attn maps. This phenomenon might be attributed to CLIP’s[56]
masked attention mechanism, where each token can interact with all preceding tokens, and tokens
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sunglasses:84.6

hat:83.4

(a) Examples of Detscore (b) Detscore for hat (c) Informa�on entropy of each token

Figure 9: Additional statistical analyses, all statistical values are averaged results from 100 images.
(a) An example of DetScore visualization. (b) By fusing the dog and hat token, we obtain dog*, and
the generated images often include a hat. The DetScore value for dog* is close to the DetScore value
obtained using the complete prompt “a dog wearing a hat”. (c) We calculated the entropy of the
cross-attention maps for each token and found that tokens positioned later in the sequence generally
have higher entropy, indicating that their cross-attention maps are more dispersed.

positioned later can interact with more tokens, thus containing more information. Consequently,
we employ an entropy regularization loss to constrain each attention map to be as concentrated as
possible, thereby reducing the amount of irrelevant information contained in each token embedding.

C.4 Time complexity

Table 3: Time Complexity of various methods. The results of our method are highlighted in bold.
Method Inference Steps Time Cost Color Texture Shape
SDXL 20 18s 0.6136 0.5449 0.5260

ToMe (Config C) 20 23s 0.7419 0.6581 0.5742
ToMe (Ours) 20 45s 0.7612 0.6653 0.5974

Ranni (SDXL) 50 87s 0.6893 0.6325 0.4934
ELLA (SDXL) 50 51s 0.7260 0.6686 0.5634

SynGen (SDXL) 50 67s 0.7010 0.6044 0.5069
SDXL 50 42s 0.6369 0.5637 0.5408

ToMe (Config C) 50 56s 0.7525 0.6775 0.5797
ToMe (Ours) 50 83s 0.7656 0.6894 0.6051

Tab. 3 reports the inference time costs of various methods, all measured on a single NVIDIA-A40
GPU. We demonstrate that our method does not significantly increase inference time while improving
semantic binding performance with 50 inference steps. We further extend this analysis by measuring
the time cost with 20 inference steps and various ToMe configurations, as shown in the Tab. 3. We
report the time cost (by seconds) along with BLIP-VQA scores across the color, texture, and shape
attribute binding subsets. From this table, we can observe that using the token merging (ToMe)
technique and entropy loss (Config.C), our method achieves excellent performance with minimal
additional time cost. Additionally, even with only 20 inference steps, our method, ToMe, maintains
high performance with very little degradation.

C.5 GPT-4o Score

In order to better demonstrate the binding ability of our model for complex prompts. We have
constructed a set of high-difficulty prompts, where the content primarily uses nouns to describe the
subject. We use OpenAI’s latest release, GPT-4o, to evaluate the quality of images generated by
various models because GPT-4o excels in image discernment, allowing for precise evaluation of the
generated outputs. As show in Fig. 10, We designed nine scoring levels, ranging from 0 to 100 points,
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Prompt: A cat wearing sunglasses and a dog 
wearing hat
Based on our picture and prompt, give the score 
of the picture below. The subjects are the two 
subjects of the prompt words, and the attributes 
are the adjectives or nouns corresponding to the 
subjects in the prompt body.
The first line of the answer contains only the 
rating, and then the explanation is given starting 
from the second line.

 The scoring criteria are as follows:
    100:  Both subjects only possess their own 
attributes, not the attributes of the other subject.

 87.5: Both subjects possesses their attributes. 
But only one subject that possesses the 
attributes of another subject.
    75:    When two subjects possess their own 
attributes, they both possess the attributes of the 
other subject. 
    62.5: One subject possesses attributes of its 
own, without attributes of the another subject. 
The other subject only possesses attributes of 
another subject.
    50:   One subject possesses attributes of its 
own. The other subject do  not possesses 
attributes of itself or the other party.
    37.5: Both subjects not possess its own 
attributes. But exist one subject has the 
attributes of the other party.
    25:   Neither subject has attributes of itself or 
the other party. 

 12.5: Missing one subject 
 0:    Missing two subject

100
Explanation:
- The cat is wearing sunglasses, which is its own
attribute.
- The dog is wearing a hat, which is its own
attribute.
- Neither the cat nor the dog is wearing the
attribute of the other subject.
Therefore, the picture perfectly matches the

prompt, earning a score of 100.

Prompt: A man wearing hat and a woman 
wearing necklace
Based on our picture and prompt, give the score 
of the picture below. The subjects are the two 
subjects of the prompt words, and the attributes 
are the adjectives or nouns corresponding to the 
subjects in the prompt body.
The first line of the answer contains only the 
rating, and then the explanation is given starting 
from the second line.

 The scoring criteria are as follows:
    100:  Both subjects only possess their own 
attributes, not the attributes of the other subject.

 87.5: Both subjects possesses their attributes. 
But only one subject that possesses the 
attributes of another subject.
    75:    When two subjects possess their own 
attributes, they both possess the attributes of the 
other subject. 
    62.5: One subject possesses attributes of its 
own, without attributes of the another subject. 
The other subject only possesses attributes of 
another subject.
    50:   One subject possesses attributes of its 
own. The other subject do  not possesses 
attributes of itself or the other party.
    37.5: Both subjects not possess its own 
attributes. But exist one subject has the 
attributes of the other party.
    25:   Neither subject has attributes of itself or 
the other party. 

 12.5: Missing one subject 
 0:    Missing two subject

75
Both the man and the woman possess their own 
attributes: the man is wearing a hat, and the 
woman is wearing a necklace. However, both 
subjects also have the attributes of the other: the 
woman is also wearing a hat, and the man is also 
wearing a necklace.

“A cat wearing sunglasses 
and a dog wearing hat”

“A man wearing hat and a 
woman wearing necklace”

Score:1.00

Score:0.75

Figure 10: Evaluation Metric: GPT-4o

based on factors such as whether the objects correctly possess their attributes, the mixing of attributes
between objects, and whether the objects are correctly generated, to distinguish different levels of
generation quality.

Config A (SDXL) Config B (SDXL+Token Merging)

Config E (SDXL+ ) Config C (SDXL+ )

cat sunglasses dog hat [cat*] [dog*]

Figure 11: Cross-attention maps visualization with various configurations, with the input prompt “a
cat wearing sunglasses and a dog wearing hat”

D Additional Ablation Studies

D.1 More Configures and ETS ablation

As an example in Fig. 11, the original SDXL (Config.A) suffered from attribute binding errors due to
divergent cross-attention maps. When only applying token merging (Config B), the co-expression
of entities and attributes resulted in a dog wearing a hat in the image, but the attribute leakage issue
remained due to the divergent cross-attention maps. When only applying the entropy loss Lent

(Config E), although the cross-attention maps corresponding to each token are more concentrated,
they may focus on wrong regions. Only by applying both token merging and Lent techniques (Config
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SDXL Ours w/o ETS Ours w/ ETS

[corgi*][boy*] [EOT] [EOT]

Figure 12: Ablation study of our proposed end token substitution (ETS) technique, with the input
prompt “a boy wearing hat and a dog weairng sunglasses”

Text Encoder

"a cat wearing glasses and a dog with hat"

a and a

Prompt

wear
ing glassescat dog hatwith

a and acat* dog*

[SOT] [EOT]

[SOT] [EOT]

"a cat wearing glasses "

a

Prompt

wear
ing glassescat

cat*

[SOT]

"a dog wearing hat"

[EOT] a
wear
ing

hatdog

dog*

[SOT] [EOT]

Prompt

"a cat and a dog"

a and a[SOT] [EOT]cat dog

(a) Different prompt splice

(b) Generated Images by Different prompt splice (b) Generated Images ToMe(Ours)

Figure 13: Comparison of images generated by different prompts splice

C), the cross-attention map of the composite token becomes better concentrated on the correct areas
and thus leading to more satisfactory semantic binding of entities and attributes.

The end token substitution (ETS) technique is proposed to address potential semantic misalignment in
the final tokens of long sequences. As the [EOT] token interacts with all tokens, it often encapsulates
the entire semantic information, as shown in Fig. 2. Therefore, the semantic information in [EOT]
can interfere with attribute expressions, we mitigate this by replacing [EOT] to remove the attribute
information it contains from the original prompts, retaining only the semantic information for each
subject.

For example, as the cross-attention maps and T2I generation performance shown in Fig.12, when
ToMe is not combined with the EST technique, the ‘sunglasses’ semantics contained in the EOT token
cause the boy to incorrectly wear sunglasses. However, when combined with ETS, the unwanted
semantic binding is relieved.

D.2 Different prompts splice

In Sec. 3.2.1, we fuse each object and its corresponding attributes. At this stage, both the object
token embedding and the attribute token embedding are derived from the text embedding obtained
by processing the same prompt through the CLIP Text Encoder, potentially causing the information
between them to be coupled. We also experimented with splicing token embeddings from different
prompts, as illustrated in Fig. 13. While keeping other components of ToMe unchanged, the resulting
images often exhibit a missing of the object. We hypothesize that this may be due to the lack of
contextual semantics between token embeddings from different prompts[8].
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SDXL ToMe(Ours) SDXL ToMe(Ours) SDXL ToMe(Ours)

A dog  with hat and a cat A boy with glasses and a girl A boy with hat and a Corgi with sunglasses

A cat with scarf and a dog with tie A fox with sunglasses and a deer with crownA bear with hat and a man with glasses

A man with hat and a girl with necklace A tiger with glasses and a  dog with hat A squirrel holding  guns and a  bear with hat

A white cat with glasses  and 
a black dog with hat

A cat with pink hat and 
a dog with blue sunglasses

A lion with yellow crown and 
a sheep with white bandanas

A cat wearing hat and a dog with 
sunglasses are sitting  on a green bench

A man wearing scarf and  a girl wearing 
earrings standing on the red sandy beach

A black chocolate cake  and a fruit plater 
on a blue table

Figure 14: Additional semantic binding results. Our method not only achieves good results in object
binding but is also effective for composite binding of objects and their adjective attributes.

E Additional Results

As shown in Tab. 4, we have added quantitative comparison results with additional methods. Our
method consistently outperforms or is on par with the existing methods. Fig. 14 presents more
qualitative comparison results, demonstrating that our method achieves good performance in attribute
binding, object binding, and the composite binding of attribute and objects. ToMe can also generate
images with subjects or backgrounds featuring multiple attributes(Fig. 14, the last line), in this
scenario, we find that using an additional positional loss[19] based on the attention map is effective.

We also conduct a user study with 20 participants to enrich the evaluation. Here we compare our
method ToMe with SDXL[53], SynGen[58], Ranni[21] and ELLA[30]. As shown in Fig. 15, we
ask the participants to rate the semantic binding into 4 levels and calculate the distribution of each
comparison method over these four diverse levels. We can observe that our method better achieve the
semantic binding performance by mainly distribute in the highest level 1, while the other methods
struggle to obtain user satisfactory results.
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Level 1

Level 2

Level 3

Level 4

ToMe(Ours)SDXL SynGen

ELLA Ranni

Figure 15: User study with 20 participants, we ask users to rate the semantic binding into four levels.

Table 4: Comparison of BLIP-VQA Scores

Method Base Model Train BLIP-VQA ↑
Color Texture Shape

SD v1.5[60] - ✓ 0.3750 0.4159 0.3724
SD v2[60] - ✓ 0.5065 0.4922 0.4221
DALL-E2[57] - ✓ 0.5750 0.6374 0.5464
SDXL[53] - ✓ 0.6369 0.5637 0.5408
PlayG-v2[37] - ✓ 0.6208 0.6125 0.5087

Ranni[21] SD1.5 ✓ 0.2414 0.3029 0.2857
ELLA[30] SD1.5 ✓ 0.6911 0.6308 0.4938
SynGen[58] SD1.5 × 0.6619 0.6451 0.4666
CoMat[34] SD1.5 ✓ 0.6561 0.6190 0.4975

Composable v2[45] SD2.0 × 0.4063 0.3645 0.3299
Structured v2[20] SD2.0 × 0.4990 0.4900 0.4218
Attn-Exct v2[7] SD2.0 × 0.6400 0.5963 0.4517
GORS[31] SD2.0 × 0.6603 0.6287 0.4785

Ranni[21] SDXL ✓ 0.6893 0.6325 0.4934
ELLA[30] SDXL × 0.7260 0.6686 0.5634
SynGen[58] SDXL × 0.7010 0.6044 0.5069
CoMat[34] SDXL ✓ 0.7774 0.6591 0.5262

ToMe (Ours) SDXL × 0.7656 0.6894 0.6051
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and Sec. 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix A

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Sec. 3
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sec. 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Supplementary Material
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Sec. 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Sec. 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix C.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully checked the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix B
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We politely cited the existing assets and read their usage license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Question: For crowdsourcing experiments and research with human subjects, does the paper
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well as details about compensation (if any)?
Answer: [Yes]
Justification: Appendix E
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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Answer: [NA]
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