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Figure 1. Overview of BADGR, a diffusion-based bundle adjustment (BA) model for generating precise, view-consistent camera poses and floor plan
layouts. BADGR uses per-image floor boundaries and image column-to-wall assignments (upper left) as coarse input, refining poses and layouts through a
gradient-conditioned denoising process (upper right). The bottom right shows view consistency by projecting the output layouts with the estimated poses.

Abstract
Reconstructing precise camera poses and floor plan lay-

outs from wide-baseline RGB panoramas is a difficult and
unsolved problem. We introduce BADGR, a novel diffu-
sion model that jointly performs reconstruction and bundle
adjustment (BA) to refine poses and layouts from a coarse
state, using 1D floor boundary predictions from dozens of
sparsely captured images. Unlike guided diffusion models,
BADGR is conditioned on dense per-column outputs from
a single-step Levenberg Marquardt (LM) optimizer and is
trained to predict camera and wall positions, while minimiz-
ing reprojection errors for view consistency. The objective
of layout generation from denoising diffusion process com-
plements BA optimization by providing additional learned
layout-structural constraints on top of the co-visible fea-
tures across images. These constraints help BADGR make
plausible guesses about spatial relationships, which con-
strain the pose graph, such as wall adjacency and collinear-
ity, while also learning to mitigate errors from dense bound-
ary observations using global context. BADGR trains exclu-
sively on 2D floor plans, simplifying data acquisition, en-
abling robust augmentation, and supporting a variety of in-
put densities. Our experiments validate our method, which
significantly outperforms the state-of-the-art pose and floor
plan layout reconstruction with different input densities.
Visit project website at: https://badgr-diffusion.github.io.

*Work done at University of Washington.
†Work done as an independent researcher.
‡Equal contribution.

1. Introduction

Reconstructing floor plan layouts and camera poses has be-
come an important task with many applications such as vir-
tual touring, interior design, and autonomous navigation.
High spatial accuracy in both objectives is essential for
high-fidelity downstream tasks, such as cross-view scene
editing and dense reconstruction. Existing solutions for
image-based layout reconstruction are either coarse, lim-
ited to a single room, or, while more accurate, require either
densely captured image inputs or sparser capture with RGB-
D cameras, which can be costly in terms of equipment, data
bandwidth and capture efforts.

This work aims to accurately reconstruct camera extrin-
sics and floor plan layouts from sparsely captured 360→

panoramas without prior pose information [15]. Specifi-
cally, our goals are to: (1) reconstruct the floor plan as
a unique set of closed-loop polygons defining rooms and
doors [15, 55]; (2) estimate each camera pose for view-
consistency [17]; (3) accommodate diverse capture densi-
ties, down to one image per room; and (4) ensure that gener-
ated floor plans remain plausible within the natural distribu-
tion of training data, even when certain walls are occluded.

Accurate reconstruction of camera poses and spatial lay-
outs in wide-baseline indoor environments is challenged by
limited co-visibility and sparse features. This process de-
mands not only view-consistency but also layout-structural
constraints, such as Manhattan or Atlanta frameworks [35],
wall thickness, collinearity, and prior knowledge of room
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layouts [15, 23, 58]. We propose BADGR, a conditional
denoising diffusion probabilistic model (DDPM) trained to
reconstruct and bundle adjust camera poses and layouts.
BADGR employs a planar bundle adjustment (BA) module,
to provide geometric guidance for conditioning the DDPM
to maximize view-consistency from angle-constrained lay-
outs and poses. The DDPM is also trained for the floor
plan generation task. Combined with a reprojection loss,
BADGR performs bundle adjustment through posterior sam-
pling, with learned layout-structural constraints and the
ability to handle noise from input features. The genera-
tive ability of the DDPM allows BADGR to predict plau-
sible shapes of occluded layout sections based on train-
ing data. The non-Markovian inference process, i.e., pre-
dicting xt↑1 from xt by predicting x0, allows BADGR to
combine a score-based generative model with a nonlinear
optimization process, without specifying step size during
training. BADGR differs from guided-diffusion style mod-
els [11, 12, 16, 52], where the gradients from differentiable
objective functions are used only during inference to guide
a pre-trained diffusion model, leading to issues like slow
convergence and deviation from data manifold. Our experi-
ments show that BADGR is more accurate in performing BA
tasks compared to guided-diffusion style models.

The contributions of this work are: 1) BADGR is the
first learning-based approach to jointly refine deformable
room layouts from polygon-based floor plans and camera
poses from sparsely captured RGB panoramas, guided by
visually-derived features; 2) BADGR contains a novel ap-
proach to train a diffusion model for both nonlinear opti-
mization (i.e., BA) and generation tasks (i.e., floor plan gen-
eration), allowing it to reconstruct poses and layouts from
visual inputs and make reasonable guesses from learned
layout-structural constraints; 3) BADGR obtains state-of-
the-art accuracy in wide-baseline camera pose estimation
and layout estimation with multi-view 360→ panoramas.

2. Related Work
Our work bridges floor plan reconstruction and wide-
baseline pose estimation, jointly reasoning over layout con-
straints and cross-view consistency.
Image-based Floor Plan Reconstruction involves estimat-
ing camera poses and creating a unique set of layout poly-
gons. Research has shown good accuracy in producing floor
plans in such formats from registered RGB-D point cloud
scans [4–7, 40, 55]. Generative models [27, 28, 37] also
demonstrate deep learning’s ability to model layout con-
straints, enabling floor plan generation from abstract in-
puts, like bubble diagrams [28]. Over the years, single-
view room layout estimation has been extensively studied
[22, 32, 42, 43, 50, 59]. However, noisy or unknown poses
remain a key challenge for multi-view, wide-baseline layout
reconstruction, as it requires 1) generating a single fused

layout, 2) high accuracy in both camera poses and layouts
for consistent views. Prior approaches attempted to regress
poses and layouts from panorama pairs [23, 41, 51], yet of-
ten lack view-consistency without joint optimization [51].
Wide-Baseline Pose Estimation Analysis has shown [21,
23] that wide-baseline indoor pose estimation is challeng-
ing to traditional Structure from Motion (SfM), as images
often contain featureless regions, repetitive textures, or nar-
row passageways, which limit co-visibility and cause dras-
tic appearance changes across images [15]. Semantic con-
straints can help SfM establish anchors and loop-closures,
but existing approaches often rely on heuristics and lack
understanding of structural layouts [13, 14]. [23, 36] ex-
plored wide-baseline reconstruction as discrete problems,
piecing rooms together like puzzles [20] and using vanish-
ing points [56] to improve camera rotation estimates. How-
ever, these approaches can produce coarse poses and lay-
outs with missing rooms from a larger floor plan. Recently,
direct pose regression achieved good retrieval accuracy in
solving coarse poses from a pair of [8, 21, 47] or up-to-5
[29] panorama inputs, along with predictions of dense cor-
respondences among image columns and dense room lay-
outs [21, 41]. A global pose graph can be later formed
by merging local poses [23, 29], but this often lacks suf-
ficient accuracy for good view-consistency. Furthermore,
structural-layout constraints are frequently violated when
superimposing projected single-view layouts on estimated
poses [51], as shown in the starting floor plan of Figure 1.
Learned Optimization In traditional SfM, robust optimiza-
tion often integrates sensor data and physical constraints it-
eratively to manage uncertainties in measurements and fea-
tures. Recent data-driven approaches improved ”front-end”
feature extraction and matching [30, 34], adapting to noise
and variability more effectively than classical methods. Dif-
ferentiable optimizer, like differentiable LM [31, 46], have
been used to train feature extraction with uncertainty pre-
diction [26]. Uncertainty is also modeled from the parame-
ter posterior distributions given initial measurements. G3R
[9] iteratively optimizes 3D Gaussians using a gradient-
conditioned 3D U-Net. PoseDiffusion [52], PhysDiff [54]
apply posterior sampling of pre-trained diffusion models for
improved reconstruction. However, posterior-guided sam-
pling can run into conflicts between guidance and diffu-
sion flow function, which affects convergence [10]. Non-
Markovian DDPMs, such as denoising diffusion implicit
models (DDIM) [38], enable conditional diffusion training
without explicit transitions from t to t-1, facilitating integra-
tion with nonlinear optimization independent of step size.
3. Problem Statement
Objectives: Given a set of sparsely captured 360→ indoor
RGB panorama images {P i} in equirectangular projections
without pose information, the overall pipeline aims to esti-
mate 3 degrees-of-freedom (DoF) camera poses {Ei, Ei →
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Figure 2. Architecture of BADGR. The forward process takes a ground truth scene, i.e. layouts and poses, adds noise to sample step t. The
inference process uses a transformer, conditioned on dense per-column adjustments generated by the planar BA layer and compressed by
the Column Geometry Encoder.

SE(2)}, i.e. xy position, horizontal rotation angle, and
2D floor plans represented as a set of closed-loop polygons
{Vm, Vm = (vm,1, vm,2, ..., vm,k)} for rooms and doors in
a single global coordinate system, where m, k is room id
and corner id, and vm,k is a 2D xy vertex coordinate. Our
main focus, the proposed BA-based refinement component
BADGR, aims to denoise camera xy positions T i and angu-
lar constrained layouts {Vm} by moving walls along their
normal directions. BADGR optimizes for view-consistency
on re-projected floor boundaries, assuming each image col-
umn contributes to the positional adjustment of a single wall
and a camera, where the column-to-wall relations have been
pre-assigned. BADGR also learns to maintain the layout-
structural constraints of floor plans from training data.
Assumptions: We assume that all images are straightened
[56] and can be connected to a single pose graph with co-
visibility [15] to nearest neighbor greater than 10%. Rel-
ative camera heights are known across the floor. During
BADGR optimization, wall angles are assumed to be fixed.
The number of walls and wall connectivity are given; they
can either come from merging the single-view layout esti-
mation, post-processed under the Atlanta World assumption
[22, 32], or via a quick human-in-the-loop process, see Sec-
tion 5. Our floor plans follow the Atlanta World assumption
[35] and have no curved walls.

4. Pipeline Overview
We designed a coarse-to-fine pipeline, as shown in Figure
1, that initializes a scene with estimated camera poses and
room layouts, as closed-loop polygons, combining per-view
floor boundary predictions and image column-to-wall as-
signments, similar to semantic column matches across mul-
tiple images [2, 50]. This coarse initialization is subse-
quently refined with BADGR, which focuses on accurate
reconstruction. Starting from the coarse scene, rotations
from estimated poses and walls are corrected via vanish-
ing point snapping [56]. During BADGR refinement, the
scene is angularly constrained: BADGR optimizes only the

2-DoF camera xy position T i for each pose Ei and the 1-
DoF line translation bm,k for each wall lm,k. While various
algorithms could initialize the coarse floor plan for BADGR,
we outline a specific pipeline in Section 5 using practical al-
gorithms for coarse scene setup. The scene representation
is discussed in Section 6, with details of BADGR, the pro-
posed learned BA diffusion model, in Section 7.

5. Coarse Scene Initialization
During inference, the scene is initialized with a slightly
modified CovisPose model [21]. CovisPose is run on each
pair of panoramas on the same floor to predict 1) relative
camera pose Ẽ(i,j) → SE(2), 2) floor boundaries {B̃i}, and
3) cross-view co-visibility, angular correspondences {ω̃i,j},
{ε̃i,j}. Additionally, we perform per-column binary classi-
fication to identify room corners {Ṽi}. The model is trained
on the ZInD dataset [15] with the same image pairs as [21]
with an additional corner loss function similar to that of
[42]. Pose pairs of co-visibility score greater than 0.1 are se-
lected to create a minimal spanning tree of the pose graph,
similar to [29]. Ẽi,j are corrected through axis alignment
with a 45° interval using predicted vanishing angles [56]
prior to computing global poses Ẽi.

The per-pano floor boundaries {B̂i} are further refined
and aggregated into uniquely identifiable set of global walls
lm,k, shared across P i via an automatic process using room
corners {Ṽi} . Finally, an annotator uses an interactive ap-
plication to provide global wall connectivity, and add miss-
ing room corners with their rough initial positions. The
number of room corners and wall orientations are static in-
put to BADGR. More details are provided in Supplementary.

6. Scene Representation for BA Optimization
Our proposed representation aims to uniquely define walls
and cameras while assigning image columns to global walls,
allowing BA to perform cross-view reprojections at any
scene state. Each column links either to a specific wall or



remains unassigned, simplifying reprojections by avoiding
wall occlusion handling during floor boundary rendering.
The global scene comprises room layouts {Vm}, doors as
polygons with at max Nl walls, camera extrinsics {Ei} of
Np panoramas, per-panorama floor boundaries {B̂i,c} for
columns {Ci,c} with image width w, and a column-to-wall
semantic assignment represented as a one-hot 3D array of
shape Np ↑ w ↑ Nl for mapping {M : Ci,c ↓ lm,k}.
The layout walls {Vm} are represented as line segments
{lm,k | lm,k = (vm,k, vm,k+1)} with each line repre-
sented in the Hesse normal form [1] allowing us to easily
work with rotations and offsets (↔↔↓vm,k, bm,k) from the ori-
gin. BADGR optimizes layout vertices Vm and camera po-
sitions T i, with these parameters normalized within [↔1, 1]
as a continuous 2D coordinate array. Constant scene param-
eters include camera and wall rotation vectors Ri, ↔↔↓vm,k,
camera height zi and column-to-wall assignments {M}.
Details on scene initialization are covered in Section 5.

7. Bundle Adjustment Diffusion
Wide-baseline indoor reconstruction often suffers from a
lack of robust matching features with sub-pixel accuracy.
However, each wall can be observed by several image
columns, with their floor boundary modeled as a line, as
shown in Figure 3. BADGR tackles the multi-view floor
plan and pose reconstruction problem using a planar bun-
dle adjustment (BA), minimizing reprojection errors be-
tween the input predicted floor boundaries from image-
based models and the projected wall positions. These er-
rors are computed at the column level and are used to ad-
just the wall translation along its normal direction and the
corresponding camera pose, optimized via a Levenberg-
Marquardt (LM) step.

Noise in the floor boundaries can introduce errors in the
final BA results. To mitigate the noisy signal and incor-
porate learned layout-structural constraints, BADGR inte-
grates the planar BA mechanism into a conditional denois-
ing diffusion process. Instead of averaging column-wise
wall and camera movements, the model encodes these dense
signals and uses them to condition a transformer-based dif-
fusion model. In this framework, posterior sampling is em-
ployed to generate the final adjustments, using raw BA ad-
justments as inputs. The transformer model predicts the xy
positions of camera poses and room vertices. To facilitate
iterative interaction with planar BA, an angle-constrained
scene representation is used, along with a Layout Direc-
tional Regularizer (LDR) to form a bidirectional map be-
tween 2D room vertex positions and wall positions while
maintaining fixed angles. The details of this process are ex-
plained in the following section.
Architecture: Figure 2 shows the architecture of our
proposed optimization pipeline. Taking inspiration from
HouseDiffusion [37], BADGR has a diffusion model [19]

based architecture with a truncated denoising inference
process [25, 57] during training and inference. At each
time t, our model takes a scene of 2D positions, i.e.
({T i,(t)}, {V (t)

m }), conditioned on: 1) the wall and panorama
metadata encoded by an Entity Encoder discussed below, 2)
the floor boundary and adjustments embedding encoded by
the Column Geometry Encoder, and generates an updated
scene, i.e. ({T i,(t↑1)}, {V (t↑1)

m }), for time t↔ 1.
The architecture consists of: (a) a planar BA layer, (b)

a Column Geometry Encoder module, where column-wise
dense adjustments are encoded into a 1D embedding for
each wall and panorama, (c) a Coordinate Encoder to embed
2D vectors for directional vector and xy coordinates, d) an
Entity Encoder to generate an entity embeddings for meta-
data of each wall and panorama, functioning similarly as
a positional encoding, and (e) a self-attention Transformer
denoiser to integrate the embeddings along with time step
and to estimate new 2D positions.
Entity Encoder: Similar to the “input conditions” from
HouseDiffusion, a size-D identity embedding is generated
for each wall and camera using metadata, e.g. wall direc-
tion vector, one-hot room type, room id and vertex id for
wall, and camera direction vector, one-hot camera ids for
panorama. Wall and camera embeddings are generated with
separate MLP units.

Algorithm 1: BA Optimization on Column Ci,c

Input: Wall parameters (bm,k,
→→↑vm,k), camera 2D pose T i, Ri,

camera height zi, and floor boundary B̃i,c

Output: !bi,cm,k,!T i,c
m,k

1 →↑rayi,c = (T i, [sinRi, cosRi])

2
→→↑
wallm,k = (→→↑vm,k, bm,k)

3 Global CS 1: pti,cm,k ↓ Intersect(→↑rayi,c,
→→↑
wallm,k)

4 Camera CS: pti,cm,k ↓ GlobalToCam2D(pti,cm,k, T
i,Ri)

5 Projected boundary: B̂i,c
m,k = Cam2DToPixel(pti,cm,k, z

i).row
6 Reprojection error function: ωi,cm,k(bm,k, T i) ↓ |B̂i,c

m,k → B̃i,c|
7 Jacobian matrix function: J i,c

m,k(bm,k, T i) ↓ Jacrev(ωi,cm,k)

8 Single-step LM:
!bi,cm,k,!T i,c

m,k ↓ LM(ωi,cm,k,J
i,c
m,k, bm,k, T i)

9 Final wall adjustment: !bi,cm,k ↓ AdaptiveHuber[3](!bi,cm,k)
10 Final pose adjustment: !T i,c

m,k ↓ AdaptiveHuber(!T i,c
m,k)

Planar BA Layer: This layer generates camera and
wall position adjustments by comparing the projected floor
boundary from a given scene state, i.e. layouts and cam-
era poses, with the input predicted floor boundary. The
adjustments are computed densely on each image column
with a LM optimization algorithm, which is set to run a sin-
gle step. The process is demonstrated in Figure 3. Com-
pared to gradient descent (GD) based optimization, LM is
more efficient for convergence as it combines GD with the
Gauss-Newton algorithm [18]. LM optimization requires

1Coordinate System (CS)
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Figure 3. Column-wise planar BA module. Positional adjustment for
walls and cameras are computed for each image column. At each column,
the associated wall lm,k is projected with the current camera pose Ei. The
adjustments are computed by comparing the projected point to the floor
boundary B̃i,c value. The dense per-column adjustments are estimated in
parallel with our BA layer implementation.

the computation of the Jacobian matrix from each adjusted
parameter at each column position. To enable efficient train-
ing of the proposed learned BA diffusion model, the LM-
adjusted parameters for each feature column are limited to
three primary values: !bi,cm,k representing wall bias and
!T i,c

m,k denoting the xy displacement of the camera. This
approach reduces computational complexity and memory
overhead, enabling an efficient planar BA implementation as
a PyTorch layer. However, this constraint necessitates pre-
assigning each image column to a designated global wall to
streamline the reprojection process by directly referencing
the corresponding wall and camera positions without occlu-
sion checks for multiple walls. This initial column-to-wall
assignment is established during scene initialization, using
feature-matching models such as CovisPose to ensure ro-
bust alignment prior to BADGR optimization. The BA layer
is implemented with the differentiable non-linear optimiza-
tion library Theseus [31]; this library builds on PyTorch and
applies a sparse solver with both CUDA and CPU imple-
mentations. See Algorithm 1 for implementation details.
Column Geometry Encoder: This encoder is designed to
compress the dense adjustments (!bi,cm,k,!T i,c

m,k) and the
floor boundary {B̃i,c} into a 1D embedding for each wall
and camera. The input array of shape Np ↑ Nl ↑ w ↑ 6
is stored as three 2D vectors densely collected from fea-
ture columns of Np panoramas. Each column is assigned
to at max a single wall. The resulting 1D embeddings,
Np ↑ D for walls and Nl ↑ D for cameras, are computed
by compressing the three remaining axes. In our experi-
ments, feature dimension D = 1024. Specifically, from a
sparse array of shape Np ↑ Nl ↑ w ↑ 6, the Column Ge-
ometry Encoder reduces the w dimension by computing the
projected mean and standard deviation vectors along their
corresponding wall normal and wall vector axes, among the
valid values along the w axis. The Coordinate Encoder,
which is based on learned Fourier Features [45], then en-
codes each stat vector into a size-D embedding zc by learn-
ing two sets of weights for mean and standard deviation vec-
tors. The weights for mean vectors are also used to encode
({T i}, {Vm}). These features are concatenated and fed into

a single Fully-Connected (FC) layer to generate a geomet-
ric guidance embedding of shape Np ↑ Nl ↑ 1024. Since
adjustments (!bi,cm,k,!T i,c

m,k) are relatively small numbers
compared to (bm,k, T i), We scale them by a factor of 100
prior to input to Column Geometry Encoder.

To further compress features at per-wall level, the entity
embedding of cameras produced by the Entity Encoder is
added into each of the Nl array columns. 2-layer 1D con-
volutions [48] followed by LeakyReLu [33] and a single FC
layer are applied to produce a per-wall geometric guidance
embedding of shape Np ↑D. Similarly, the entity embed-
ding of walls is added into the Np array rows. A separate
similar 1D convolutional network is used to generate per-
camera geometric guidance embeddings of shape Nl ↑D.
Transformer Denoiser: Four layers of self-attention mech-
anisms [49] are used to denoise the input scene and rea-
son about the relationships between different scene enti-
ties and geometric guidance. The layers use input / out-
put features of shape (Np + Nl) ↑ D. The output fea-
tures are fed into a FC layer to produce xy coordinates as
final outputs for ({T i}, {Vm}). In each attention layer, 3
types of attention heads with different masking schemes,
i.e. Component-wise Self Attention mask (CSA), Global
Self Attention mask (GSA) and Relational Cross Attention
mask (RSA), were applied, similar to HouseDiffusion [37].
For the additional camera inputs, all cells related to valid
cameras were left unmasked. Each masked type above con-
tains 4 heads. The outputs of attention layers are summed
and fed into add and norm layers. At the end, a single-layer
MLP is used to predict diffusion noise from current time
stamps tn to t0.
Angle-Constrained Layouts: These layouts are critical to
connect the planar BA module with the Transformer De-
noiser in an iterative pipeline. The Planar BA module pro-
cesses layouts as inputs and outputs with line representa-
tion (↔↔↓vm,k, bm,k) of 1-DoF walls, while the Transformer
works with 2D coordinates {Vm,k}. Essentially, the Angle-
Constrained Layouts enable two-way mappings between
(↔↔↓vm,k, bm,k) and {Vm,k}, by defining half of the {Vm,k} xy
coordinate values predicted from the Transformer Denoiser
as irrelevant to the final layout prediction. With wall direc-
tions ↔↔↓vm,k as fixed vectors, the DoF of {Vm} are reduced
by half using the xy validity mask ϑm,k of the same shape
as {Vm}. ϑm,k is generated in the scene initialization stage,
along with the wall directional vector {↔↔↓vm,k}. The invalid
values defined in ϑm,k will be overwritten by outputs of the
proposed Layout Directional Regularizer (LDR).

The LDR starts from a point vm,k, with two valid xy co-
ordinates, and updates the invalid xy positions of next ver-
tex vm,k+1, using wall direction ↔↔↓vm,k, vm,k+1 and validility
ϑm,k+1. The LDR is applied around the loop of each layout
polygon to update all vertices. Angle constrained walls al-
low BADGR to be trained to predict wall movement along



the normal direction, while still using 2D coordinates to rep-
resent the layout for design simplicity. ϑm,k is also used as
an input condition and a mask in L2 loss computation.
Diffusion Model: BADGR adopts the DDPM process to
learn to invert a diffusion process which adds noise to data
with function q(x) [19]. In the forward process, Gaussian
noise is added to directly produce xt from x0, same as [19].
We train the non-Markovian diffusion processes, to predict
noise from xt to x0 and uses them to interpolate xt↑1 [38].
This allows BADGR to combine nonlinear optimization and
diffusion without explicitly defining each step size. Loss
for measuring view-consistency can be directly applied to
the predicted x0, which reuses the weighting scheme of a
regular DDPM model for different time stamp during train-
ing. For inference, probability flow ODE [39] is used to
iteratively denoise samples.
Loss Function: BADGR is trained to perform BA optimiza-
tion, with 1) input conditions from dense column-wise BA
adjustments, and 2) a reprojection loss, similar to the tradi-
tional BA, to regularize view-consistency. The loss function
can be written as:

L(t) = L(t)
L2 +Wproj ↗ L(t)

proj (1)

where L(t)
L2 is the masked L2 reconstruction loss, and is only

computed for valid xy coordinates defined by ϑm,k, from our
Angle-constrained layouts. It’s computed as:

L(t)
L2 = ↘((vpredm,k , T i,pred)↔ (vgtm,k, T i,gt) ↗ ϑm,k)↘2 (2)

L(t)
proj is the layout-to-image re-projection loss, which is

computed among all the columns with pre-assigned global
wall for BA adjustment using estimated scene at time 0.

L(t)
proj = ↘ϖi,c,⊋t=0

m,k ↘1 (3)

The process is described in steps 1-6 in Algorithm 1 mea-
sured in pixel units. Wproj is the time independent weight
for the projection loss, set to 100.

8. Experiments
We design experiments using two types of floor plan data.
First, we employ an end-to-end pipeline involving coarse
scene initialization followed by BADGR, trained on a newly
introduced FloorPlan-60K dataset and evaluated on ZInD
[15], which has similar data collection and distribution char-
acteristics. Second, we assess BADGR independently by
training and testing it on the RPLAN dataset [53], with con-
trolled noise added to both layout and virtual camera poses.
In the Supplementary, we report RPLAN-trained accuracy
evaluated on ZInD to highlight BADGR’s key ability to
train on 2D schematic views and generalize across datasets.
While it doesn’t perform as well as the FloorPlan60K-
trained model, RPLAN-trained BADGR still significantly
outperforms our baseline approach.

8.1. Experiments with FloorPlan-60K Data
We use FloorPlan-60K, an extended version of ZInD [15],
generated through a similar production pipeline to pro-
vide the scale needed for our diffusion-based BA training.
FloorPlan-60K includes 68,147 floor plans, with an average
of 8.7 rooms per plan and around 6.9 walls per room. Most
walls align with Manhattan-world assumptions: 96.2% are
at 90 degrees, 3.0% at 45 or 135 degrees, and 0.8% form
other angles. We have permission from Zillow to use this
dataset, with a public release pending from the owner. At
a minimum, model weights will be available for repro-
ducibility. Our training stage uses only layouts and simu-
lated poses, minimizing privacy concerns. All evaluations
are conducted on the public ZInD test set, ensuring repro-
ducibility. For end-to-end testing, we use panoramas from
ZInD, starting with initial coarse room layouts and positions
from the CoVisPose+ method (see section 8.1.1), which
serve as inputs to our main contribution: the learned-based
global refinement, or BADGR. Details on training and infer-
ence are provided in the Supplementary.

8.1.1. Baseline Models
CovisPose: The modified CovisPose model (see Section 5)
was applied to each pair of straightened panoramas [56]
from a given floor. For the first baseline, we used the orig-
inal CovisPose method followed by the Greedy Spanning
Tree (GST) algorithm [29] to generate global poses. For the
second baseline, which is also the initial state of BADGR,
we introduced CovisPose+, an improved version of Covis-
Pose that incorporates vanishing point snapping in the pair-
wise pose estimation step before applying the GST.
BA-Only: This method applies only the planar BA layer to
refine camera and wall positions iteratively, starting from
the coarse initialization in Section 5. First, per-column ad-
justments are made as described in steps 8-10 of Algorithm
1. These adjustments are then grouped by wall and camera,
and averaged to produce the final position updates. To re-
solve conflicts during averaging, majority voting selects the
dominant direction for each adjustment. The LM optimiza-
tion is run for 100 iterations with a step size 2.5 times larger
than the original.
Other Methods: CovisPose [21] outperforms point-
matching SfM-based methods [24, 44] and recent learning-
based approaches like DirectionNet [8] and SALVe [23] in
wide-baseline indoor pose estimation. While GraphCovis
estimates poses from three to five panoramas, it cannot be
applied directly to our test cases, which typically involve
more than 10 panoramas (see Table 1). Additionally, the
lower pose errors shown in [29] are limited to configura-
tions with only three panoramas, unsuitable as a compre-
hensive baseline. Similarly, PanoPose [47] estimates rel-
ative poses between pairs of panoramas but lacks publicly
available code for reproducibility.
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Figure 4. Qualitative results: top-down layouts and poses before (left), after BADGR optimization (middle), and GT (right). The reprojected
geometry, before and after optimization, is shown in several images, highlighting the improved view-consistency, border colors indicate
the capture positions. Example areas with significant improvements are highlighted and zoomed in. More examples in Supplementary.

Table 1. Pose and layout error from predictions on ZInD dataset.
Note that BA-Only and BADGR don’t optimize camera rotations,
hence share the same rotation errors as CovisPose+.

Imgs/
Rm Methods Pose Rot.(→) Pose Transl.(cm) Visible walls (cm) #walls

#panosMn Med Std Mn Med Std Mn Med Std p90

0.6

CovisPose 1.83 1.25 1.48 22.9 17.4 13.4 14.0 8.0 12.8 32.4
59.4
8.0

CovisPose+ 0.24 0.20 0.30 20.7 15.7 12.0 11.5 6.9 10.5 26.0
BA-Only 0.24 0.20 0.30 19.1 12.2 10.9 12.8 6.8 11.9 29.3
BADGR 0.24 0.20 0.30 12.2 9.5 7.2 7.1 4.5 6.7 15.3

1

CovisPose 1.88 1.36 1.40 23.0 18.0 13.2 15.0 9.0 13.0 39.1
65.7
10.4

CovisPose+ 0.26 0.21 0.30 19.7 15.6 11.8 12.3 7.0 10.8 27.4
BA-Only 0.26 0.21 0.30 17.6 12.6 12.0 12.6 6.7 11.4 27.5
BADGR 0.26 0.21 0.30 11.2 8.8 6.5 7.0 4.6 6.6 15.8

2

CovisPose 1.90 1.49 1.31 22.3 17.7 12.6 14.7 8.8 12.5 33.6
65.9
16.0

CovisPose+ 0.26 0.19 0.30 17.9 14.5 10.2 12.0 7.0 9.0 26.0
BA-Only 0.26 0.19 0.30 14.3 10.8 9.2 10.5 6.2 9.9 23.3
BADGR 0.26 0.19 0.30 10.7 8.9 6.0 6.4 4.4 5.9 13.9

3

CovisPose 1.70 1.19 1.23 21.5 17.1 11.9 14.3 8.5 12.1 31.8
66.5
18.3

CovisPose+ 0.23 0.19 0.27 18.1 14.8 10.5 12.3 7.2 10.2 26.9
BA-Only 0.23 0.19 0.27 13.4 10.7 8.2 10.6 6.2 9.0 22.1
BADGR 0.23 0.19 0.27 10.6 8.9 6.0 6.6 4.3 6.0 14.6

8.1.2. Results

We evaluate models on panorama subsets with varying in-
put densities, as shown in Table 1. Pose errors (mean, me-
dian, standard deviation, and p90) are computed after align-
ing predicted and ground truth pose graphs using RANSAC
[29], with similar metrics for layout errors. The number of
images per room used in experiments is defined with partial
rooms, where a complete ZInD room contains one or more
partial rooms [15].

As shown in Table 1, the BA-Only baseline reduces pose
and layout errors from CovisPose+ when input density is
sufficient, e.g. more than one image per room, with accu-
racy improving as input images increase. BADGR follows a

similar trend, consistently achieving lower layout and pose
errors across different input densities, including in extreme-
baseline scenario with 0.6 images per room. This highlights
the effectiveness of BADGR’s learned layout-structural con-
straints and its understanding of global context when com-
pared to the view-consistency-only approach from the BA-
Only baseline.

8.2. Experiments with RPLAN

The RPLAN dataset [53] is used to evaluate BADGR in
controlled noise experiments during training and testing.
RPLAN is a large-scale dataset of real residential floor
plans, each with 4 to 8 Manhattan rooms, spanning 65 to
120 square meters, but without real-world scale. After pre-
processing [37] and aligning door edges with walls, we
use 57,303 plans for training and 19,000 for testing. The
BADGR model is trained for 20 diffusion steps with an em-
bedding size D = 512, handling up to 100 walls and 15
cameras, using the training procedure from FloorPlan-60K.
Since RPLAN lacks real indoor images, we use simulated
camera poses and rendered floor boundaries for evaluation.
Noisy layouts and poses are created by adding Gaussian
noise (mean = 0, standard deviation = 3.3%) to the ground
truth wall and camera positions. These inputs are normal-
ized to a range of [-1, 1], and error distances (shown in Table
2) are reported in this normalized space.
Simulated Noise in Floor Boundary Inputs We added



Table 2. Pose and layout errors from predictions on RPLAN
dataset. Since RPLAN floors are under 120 square meters, the
reported distance error in percentage roughly translates to 1% to
0.1 meter in real scale.

Imgs /
Rms

State /
Method

Pose Err Dist (%) Visible Layout Err Dist (%) # walls
# panosMn Med Std p90 Mn Med Std p90

1
Start 3.15 2.94 1.56 4.98 1.69 1.46 1.25 3.42 46.7

8.0BA-Only 0.58 0.41 0.31 0.93 0.62 0.30 0.73 1.25
BADGR 0.35 0.29 0.18 0.55 0.33 0.15 0.38 0.58

2
Start 3.21 2.93 1.59 5.20 1.70 1.45 1.26 3.44 46.7

15.0BA-Only 0.62 0.31 0.38 1.09 0.58 0.23 0.73 1.11
BADGR 0.34 0.23 0.17 0.54 0.27 0.13 0.33 0.47

Table 3. Errors from predictions on RPLAN dataset with simu-
lated noise in floor boundaries. First column contains input den-
sity, the chance and max scale of noise added to each visible wall.

Imgs/Rms
%noise

State/
Method

Pose Err Dist (%) Visible Layout Err Dist (%)
Mn Med Std p90 Mn Med Std p90

1
5% chance

2%scale

Start 3.17 2.87 1.54 4.98 1.69 1.46 1.24 3.40
BA-Only 1.47 0.60 1.19 2.70 2.22 0.52 2.81 2.53
BADGR 0.59 0.42 0.35 0.98 0.49 0.27 0.50 0.95

1
10% chance

2%scale

Start 3.17 2.92 1.57 4.99 1.69 1.45 1.24 3.41
BA-Only 1.63 0.79 1.25 2.93 1.95 0.62 3.07 2.67
BADGR 0.64 0.46 0.36 1.04 0.51 0.29 0.52 1.00

2
5% chance
2% scale

Start 3.20 2.86 1.58 5.18 1.69 1.45 1.24 3.40
BA-Only 1.48 0.58 1.19 2.49 1.24 0.45 2.69 2.23
BADGR 0.65 0.41 0.33 1.05 0.43 0.22 0.45 0.80

2
10% chance

2% scale

Start 3.16 2.84 1.57 5.11 1.69 1.45 1.26 3.41
BA-Only 1.57 0.74 1.22 2.74 2.16 0.55 0.60 2.51
BADGR 0.72 0.46 0.38 1.17 0.56 0.25 0.57 0.87

noise to each rendered floor boundary to simulate bias from
boundary prediction models, caused by factors like occlu-
sion and limited training data. Before rendering the floor
boundary for each simulated camera position, we randomly
translate each visible wall along its normal direction, adjust-
ing the opposite side to avoid self-intersection. The walls
altered are selected by chance. Noise follows a uniform
distribution with a max scale, and is applied independently
for each rendering. The resulting floor boundaries guide the
BADGR denoising process during testing.

With a maximum noise level of 2% (about 20 cm), both
BADGR and BA-Only show increased pose and layout er-
rors compared to no noise. However, BADGR is signifi-
cantly less impacted by input perturbations than BA-Only.
In terms of absolute distance error for poses and layouts,
BADGR achieves lower errors compared to the ZInD test
case when approximate scale is applied, likely due to the
simpler structure of RPLAN floor plans.

8.3. Ablation Studies
We demonstrate the impact of BADGR in recovering poses
and layouts by comparing to four models and training
three BADGR variants in Table 4. Our conditional diffu-
sion model BADGR outperforms guided diffusion model
BA+DM in both tasks. BADGR trained with BA inputs only
has a larger improvement compared with BADGR trained
with reprojection loss only. We also found that although
having higher errors from the first four models, the resulting
layouts are mostly plausible looking, with improved layout
and pose accuracy from the starting point.

Table 4. Ablation analysis on different variants of BADGR. All
models are trained on FloorPlan-60k datasets and tested on ZInD
test set. Diffusion model (DM) is BADGR trained without pla-
nar BA layer and reprojection loss. BA+DM is a guided diffusion
model, where BA adjustment is added to the diffusion adjustment
from DM above without BA conditioning.

Imgs/Rms 1 2
BA

Inputs
Reproj
Loss Method Vis. walls (cm) Pose (cm) Vis. walls (cm) Pose (cm)

Mn Std Mn Std Mn Std Mn Std
✁ ✁ DM 8.6 8.3 26.7 17.4 8.6 8.1 25.7 17.7
✁ ✂ BADGR 8.4 8.4 23.6 14.1 8.3 8.1 24.4 14.3
✁ ✁ BA + DM 8.6 9.0 15.0 10.0 8.0 8.3 13.4 8.7
✂ ✁ BADGR 7.2 6.6 12.0 6.8 6.9 6.4 11.3 6.5
✂ ✂ BADGR 7.0 6.6 11.2 6.5 6.4 5.9 10.7 6.0

8.4. Qualitative Results
As shown in Figure 4, BADGR improves layouts and view-
consistency, even in extreme cases with minimal visual
overlap, from a coarsely initialized scene. BADGR is able
to learn the physical constraints from training data and cor-
rect issues like overlapping room layouts and varying wall
thicknesses. While pose errors are not easily visualized in
a top-down view, the image view reveals these inaccuracies
and highlights the substantial improvements in both poses
and layouts achieved by BADGR. Further evaluation of re-
projection errors is provided in the Supplementary.

9. Conclusion
We present BADGR, a novel diffusion model that unites
layout reconstruction with BA-style optimization, refining
coarse poses and layouts, such as those derived from mul-
tiple 360° panoramas using methods like [21, 23, 47],
into accurate, view-consistent floor plans. This is the first
learning-based approach designed to handle full-scale in-
door environments with up to 30 capture points, achiev-
ing enhanced spatial coherence through an integrated ap-
proach combining planar BA with diffusion-based structural
constraints. Trained exclusively on schematic floor plans,
BADGR adeptly addresses complex layouts and supports
robust data augmentation techniques, including simulated
camera poses. By leveraging a conditional diffusion model
to guide nonlinear optimization, BADGR learns structural
constraints and models spatial relationships and observation
error, all through an efficient and effective training process.
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BADGR: Bundle Adjustment Diffusion Conditioned by GRadients for
Wide-Baseline Floor Plan Reconstruction

Supplementary Material

1. Implementation Details with FloorPlan-60K Data

BADGR is trained using a 2D ‘cleanup’ layer of floor plans, where larger spaces are represented by unions of multiple
partially annotated room shapes, following the annotation approach of ZInD [15]. Panorama poses are randomly sampled
within each room. For each input image, BADGR simulates data with a CUDA-based 1D renderer, given floor plan layouts
and a sampled camera pose. The renderer operates on connected rooms through doors, omitting door polygons and matching
wall segments along the front and back planes. Random masking is applied on {B̂i} and M to occasionally bypass the BA
layer for selected image columns. During diffusion training, scenes are rotated by [0→, 90→, 180→, 270→]. For evaluation, we
use the ZInD test set (275 floor plans), with initial scenes, floor boundary depths, and column-to-wall assignments estimated
from real panorama images, as detailed in Section 8.1 of the main paper.

BADGR has a capacity of 300 walls and 30 panoramas, which is selected to accommodate 99% of the floor plans from
FloorPlan-60K data. It is trained with a batch size of 48, and with a learning rate of 10↑4 for 140 epochs, 10↑5 for 50
epochs, and 10↑6 for 50 epochs by stepwise decay. BADGR is trained for the last 20 steps of a 1000-step diffusion process,
using a second-moment schedule sampler for time t. Ordinary Differential Equations (ODE) sampling [39] is used during
the BADGR inference process. Training peaks at 55GB GPU memory usage on a single GPU. During inference, BADGR
processes a batch size of 1 in approximately 25 seconds on a CPU-only Apple M1 MacBook Pro with 32GB of memory, and
around 4.0 secs on an A100 GPU.

2. Cross dataset training and validation

We additionally trained a BADGR model of a max capacity of 300 walls and 30 cameras with the RPLAN training set, and
with a similar settings of sampling camera positions for generating simulated floor boundaries and column-to-wall assign-
ments. This model is evaluated on the ZInD test set. The results are listed in Table 5 alongside with existing results for
comparison. Although BADGR trained with RPLAN dataset doesn’t produce similar or higher accuracy than BADGR trained
with FloorPlan-60K dataset, it still outperform the CovisPose+ and BA-Only baselines. This trend is expected as RPLAN
contains Manhattan floors only and overall have less rooms and panoramas during training.

Table 5. Pose and layout errors tested on the ZInD dataset, trained with various datasets. Row 3 of each block presents additional results
compared to the main paper. Mn, Med, and Std denote mean, median, and standard deviation, respectively. We also report the 90th
percentile (p90) of the absolute translation errors for the estimated camera poses.

Imgs/
Rm Methods Training Set Camera Translation(cm) Visible walls (cm)

Mn Med Std p90 Mn Med Std p90

0.6

CovisPose+ ZInD 20.7 15.7 12.0 33.6 11.5 6.9 10.5 26.0
BA Only N/A 19.1 12.2 10.9 32.7 12.8 6.8 11.9 29.3
BADGR RPLAN 14.7 11.4 8.0 24.0 9.4 5.8 8.6 20.6
BADGR FloorPlan-60K 12.2 9.5 7.2 18.5 7.1 4.5 6.7 15.3

1

CovisPose+ ZInD 19.7 15.6 11.8 33.7 12.3 7.0 10.8 27.4
BA Only N/A 17.6 12.6 12.0 34.2 12.6 6.7 11.4 27.5
BADGR RPLAN 15.1 11.1 8.5 26.5 9.2 5.9 8.8 20.6
BADGR FloorPlan-60K 11.2 8.8 6.5 18.6 7.0 4.6 6.6 15.8

2

CovisPose+ ZInD 17.9 14.5 10.2 30.8 12.0 7.0 9.0 26.0
BA Only N/A 14.3 10.8 9.2 30.1 10.5 6.2 9.9 23.3
BADGR RPLAN 14.1 10.5 8.6 27.8 9.1 5.6 8.7 20.1
BADGR FloorPlan-60K 10.7 8.9 6.0 17.1 6.4 4.4 5.9 13.9

3

CovisPose+ ZInD 18.1 14.8 10.5 31.6 12.3 7.2 10.2 26.9
BA Only N/A 13.4 10.7 8.2 30.5 10.6 6.2 9.0 22.1
BADGR RPLAN 13.3 10.2 7.7 22.9 9.4 5.9 8.7 21.1
BADGR FloorPlan-60K 10.6 8.9 6.0 17.5 6.6 4.3 6.0 14.6



3. Reprojection Errors
Reprojection errors are reported in Table 6 to measure the view-consistency between the floor boundary projected from the
predicted layout and poses and the per-image estimations, similar to the blue and green lines in the bottom-right images of
Figure 1 of the main paper. The stats are computed from the per-column reprojection errors across all wall-assigned image
columns, which is defined in Algorithm 1 of the main paper.
Table 6. Reprojection errors (L1 distance by pixel relative to an image size of 256 → 512) for wall-assigned columns, which measures
view-consistency compared to the predicted floor boundary. Alongside Table 1 of the main paper, we observe that while BADGR sometimes
produces higher re-projection errors than BA-Only, it consistently achieves lower layout and pose errors. This suggests that reprojection
error influences accuracy but is not the sole factor in achieving high reconstruction accuracy. The stats are collected similarly to those from
Table 1 of the main paper.

Img/Rm 0.6 1 2 3
Method Mn Med Std p90 Mn Med Std p90 Mn Med Std p90 Mn Med Std p90

CovisPose+ 1.38 0.92 1.81 2.77 1.52 0.95 2.08 3.05 1.69 1.03 2.40 3.67 1.79 1.05 2.57 3.93
BA-Only 0.70 0.29 1.21 1.64 0.78 0.32 1.46 1.88 0.81 0.39 1.48 2.07 0.89 0.39 1.45 2.06
BADGR 0.65 0.31 1.17 1.36 0.75 0.32 1.34 1.77 0.78 0.35 1.37 1.81 0.81 0.36 1.33 2.04

GT Scene + Predicted Boundary 0.91 0.82 0.56 2.77 0.90 0.80 0.56 1.55 0.89 0.78 0.56 1.56 0.89 0.77 0.57 1.56

As Table 6 shows, overall reprojection error increases with the number of input images. This is caused by the accumu-
lating pose errors and inconsistencies in floor boundary estimates across overlapping regions. Both BA-Only and BADGR
consistently show lower reprojection errors compared to CovisPose+. In most cases, BADGR reports slightly lower repro-
jection errors than BA-Only, likely because BA-Only can get stuck in local minima of the loss function and uses a PyTorch
implementation that also considers memory and speed. In this implementation, adjustments are computed at per-column level
and averaged to update poses and walls, rather than optimizing the total reprojection error across all columns.

4. Coarse Scene Initialization for Inference

Input panoramas Projected floor boundaries superimposed by predicted global poses
& minimum spanning tree used in computing global poses. Color maps to 

different source image where floor boundaries are estimated from.

Pairwise 
CovisPose

Compute 
global poses

Per-image floor 
boundary 

segmentation

Global floor 
boundary segment 

matching

Grouped floor boundary columns across di>erent images. Color indicates globally unique wall ids. 
Each wall may have multiple contours of inlier points from di>erent images.

103

15

13

5

4
Order global floor 
boundary groups

Add missing lines

Global line regression

Human-in-the-loop step

Algorithm step

Connected global line sequences as initial state of BAGDR.
Missing walls are added as dashed lines during annotation.

Figure 5. Overview of coarse scene initialization.

Initial Poses From input panoramas {P i}, a modified CovisPose model [21] is executed exhaustively on each pair of panora-
mas from the same floor. This model has the same exact architecture as the original CovisPose model predicting: 1) relative
camera pose Ẽ(i,j) → SE(2), 2) floor boundaries {B̃i}, 3) cross-view co-visibility, angular correspondences {ω̃i,j}, {ε̃i,j}.
It additionally predicts binary classification of room corners {Ṽi} for each column. The model is trained on the ZInD dataset
[15] with the same image pairs as [21] and an additional corner loss function similar to that of [42]. Pose pairs of co-visibility
score greater than 0.1 are selected to create a minimal spanning tree of the pose graph using a greedy algorithm, similar
to [29]. Prior to computing global poses Ẽi, Ẽi,j are corrected through axis alignment with a 45° interval using predicted
vanishing angles [56].



Initial Walls The per-panorama floor boundary {B̂i} is segmented with room corners {V̂i}. Inlier boundary points are then
extracted with RANSAC, and initial wall parameters (

↔↔↓
vim,k, bim,k) are computed for each local wall detected from panoramas

P i. Voting-based heuristics are used to match inlier boundary points, which maps to per-panorama local line segments,
between panorama pairs using {ω̃i,j}, {ε̃i,j} and (

↔↔↓
vim,k, bim,k). Pairwise local line matches are aggregated into a unique

global wall identity for wall lm,k shared across P i. The estimated wall parameters, i.e. (↔↔↓vm,k, b̂m,k), are computed with
linear regression, where ↔↔↓vm,k is selectively axis-aligned with a 45→ interval. Only wall angles closer to 10→ to the vanishing
directions, e.g. 0, 45, 90, 135, are corrected. Finally, an annotator uses a graphics interface to: 1) provide global wall
connectivity (shown as arrows in the bottom right image of Figure 5), and 2) add missing room corners with their rough
initial positions with guidance from the images and topdown projected floor boundaries (dotted lines in the bottom right
image of Figure 5). The number of room corners and wall orientations are static input to BADGR.

During testing, a subset of panoramas are selected as described in Section 8.1 of the main paper and Section 1 of the
Supplement. To generate the coarse initial layouts, we use the connectivity of the annotated global scene as discussed above,
re-compute parameter (

↔↔↓
vim,k, bim,k) of visible walls using the inlier boundary point from the selected panoramas, and inherit

the parameters of invisible walls from the initial coarse scene generated with all available panoramas from the ZInD dataset.
Only rooms with visible walls are included in the coarse initial layouts. PolyDiffuse [7] also uses simple annotation during
initialization. Our paper focuses on the difficult step of global refinement. Automating this annotation is future work to
automate an end-to-end pipeline.

5. Discussion
PuzzleFusion (PF) [20] and Extreme SfM (E-SfM) [36] also produce floor plan layouts and camera poses. Here we provide
a discussion on their differences to BADGR. Both PF and E-SfM estimate the rotation and translation of given unposed
non-deformable room layouts by solving jigsaw puzzles. Camera poses are then inferred from the puzzle solution. This has
different objectives than ours: 1) within the same room their relative positions among individual walls and multiple camera
poses stay unchanged; 2) neither method uses information from a set of horizontal-facing images without precise poses as
input constraints to guide optimization for view-consistency. Both can be used for initialization of BADGR like CovisPose.
Code and weights of PF trained on RPLAN aren’t publicly available. We contacted the authors, and the code no longer
runs. E-SfM takes hours or even days to process a single house [20], so neither can be used as baselines. BADGR solves
a different task as we are deforming room shapes. Instead, we simulate BADGR refining PF-initialized layouts by adding
Gaussian noise (10.55 Mean Positional Error in pixels (MPE) matches PF) to room translations, with relative poses among
cameras and walls within each room given for initialization. BADGR reduces the MPE≃ of room placement from 10.55 or
4.1% (normalized by 256↑ 256 pixel resolution) (full RPLAN) to 0.93% (77.3% lower), calculated by average shift of each
vertex. We also report 0.98%, 1.45% mean translation errors in layout and poses. MPE of E-SfM is only reported for small
RPLAN as 29.44 or 11.5% [20].

GraphCovis [29] and PanoPose [47] didn’t publicly release their code. GraphCovis estimates global poses among up-to-5
input panorama images. We compared the pose errors of BADGR with GraphCovis under the similar input settings originally
evaluated on ZInD [15] in table 7. It demonstrates BADGR’s robust performance among different sizes of homes and missing
room scenarios.
Table 7. Statistics of absolute translation error and absolute rotation error on group of three, four, and five panoramas for GraphCovis
(GC) and BADGR. The accuracy of GraphCovis is imported from Table 1 of [29].

Group-Size
# imgs

GC Rot ≃ (→) BADGR Rot ≃ (→) GC Transl. ≃ (cm) BADGR Transl. ≃ (cm)
Mn Med Std Mn Med Std Mn Med Std Dist (cm) Med Std

3 2.00 0.85 9.15 0.25 0.20 0.28 8.1 3.8 29.2 9.2 6.1 5.9
4 3.19 0.94 13.36 0.26 0.22 0.30 15.3 6.1 43.0 10.6 6.1 6.0
5 3.29 1.07 12.04 0.25 0.19 0.30 17.2 8.2 38.4 10.4 6.3 6.7

6. Failure Cases
We present three failure cases to highlight the challenges and opportunities for BADGR. Overall, BADGR achieves high
accuracy when input images are minimally-connected by covisible walls through column-to-wall assignments from the initial
coarse scene. However, since BADGR is trained on simulated panorama poses and column-to-wall assignments, the model
can struggle when faced with scenarios outside the training distribution. An example is shown in Figure 6, where the initial
scene contains large errors over wide areas, and the column-to-wall assignments fail to establish critical covisible walls
between panoramas. This underscores the need for future development of an end-to-end initialization method to establish
global column-to-wall assignments.



Figure 6. Failure case example caused by errors in coarse scene initialization. The colored lines in the images on the right represent
estimated floor boundaries, with colors indicating their assigned unique global wall id. The heuristic failed to match two wall segments
(highlighted in rectangles) using dense column correspondences and floor boundaries from the CovisPose model. Additionally, the large
initial error in the highlighted section (highlighted in rectangles) may fall near the boundary of the 20-step truncated diffusion data distri-
bution, contributing to the issue.

BADGR relies on floor boundaries for positional information along the normal direction of the target surface. This explains
the failure case in Figure 7, where the wall length is estimated incorrectly due to a lack of guidance to the model. Future
work could incorporate cues from wall junctions, similar to [42, 50], or encode pixel positions of pre-assigned columns to
better constrain visible walls and infer invisible wall positions.

Figure 7. Failure case example where the highlighted wall is predicted with an incorrect length due to the limited image column coverage.
The colored lines in image views represent similarly as in Figure 6.

BADGR assumes consistent floor heights throughout the area. When this assumption is violated, such as with a sunken
floor (Figure 8), planar BA may place walls farther than their actual positions. Future work may include extending BADGR
to represent varying camera height and wall heights, and expanding the training data to cover this issue.

Figure 8. Failure case example due to inconsistent floor heights. The colored lines in image views represent similarly as in Figure 6.

7. More Qualitative Results
The reprojected wall lines in the image are drawn with a thickness equal to 1.1% of the image height. This thickness can
cover significant floor distances, especially when walls are near the image center. For example, at a pitch angle of 30° (floor
distance of 0.58 camera heights), the line covers 4.5% of the camera height; at 45° (1 camera height), it covers 7.4%; at 60°
(1.73 camera height), 14.7%; and at 75° (3.73 camera height), 55.2%. While the blue and green lines represented in small
images sometimes appear to overlap, particularly for walls farther from the camera, BADGR processes continuous inputs and
outputs for coordinates, enabling higher precision. See quantitative results for more precise details.
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Figure 9. More qualitative results trained on FloorPlan-60K dataset and tested on ZInD dataset (page 1), with input densities at a maximum
of 2 input images from each input partial room. The topdown views from left to right are before, after BADGR optimization and the ground
truth.
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Figure 10. More qualitative results trained on FloorPlan-60K dataset and tested on ZInD dataset (page 2), with input densities at a maximum
of 2 input images from each partial room. The topdown views from left to right are before, after BADGR optimization and the ground truth.
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Figure 11. More qualitative results trained on FloorPlan-60K dataset and tested on ZInD dataset (page 3), with input densities at a maximum
of 1 input images from each partial room. The topdown views from left to right are before, after BADGR optimization and the ground truth.



Figure 12. Qualitative results trained and tested on RPLAN dataset (page 4), with input densities at one input image from each partial
room. The topdown views from left to right are before, after BADGR optimization and the ground truth. The initial state is created by
adding Gaussian noise from 20-step diffusion q-sampling [19] into the ground truth poses and layouts. Details see Section 8.2 of the main
paper. This figure demonstrates BADGR’s capability to refine initial scenes with much higher noise than those from the ZInD test cases.
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