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Abstract

Contextual bandits are incredibly useful in many practical problems. We go one step further
by devising a more realistic problem that combines: (1) contextual bandits with dense arm
features, (2) non-linear reward functions, and (3) a generalization of correlated bandits
where reward distributions change over time but the degree of correlation maintains. This
formulation lends itself to a wider set of applications such as recommendation tasks. To solve
this problem, we introduce conditionally coupled contextual (C3) Thompson sampling for
Bernoulli bandits. It combines an improved Nadaraya-Watson estimator on an embedding
space with Thompson sampling that allows online learning without retraining. Empirical
results show that C3 outperforms the next best algorithm by 5.7% lower average cumulative
regret on four OpenML tabular datasets as well as demonstrating a 12.4% click lift on
Microsoft News Dataset (MIND) compared to other algorithms.

1 Introduction

Multi-armed bandits are applicable in many domains where there is high stochasticity and limited oppor-
tunities to fully explore all possible arms (Lattimore & Szepesvári, 2020). A more useful variant of the
problem called contextual bandit (Lu et al., 2010) tackles a significantly harder problem where it aims to op-
timize for the best arm for a given context. Contextual bandits find applications in many domains including
recommender systems, online advertising, dynamic pricing, and alternatives to A/B testing.

In several applications, the arms can be decomposed into a set of features such that different arms share
some features and therefore their reward distributions may be dependent (which we refer to as coupled arms).
Furthermore, the reward distributions of the arms may evolve over time, leading to non-stationarity. This
paper focuses on non-stationary contextual bandits with coupled arms.

To motivate the investigation into coupled arms, or coupling in general, we consider an example of strong
coupling in product recommendation. Complementary goods such as bicycles and helmets are typically
strongly coupled. If the demand for bicycles rises, it is likely that the demand for helmets would go up too.
Cycling, in some countries, is a seasonal activity where sales of bicycles and helmets differ during summer
and winter.

This provides useful information for an agent when recommending products. Unlike time-series forecasting,
we do not directly model the demand over a future time period. Instead, we capture features that might
suggest coupling, then if one product has a high demand, it would immediately infer that a strongly coupled
product would also have a high demand. This is beneficial for any bandit algorithm that has to balance
exploration and exploitation of information.

Main Contributions One of our contributions is introducing the notion of coupled arms that are ubiqui-
tous in many practical applications. The primary contribution is developing an algorithm called conditionally
coupled contextual (C3) Thompson sampling that solves contextual bandits with correlated/coupled arms in
bandit or recommendation tasks. To the best of our knowledge, it is the first algorithm that can solve contex-
tual bandits with correlated/coupled arms in a non-stationary setting. Unlike many other neural contextual
bandit approaches, there are no lengthy gradient-based updates at inference time. C3 can also leverage arm
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features, which reduces the cold-start problem on arms, with the added benefit of working with a variable
set of valid arms.

2 Related Works

2.1 Contextual Bandits

On the contextual bandit front, LinUCB by Li et al. (2010) can be considered one of the pioneering contextual
bandit algorithms that demonstrated success through the use of simulated evaluation based on the Yahoo!
news dataset. Chu et al. (2011) followed up with a rigorous theoretical analysis of a variant of LinUCB. The
other popular paradigm is the Bayesian approach where Agrawal & Goyal (2013) developed a contextual
bandit algorithm with Thompson sampling with a Gaussian likelihood and prior, assuming a linear payoff
function. Unfortunately, there was no empirical evaluation on a practical problem.

With deep neural approaches on the rise, the contextual bandit community has been focusing on algorithms
that can learn non-linear reward functions. One of the earlier algorithms was the KernelUCB by Valko
et al. (2013) which extends LinUCB by exploiting reproducing kernel Hilbert space (RKHS). Similarly,
Srinivas et al. (2009) generalized Gaussian processes for a contextual bandit setting by introducing the
GP-UCB algorithm. While both algorithms attain a sublinear regret, practicality is limited since both
have cubic time complexity in terms of the number of samples. After the breakthrough in the theoretical
understanding of neural networks, particularly the neural tangent kernel (NTK) by Jacot et al. (2018),
Zhou et al. (2020) developed NeuralUCB which is a neural network-based contextual bandit algorithm with
a complete theoretical analysis and a suite of empirical analysis which outperforms many algorithms in
tabular dataset benchmarks from OpenML.

More recent advancements include SquareCB (Foster & Rakhlin, 2020) which reduces the problem of con-
textual bandits to an online regression problem. Under mild conditions, SquareCB along with a black-box
online regression oracle has optimal bounded regret with no overhead in runtime or memory requirements.
While they work on most regression models, the performance is highly dependent on the quality of the
selected oracle. Kveton et al. (2020) introduced their take on randomized algorithms for contextual bandits.
Their novel contributions include an additive Gaussian noise for a bandit setting that can be introduced to
complex models such as neural networks.

2.2 Other Relevant Bandits

Several specialized bandit algorithms may be relevant to our problem. Basu et al. (2021) introduced a variant
called contextual blocking bandit that handles a variable set of arms but assumes the selected arms of an
agent influence the future set of valid arms. Their work revolves around this idea but ultimately differs in
having a fixed, finite set of overall arms.

The problem of non-stationary reward distributions in bandits is usually referred to as a restless bandit,
which is proposed by Whittle (1988). Wang et al. (2020) introduced the Restless-UCB algorithm which
provably solves restless bandits, but does not account for context in the environment. Chen & Hou (2024)
improves upon this by leveraging context and budget constraints. A specialized solution by Slivkins &
Upfal (2008) assumes that reward distribution changes gradually and works by continuously exploring while
sometimes following the best arm based on the last two observations. However, they assume that all arms
are independent and can be modelled as a Brownian motion which is uncommon in practice.

In the realm of sleeping bandits where some arms are occasionally not valid, Slivkins (2011) introduced the
contextual zooming algorithm that adaptively forms partitions in a similarity space. Operating on a space,
as opposed to having fixed arms, allows them to effectively tackle the sleeping bandit problem. While they
offer an innovative framework, it is likely that partitions in high-dimensional spaces (e.g. from large language
models) would not be tractable.

Kleine Buening et al. (2024) proposed a situation that is potentially relevant to many applications from a
game-theoretic perspective. Goals of agents could conflict – for example, an arm could be a video from a
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Figure 1: A three-arm example of strong and weak coupling during concept drift of expected reward distri-
bution. Arms 1 and 2 are said to be strongly coupled, while arms 1 and 3 are said to be weakly coupled.

content creator on a public platform. In the current state, “clickbait" videos would maximize the reward
for the content creator but is seen as a negative phenomenon overall on the platform. Kleine Buening et al.
(2024) devised an incentive-aware learning algorithm to ensure that the learner obtains the right signal.

2.3 Recommender Systems

There is growing interest in applying contextual bandits on recommender systems (Ban et al., 2024). On
the topic of recommender systems, the more prevalent form of recommendation models in recent years are
typically based on neural networks Dong et al. (2022). A popular approach is the two-tower neural network
employed by Huang et al. (2020) and Yi et al. (2019). A major benefit of such designs includes incredibly
efficient retrieval within the learned embedding space as well as the ability to learn complex relationships of
queries and items. Another design called BERT4Rec by Sun et al. (2019) leverages the power of transformers
in sequential problems to provide recommendations. However, in the mentioned recommender designs, there
is no element of exploration, unlike contextual bandits, resulting in a possibly greedy approach that may
get stuck in a suboptimal policy. This can also be a major problem when user behaviour changes since all
gradient updates to the models are based on historical data alone, and frequent retraining of the models can
be expensive.

3 Problem Formulation

3.1 Contextual Bandit

In this paper, we focus on Bernoulli bandits where the conditional reward distribution is R ∼
Bernoulli(µ(c, a)) and c ∈ C is the current context. C is left to be an arbitrary space as long as it can be
appropriately encoded. Each arm a ∈ A is a discrete class. The Bernoulli mean parameter µ : C ×A → [0, 1]
is a continuous function whose value represents the probability of the reward being one. µ is assumed to be
Lipschitz continuous in C × A.

3.2 Coupled Arms: An Extension to Correlated Arms

Gupta et al. (2021) formulated the correlated multi-armed bandit problem where pulling an arm provides
some information about another arm that is correlated. We view this as a special case of coupling.

Conditional reward distributions tend to be non-stationary in practice but we can still exploit some infor-
mation on arms. While µ could change with time, there is an inherent structure to how µ of certain arms
change. For example, the marginal probabilities of shoppers buying snowboards and skis are likely to be
coupled, even though both probabilities would drop during the summer and rise during winter in a similar
fashion.
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In reference to Figure 1, up to the present, we see that the expected rewards for arms 1 and 2 are very
similar and evolve similarly together in the time interval. We call these strongly coupled arms. Pulling one
arm will give some information about the other arm in any time period, in contrast to correlated arms where
this condition is only true at a particular point in time. Conversely, arms 1 and 3 are weakly coupled arms
since they have mostly different historical expected rewards.

Concept drift, in the context of bandits, can be defined as: there exist some times t1, t2 ∈ {1, 2, ..., T} where
P (r|c, a, t1) ̸= P (r|c, a, t2) (r is the reward, c is the context and a is an arm) (Lu et al., 2018). The degree
of coupling between arms a and a′ for a given context c is

ρ(a, a′, c) = 1− 1
T

T∑
t=1

DJS(P (r|c, a, t), P (r|c, a′, t)) (1)

where DJS is the Jensen-Shannon divergence over the reward distributions. Arms a and a′ are said to be
perfectly coupled for context c if ρ(a, a′, c) = 1.

3.3 Non-stationary Contextual Bandits with Coupled Arms

We extend vanilla contextual bandits to a more general problem. The Bernoulli mean parameter µ(c, a, t) is
now a function of time too. We also assume that µ is Lipschitz continuous with respect to time.

Each arm a ∈ A ⊆ Rd can be characterized with a vector of dense features, which implies that there are
infinitely many possible arms but a finite number of arms are presented to an agent at each time step. We
call them valid arms when they are presented to the agent at that particular time step. In a special case
where arms do not have dense features, they can still be represented as one-hot encoded vectors.

In the presence of concept drift, i.e. µ(c, a, t) ̸= µ(c, a, t′) generally for t ̸= t′, and infinitely many possible
arms, this can be a very difficult task. Here, we assume that there are strongly coupled arms that can be
exploited. The degree of coupling is learnable from the arm features, conditioned on the context c.

3.4 Objective

The goal in both problems is to minimize the cumulative regret which is the cumulative difference between
the reward of the best arm in hindsight a∗ and the reward of the chosen arm at for a given context ct over
all time steps (Lattimore & Szepesvári, 2020).

CumulativeRegret(T ) =
T∑

t=1
µ(ct, a∗

t , t)− µ(ct, at, t) (2)

4 Methodology

4.1 Embedding Model

This section pertains to the process of training an offline regression oracle, a class of optimization oracles for
contextual bandits described by Bietti et al. (2021).

Importance Weighted Kernel Regression The chosen approach to capture coupling between arms is
based on the hypothesis that the empirical rewards of a relevant subset of reference samples can be used to
estimate the reward of some unseen sample. Nadaraya-Watson kernel regression (NWKR) is a well-known
nonparametric regression method (Nadaraya, 1964) that uses a weighted average of labels of neighbouring
samples, weighted by a kernel function that satisfies some conditions.

Suppose there is a learnable space S ⊂ Rd that represents some joint space of contexts C and arms A, similar
to the formulation by Slivkins (2011). We could use NWKR on some reference dataset Dref = {(si, ri)}n

i=1
containing historical context-arm embeddings si ∈ S and rewards ri ∈ R, with κ : S × S → R being the
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radial basis function (RBF) kernel to estimate the mean reward of an unseen sample s ∈ S,

µ̂(s) =
∑

si,ri∈D κ(s, si)ri∑
si∈D κ(s, si)

(3)

Note that µ introduced in Section 3.3 is a function of context, arm, and time while µ̂ in Equation 3 is a
function of context-arm (jointly) and reference dataset D. Unlike time series algorithms, we do not directly
model time as an independent variable since we have to make assumptions on how the reward distribution
changes over time. Instead, we use historical examples in D that are close to the present time to indirectly
condition on the time.

An issue with NWKR is the susceptibility to bias from drifts in the sampling distribution. The overall
weight of samples may dominate the regression due to the disproportionately many samples in the vicinity
of a query sample. This is particularly an issue in bandit algorithms where the distribution of arms selected
will likely change as more data is ingested. The points in S provide information about µ in that subspace,
but the frequency of points should not affect µ̂, except a measure of confidence which will be discussed in
Section 4.2. To mitigate sampling bias, we introduce importance weights. A sample is assigned a lower
importance weight if it is located in the vicinity of many samples, and a higher importance weight otherwise.
More precisely, the importance weight is defined as

w(s) = 1∑
si∈D κ(s, si)

∈ (0, 1] (4)

The importance weighted kernel regression (IWKR) is defined as

µ̂(s) =
∑

si,ri∈D κ(s, si)w(si)ri∑
si∈D κ(s, si)w(si)

(5)

Theorem 1. Suppose a vector of importance weights w of n samples has been computed. The time complexity
of updating the importance weights, given a new sample, is O(n).

A naive implementation of the importance weights computation would incur a quadratic time complexity.
However, this can be optimized to be linear time as shown in the proof in Supplementary Material A.1.
Theorem 2. Suppose µ(s) is Lipschitz continuous on S. In the limit of the size of the reference dataset Dref
where points are sufficiently sampled from the neighbourhood of some query point s, the importance weighted
kernel regression with a radial basis function kernel is an approximate estimator of µ(s).

The proof of Theorem 2 can be found in Supplementary Material A.2.

Parametrization of Embedding Space While IWKR can estimate values, the input space may not be
sufficiently calibrated with respect to the fixed kernel function. This can be rectified by training a multilayer
perceptron as an embedding model ϕ : C × A → S with IWKR towards a classification objective.

min
ϕ

E [LBCE(µ̂(ϕ(c, a)), r) + λLECE(µ̂(ϕ(c, a)), r)] (6)

where LBCE is the binary cross entropy loss and LECE is the expected calibration error (Naeini et al., 2015).
Every context-arm pair will be embedded as s = ϕ(c, a) so that IWKR acts on an optimal space.

We incorporate calibration as an auxiliary objective to reduce overconfidence which is notoriously common
in deep neural networks (Guo et al., 2017). In a bandit algorithm involving neural networks, calibration is
important to avoid biases when facing a lack of data.

An optimal model would tightly cluster strongly coupled context-arm pairs. To encourage the learning of
coupling in ϕ, we can partition the reference dataset by time intervals Dref = D(1)

ref ∪ · · · ∪ D
(T )
ref so that IWKR

only uses samples from the relevant time interval only for a given query. This avoids averaging reward values
from a different time period which may be subjected to concept drift. The training process is described in
Algorithm 1.
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Algorithm 1 C3 training process
1: Inputs: Training dataset D = {(ci, ai, ri)}n

i=1, neural network ϕ
2: for epoch e do
3: Randomly split D into Dref = (cref, aref, rref), and Dq

4: Embed reference s← ϕ(cref, aref)
5: Compute importance weights w for s
6: for (c, a, r) ∈ Dq do
7: Embed query q ← ϕ(c, a)
8: s′, r′

ref ← filter for samples in s, rref such that they are in the same time interval as q
9: Compute RBF weights between s′ and q

10: Estimate weighted mean reward µ̂(q) using the RBF weights and r′
ref

11: Compute the sum of losses with µ̂ and r
12: Perform gradient descent on ϕ

Algorithm Details The training is done batch-wise. The randomization in Step 3 forms a self-supervised
learning objective by masking certain samples and creating a predictive subtask. Dref can be seen as the set
of in-context samples and Dq contains the training samples. All samples (both in Dref and Dq) are embedded
with ϕ, and the objective is to optimize the embedding space produced by ϕ.

Step 9 computes the RBF weights between q and every embedded reference sample in s′. Then in Step
10, we apply Equation 5 on q using the RBF weights, importance weights, and r′

ref to compute µ̂(q). The
gradient update should update ϕ to embed context-arm pairs with similar rewards closely.

4.2 Inference

This section extends the offline regression oracle by incorporating exploration with a Beta distribution and
Thompson sampling.

Thompson Sampling The embedding model with IWKR is trained towards a classification objective for
predicting the expected reward. To incorporate an element of exploration, we adopt Thompson sampling.
The conjugate prior of a Bernoulli bandit is a Beta distribution with parameters α and β, where α usually
refers to the counts of r = 1. The notion of counts in a continuous embedding space S can be solved using
partial counts of rewards weighted by the RBF kernel. However, this is complicated by importance weights
since S was learned with IWKR.

The expected value of the Beta distribution should be impacted by w(s) since it makes µ̂ less biased and
robust against sampling distribution shifts. However, the variance of the Beta distribution should not be
impacted by w(s) since it would cause α and β to lose information on the number of times the neighbourhood
was sampled. A solution to this is to introduce some modifications to the computation of the parameters to
the conjugate prior. Let η(s) =

∑n
i=1 κ(s, si). Define

α(s) = η(s)∑n
i=1 κ(s, si)w(si)

n∑
i=1

κ(s, si)w(si)ri (7)

β(s) = η(s)∑n
i=1 κ(s, si)w(si)

n∑
i=1

κ(s, si)w(si)(1− ri) (8)

With this, we can sample the posterior µ̃(s) ∼ Beta(α(s), β(s)) from the resulting Beta distribution. The
mean simplifies to

E[µ̃(s)] = α(s)
α(s) + β(s) = µ̂(s) (9)
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Figure 2: An example of Thompson sampling exploration in continuous spaces: [left] embedding space con-
taining reference samples Dref (circles) and different arms (stars) for a given context c, and [right] constructed
Beta distribution with (IWKR) and without (NWKR) importance weights. The true µ of both arms for
that context is 0.6.

which is exactly IWKR. On the other hand, the information of the frequency the neighbourhood was sampled
is still preserved because it can be shown that the total count is still a function of n,

α(s) + β(s) =
n∑

i=1
κ(s, si) (10)

The left side of Figure 2 illustrates two arms a, a′ when jointly embedded with context c. The gray circles
refer to previously pulled arms at’s for different contexts ct’s. For a new query with context c, arm a (blue)
is embedded closer to more samples hence it has essentially been pulled more often for context c. Using
partial counts weighted by an RBF kernel, this manifests as a more peaked Beta distribution as shown on
the right side, resulting in less exploration compared to a′ (red).

The combination of IWKR and Thompson sampling gives rise to conditionally coupled contextual Thompson
sampling (C3). The term “conditionally" in C3 refers to the degree of coupling being conditional on the
context.

Figure 2 also shows the effectiveness of importance weights in a non-uniform sampling setting. The mean of
distributions formed with IWKR is closer to 0.6 compared to NWKR, i.e. without importance weights.

Approximate Bayesian Update Recall that IWKR is dependent on a reference dataset D. The sampling
of the posterior weighs every sample with the RBF kernel relative to some query point. This can be seen
as a type of conditioning on a local subspace. After an arm is pulled and the reward is observed, we should
have the triplet (cn+1, an+1, rn+1). Since the algorithm operates on S and requires the updated importance
weights, to conserve time and memory, we can directly store the triplet (ϕ(cn+1, an+1), rn+1, w

(n+1)
n+1 ) into D.

This is an approximate Bayesian update and is important for the online learning element.

Bayesian update typically assumes that every random variable in a sequence is identically distributed. The
information gathered is directly stored in the parameter space of some statistical distribution, which will be
updated using some closed-form algebraic expression. For C3, the information is stored in reference dataset
D embedded on S. This allows flexibility to both append and remove samples from D. In problems with
concept drift, the conditional reward distribution shifts as a function of time but a typical Bayesian update
does not effectively handle this since it might simply average the distributions across time.

To mitigate the issues presented by non-stationarity without frequent retraining, C3 allows the removal of
older samples while appending the latest samples. Time can be seen as a special case of context and since
µ is assumed to be Lipschitz continuous, samples nearer in the time dimension would be more relevant.
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Table 1: Comparison between algorithms where linear refers to both LinUCB, LinTS, and SquareCB while
neural refers to both NeuralUCB and NeuralTS. n refers to the number of samples seen.

Algorithm
Inference

time
Update

time
Non-linear

rewards
Non-stationary

tasks
Arm

features
C3 O(n) O(1) ✓ ✓ ✓

Linear O(1) O(1) ✗ ✗ partially
Neural O(1) O(n) ✓ ✗ ✗

The entire inference pipeline can be summarized in Algorithm 2. The update process does not include
any gradient updates, unlike many neural contextual bandit algorithms. The properties of C3 and other
contextual bandit algorithms are summarized in Table 1.

Algorithm 2 C3 inference process
1: Inputs: Reference dataset Dref = (K, rref, w), context c, set of valid arms {a1, ..., ak}, trained embedding

model ϕ
2: for each valid arm index i ∈ [k] do
3: Embed queries qi ← ϕ(c, ai)
4: Compute α(qi), β(qi) with respect to Dref
5: Sample r̂i ∼ Beta(α(qi), β(qi))
6: Play best arm j ← argmaxi∈[k] r̂i

7: Observe reward r
8: Append (qj , r) to Dref
9: Update w in Dref

Theorem 3. Let the embedding space of ϕ be S ⊂ [0, 1]d. Assume µ is L-Lipschitz. In a stationary bandit
scenario, C3 incurs an expected regret of

E[RT ] ∈ O
(

L
d

d+2 T
d+1
d+2 (log T )

1
d+2

)
Proof of Theorem 3 can be found in Appendix A.3.

5 Experiments

Section 5.1 is the only experiment using synthetic data to demonstrate the hypothesis between coupling and
embedding distance. Sections 5.2 and 5.3 use real world datasets.

5.1 Coupled Arms Simulation

The following simulated example demonstrates that ϕ can capture the notion of coupling. Recall coupled
arms generalize correlated arms by ensuring that correlation persists over time.

Suppose there is a set of arms {a0, a1, ..., a6}. We call a0 the anchor arm where the corresponding reward
distribution is Bernoulli(µ0). At time t, µ0 is randomly sampled from a Uniform(0, 1) distribution. Then,
the remaining µi for the rest of the arms are sampled such that they are either positively or negatively
correlated with µ0. The chosen degree of correlation is fixed for any time for all arms with respect to the
anchor arm. Arms can be sampled to obtain (ait, rit) pairs to learn µi until the end of the episode where
this entire process repeats for time t + 1.

Complete details of the generation of coupled arms are described in Supplementary Material A.4. The
chosen true correlations for arms a1, ..., a6 are -1.0, -0.6, -0.2, 0.2, 0.6, 1.0 respectively. For example, since a1
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Figure 3: Distance from the anchor arm embedding as a function of correlation ρ with 1.96 sigma error bars
over 10 random seeds.

is strongly negatively correlated to the anchor, if µ0 = 0.9 then it is very likely that µ1 ≈ 0.1. On the other
hand, µ5 would be in the vicinity of 0.9.

All µi’s are sampled 200 times where for each time, 100 reward samples are collected. These reward samples
are used to train ϕ using Algorithm 1 with T = 200 time intervals. A summary of arm embeddings is
visualized in Figure 3. It follows the expectation where the more correlated ai is to a0, the distance to a0
is lower, and vice versa. To view one example of the spatial positioning of the arm embeddings in a scatter
plot, see Supplementary Material A.6.

5.2 Contextual Bandit Experiments

This experiment demonstrates the efficacy of C3 on the problem described in Section 3.1. In the footsteps
of the work by Zhou et al. (2020), we evaluate using the same datasets from the OpenML repository by
Vanschoren et al. (2014), namely shuttle (King et al., 1995), MagicTelescope (Bock, 2007), covertype
(Blackard, 1998) and mnist (LeCun, 1998). For this set of experiments, the context space is the input space,
and A is the corresponding label space. The reward is one if the selected arm matches the ground truth
label, otherwise zero. Unlike Zhou et al. (2020), we do not standardize the inputs because we believe that
gives the models some hindsight information which goes against the philosophy of multi-armed bandits. Note
that this does not usually fit the typical setting of a bandit problem and C3 targets a more general problem.

C3 requires historical samples for ϕ to be trained, where historical samples are uncommon for bandit ex-
periments but incredibly common for industry use cases. To ensure a fair comparison, we ensure that other
baseline methods, such as LinUCB (Li et al., 2010), Thompson sampling for contextual bandits (LinTS)
(Agrawal & Goyal, 2013), SquareCB (Foster & Rakhlin, 2020), NeuralUCB (Zhou et al., 2020), and neural
Thompson sampling (NeuralTS) (Zhang et al., 2021), are given the same amount of information. All algo-
rithms are updated using a subset for training and evaluated on a different test subset. This is necessary to
avoid contamination when training ϕ. The test split contains 1000 unseen samples. Appendix A.9 contains
an ablation study of C3 with different RBF bandwidth values.

The results are shown in Figure 4. C3 outperforms most of the algorithms in most datasets. C3 outper-
forms the next best algorithm for each dataset by 5.7% lower cumulative regret on average. In shuttle,
MagicTelescope, and covertype, these problems are of lower dimensionality and more linearly separable
hence LinUCB and SquareCB (with a linear regression oracle) perform well. On the other hand, NeuralUCB
excels in the MNIST dataset since the multilayer perceptron works well with high-dimensional data.
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Figure 4: Cumulative regret of the test split of the four datasets with 1.96 sigma error bars over 10 random
seeds. Note that in MNIST, LinTS cannot be computed due to numerical issues from the high dimensionality.
In MagicTelescope, NeuralUCB and LinTS almost completely overlap because they both repeatedly exploit
the same action after the initial steps.

5.3 News Recommendation

C3 will be evaluated on news recommendation which is a realistic example for the problem described in
Section 3.3. This paper uses the Microsoft News Dataset (MIND) by Wu et al. (2020) for evaluation. The
context will be the frequency of a user’s historical visits by news category. The arm space is the set of valid
news articles to recommend. The reward is whether the user clicks the chosen news article. The objective of
an algorithm is to minimize the cumulative regret. For clarity in results, regret is measured relative to the
best performing algorithm where at time t, 0 is given to the best performing algorithm and the rest of the
algorithms are given their respective relative regret.

We form dense representations of news articles from their titles using the pooler output of a BERT model
(Devlin et al., 2019). We use principal component analysis to reduce the dimensions to 64 to be used as
arm embeddings. Whenever a user visits, there is a small collection of possible articles to recommend, up to
eight articles, but the valid arm set varies for each user.

In this set of experiments, C3 will be configured so that every 100 steps, it will randomly remove approx-
imately 20% of samples in Dref to account for the concept drift. The hypothesis is that because of the
Lipschitz assumption, more recent samples would be more relevant in estimating the mean rewards.

Due to the rigidity of assumptions of other bandit algorithms tailored for theoretical results, some baseline
algorithms in Section 5.2 could not effectively target all complexities of the problem for various reasons.
However, we add more specialized algorithms. We compare C3 with one of the most popular recent designs
for recommender systems: the two-tower neural network. Huang et al. (2020) uses a deep encoder for query
information and another deep encoder for item information then uses the cosine similarity between the two
embeddings. A Gaussian process with forgetting is also included Kaufmann et al. (2012), where the forgetting
is necessary since it could not handle the entire history and needs to account for the non-stationarity. A
similar baseline is by using a Bayesian linear regression model that takes a concatenated vector of user and
article features and returns the mean and standard deviation of estimated rewards, similar to the Gaussian
process. Linear and neural baselines from Section 5.2 are modified to handle the non-stationarity elements.
We also compare with the contextual restless bandit algorithm Chen & Hou (2024). Full experimental details
are found in Supplementary Material A.11.
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Figure 5: Cumulative regret of the MIND dataset with 1 sigma error bars over 10 random seeds. “small"
and “large" refers to the relative number of parameters in the two tower models.

The result can be seen in Figure 5. C3 demonstrates a click lift of 12.4% compared to the baselines. Initially,
C3 does not do as well as the two tower approaches (which are static). As the drift of click rate increases
in magnitude, C3 begins to adapt to the drift as it removes older samples in Dref while the other algorithms
incur regret at the same rate.

6 Discussions

Effective Data Utilization Unlike typical contextual bandit settings, C3 requires the use of historical
data to “warm-start" the algorithm. In reality, advertisement campaigns, pricing schemes, etc. will involve
some degree of human-designed policy at the initial stages which means there could be some data albeit
possibly sub-optimal. Sub-optimality is not an issue for the training of ϕ since the main objective of ϕ is to
learn reward distributions and coupling, not optimality. As a result, ϕ can effectively utilize samples from
prior campaigns or trials in an off-policy manner. Furthermore, ϕ can be resilient to concept drifts so data
from a different time period may still be utilized.

Generalization to Embedding Models This paper demonstrates that Thompson sampling acting on
an embedding space can offer a method of exploration. However, only a simple multi-layer perceptron is used
as an embedding model. There should be no restrictions on the model design or inputs as long as it is a cost-
sensitive regression model. A side effect of operating on an embedding model is the ability to visualize the
learned embedding space which can be useful for applications that require some transparency/explainability.

Limitations of C3 The transductive learning aspect and importance weight updates can result in high
numerical instability since it relies on many sum and division operations of floating points. This effectively
disallows quantization to be used. Also, as an algorithm that relies on a dataset for inference, it may not scale
to millions of points without some type of sampling if speed is crucial in the use case. The hyperparameter
tuning of ϕ can be slightly challenging because the RBF kernel used in IWKR can result in vanishing
gradients if points are too near or far from some query point, so the choice of bandwidth of the RBF kernel
is important.

7 Conclusion

The design of the C3 algorithm sets an applied perspective of using a contextual bandit algorithm on bandits
and recommendation problems. Contextual bandit algorithms have built-in exploration and online learning
components while recommender systems have deep encoders that scale well with high dimensional data.
By combining the best of worlds, we gain several advantages in practice such as the ability to handle non-
stationarity from concept drift, no retraining needed, and leveraging arm features.
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Broader Impact Statement

To be best of our knowledge, our work does not have direct negative impact as it outlines an algorithm
to dynamically learn patterns. External factors such as the data by others on the C3 algorithm, or the
application of the algorithm on a malicious task would be out of our control.
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A Appendix

A.1 Memoization of Importance Weight Computation

Theorem 1 Suppose a vector of importance weights w of n samples has been computed. The time complexity
of updating the importance weights, given a new sample, is O(n).

Proof. Suppose there are n samples in the embedding space {si ∈ S : i ∈ [n]}. Consider the kernel matrix
L ∈ Rn×n which holds all pairwise RBF kernel values between every sample. From Equation 4, we can
deduce that the sum of the ith row of matrix L will be w(si), and similarly for the sum of the ith column
since L is symmetric. The importance weight of the initial reference dataset Dref can be calculated this way
which takes on average O(n) per sample.

Suppose there is already the vector of importance weights for all samples in Dref denoted as w(n) =
[w(n)

1 · · ·w(n)
n ] ∈ [0, 1]n. We want to obtain an efficient update equation for w(n+1). Naively computing

L with a new sample will result in a O(n2) time update. To update efficiently, memoization would be useful
since w

(n)
i itself stores the reciprocal of a sum. During inference, the unweighted RBF similarity score will

need to be computed. This result can be stored, and is denoted as z(n+1) = [κ(sn+1, s1) · · ·κ(sn+1, sn)].
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There are two steps here: update the existing w
(n)
i for i ∈ [n] and append w

(n+1)
n+1 to the new vector. To

obtain w
(n+1)
i for i ∈ [n], the update equation can be expressed as a function of its previous value

w
(n+1)
i = 1∑n+1

j=1 κ(si, sj)

= 1
κ(si, sn+1) +

∑n
j=1 κ(si, sj)

= 1
z

(n+1)
i + 1

w
(n)
i

which is a constant time operation for each i ∈ [n] since all of the required values have already been computed.
To compute the new importance weight,

w
(n+1)
n+1 = 1∑n+1

j=1 κ(sn+1, sj)

= 1
κ(sn+1, sn+1) +

∑n
j=1 κ(sn+1, sj)

= 1
1 +

∑n
j=1 z

(n+1)
j

which is anO(n) time operation for the new sample. Therefore, the entire update equation for the importance
weight given a new sample is a linear time operation.

A.2 Proof of Importance Weighted Kernel Regression Approximation

Theorem 2 Suppose µ(s) is Lipschitz continuous on S. In the limit of the size of the reference dataset
Dref where points are sufficiently sampled from the neighbourhood of some query point s, the importance
weighted kernel regression with a radial basis function kernel is an approximate estimator of µ(s).

Proof. The importance weighted kernel regression estimator of µ with a RBF kernel is defined in Equation 5.
As the number of samples approach n→∞ over a space centered at s, the importance weight converges to
the inverse of the sampling distribution. The effective contribution of each neighbouring subspace becomes
approximately uniform and the estimate becomes

µ̂(s) =
∫

S κ(s, s′)R(s′) ds′∫
S κ(s, s′) ds′

=
∫

S

κ(s, s′)∫
S κ(s, s′′) ds′′ R(s′) ds′

Now, we focus on the fractional term and show that it is simply the density of a Gaussian distribution.

κ(s, s′)∫
S κ(s, s′′) ds′′ =

exp
(
−∥s−s′∥

2σ2

)
∫

S exp
(
−∥s−s′′∥

2σ2

)
ds′′

= exp
(
−∥s− s′∥

2σ2

)
·
(

(2π)− d
2 |σ|

)
= Pr(X = s′) where X ∼ N (s, σ2I)

15



Under review as submission to TMLR

Since we know that the conditional reward distribution is defined as R ∼ Bernoulli(µ(s)), for a sufficiently
small RBF kernel bandwidth σ, under the Lipschitz continuity assumption,

µ̂(s) =
∫

S

P (X = s′)R(s′) ds′

≈ E[R′|S = s]
= µ(s)

A.3 Proof of Regret Bound in Theorem 3

For a fixed embedding map ϕ(c, a) trained offline, S ⊂ [0, 1]d is the learned joint embedding space, and we
analyze directly on S. Assume that the true mean reward function µ : S → [0, 1] is Lipschitz. There exists
L > 0 such that for all s, s′ ∈ S,

|µ(s)− µ(s′)| ≤ L∥s− s′∥

Cumulative regret is formalized as follows. Let s∗
t = argmaxs∈SAt

µ(s) be an optimal action, where SA is
the set of embeddings of all valid arms at time t. The expected cumulative regret is

RT =
T∑

t=1
µ(s∗

t )− µ(st)

We standardize the notions. The RBF kernel κh(·, ·) has bandwidth h > 0. The reference dataset Dt−1 =
{(si, ri)}t−1

i=1 stores all embedding-reward tuples up to time t− 1. The values of the Beta parameters αt−1(s)
and βt−1(s) are obtained by comparing a query embedding s ∈ S to every embedding in the reference dataset,
and their sum is the kernel mass

ηt−1(s) =
t−1∑
i=1

κh(s, si)

The IWKR procedure samples from the constructed Beta distribution

Θt(s) ∼ Beta(αt−1(s), βt−1(s))

and plays st = argmaxs∈SAt
Θt(s).

For the analysis of C3, we use a truncated RBF kernel (compact support) for exact locality.

κh(s, s′) := exp
(
−∥s− s′∥2

2h2

)
1{∥s− s′∥ ≤ h}

Proof. Let S ⊆ [0, 1]d without loss of generality by rescaling if necessary. Partition [0, 1]d into axis-aligned
hypercubes (cells) of length h. Let G denote the set of all such cells intersecting S. The number of cells
satisfies

|G| ≤
⌈

1
h

⌉d

≤
(

2
h

)d

for h ≤ 1 (11)

For each cell g ∈ G, fix a representative point xg ∈ g ∩ S, i.e. any point in the intersection. Define the cell
index of any point s ∈ S as g(s) ∈ G, and the best cell representative g∗ as

g∗ = argmax
g∈G

µ(xg)
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Because s∗ ∈ S lies in some cell g(s∗), the cell representative xg(s∗) is at distance of at most the cell diameter

∥s∗ − xg(s∗)∥ ≤
√

dh

By the Lipschitz property,

µ(s∗)− µ(xg(s∗)) ≤ L
√

dh

Since g∗ maximizes µ(xg) over g, we have µ(xg∗) ≥ µ(xg(s∗)). Hence,

µ(s∗)− µ(xg∗) ≤ µ(s∗)− µ(xg(s∗)) ≤ L
√

dh

Decomposing regret gives

µ(s∗)− µ(st) = (µ(s∗)− µ(xg∗)) + (µ(xg∗)− µ(st))

≤ L
√

dh + (µ(xg∗)− µ(st)) (12)

Up to this point, we approximated the continuum optimum s∗ to the best cell representation at a regret
cost of O(Lh). The next step is to bound the second term, which is the regret relative to the best cell
representation. To do so, we exploit the locality of the truncated kernel.

For any query s, the kernel sums only involve past points si from the same cell g(s). Let the number of
times we have played in cell g up to time t− 1 be

Ng(t− 1) := |{i ≤ t− 1 : g(si) = g}|

The cell’s respective cumulative binary reward counts are

Sg(t− 1) :=
∑

i≤t−1:g(si)=g

ri Fg(t− 1) := Ng(t− 1)− Sg(t− 1)

Now, fix a query s ∈ g. The kernel mass is

ηt−1(s) =
t−1∑
i=1

κh(s, si) =
∑

i:g(si)=g

κh(s, si)

Moreover, within a cell g, any two points have distance at most
√

dh, hence for s, si ∈ g,

exp
(
−∥s− si∥2

2h2

)
≥ exp

(
−d

2

)

We call the right hand side cd ∈ (0, 1). Therefore,

cdNg(t− 1) ≤ ηt−1(s) ≤ Ng(t− 1) (13)

Lemma 1. Let X ∼ Beta(α, β) with α, β ≥ 1, and let p = α/(α + β). Then for any ε ∈ (0, 1− p),

Pr(X ≥ p + ε) ≤ exp(−2(α + β − 1)ε2)

Similarly, for any ε ∈ (0, p),

Pr(X ≤ p− ε) ≤ exp(−2(α + β − 1)ε2)
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Proof. Let X ∼ Beta(α, β) and Y ∼ Binomial(n, x) where n = α + β − 1. By writing the regularized
incomplete beta function representation of the Beta CDF and comparing it to the Binomial tail expression,
one can obtain

Pr(X ≥ x) = Pr(Y ≤ α− 1)

Take x = p + ε. Then E[Y ] = n(p + ε). Note that p ≤ 1, thus α− 1 ≤ np because

np = (α + β − 1) α

α + β

= α− α

α + β

= α− p

≥ α− 1

Therefore, the event Y ≤ α− 1 implies Y ≤ np

Pr(X ≥ p + ε) = Pr(Y ≤ α− 1) ≤ Pr(Y ≤ np)

Note that np = n(p + ε)− nε = E[Y ]− nε. Applying the Hoeffding/Chernoff lower-tail bound for Binomial
random variables gives

Pr(Y ≤ E[Y ]− nε) ≤ exp(−2nε2) = exp(−2(α + β − 1)ε2)

Connecting both gives

Pr(X ≥ p + ε) ≤ Pr(Y ≤ np) = Pr(Y ≤ E[Y ]− nε) ≤ exp(−2(α + β − 1)ε2)

Define the gap of a cell representative

∆g := µ(xg∗)− µ(xg) ≥ 0

Cells with ∆g = 0 are optimal within the grid. We want to show that each suboptimal cell g is selected only
O(log T/∆2

g) times in expectation. Fix a suboptimal cell g with ∆g > 0. Consider the event at time t that
IWKR selects a point in cell g. This can happen only if the Beta sample for cell g is unusually high or the
Beta sample for the best cell g∗ is unusually low.

Concretely, a good event refers to

Eg :=
{∣∣∣∣ Sg

Ng
− µ(xg)

∣∣∣∣ ≤ ∆g

4

}
and similarly

Eg∗ :=
{∣∣∣∣ Sg∗

Ng∗
− µ(xg∗)

∣∣∣∣ ≤ ∆g

4

}

By Hoeffding’s inequality for Bernoulli sums, conditional on Ng = n,

Pr(Ec
g|Ng = n) ≤ 2 exp

(
−2n

(
∆g

4

)2
)

= 2 exp
(
−

n∆2
g

8

)
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Let Θt,g be the cell-level random variable for the Beta sample corresponding to any query point in cell g at
time t. They are all functions of the same within-cell data, only differing in constants via kernel weights. Its
parameters satisfy α + β = η and with Equation 13, we have η ≥ cdNg.

On event Eg, the empirical mean is close to µ(xg) and because the posterior mean is equal to the IWKR
mean, which (within a cell) is a weighted average of the ri’s, we can bound the posterior mean deviation by
the same scale (absorbing kernel-weight constants into a dimension constant). Denoting Ft−1 as the history
up to t− 1,

|E[Θt,g|Ft−1]− µ(xg)| ≤ ∆g

2

implies

Pr
(

Θt,g ≥ µ(xg) + ∆g

2 | Ft−1

)
≤ exp

(
−2(η − 1)

(
∆g

2

)2
)

≤ exp
(
−

cdn∆2
g

2

)

when using Lemma 1 with ε = ∆g/2 and η ≥ cdn. Similarly, for the optimal cell g∗, on event Eg∗ with
Ng∗ = m,

Pr
(

Θt,g∗ ≤ µ(xg∗)− ∆g

2 | Ft−1

)
≤ exp

(
−

cdm∆2
g

2

)

Now, define the “bad event” that could cause selecting g

Bt(g) := {Θt,g ≥ Θt,g∗}

If g’s sample is below µ(xg) + ∆g/2 and g∗’s sample is above µ(xg∗) − ∆g/2, event Bt(g) cannot occur
because

Θt,g < µ(xg) + ∆g

2

= µ(xg∗)− ∆g

2 (∆g = µ(xg∗)− µ(xg))

< Θt,g∗

Therefore,

Bt(g) ⊆
{

Θt,g ≥ µ(xg) + ∆g

2

}
∪
{

Θt,g∗ ≤ µ(xg∗)− ∆g

2

}

Applying the union bound on Bt(g) gives

Pr(Bt(g)|Ng = n, Ng∗ = m) ≤ Pr(Ec
g|Ng = n) + Pr(Ec

g∗ |Ng∗ = m) + Pr
(

Θt,g ≥ µ(xg) + ∆g

2 | Ft−1

)
+ Pr

(
Θt,g∗ ≤ µ(xg∗)− ∆g

2 | Ft−1

)
≤ 2 exp

(
−

n∆2
g

8

)
+ 2 exp

(
−

m∆2
g

8

)
+ exp

(
−

cdn∆2
g

2

)
+ exp

(
−

cdm∆2
g

2

)
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Since m ≥ 0, the terms involving m only help. To upper bound, we drop them and keep only the n-dependent
decay

Pr(Bt(g)|Ng = n, Ng∗ = m) ≤ 2 exp
(
−

n∆2
g

8

)
+ exp

(
−

cdn∆2
g

2

)
+ 3

For it to be a useful bound, we want to set a rule where once n exceeds a logarithmic threshold, the probability
of selecting g becomes at most 1/T 2. Let

ng :=
⌈

16
cd∆2

g

log T

⌉

Then for all n ≥ ng,

exp
(
−

cdn∆2
g

2

)
≤ exp

(
−

cdng∆2
g

2

)
≤ exp(−8 log T )
= T −8

and similarly exp(−n∆2
g/8) ≤ T −2 for a suitable constant. Hence, for n ≥ ng,

Pr(Bt(g) | Ng = n) ≤ C1T −2 (14)

for some constant C1 depending only on d.

To bound the expected number of times cell g is selected, we split the sum according to whether Ng(t−1) < ng

or Ng(t− 1) ≥ ng

E[Ng(T )] =
T∑

t=1
Pr(g(st) = g)

≤ ng +
T∑

t=1
Pr(g(st) = g, Ng(t− 1) ≥ ng)

On {Ng(t− 1) ≥ ng}, selecting g implies Bt(g). So,

Pr(g(st) = g, Ng(t− 1) ≥ ng) ≤ Pr(Bt(g), Ng(t− 1) ≥ ng) ({g(st) = g} ⊆ Bt(g))
= E[Pr(Bt(g)|Ft−1)1{Ng(t− 1) ≥ ng}] (Ft−1 measurable/non-measurable split)
≤ E[C1T −2 · 1{Ng(t− 1) ≥ ng}] (result from Equation 14)
≤ C1T −2

Therefore, with C1/T ≤ 1 for T ≥ 3,

E[Ng(T )] ≤ ng + TC1T −2 = ng + C1T −1 ≤ 2ng

and finally substituting the value of ng gives

E[Ng(T )] ≤ C2
log T

∆2
g

for each suboptimal cell g where C2 only depends on d.
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To summarize, the cumulative regret relative to the best cell is

E

[
T∑

i=1
µ(xg∗)− µ(st)

]
=
∑
g∈G

∆gE[Ng(T )]

≤
∑

g:∆g>0

∆g · C2
log T

∆2
g

= C2 log T
∑

g:∆g>0

1
∆g

(15)

Next, we bound the worst case control of the gap-dependent term via an ε-split. For any threshold ε > 0,
split cell into: near optimal G≤ε = {g : ∆g ≤ ε}, and clearly suboptimal G>ε = {g : ∆g > ε}. Trivially,
regret from near-optimal cells is at most Tε because each play can be upper bounded by ε regret.∑

g:∆g≤ε

∆gE[Ng(T )] ≤ ε
∑

g

E[Ng(T )] = εT

For clearly suboptimal cells, using Equation 15,∑
g:∆g>ε

∆gE[Ng(T )] ≤ C2 log T
∑

g:∆g>ε

1
∆g

≤ C2 log T
∑

g:∆g>ε

1
ε

≤ C2 log T
|G|
ε

≤ C3 log T
h−d

ε
using Equation 11

for some constant C3.

Combining results from the ε splits,

E

[
T∑

t=1
µ(xg∗)− µ(st)

]
≤ εT + C3 log T

h−d

ε

Since within one cell, the Lipschitz variation is O(Lh), the grid optimum µ(xg∗) is only meaningful up to
Lh, so we set ε = Lh. Upon substitution, the cumulative regret relative to the best cell is

E

[
T∑

t=1
µ(xg∗)− µ(st)

]
≤ LhT + C3 log T

h−(d+1)

L
(16)

Continuing from Equation 12, we can begin to form the overall cumulative regret bound.

E[RT ] =
T∑

t=1
µ(s∗)− µ(xg∗) +

T∑
t=1

µ(xg∗)− µ(st)

≤ TL
√

dh +
T∑

t=1
µ(xg∗)− µ(st) from Equation 12

≤ C4LhT + C3 log T
h−(d+1)

L
from Equation 16 and C4 := 1 +

√
d
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What remains is to optimize the bandwidth with a schedule so as to obtain a useful regret bound. By finding
the stationary point,

f(h) := C4LhT + C3 log T
h−(d+1)

L

f ′(h) = C4LT − C3
log T

L
(d + 1)h−(d+2) = 0

we obtain the optimal value of h

h =
(

log T

L2T

) 1
d+2

Plugging h into the regret bound gives

E[RT ] ≤ CL
d

d+2 T
d+1
d+2 (log T )

1
d+2

This is a standard nonparametric Lipschitz-type rate T
d+1
d+2 with a mild (log T )

1
d+2 factor.

A.4 Generation of Correlated Arms

Figure 6: Visualization of impacts of various correlation ρ and c parameters on the µ of non-anchor arms.
Each subplot contains 500 random samples.

Suppose µ0 has been sampled from the Uniform(0, 1) distribution. Now, suppose we want to generate the
reward distribution for arm i with a correlation ρi with µ0. The mean parameter for arm i is generated as
follows:

µi
sample∼ Beta(2c(ρi(µ0 − 0.5) + 0.5), 2c(ρi(0.5− µ0) + 0.5)) (17)

where c ≥ 1 is a hyperparameter that controls the variance of the reward distribution of the correlated arm;
the higher c is, the lower the variance. In our experiments, the value of c is chosen to be 50. Examples of
sampled correlated µi’s can be found in Figure 6.
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A.5 Correlation Experiment Details

The training dataset consists of 200 random but correlated values of µi’s, and 100 samples of arm-reward
pairs with arms being uniformly sampled. ϕ is a multilayer perceptron with that takes a 7-dimensional
vector (one-hot encoded for each arm including the anchor arm), has a single hidden layer of size 256 then
an output dimension of 2. Each set of weights is interleaved with a Softplus activation layer. The bandwidth
parameter of the RBF kernel is chosen to be σ = 1.

The loss function for ϕ is chosen to be L(µ̂, r) = LBCE(µ̂, r) + 5LECE(µ̂, r), where the ECE loss uses 5 bins.
For each of the 4 training epochs, 50% of the entire training dataset is sampled to be used for training, of
which 20% will be used as the reference dataset and the remaining 80% contains the queries. The learning
rate is 10−3 (Adam optimizer with default configurations) with an exponential decay rate of 0.99 per epoch.
Since no validation dataset is used, the resultant model of the final epoch will be used.

A.6 Scatter plot of Correlated Arm Embeddings

Figure 7: The left figure shows the arm embeddings prior to any fitting while the right figure shows the arm
embeddings after training using Algorithm 1. The blue point is the anchor point and the green points are
positively correlated to the µ of the blue point while the red points are negatively correlated.

A.7 Contextual Bandit Experiment Details

The four datasets were obtained using scikit-learn’s API by Buitinck et al. (2013). There is minimal data
preprocessing done in this set of experiments: converting the labels to one-hot representations and converting
MNIST’s pixel values from 8-bit unsigned integers to floating points between 0 and 1.

Only 50% of all datasets were used because of two reasons: (1) using all takes a long time to evaluate
especially for NeuralUCB and NeuralTS, (2) the additional 50% during evaluation would only show a longer
“linear" portion in the cumulative regret curve since contextual bandit algorithm tend to be unable to
practically avoid any mistakes.

All algorithms are given 4 samples to update, followed by 1 evaluation sample (which is also used to update
the algorithm). This repeats until 1000 evaluation samples are provided. The datasets are shuffled at the
beginning of each of the 10 experiments, so a different 4000 training samples and 1000 evaluation samples
are used each time. For the offline training of ϕ, the training split was used to optimize for ϕ. This explains
why there must be training and evaluation split in this set of experiments.

Let dc be the dimension of the context vector and da be the dimension of the arm vectors. Due to the varying
complexities of each dataset, we have to vary the number of layers. Each set of weights is interleaved with
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a Softplus activation layer. Consider the layers [ℓ1, ..., ℓm] where ℓi indicates the size of each layer, and the
leftmost and rightmost elements in the array represents the input and output dimensions respectively.

1. shuttle: [dc + da, 32, 4]

2. MagicTelescope: [dc + da, 64, 8]

3. covertype: [dc + da, 64, 8]

4. mnist: [dc + da, 64, 8]

The following hyperparameters are the same for all C3 experiments of every dataset. The RBF bandwidth is
σ = 1 and the loss functions LBCE(µ̂, r) + 2LECE(µ̂, r) where the ECE loss uses 5 bins. The learning rate is
set to 10−3 (Adam optimizer with default configurations) with an exponential decay rate of 0.99 per epoch.
The batch size is 16. During each epoch, 10% of the entire training split is sampled to be used for training,
of which 20% will be used as the reference dataset and the remaining 80% contains the queries. There is no
partitioning of the reference dataset since this is a stationary problem.

The implementation of LinUCB and LinTS were obtained from a package called striatum, while the imple-
mentation of NeuralUCB and NeuralTS were obtained directly from the GitHub repository of the authors.
SquareCB was obtained from Coba, which using a linear model as a regression oracle. In LinUCB, we se-
lected α to be 1.96 which controls the exploration factor. In LinTS, we select the default configurations with
δ = 0.5 and R = 0.01 which are the parameters used in the theoretical regret analysis. For epsilon, it was set
to the reciprocal of the number of steps which is the recommended value. For NeuralUCB, we followed the
exact hyperparameters that were used in their paper which is ν = 10−5 and λ = 10−5 (Zhou et al., 2020).
For NeuralTS, we set ν = 10−5 and λ = 10−5 which is obtained from Zhang et al. (2021)’s repository. The
update schedule for NeuralUCB and NeuralTS is as follows: for the first 2000 steps, the gradient descent
optimization is performed for every step. Afterwards, it is performed only once every 200 steps.

A.8 Scatterplot of MNIST Context-Arm Embeddings

Figure 8: Embedding space of MNIST digits with correct arms chosen where the left shows the embedding
vectors of ϕ with an output dimension of 2, and the right shows the embedding vectors of another ϕ with
an output dimension of 8 but uses t-SNE (Van der Maaten & Hinton, 2008) for visualization.
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A.9 Ablation on RBF Bandwidth in C3

Figure 9: Cumulative regret of C3 with varying σ parameter (for the RBF kernel) on the Cover dataset with
1.96 sigma error bars over 10 random seeds.

To demonstrate the effects of varying the RBF kernel, we conduct an ablation to study to identify: (1)
possible failure cases, and (2) potential robustness across parameters. In experiments in the main paper,
the RBF bandwidth σ was set to σ = 1. We vary σ by 2 and 3 times larger and smaller, leading to 4 new
combinations: 0.33, 0.5, 2, 3. There are two groups of results in Figure 9. The obvious outlier is σ = 0.33
which essentially could not learn – a failure case. We postulate this is because the effective “search" radius is
too small and did not leverage (or condition on) neighbouring points to make an estimate. The other group,
the rest of the σ’s, showed invariance to the choice of σ as they are statistically identical in performance.
This is an advantage as this simplifies the hyperparameter tuning process as long as σ is not too small.

A.10 Hardware Usage for Experiments

C3, NeuralUCB and NeuralTS use GPU-acceleration since they have many parameters that need to be
optimized. LinUCB, LinTS and SquareCB use CPU only. The GPU used for all experiments in this paper
was NVIDIA T4V2 with 16 GB of VRAM. 12 CPU cores with 48 GB of RAM were used for all experiments.

A.11 MIND Experiment Details

Prior to the experiments, the titles of all news articles are converted to BERT embeddings. The specific
pretrained model for BERT from Huggingface (Wolf et al., 2019) is bert-base-uncased. The resultant
vectors that summarize the entire news article are of size 768 so we used PCA to downsample to 64 dimensions
and saved the embedding vectors as a file.

The test dataset provided by MIND does not include labels (Wu et al., 2020) so we could not use that
split. Instead, we combine the training and validation datasets that span 7 days. These datasets contain
information on article impressions and clicks, i.e. what the users see and which ones do they interact with.
Since there are many of them, we decided to be selective and remove instances with nine or more articles
shown and sample 20% of the entire dataset. This limits the initial amount of information given to the
models and forces the evaluation to be based on incremental learning and exploration strategies.

The first three days were selected to be used as training and validation dataset – 80% training and 20%
validation. This implies that reference datasets during the training of ϕ will be partitioned into T = 3
partitions. The remaining four days will be used as a pool of test data. Given computational constraints,
especially over 10 random seeds, we pick only 500 points to be tested. However, the chosen 500 points are
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Table 2: Augmenting and diminishing probability schedules by day

Day Probability
9 0.00
10 0.00
11 0.10
12 0.15
13 0.20
14 0.25
15 0.30

selected in a way that takes into account the date. Specifically, every jth (fixed) entry is selected as test
points such that the first and last points are close to the start of the fourth day and end of the seventh day
respectively.

To demonstrate stronger concept drift so that its effect can be seen in fewer test samples, we gradually modify
the click rate so that the sports category will have a higher click rate over time and all other categories will
have a lower click rate in the same time span. An optimal agent should recognize this change and adapt to
it.

We augment the click rates of the sports category and diminish the click rate of every other category. For
augmenting, for any sports instance which is not a click, we sample a Bernoulli random variable (1 means
click, 0 means no click) with probability Pr(X = 1) = pi and assign that value to be click value. Similarly,
for diminishing, for any non-sports instance which is a click, we sample a Bernoulli random variable with
probability Pr(X = 0) = pi and assign that value to be the click value. The probabilities by day are shown
in Table 2.

ϕ was trained with the loss function L(µ̂, r) = LBCE(µ̂, r) + 0.01LECE(µ̂, r), where the ECE loss uses 5 bins.
ϕ is initialized to be a multilayer perceptron with input dimension of 82 (18 news categories for context and
64 dimensional arm features), a single hidden layer of dimension 512 and an output dimension of 128. The
bandwidth for the RBF kernel is chosen to be 0.6. ϕ is trained for 20 epochs with a batch size of 32. The
learning rate is set to 10−3 (Adam optimizer with default configurations) with an exponential decay rate
of 0.9. At each epoch, only 10% of the training data is used for training, where 1% of them are used as
reference samples while the rest are used as query points. The ϕ chosen for testing is the one that attains
the lowest validation loss.

For the Bayesian linear regression model, the α parameter, which controls the degree of exploration through
the coefficient of the standard deviation of reward, is set to 1.96. λ, the parameter for numerical stability
and regularization, and σ, standard deviation of the residuals, are set to 1.

Two towers refer to the context encoder and arm encoder, which are both mappings to the same embedding
space. The dot product between the context vector and arm vector represents the logits which are then
passed to a softmax layer. The two towers implementation has two variants: small and large. For the small
variant, the context encoder layers are [18, 64, 32] and the arm encoder layers are [64, 128, 32]. For the large
variant, the context encoder layers are [18, 64, 64] and the arm encoder layers are [64, 256, 64]. The linear
layers of both variants are interleaved with a ReLU activation layer. The small variant was trained for 5
epochs while the large variant was trained for 40 epochs. The learning rates are 8× 10−3 (Adam optimizer
with default β1, β2) and the batch sizes are 32. For each variant, the model chosen for testing is the one that
attains the lowest validation loss.

The modification to the linear baseline algorithms are sliding window (SW) and discounting (D). Sliding
window means that they are refitted with the most recent subset (50000 samples), while discounting uses
a weighted linear regression Russac et al. (2019) with a γ of 0.95. For the neural baselines, the online
modification is changing the buffer into a sliding window (2000 sample). Note that the neural models are
initially trained with the entire training size, as the sliding window buffer is only used during test time.
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The Gaussian process, due to its cubic time complexity with respect to the number of samples, is restricted
to a subsampling of 0.05. The forgetting element works by replacing the oldest sample with the newly seen
sample, keeping the buffer the same size. The contextual restless bandit (CRB) requires heavy modification.
Since the arms vary with almost no repeating arms, the state space is incredibly sparse and a transition
dynamic that is unknown with minimal samples. Our problem does not have a complex budget constraint
so the linear programming component is ignored.

A.12 MIND Time Plot

Figure 10: Time taken in seconds against timesteps for each algorithm.

Figure 10 shows a measure of time efficiency for each algorithm. The plot for some algorithms do not start
at zero as they require some amount of warmup. The most prominent is the two tower approaches as they
are relatively large models. The stepwise pattern in C3 is attributed to unoptimized approach of dropping
samples in its buffer. As mentioned in Section 5.3, 20% of its samples are dropped every 100 steps. This
implementation could be improved in future works.
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