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Abstract

We propose a hybrid controllable image generation method to synthesize anatomically
meaningful 3D+t labeled Cardiac Magnetic Resonance (CMR) images. Our hybrid method
takes the mechanistic 4D eXtended CArdiac Torso (XCAT) heart model as the anatom-
ical ground truth and synthesizes CMR images via a data-driven Generative Adversar-
ial Network (GAN). We employ the state-of-the-art SPatially Adaptive De-normalization
(SPADE) technique for conditional image synthesis to preserve the semantic spatial infor-
mation of ground truth anatomy. Using the parameterized motion model of the XCAT
heart, we generate labels for 25 time frames of the heart for one cardiac cycle at 18 lo-
cations for the short axis view. Subsequently, realistic images are generated from these
labels, with modality-specific features that are learned from real CMR image data. We
demonstrate that style transfer from another cardiac image can be accomplished by using
a style encoder network. Due to the flexibility of XCAT in creating new heart models,
this approach can result in a realistic virtual population to address different challenges
the medical image analysis research community is facing such as expensive data collection.
Our proposed method has a great potential to synthesize 4D controllable CMR images with
annotations and adaptable styles to be used in various supervised multi-site, multi-vendor
applications in medical image analysis.

Keywords: 4D semantic image synthesis, cardiac magnetic resonance imaging, XCAT
phantom, generative adversarial network, SPADE GAN

1. Introduction

Medical image synthesis and simulation have considerably transformed the way we
develop, optimize, assess and validate new image analysis and reconstruction algorithms.
They address several issues the medical research community is facing such as lack of proper,
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annotated data, clinical privacy and sharing policy, and inefficient data acquisition costs.
(Frangi et al., 2018) highlights the synergistic commonality, shared challenges, advantages
and disadvantages of both (hypothesis-driven) physics-based simulation and phenomeno-
logical (data-driven) image synthesis for the medical imaging community. We can perform
fully controllable experiments on the computer by mechanistic simulations grounded on
implementing principles of physics-based medical imaging algorithms and benefiting from
defined computerized anatomical and physiological human body models. Without doubt,
an accurate in-silico human anatomy plays a crucial role in this approach. The well-known
four-dimensional (4D) eXtended CArdiac Torso (XCAT) (Segars et al., 2010) computerized
whole body models are arguably one of the most comprehensive digital models covering a
vast series of phantoms of varying ages from newborn to adult, each comprising parame-
terised models for cardiac and respiratory motion (Segars et al., 2013).

More recently, by increasing the availability of big data combined with both computa-
tional powers and artificial intelligence breakthroughs, phenomenological data-driven syn-
thetic methods for generating data have grown exponentially. Significant improvements
in Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have addressed the
challenge of synthesizing images with realistic and coherent spatial and non-spatial proper-
ties (Donahue and Simonyan, 2019; Park et al., 2019). However, the applications of synthetic
images are still limited, because the synthetic data (sampled from learned distributions) are
often limited by the number and quality of existing datasets. Limited anatomically mean-
ingful annotated images makes it difficult to generate high dimensional data reflecting both
motion and volumetric changes.

In this paper, we propose a hybrid approach to bridge the gap between simulated and
real datasets by mapping the real image appearance to mechanistic controllable anatomical
ground truth via a data-driven generative model. We synthesize 3D+t controlled Cardiac
Magnetic Resonance (CMR) images using XCAT heart model. The accurate underlying
anatomical model (what we call true ground truth) is preserved while modality-specific
texture and style are transferred from real images. This approach makes it possible to
transfer the information from any domain i.e., image modality or vendor to its correspond-
ing anatomical model and create realistic labeled sets to be used in various supervised
applications. To the best of our knowledge, this is the first time to synthesize 4D semanti-
cally and anatomically meaningful images with controllable ground truths, which is of great
importance to tackle the issue of limited labeled data for developing deep learning methods
serving the medical image community.

2. Related Work

Data-driven image synthesis by GANs has had significant improvements in computer
vision lately. In conditional image synthesis approaches some certain input data is used
as the input of the generator to provide more semantic information for the image genera-
tion (Huang et al., 2018; Lee et al., 2019; Wang et al., 2018; Park et al., 2019). However,
one of the challenges is that the semantic information and spatial relations of different
classes might get removed in the stacks of convolution, normalization and non-linearity lay-
ers. The state-of-the-art conditional GAN by (Park et al., 2019) deploys the segmentation
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masks in novel SPatially-Adaptive (DE)normalization layers (SPADE) which despite other
normalization techniques, prevents the loss of semantic information.

Recent image synthesis approaches in the medical imaging community mainly focus on
the idea of disentangling the spatial anatomical information (often called as content) from
the non-spatial modality-specific features (called as style). For instance, the works by (Chen
et al., 2019; Ma et al., 2019) proposed to mix the contents of a known domain (with available
segmentation masks) with the styles learned from a new domain. These new labeled syn-
thetic images can help in adapting the segmentation networks to the new domain. The style
is either learned by a style encoder in a Variational Auto-Encoders (VAE) (Kingma and
Welling, 2013) setup or is manipulated via normalization layers affecting the statistics of the
high-level image representations (Gatys et al., 2016). Other recent works such as (Chart-
sias et al., 2018, 2019) proposed to factorize images into spatial anatomical and non-spatial
modality representations by latent space factorization relying on the cycle-consistency prin-
ciple. The anatomical factor is then used in a segmentation task. All these methods rely
on existing labeled sets which are both limited and not controllable. Recently, (Joyce and
Kozerke, 2019) proposed to use unlabeled images by learning an anatomical model in a
factorized representation learning setting. Even though the segmentation masks are not
needed anymore, but still their learned multi-tissue anatomical model is not physiologically
accurate and does not match actual organs.

Physics-based image simulation can produce controllable images by combining the
modality-specific principle of image formation with a rich anatomical model. The image
contrast is governed by known equations and can be altered by changing a set of parameters.
These parameters are known as sequence parameters specific to imaging modality protocol
that in combination with tissue-specific properties can generate image contrast. In this
branch of methods, (Tobon-Gomez et al., 2011) and (Wissmann et al., 2014) investigate
two types of approaches based on XCAT phantom to simulate cardiac MR images. The
image contrast for the first one is calculated using a numerical Bloch solver (Kwan et al.,
1999) and the latter one benefits from analytical solution for Bloch equations available for
cardiac cine sequence protocol. Despite having lots of flexibility and control over the image
generation process, simulated images are still far from desired realism in terms of global
image appearance, tissue texture, image artifact, and surrounding organs. Furthermore,
in order to create a visually familiar image appearance, large scale optimization sequence-
specific and tissue-specific parameters are required. These limitations have hindered the
progress of using simulated cardiac images for medical imaging applications.

Taking advantage of the biophysical motion model of the heart, the second branch of
the simulation method generates more realistic images by warping already existing real
images. This model-based image simulation highly depends on matching the time series of
cardiac data to an electromechanical heart model (Prakosa et al., 2012). This method relies
on registration in which a real cardiac image is first segmented, and then deformed and
warped according to the used motion model to generate a set of transformed time series
of images. Differences in the motion estimated from real images and the simulated motion
of the heart during warping procedure can produce registration errors. Although much of
the problems are solved in the new pipeline introduced by (Duchateau et al., 2017), this
warping approach is bounded by the used images and could not generate new appearances
with variable contrast, surroundings and texture.
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The main contribution of this paper lies in efficiently combining the controllable
physics-driven XCAT anatomical model (Segars et al., 2010) with data-driven SPADE-GAN
model (Park et al., 2019) in order to synthesize realistic-looking cardiac MR images. These
images do not require expert annotation since the labels derived from the XCAT model serve
as the ground truth segmentation map for the generated images. The spatial information
provided by XCAT model are anatomically and physiologically plausible which enables the
resulting images to be useful for the purpose of data augmentation. The ability to control
both anatomical representation and style in cardiac image synthesis is considered as one of
the main advantage of our proposed technique compared to previous techniques.

3. Methodology

An overview of our method is shown in Figure 11. Our conditional image synthesis network
is trained on real image data with their corresponding segmentation labels. We make use
of the SPADE technique to preserve the anatomical content of the labels during image
generation. At the inference time, we swap the used segmentation labels with our voxelized
labels which are derived from the XCAT surface-based heart model. We use the flexibility
of the XCAT motion model to make a set of 3D+t labels of the heart including only the
classes provided by the real data. These new controlled labels are then used to synthesize
new images. The details of conditional image synthesis network, image data for training
and controllable 4D heart labels for inference are explained in the following.

Conditional image synthesis in this work is based on the method proposed by (Park
et al., 2019), which we call SPADE GAN. The architecture of the generator consists of a
series of the residual blocks with SPADE normalization, followed by nearest neighbor up-
sampling layers. During the normalization step, the layer activations are initially normalized
to zero mean and unit standard deviation in a channel-wise manner and then modulated
with a learned scale and bias, which depend on the input segmentation mask and vary with
respect to the location. The learned modulation parameters encode enough information
about the label layout and are used in different resolutions across the generator. Therefore,
they avoid the wash out of semantic information which often happens with other normaliza-
tion layers such as instance normalization (IN). We also used the combination of an image
encoder and the generator, and replaced the input noise with the encoded latent vector to
form a VAE setup. We altered the architecture of the encoder compared to (Park et al.,
2019) by removing the IN layers. The encoder with IN is in charge of capturing only the
global appearance of its input image, but by removing IN we allow the spatial information
to be transferred as well. Then the generator’s task is to combine the encoded (global and
local) style and the content coming from the semantic segmentation mask to synthesize an
image. This setup is useful in controlling the style of synthetic images and the reconstruc-
tion of the surrounding organs of the heart. The architecture of the discriminator, the losses
and training settings are kept unchanged.

The real dataset used for training the network is the Automated Cardiac Diagnosis
Challenge (ACDC) dataset (Bernard et al., 2018). This dataset consists of Cine MR images
of 100 patients. The spatial resolution goes from 1.37 to 1.68 mm2/pixel and images
cover the cardiac cycle completely or partially. In total, there are 100 end-systolic and

1. An animated version of our methodology is available here: https://bit.ly/2Ggr61j
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Figure 1: An overview of our method. In training (blue blocks), we use the ACDC images
with their corresponding segmentation masks as inputs of the SPADE GAN. At
inference (red blocks), we substitute the ACDC labels with our 4D voxelized
XCAT labels created from the XCAT heart surface model to synthesize new
images (4D synthetic XCAT). The rendered version for the XCAT heart surface
model is shown for five time frames. The 4D voxelized XCAT labels cover heart
from apex through mid to base location for one cardiac cycle. The same labels
are used as the ground truth for the new synthetic images (4D labeled synthetic
XCAT).

100 end-diastolic phase instances, with an average of 9 slices. The segmentation masks
for left ventricle (LV) blood pool, LV myocardium, and right ventricle (RV) blood pool are
available. We pre-process the data by subsampling them to 1.3×1.3 mm in-plane resolution
(fixed inter-slice resolution) and take a central crop of the images with 128×128 pixels. All
the intensity values are scaled between -1 and 1. The SPADE GAN is trained on the entire
2D set of image-mask pairs of this dataset for 100 iterations, using Adam optimizer with
learning rate if 0.0002, batch size of 32 on 2 NVIDIA TITAN Xp GPUs. We use the VAE
setting with larger images (256 × 256) for a better demonstration.

Controllable 4D heart model is the key element of our method. We employ the
3D+t NURBS-based surfaces of the XCAT heart model which is anatomically based on
4D cardiac-gated multislice CT data and its motion model is parameterized by tagged
MRI data. To create an accurate 4D voxelized heart model, the XCAT program offers
various parameters to control morphological (heart shape) and physiological (heart motion)
features of the heart. These parameters include heart scaling factors in 3D; the length
of the beating heart cycle; left ventricle volume at end-diastole, end-systole, and three
intermediate phases; cardiac cycle timing which is the duration between different phases.
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Figure 2: The synthetic ACDC slices from apex to base location for one subject of the
ACDC dataset at the end-diastolic phase. The rows from top to bottom show
the input label maps, the synthetic and real images respectively.

We keep the geometrical scaling of the XCAT heart unchanged, set the length of beating
heart cycle to 1 sec (60 heartbeats/min) and output 25 time frames along one heart cycle.
Voxelization of surfaces can be done at any desired resolution. We create 1 mm isotropic
in-plane resolution for 18 slices perpendicular to the long axis of the heart to form the short
axis view of the heart which shows the cross-section of the left and right ventricles.

Our main contribution comes at the inference time. We use our 4D voxelized XCAT
labels (sets of 2D slices at different locations and times) as the inputs of the generator and
synthesize their corresponding realistic images. The synthetic slices reflect the accurate
anatomical model with modality-specific texture and style. These new images together
with the true ground truth create a new 4D synthetic XCAT dataset, which can be used in
various applications. Results are presented and discussed in the next sections.

4. Results

First, we show the synthetic images when using the labels of the ACDC dataset as inputs of
SPADE GAN. Figure 2 shows different synthetic slices (from apex to base) for one subject of
the ACDC dataset in the end-diastolic phase. Similar results for the end-systolic phase are
depicted in A, Figure 5. As seen in these figures, the synthetic images are coherent between
slices even though the training is done on 2D slices. Moreover, the three classes of interest
in the heart have been reconstructed reasonably well. There are some differences between
the background tissues in real and synthetic images. This is because all different tissues in
that region are mapped into one class in the label map (background shown by black in the
label map). Thus the SPADE GAN is not able to preserve their spatial information.

The main results, which are the synthetic images corresponding to the XCAT labels are
shown in Figure 3. For visualization purposes, we fix the location and vary the time frame.
The results for 12 time frames from end-diastolic to end-systolic phase (from left to right)
are shown at the base location of the short axis view of the heart. Due to limited space,
similar results for other time frames and locations are shown in A, Figure 6 and Figure 7.
Additionally, a 4D visualization of our results is available here: https://bit.ly/2REVAzB.
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Figure 3: 4D synthetic images on XCAT labels for 12 time frames from end-diastolic to end-
systolic phase (left to right) are shown at the base location of the short axis view
of the heart. The rows represent the input label maps and their corresponding
synthetic images.

As seen in these figures, for a fixed location, the classes of interest are generated according
to the input label map, while the background is consistent and coherent.

In another experiment, we test our modified VAE setup on the 4D voxelized XCAT labels
to show the capability of the method in generating synthetic images in which the global and
local styles are matched to images from an unseen dataset. Some sample results are shown
in Figure 4. The input images of the encoder (representing the style) are depicted in the
first column. Two different synthetic images for each style are shown in the second and third
columns, and the label maps (the inputs of the SPADE layers) are shown on the top left
corner of the resulting synthetic images. In these images the local and global appearance
of the style images are transferred to the synthetic images, while keeping the classes of
interest intact. This VAE setup provides an additional control on our image generation.
The generator is capable of creating realistic heart models, while the encoder transfers the
information related to the other surrounding organs. For the sake of comparison, using
the same combination of style and label maps, the resulting synthetic images when the IN
layers are kept in the style encoder are also shown in the fourth and fifth columns. In these
cases, only the global style is transferred and the control on the surrounding regions of the
heart is very limited.

5. Discussion and Conclusion

In this paper, we have proposed a hybrid method to use the voxelized 3D+t NURBS-based
surfaces of the XCAT heart model in a deep generative network and synthesize semantically
and anatomically meaningful 4D realistic CMR images with controllable ground truth labels.
Even though the SPADE GAN is trained on 2D images, the synthetic images are very
coherent across the other two dimensions of the labels (slice and time). Specifically, the
heart that is our main focus in this work, is synthesized consistently. However, small
variation and inconsistency in the background can occur because all tissues that are not of
interest (i.e. not belonging to the heart) are assigned to the background class. This may
be ignored when the application of the synthetic data is heart cavity segmentation. For
multi-organ segmentation applications, the main limitation comes from the limited number
of classes in the ACDC dataset as various organs are mapped to the background class.
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w/o IN w/ IN

Figure 4: Transferring desired styles to synthetic XCAT images. The first column represents
the desired style images. The resulting synthetic images for each style without
and with IN layers are shown in the second to fifth columns. The corresponding
input label maps are shown in the top left corner of the synthetic images.

Since the background label does not contain any spatial information, we only have limited
control over the generated background regions through our modified VAE setting. Our
style encoder encodes the local semantic information of the input style image, in addition
to global style information, to a latent vector. Removing the IN layers prevents the removal
of semantic information and helps in generating consistent background for nearby slices.
Definitely, multi-tissue or multi-class segmentation of background can help in generating
more realistic results as it provides more information to the generator. Moreover, using
other MR modalities such as T1-weighted and late gadolinium enhancement extends the
variations in the global style compared to the limited styles learned from the ACDC dataset
with cine MR contrast. It is worth mentioning that for the 4D voxelized XCAT labels, we
only selected the classes matching the labels of the ACDC dataset. If we use another dataset
with more labels, we can use more classes of the XCAT model as well.

The main advantage of using the XCAT model is that not only it can be controlled
and modified to generate new heart labels, it can also provide anatomically meaningful
accurate ground truth for different time frames. So the 4D labeled synthetic CMR images
can potentially be employed in cardiac supervised tasks. This is a great advantage over
the previous approach by (Joyce and Kozerke, 2019) in which their estimated mutli-tissue
segmentation map is not necessarily anatomically plausible. Moreover, their deformable
model does not provide physiologically meaningful information since its motion is modelled
by an interpolation in the latent space between anatomical shapes of end-systolic and end-
diastolic phases.

Our future works are twofold: i) improving the control over generating the background
by dividing it into an approximated multi-organ segmentation map which eventually results
in more temporary consistent background and ii) quantitative application-based evaluation
of the synthetic images by deploying them in a heart segmentation task for multi-site, multi-
vendor scenarios. We use our proposed approach to generate a large virtual population with
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various anatomical and style variations and utilize the synthetic images in different data
augmentation strategies for the cardiac cavity segmentation task. The goal is to investigate
the utility of the synthetic data in training deep learning algorithm for segmentation and
evaluate that the data generated by this approach is clinically meaningful to replace the
need for real data.
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Appendix A. Additional Figures

This section includes additional synthetic images. Figure 5 includes synthetic slices for the
fixed end-systolic phase for one patient of the ACDC dataset.

Figure 5: The synthetic ACDC slices from apex to base location for one subject of the
ACDC dataset at the end-systolic phase. The rows show the input label maps,
the synthetic and real images respectively

Figure 6 shows the generated samples for XCAT labels for 12 time frames from end-
diastolic to end-systolic phase while fixing the location. Figure 6(a), 6(b) correspond to
apex and middle locations respectively. Similarly, the results for end-systolic to end-diastolic
phases, corresponding to apex, middle and base locations are shown in Figure 7.
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(a) The apex location

(b) The mid location

Figure 6: 4D synthetic images on XCAT labels for 12 time frames from end-diastolic to
end-systolic phase at apex and mid locations of the short axis view of the heart.
In each figure, the first and second rows represent the input label map and their
corresponding synthetic images respectively.
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(a) The apex location

(b) The mid location

(c) The base location

Figure 7: 4D synthetic images on XCAT labels for 12 time frames from end-systolic to end-
diastolic phase at three different locations of the short axis view of the heart.
The first and second rows represent the input label map and their corresponding
synthetic images respectively.
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