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ABSTRACT

With the rapid increase in the size of neural networks, model compression has
become an important area of research. Quantization is an effective technique at
decreasing the model size, memory access, and compute load of large models.
Despite recent advances in quantization aware training (QAT) technique, most
papers present evaluations that are focused on computer vision tasks, which have
different layer composition and training dynamics compared to sequence tasks. In
this paper, we first benchmark the impact of popular techniques such as straight
through estimator, pseudo-quantization noise (PQN), learnable scale parameter,
clipping, etc. on 4-bit seq2seq models across a suite of speech recognition datasets
ranging from 1,000 hours to 1 million hours, as well as one machine translation
dataset to illustrate its applicability outside of speech.
Through the experiments, we report that accuracy suffers when there is insufficient
regularization signal flowing back to the outliers. We propose to construct the
quantization scale as different functions of the outliers in order to regularize them
as part of the end-to-end learning problem (outperforming popular learnable scale
and clipping methods). PQN-QAT shows a larger improvement under the proposed
method, and it opens up the possibility to exploit some of its other benefits: 1)
training a single model that performs well in mixed precision mode and 2) improved
generalization on long form speech recognition.

1 INTRODUCTION

Sequence-to-sequence (seq2seq) model is an influential class of neural architecture in various research
fields and real-world AI systems. Due to the emerging demands from user-interactive devices and
services (e.g., search by voice, voice assistant, etc.), end-to-end (E2E) automatic speech recognition
(ASR) (Wang et al., 2019; Hannun et al., 2014; Graves, 2012; Chorowski et al., 2015; Dong et al.,
2018; Li et al., 2020; He et al., 2019; Chiu et al., 2018; Kim et al., 2017; Li et al., 2019; Zeyer et al.,
2020) has been widely investigated and has seen dramatic quality improvements recently. With the
emergence of large models and the limited budgets on hardware, reducing the inference and training
cost through model compression is a core problem for these devices and services.

Quantization reduces the number of bits required to represent weight tensors and activations, and
is an effective technique at decreasing the model size, memory access, and compute load of large
models. A standard approach of applying model quantization is through post-training quantization
(PTQ) with int8. At int4 or lower precision, PTQ typically shows a large gap in accuracy compared to
float inference (Abdolrashidi et al., 2021). Quantization aware training (QAT) (Nguyen et al., 2020;
Prasad et al., 2020; Ding et al., 2022a) amends the training process with noisy operations that models
the quantization errors encountered during inference, and is usually needed to close the gap.

Existing QAT techniques are generally implemented using real quantization noise or pseudo-
quantization noise (PQN), which introduce training instabilities specific to their noise distribution.
Injecting real quantization noise rounds the weights to integer precision during training, and re-
quires a straight through estimator (STE) (Bengio et al., 2013) to bypass the round function during
backpropagation (Courbariaux et al., 2016). STE-QAT has been observed to cause weights to not
converge and oscillate around quantization decision boundaries (Nagel et al., 2022). On the other
hand, PQN-QAT exposes weights to a randomly sampled noise even for weight values that would
incur zero quantization rounding error. One way of reducing the weight noise variance is to introduce
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extra learnable scale parameters that can be regularized with properly designed gradients (Esser et al.,
2020; Baskin et al., 2021b; Jain et al., 2020; Park et al., 2022). Since the learned scale cannot be
guaranteed to cover the entire range of weight values, clipping must be introduced. We denote these
methods as learnable scale and clip (LSC).

In this work, we advocate for using a Lp norm of each group of weight as the scale for that group
during QAT (instead of extra learnable scale parameters). Groups commonly are defined as different
tensors, output channels, or sub-channels. This allows for multiple outliers (i.e., scale candidates)
within the channel to be simultaneously regularized in an E2E fashion, at every training iteration.
Since the output of the method is a set of more quantization-friendly weights, the inference time scale
still can be constructed via the maximum value with or without clipping. More specifically, this paper
makes the following contributions:

1. Share benchmark results for QAT on multiple large scale speech recognition and one
machine translation seq2seq models and datasets, which expands the mostly computer vision
and language modeling focused QAT literature.

2. Propose robustness aware norm decay (RAND), which directly uses the weight matrix’s Lp

norms as the quantization scales and decay those norms in an E2E QAT procedure. The
performance of RAND beats LSC for a range of settings: per tensor and per channel scale,
single-domain and multi-domain models and tasks.

3. Show that PQN-QAT is more sensitive to scale (i.e. the size of the hyper-rectangle that we
are optimizing the loss over), as seen from the larger performance gap with and without
RAND when compared to that of STE-QAT.

4. Demonstrate how the RAND enhanced PQN model improves post-training selection of layer
precision to enable mixed precision inference without additional training time complexities.

5. Show that the RAND enhanced PQN model has generalization benefits on long form caption
tasks beyond popular regularizations such as variational noise (VN) (Graves, 2011).

2 METHODS

2.1 PRELIMINARIES

As most of the edge devices are memory-bounded, we mainly focus on weight quantization in this
work, though the ideas presented can be extended to activation quantization as well. A simple fully
connected matrix multiplication can be written as Y = WX , where Y ∈ RM , X ∈ RN , and
W ∈ RM×N . Quantizing the entire weight matrix with a single scale parameter s ∈ R involves: 1)
dividing by s to convert from float to int range, 2) rounding to the nearest integer, 3) clipping to the
integer precision lower bound l and upper bound u. For simplicity, we focus on symmetric uniform
quantization (l = −7 and u = 7 for 4-bit quantization). Multiplication with a quantized weight
matrix can be modeled as

Y = s ·
[

clip
(

round
(
W

s

)
, l, u

)
X

]
. (1)

To combat the effect of outliers, every output channel can have its dedicated scale. Then, matrix
multiplication can be modeled as

Yi = si ·
[

clip
(

round
(
Wi

si

)
, l, u

)
X

]
, 1 ≤ i ≤M, (2)

where si ∈ R and denotes the i-th channel’s scale, and Wi denotes the i-th row of W . Common QAT
methods optimizes the neural network by using equation 1 or equation 2 in the forward propagation,
and a straight through estimator (STE) (Bengio et al., 2013) with carefully designed gradients to
bypass the clip and round functions in the backpropagation. The quantized weights can be materialized
during training or created during an additional post-training quantization step.

2.2 ROBUSTNESS AWARE NORM DECAY FOR QUANTIZATION AWARE TRAINING

It is well known from signal processing (Widrow et al., 1996) and neural compression (Agustsson
& Theis, 2020) that the uniform distribution does a good job in modeling quantization noise. Since
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the maximum noise introduced by the round function is 1
2 , which is then amplified by si, training

with noise drawn from Unif
[
− si

2 ,
si
2

]
added to the weights is an effective way to emulate the QAT

process. This removes the need for STE to bypass the round function, which has zero gradient almost
everywhere. Training with this uniform pseudo-quantization noise (PQN) changes equation 2 into

Yi = (Wi + siZi)X, 1 ≤ i ≤M, (3)
where Zi ∈ RM and every entry is drawn from from Unif

[
− 1

2 ,
1
2

]
. An additional benefit of PQN-

QAT is the interpretability of the learning problem, which, when focusing on Wi, becomes
min
Wi

EZiL(fWi+siZi), (4)

where L(·) denotes the training loss over the entire dataset. Essentially, equation 4 finds the optimal
Wi where the average loss over a hyperrectangle centered at Wi with lengths of si in all dimensions,
is minimized (see Figure 1). This is in agreement with the desirable convergence to flat minima from
generalization literature (Li et al., 2018; Du et al., 2022), and we explore the secondary generalization
benefits offered by PQN-QAT under our proposed method in Section 5.4.

For robustness aware norm decay (RAND), we advocate for eliminating the extra trainable scale
parameter si and directly computing it as a function of the network weights. In particular, set
si , c ‖Wi‖p in equation 3, where c is a constant chosen for the entire neural network, and ‖·‖p is
the vector Lp norm.

Yi = (Wi + c ‖Wi‖p Zi)X, 1 ≤ i ≤M (5)
is the generalized equation for matrix multiplication under RAND.

2.3 TRAINING MODES FOR ROBUSTNESS AWARE NORM DECAY

For equation 5, we expand on three representative settings for p and c:

RAND Mode 1: p =∞, c =
1

2bit−1 − 1
(6)

RAND Mode 2: 2 < p <∞, 0 ≤ c ≤ 1

2bit−1 − 1
(7)

RAND Mode 3: p = 2, c ≥ 0. (8)

RAND Mode 1: This mode sets si ,
maxj |Wi,j |
2bit−1−1 to fully cover the range of Wi such that clipping is

not needed. It converts equation 5 into

Yi =

(
Wi +

maxj |Wi,j |
2bit−1 − 1

Zi

)
X, 1 ≤ i ≤M. (9)

For every channel, the term maxj |Wi,j | determines the maximum amount of quantization noise that
the weights needs to be exposed to, and is differentiable. The loss gradient with respect to the noisy
perturbation directly informs how much maxj |Wi,j | (i.e., the biggest outlier) should be decayed.
Thus, we call the general method robustness aware norm decay because the uniform weight noise
introduces perturbation robustness into the learned set of weights (i.e., prefer the flatter minimum in
Figure 1), and simultaneously the per channel Lp norm of W is being decayed depending on how
sensitive that output channel is to weight perturbations (i.e., decreases the width of the shaded region
that the loss is averaged over in Figure 1).

RAND Mode 2: Mode 1 performs well when the ratio P/Q is small, where P is the number of
parameters and Q is the number of scales in a weight tensor. That does not hold for quantization with
per tensor scale (Q = 1). In modern, large neural networks, where P > 105, that assumption may not
hold even with per channel scale. Equation 9 struggles when P/Q is large because only Q weight
entries out of P candidates receive gradients from the noisy perturbation. As soon as the biggest
outlier gets attenuated, it is likely that there is another one with similar magnitude at the next training
step. L∞ norm decay would struggle to fully control the outliers (and thus the noise variance).

Thus, going from per tensor, to per channel, to sub-channel scale not only improves the representation
(more precise dynamic range coverage), it also improves the optimization (regularizes more outliers
per iteration). RAND Mode 2 expands this hierarchy by replacing the infinity norm:

Yi =

(
Wi +

‖top_k(|Wi,:|)‖p
2bit−1 − 1

Zi

)
X, 1 ≤ i ≤M, (10)
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Figure 1: 1-D example of two possible train-
ing losses (shaded areas). RAND training with
noise prefers the flat minimum on the right.
Norm decay attenuates si in an E2E fashion.
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Figure 2: The L2 norm of all network weights
as a function of training iterations, for the Con-
formerS architecture on LibriSpeech.

where we constrain the number of entries contributing to the norm to k to make training more stable.
The general p-norm softens the dependency on a single max value and allows the gradients to attenuate
multiple outliers per training iteration. This achieves the optimization benefits without requiring the
infrastructure support needed for finer grained scale parameters. We show the improvement of Mode
2 in Sections 5.2 and 5.3. Section C contains ablation on k and p.

RAND Mode 3: Equation 8 can be viewed as extensions of training with noisy weights (e.g.,
variational noise (Graves, 2011)). Intuitively, output channels corresponding to large weight values
contain features with higher importance and are more sensitive to small input perturbations. On the
contrary, as training proceeds, an output channels with increasing weight magnitudes will experience
(relatively) weaker perturbations because the noise variance is held constant. Scaling the noise by the
L2 norm of the corresponding channel allows the noise variance to adjust with the weights. As this
work is focused on QAT, we do not report empirical results for Mode 3.

3 RELATED WORKS

3.1 NEURAL NETWORK QUANTIZATION AND QUANTIZATION AWARE TRAINING

To decrease the latency and model size without compromising recognition quality, network quanti-
zation has been widely explored on ASR models (Han et al., 2015; Alvarez et al., 2016; He et al.,
2019; Prasad et al., 2020; Nguyen et al., 2020; Kim et al., 2021; Ding et al., 2022a). In general, most
of the existing research focus on weight and/or activation quantization. Weight quantization can
save memory footprints on devices, while activation quantization can further improve computational
efficiency by using integer multiplication. Among model quantization methods, post-training quanti-
zation (PTQ) with int8 is popular and easy to use for inference on edge devices. It is successfully
applied in multiple applications (He et al., 2019; Sainath et al., 2020). Advanced PTQ methods (e.g.,
optimal brain compression) seek to exploit the correlations in the feature activations to determine the
optimal quantization rounding policy (Nagel et al., 2020; Hubara et al., 2020; Frantar & Alistarh,
2022). These works are complementary to QAT and our work.

For lower-bit quantization, QAT is usually needed to mitigate the loss of precision, as shown
in Nguyen et al. (2020); Prasad et al. (2020); Ding et al. (2022a). These popular QAT methods expose
the network to quantization error, and use STE to bypass the round function, which has zero gradient
almost everywhere. Our work seeks to improve the outlier control part of QAT to remove the need
for dedicated scale parameters. This is shown to improve STE-QAT and PQN-QAT.

3.2 NEURAL NETWORK TRAINING WITH NOISY PERTURBATIONS

Neural networks can be trained with either noisy perturbations on the weights or features for the
goal of generalization, quantization robustness, or adversarial robustness. For example, variational
noise (Graves, 2011) reformulates neural network training as Bayesian inference, and gives a Bayesian
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interpretation to training with Gaussian noise added to every weight. It has been widely adopted in
the ASR community for improving generalization (Gulati et al., 2020; Li et al., 2021). Our work
and other noise based quantization works (Baskin et al., 2021b; Défossez et al., 2022; Park et al.,
2022) can be viewed as modifying the VN distribution to be specific to the uniform quantiztion noise
introduced at each weight tensor, though this loosens the Bayesian connection.

One benefit of PQN-QAT over STE-QAT is that it prevents weight oscillation near the quantization
decision boundary (Nagel et al., 2022). Fan et al. (2020) documents this drawback of STE and
proposed to stochastically select subsets of weights to remain at full precision during every training
iteration. However, the quantized weights are still trained with STE. Wang et al. (2022) augments
STE-QAT with Gaussian noise to promote better convergence. Baskin et al. (2021b) (and Baskin
et al. (2021a) for non-uniform quantization) proposes to use uniform noise in the QAT process, but
the paper advocates to slowly progress to STE-QAT as the training proceeds. Défossez et al. (2022)
uses uniform noise throughout the training, and is comparable to our work. However, the paper’s
exposition on the training procedure is done through an example where weights are normalized to
the range of [0, 1], which does not make it clear whether the weight tensor’s norm can be part of
the optimization to control for outliers. Additionally, Défossez et al. (2022) focuses on per tensor
scale constructed from a single max value, which we benchmark to show lower performance when
compared to RAND Mode 2 (see Section 5.2). To our knowledge, our work reports new findings to
the field by fully analyzing the effect of end-to-end Lp norm decay on PQN-QAT, and how it enables
both accuracy and generalization improvements on seq2seq tasks (see Section 5.4).

Similar to QAT’s goal for weights, adversarial robustness methods aim to train a network that is robust
to input features that are subject to a worst case perturbation within a pre-defined L∞ ball. Classic
methods for generating these adversarial examples include the fast gradient sign method (Goodfellow
et al., 2014) and projected gradient descent (Madry et al., 2018). Although they are outside the scope
of this paper, we remark that adversarial robustness methods may be adapted to help QAT.

3.3 QUANTIZATION AWARE TRAINING WITH LEARNABLE SCALE

Instead of using a Lp norm as the quantization scale, many works (Baskin et al., 2021b; Jain et al.,
2020; Park et al., 2022) advocate for creating extra learnable parameters as either the scale or
clipping bounds. The gradients for weight entries that are clipped requires a STE, which can cause
those weights to increase in magnitude even though they are already outside of the clipping bounds.
Figure 2 plots the L2 norm of all weights after training with learnable scale (Esser et al., 2020) and
our propose method to compare the difference in behaviors. A key drawback of creating dedicated
scale parameters is that they are tuned to the particular precision (i.e., 4-bit aware model do not have
scales for 8-bit inference). Additionally, the highly discontinuous nature of the gradients flowing
to the learnable scale (see equation 3 of Esser et al. (2020)) can introduce training instabilities and
causes our multi-domain experiments to diverge (see Section 5.3). For ASR, we use empirical results
to argue that RAND outperforms learnable scale and clipping (LSC) methods.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We conduct experiments on three ASR datasets of different scale and one machine translation dataset
to systematically evaluate the proposed approach: 1) LibriSpeech Panayotov et al. (2015) (960 hour
single-domain); 2) SpeechStew Chan et al. (2021) (5,000 hour multi-domain); 3) An in-house dataset
(1 million hour multi-domain); 4) WMT En-Fr (see Section A for the full setup and results). We use
word error rate (WER) as the evaluation metric for all the ASR experiments.

LibriSpeech training set contains 960 hours of speech (460 hours “clean” speech and 500 hours
“noisy” speech). The test set also consists of “clean” and “noisy” versions.

SpeechStew has a mix of publicly available datasets from different domains, including AMI Kraaij
et al. (2005), Broadcast News, Common Voice Ardila et al. (2019), LibriSpeech Panayotov et al.
(2015), Switchboard/Fisher, TED-LIUM Rousseau et al. (2012); Hernandez et al. (2018), and Wall
Street Journal. Following the protocol in Chan et al. (2021), we train the models using the mixed
training set, and evaluate it on each individual test set.
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Table 1: The number of parameters and model sizes after encoder quantization for each back-
bone archiecture. For ConformerL and ConformerS, the decoder remains in float. For Cascaded
Conformers, the decoder is post-training quantized to int8.

Backbone #Params Size with int8 encoder Size with int4 encoder

ConformerL 118 Million 138 MB 81 MB
ConformerS 10 Million 16 MB 12 MB
Cascaded Conformers 122 Million 123 MB 65 MB

Our in-house training set consists of over 1 million hours of English speech utterances from multiple
domains, including voice assistant, voice typing, video captioning, etc. Most utterances in the training
set are transcribed with a teacher model, while a small number of utterances are anonymized and
hand-transcribed. We use three test sets from the voice assistant, voice typing, video captioning
domains for evaluation. All of the test sets contain anonymized and hand-transcribed utterances.

4.2 BACKBONE ASR ARCHITECTURE AND IMPLEMENTATION DETAILS

We considered two ASR backbones in our experiments. For the experiments on LibriSpeech and
SpeechStew, we implemented ConformerL and ComformerS as proposed in Gulati et al. (2020)
to obtain better reproducibility and fair comparisons with prior studies. For the experiments on the
in-house data, we implemented the a large-medium Cascaded Conformers as proposed in Ding et al.
(2022b) for optimal WER and latency under real world settings. The total number of parameters and
model sizes after quantizations are shown in Table 1.

ConformerL and ConformerS have a frontend of 80-dimensional log Mel-filterbank energies,
extracted from 25ms window and 10ms shift. The two variants have 17, 16 conformer layers, with
512, 144 dimensions, respectively. In each conformer layer, both have 32-dimensional kernel in
depthwise convolutions, while ConformerL has 8 attention heads in self-attention and ConformerS
has 4. The LSTM layer in the RNN-T prediction network has 640 units.

The Cascaded Conformers have a frontend of 128-dimensional log Mel-filterbank enegies. In
addition, the 4 contiguous frames are stacked, which is then sub-sampled by a factor of 3. The model
is comprised of a causal encoder and a non-causal encoder, along with separate RNN-T decoders for
each encoder. The causal encoder has 9 conformer layers, where there is no self-attention in the first 3
layers. Each layer has 23-frame left context per layer and no right context to strictly prevent the model
from using future inputs. The non-causal encoder has 6 conformer layers, with a cumulative 900ms
of right context. All of the self-attention layers have 8 heads, and all layers use causal convolution
with a kernel size of 15. Each separate RNN-T decoder consists of an 320-dimensional embedding
prediction network and a 384-dimensional fully-connected joint network.

4.3 TRAINING AND EVALUATION DETAILS

For all models, we experiment with RAND and four other competing methods that we reproduce
to the best of our knowledge (referenced in Table 2). We also adapt the norm decay part of RAND
to STE-QAT and report results for it. We quantize only the encoders since the they represent the
overwhelming majority of parameter for ASR models. Additionally, we do not quantize convolutional
layers due to their lower parameter count relative to fully connected layers.

All models are trained on Tensor Processing Unit (TPU) v3-128 with the Adam optimizer (Kingma &
Ba, 2014). ConformerS and ConformerL use a base learning rate of 5.0, multiplied by the transformer
learning rate schedule (Vaswani et al., 2017) with warmup steps set to 10000, and a batch size of
2048. The Cascaded Conformer use a base learning rate of 7.5, with warmup steps set to 32000, and
a batch size of 4048. LibriSpeech ConformerS models are trained to 300,000 steps and evaluated at
the checkpoint with the best dev set WER. SpeechStew ConformerL and the Cascaded Conformer do
not overfit on their multi-domain training data, and we evaluate at exactly 200,000 steps and 700,000
steps, respectively. All evaluations use an exponential moving average version of the network weights,
computed with a decay factor of 0.9999.
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Table 2: ConformerS experiments for 4-bit symmetric weight quantization with per channel scale, on
LibriSpeech, reported as WER ± standard deviation.

Reference Eval prec. Outlier method QAT method Test-clean Test-other

N/A Float None None 2.51 6.15
Ding et al. (2022a) Int4 None 4-bit STE 2.83±0.02 6.58±0.06
Défossez et al. (2022) Int4 None 4-bit PQN 2.82±0.03 6.77±0.08
Esser et al. (2020) Int4 LSC 4-bit STE 2.78±0.03 6.53±0.10
Park et al. (2022) Int4 LSC 4-bit PQN 2.63±0.01 6.46±0.07
RAND Int4 Mode 1 4-bit STE 2.73±0.04 6.34±0.03
RAND Int4 Mode 1 4-bit PQN 2.64±0.02 6.30±0.04

5 RESULTS

5.1 SINGLE DOMAIN EVALUATION: LIBRISPEECH WITH PER CHANNEL SCALE

At int4, tensors are usually quantized with a per channel scale. P/Q for ConformerS with per channel
scale are on the order of 100–500, and it does not require the multiple outlier decay of RAND
Mode 2. In this subsection, we report the LibriSpeech WER using RAND Mode 1, and compare
against STE-QAT (Ding et al., 2022a) and PQN-QAT (Défossez et al., 2022) with no explicit outlier
regularization, plus STE-QAT (Esser et al., 2020) and PQN-QAT Park et al. (2022) with LSC. Table 2
shows that under per channel scale, STE-QAT or PQN-QAT with RAND show lower WER than
their LSC counterparts. Wang et al. (2022) proposes augmenting Esser et al. (2020) with Gaussian
noise for better convergence. We report comparisons against it at three hyperparameter settings in
Section B.

5.2 SINGLE DOMAIN EVALUATION: LIBRISPEECH WITH PER TENSOR SCALE

To quantify the effect of RAND Mode 2, we experiment with the different QAT techniques on a
ConformerS model with per tensor scale. When each weight tensor only has a single scalar as the
scale, any outlier affects the dynamic range of the entire tensor. Although this setup is believed to be
sub-optimal for 4-bit and lower quantization, we will show that Mode 2 improves the WER to be very
competitive with that of per channel scale, without incurring the deployment cost of implementing
extra scale parameters. For Mode 2 under per tensor scale, we found that k = 4 and p = 8 work the
best, and report WER under this setting. Ablation studies can be found in Section C.

Table 3 shows the effectiveness of RAND on both STE-QAT and PQN-QAT. The Test-other WER
are reduced from 8.41 and 9.74 to 6.43 and 6.50, respectively. The larger improvement suggests that
norm decay is especially necessary for PQN-QAT. Training with weight noise can be interpreted
as sacrificing model capacity to induce model robustness to perturbations in any direction. That is
a stronger robustness guarantee than STE-QAT, which only aims to be robust to the direction of
the inference time quantization algorithm. For example, PQN-QAT can cause weights near zero to
change signs, which is impossible under STE-QAT. Thus, it is expected that PQN-QAT needs norm
decay to lower the amount of perturbation the model needs to be robust to.

With Test-clean and Test-other WERs of 2.68 and 6.32, the RAND Mode 2 performance under per
tensor scale is very close to the best WERs under per channel scale (2.64 and 6.30). As described in
Section 2.3, this allows us to expand the hierarchy, where RAND Mode 2 can close the optimization
gap between per tensor and per channel scale.

5.3 MULTI-DOMAIN EVALUATION: SPEECHSTEW DATASET WITH PER CHANNEL SCALE

LibriSpeech is generally viewed as an easier dataset where models exhibit overparameterization
properties. The redundancy benefits offered by overparameterization helps the network be robust
to random weight perturbations. To expand the empirical analysis, we report WER results for
ConformerL evaluating on the multi-domain dataset SpeechStew, which is a more diverse and
difficult task. For Mode 2 under per channel scale, we found that k = 2 and p = 8 work the best, and
report WER under this setting.
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Table 3: ConformerS experiments for 4-bit symmetric weight quantization with per tensor scale, on
LibriSpeech. The references of each technique can be found in Table 2.

Eval precision Outlier method QAT method Test-clean Test-other

Float None None 2.51 6.15
Int4 None 4-bit STE 3.53 8.41
Int4 None 4-bit PQN 3.94 9.74
Int4 LSC 4-bit STE 2.71 6.66
Int4 LSC 4-bit PQN 2.73 6.30
Int4 Mode 1 4-bit STE 2.74 6.43
Int4 Mode 1 4-bit PQN 2.71 6.50
Int4 Mode 2 4-bit PQN 2.68 6.32

Table 4: Multi-domain ConformerL experiments for 4-bit symmetric weight quantization with per
channel scale, on SpeechStew dataset. CV: Common Voice; SB: Switchboard; LS: LibriSpeech; Ted:
TED-LIUM; WSJ: Wall Street Journal.

Eval Outlier QAT AMI CV LS-Test SB Ted WSJ
Prec Method Method IHM SDM1 clean other

Float None None 9.19 23.53 9.89 2.03 4.32 8.63 3.98 1.38
Int4 LSC 4-bit STE* – – – – – – – –
Int4 LSC 4-bit PQN 9.33 24.31 10.48 2.17 4.55 8.87 4.44 1.58
Int4 Mode 1 4-bit STE 9.22 24.33 10.18 2.07 4.38 8.45 4.45 1.55
Int4 Mode 1 4-bit PQN 9.39 24.23 10.17 2.07 4.48 8.58 4.11 1.44
Int4 Mode 2 4-bit PQN 9.26 23.97 10.17 2.08 4.48 8.55 4.16 1.37

* Model failed to converge.

In Table 4, we see the same trend where, as an outlier control method, norm decay mostly outperforms
LSC across the range of tasks. Interestingly, for these larger models, STE-QAT with LSC does not
converge. We hypothesize that the highly discontinuous gradients that arises due to the clipping
function hurts the convergence of the learnable scale parameters (see equation 3 of Esser et al. (2020)).
By contrast, RAND training remains stable for larger models. Under RAND, PQN-QAT (especially
under Mode 2) outperforms STE-QAT by a small margin in terms of the average WER over all
datasets, and we report the additional generalization and multi-precision benefits of RAND enabled
PQN-QAT in the Section 5.4.

5.4 LARGE SCALE EVALUATION: IN-HOUSE DATASET WITH PER CHANNEL SCALE

In a real world production setting, training different models per domain and per platform causes
scaling and maintainability challenges. Ideally, the same ASR model can be used for short form (e.g.,
voice assistant), medium form (e.g., voice typing), and long form (e.g., video captioning), as well as
multiple hardware platforms with differing support for int4, int8, and float quantization schemes. We
report WER on a real world, large scale in-house dataset. As Section 5.3 established RAND as the
stronger outlier control method over LSC, we now focus on it and show how the RAND enhanced
PQN-QAT model shows superior generalization, multi-domain, and multi-precision properties over
STE-QAT models.

Generalization: Long form data tends to have higher variance in terms of background noise, pause /
silence / segmentation, multiple speakers, etc. Accordingly, stronger techniques are needed to make
the model generalize well to these adverse conditions.

Table 5 reports the long form WER when evaluating at 8-bit and 4-bit precision, for models trained
without QAT, with variational noise (VN) using a constant Gaussian noise variance for all weights,
4-bit STE-QAT, and 4-bit PQN-QAT. Generally, 8-bit inference does not require QAT to perform
on par with float models, and serves as an barometer for generalization behavior in this section.
As expected, VN helps generalization and improves 8-bit WER from 17.2 to 16.2. Interestingly,
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Table 5: Cascaded Conformers experiments for 4-bit QAT, evaluated at 4-bit and 8-bit, on a large
scale in-house long form dataset.

Eval precisions Outlier method QAT method Long form WER

Float / Int4 None None 17.2 / 27.1
Int8 / Int4 None Tuned VN 16.2 / 20.6
Int8 / Int4 RAND 4-bit STE 16.1 / 17.0
Int8 / Int4 RAND 4-bit PQN 15.4 / 15.6

Table 6: Cascaded Conformers experiments for 4-bit QAT, evaluated at 4-bit and 8-bit, on large scale
in-house short form and medium form datasets.

Eval precisions Outlier method QAT method Short form WER Medium form WER

Float / Int4 None None 4.9 / 7.4 3.7 / 8.7
Int8 / Int4 None Tuned VN 5.0 / 5.7 3.8 / 5.5
Int8 / Int4 RAND 4-bit STE 5.0 / 5.1 3.7 / 3.8
Int8 / Int4 RAND 4-bit PQN 4.8 / 4.9 3.7 / 3.9

VN, despite not being tuned to the unique quantization noise statistics in every channel in every
tensor, also improves 4-bit WER from 27.1 to 20.6. However, we see that the 4-bit PQN-QAT shows
the best WER at 8-bit and 4-bit, which implies that RAND with L∞ or Lp norm can be useful for
generalization at 8-bit or float precision as well. We leave that to future investigations.

Multi-domain: Table 6 reports the 8-bit and 4-bit WER on short form and medium form utterances.
Overall, the proposed RAND enabled PQN-QAT has 8-bit and 4-bit WER that are the closest to the
float WER, and represents the best choice for these large-scale production datasets.

Multi-precision: For vanilla STE-QAT without any outlier regularization, it tunes the network to
perform the best at the precision that it is trained under. Even though intuitively 8-bit quantization
is easier than 4-bit, Table 7 shows that the vanilla STE-QAT model has worse WER when running
as 8-bit than as 4-bit. This implies that using the 4-bit aware model checkpoint at 8-bit or mixed
precision (different layers at different precision) will have a big gap compared to training the model
specifically for the inference time layer precision.

Table 6 shows that the models trained using RAND have lower WER when operating in 8-bit mode
and very little gap to the float model performance. This also implies that, in a mixed precision setup,
increasing the number of layers running in 8-bit mode is more likely to monotonically improve WER,
which is a desirable property to enable training multi-precision capable models in one shot.

6 CONCLUSION

In this paper, we generalize the QAT technique by writing it in terms of the weight tensor’s Lp

norm. The explicit dependence on the Lp norm provides explicit regularization within the end-to-end
optimization (RAND). Through large scale experiments on multi-domain seq2seq tasks, we show that
constructing the quantization scale via the Lp norm formulation improves performance over existing
methods that use a single parameter per scale. Additionally, RAND enabled PQN-QAT outperforms
STE-QAT on a range of datasets. These improvements open up the possibility of exploiting some of
the secondary benefits of RAND enabled PQN-QAT: improved generalization and multi-precision
properties.

Table 7: Cascaded Conformers experiments for 4-bit STE QAT without any outlier control method,
showing the degraded 8-bit WER when not using RAND.

Eval precisions Outlier method QAT method Short form WER Medium form WER

Int8 / Int4 None 4-bit STE 5.2 / 5.0 4.0 / 4.0
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Table 8: BLEU scores of Base and Small models for 4-bit symmetric weight quantization with per
channel scale, on English-to-French newstest2014 tests.

Eval precision Outlier method QAT method Base model BLEU Small model BLEU

Float None None 40.5 38.4
Int4 None 4-bit STE 39.9 37.6
Int4 None 4-bit PQN 39.7 37.5
Int4 RAND 4-bit STE 40.1 38.2
Int4 RAND 4-bit PQN 40.0 38.2

A MACHINE TRANSLATION EXPERIMENTS

To show that the proposed method is working on other seq2seq models and modalities, we evaluate it
on a WMT 2014 English-to-French machine translation (MT) task.

A.1 MODEL AND OPTIMIZER

We implement the Base Transformer model with 65M parameters reported in Vaswani et al. (2017).
The Base Transformer model composed of encoder and decoder with N = 6 layers, model dimension
dmodel = 512, hidden dimension dff = 4×dmodel = 2048 and number of heads h = 8. We also
evaluate its smaller version with model dimension dmodel = 256, hidden dimension dff = 4×dmodel

= 1024 and number of heads h = 4. This model has 30M parameters, we label it as Small.

Above models use SentencePiece (Kudo & Richardson, 2018) subword tokenizer with 32K vocabulary.
We use the same parameters for Adam optimizer as in Vaswani et al. (2017) but with warmup_steps
= 4000. As in Vaswani et al. (2017) we use residual dropout with value 0.1, but with label smoothing
of value 0.

A.2 TRAINING DATA AND EVALUATION

The models are trained on the WMT 2014 English-French training data. Then we select the
best checkpoint using the dev data set English-French newstest2013, and report BLEU on
English-French newstest2014 data set. BLEU is computed according to Post (2018) with param-
eters: smooth_method="exp"; smooth_value=0.0; force=False; lowercase=False; tokenize=intl;
use_effective_order=False.

A.3 HARDWARE

The MT model is trained on TPU v3-32 (TPU) for 100,000 iterations with batch size 2048. It takes
nine hours to finish model training.

A.4 EXPERIMENTAL RESULTS

We quantize MT transformer model weights of encoder, decoder and embeddings with int4. Bias
is not quantized because it is negligible in comparison to the model weights. We use symmetric
per-channel quantization. In table 8 we show BLEU scores of Base and Small models quantized with
the different approaches and the improvements from incorporating RAND.

B ADDITIONAL EVALUATION: LIBRISPEECH WITH PER CHANNEL SCALE

Wang et al. (2022) proposes to augment STE-QAT with the learned step size quantization (Esser
et al., 2020) with an additional Gaussian noise term. The motivation is to control the gradient in
order to drive the solution to a flatter minimum. We replicate the experiments in Section 5.1 with the
suggested hyperparameters of k = 50 and 0.2 ≤ c ≤ 0.4. Table 9 contains the results, which shows
Wang et al. (2022) improving over Esser et al. (2020) when c = 0.2, but still lagging the proposed
RAND technique on ASR tasks.
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Table 9: ConformerS experiments for 4-bit symmetric weight quantization with per channel scale, on
LibriSpeech. c is a hyperparameter specific to Wang et al. (2022).

Reference Eval prec. Outlier method QAT c Test-clean Test-other

N/A Float None None N/A 2.51 6.15
Esser et al. (2020) Int4 LSC 4-bit STE N/A 2.78 6.53
Wang et al. (2022) Int4 LSC 4-bit STE 0.2 2.71 6.49
Wang et al. (2022) Int4 LSC 4-bit STE 0.3 2.79 6.35
Wang et al. (2022) Int4 LSC 4-bit STE 0.4 2.87 6.52
RAND Int4 Mode 1 4-bit STE N/A 2.73 6.34
RAND Int4 Mode 1 4-bit PQN N/A 2.64 6.30

Table 10: ConformerS experiments for 4-bit symmetric weight quantization on LibriSpeech. The per
tensor scale is computed via the 8-norm of the k weight entries with the largest magnitude.

k p QAT method Test-clean Test-other

2 8 4-bit PQN 2.77 6.32
4 8 4-bit PQN 2.68 6.32
8 8 4-bit PQN 2.70 6.41
16 8 4-bit PQN 2.77 6.40

C ABLATION STUDIES FOR RAND MODE 2

For equation 10, which we replicate for convenience:

Yi =

(
Wi +

‖top_k(|Wi,:|)‖p
2bit−1 − 1

Zi

)
X, 1 ≤ i ≤M, (11)

we sweep k, the number of weight entries that contribute to the norm calculation, and p, the order of
the vector norm used. This is done for the LibriSpeech per tensor experiments found in Section 5.2.

Table 10 and Table 11 show the sweep for k and p, respectively. We conclude that k = 4 and p = 8
are closest to the optimal settings for this experiment.

Table 11: ConformerS experiments for 4-bit symmetric weight quantization on LibriSpeech. The per
tensor scale is computed via the p-norm of the 4 weight entries with the largest magnitude.

k p QAT method Test-clean Test-other

4 2 4-bit PQN 2.73 6.59
4 4 4-bit PQN 2.77 6.34
4 8 4-bit PQN 2.68 6.32
4 16 4-bit PQN 2.69 6.38
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