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ABSTRACT

Deep models are prone to performance degradation when there is a domain shift
between the source (training) data and target (test) data. Test-time adaptation of
pre-trained source models with streaming unlabelled target data protects the pri-
vacy of source data, but it has mini-batch size and class-distribution requirements
on the streaming data which might not be desirable in practice. In this paper, we
propose the source-free few-shot adaptation setting to address these practical chal-
lenges in deploying test-time adaptation. Specifically, we propose a constrained
optimization of source model batch normalization layers by finetuning linear com-
bination coefficients between training and support statistics. The proposed method
is easy to implement and improves source model performance with as little as one
labelled target sample per class. We evaluate on different multi-domain classifica-
tion datasets. Experiments demonstrate that our proposed method achieves better
and more reliable performance than test-time adaptation, while not constrained by
streaming conditions.

1 INTRODUCTION

While deep neural networks have demonstrated remarkable ability in representation learning, their
performance relies heavily on the assumption that training (source) and test (target) data distribu-
tions are the same. Real-world data collection is often resource-constrained, such that test samples
may be subject to domain shift, also known as covariate shift, due to factors such as illumination,
pose, style and data collection procedures (Wang & Deng, 2018; Gulrajani & Lopez-Paz, 2021; Koh
et al., 2020a). To prevent severe performance degradation when models are deployed, adaptation to
the target distribution is needed.

A range of methods to address domain shift have been developed, with varying requirements on
source and target domain data. Domain generalization considers generalization without seeing tar-
get data, but existing methods still have a considerable generalization gap (Hendrycks et al., 2020;
Gulrajani & Lopez-Paz, 2021; Koh et al., 2020a). On the other hand, domain adaptation (DA)
assumes the availability of target data during training. Most DA methods work under the vanilla
unsupervised DA (UDA) setting, taking that labelled source and unlabelled target data are fully ac-
cessible for joint training (Wilson & Cook, 2020; Wang & Deng, 2018). Some methods (Motiian
et al., 2017; Teshima et al., 2020) have been proposed under the few-shot DA setting, which assume
that labelled source data and a few labelled target samples are available. Recent work (Qiu et al.,
2021; Yang et al., 2021; Liang et al., 2020; Kundu et al., 2020b) is shifting towards a more challeng-
ing setting of source-free UDA, where a pre-trained source model is adapted with only unlabelled
target data. However, these methods require access to the entire target dataset during adaptation.

Very recently, test-time adaptation methods (Nado et al., 2020; Schneider et al., 2020; Wang et al.,
2021a) have been proposed to continuously adapt during test time with streaming unlabelled target
data, by updating batch normalization (BN) layers batch-by-batch. However, these methods face
3 main challenges: 1) estimation performance is dependent on large batch size to estimate BN
parameters and statistics, 2) test samples need to be class-balanced which may not be practical in
real-world deployment, 3) there is no guarantee self-supervision objectives can correct domain shift
without using any target domain label information. For instance, entropy minimization (Wang et al.,
2021a) can lead to undesired trivial solutions where all outputs “collapse” to one or a few classes.

Motivated by the problems of test-time adaptation methods, we propose a challenging but practical
source-free DA setting by adapting a pre-trained source model using k-shot support from target do-
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Table 1: Domain shift setups where s and t denote source and target domains, respectively. Ld and
Ud denote labelled and unlabelled datasets from domain d.

Setup Training inputs Test inputs
Source domain(s) Target domain

Domain adaptation Ls1 , . . . , LsN entire U t U t

K-shot domain adaptation Ls1 , . . . , LsN k-shot support Lt U t

Source-free domain adaptation Pre-trained model on Ls1 , . . . , LsN entire U t U t

Test-time adaptation Pre-trained model on Ls1 , . . . , LsN mini-batch U t U t

Source-free k-shot adaptation Pre-trained model on Ls1 , . . . , LsN k-shot support Lt U t

Domain generalization Ls1 , . . . , LsN - U t

main. Table 1 shows existing settings in the DA literature and the proposed setting. Considerations
for real-world usage motivates our proposed source-free k-shot setting to address domain shift:

• Data availability: Our setting helps to protect privacy of the source domains, and has
low requirements for target data availability of only k labelled samples per class during
adaptation. During testing, test batch can be of any size with no restrictions.

• Inference efficiency: Model parameters are not updated at test-time.
• Accuracy: Our setting is not dependent on test-time data streaming conditions and self-

supervised objectives, and hence enables more reliable and accurate adaptation.

We propose a k-shot method to adapt batch normalization (BN) layers of deep source models to
address domain shift. As far as we know, our work is the first source-free domain adaptation
method with a few-shot setting. Although BN layer modulation has been explored in existing litera-
ture (Chang et al., 2019; Nado et al., 2020; Schneider et al., 2020; Wang et al., 2021a), reliably op-
timizing BN layers with extremely few support samples is a new and challenging problem. Naively
optimizing high-dimensional parameters in BN layers risks a severely ill-posed problem caused by
data scarcity, and can result in unreliable estimates that easily over-fit to the small support set.

In this work, we introduce a new parameterization of BN layers, and approximate the optimal high-
dimensional target domain BN statistics by a linear combination of spanning vectors representing
both source and target domains. Specifically, we linearly combine a small set of spanning vectors
obtained from source domain BN statistics and support set, and optimize the combination coeffi-
cients by supervised loss on the support set. This significantly reduces the number of parameters
to adapt on BN layers. Our proposed method is inspired by the success of controlling sample styl-
ization through BN layers (Huang & Belongie, 2017; Jing et al., 2019; Zhou et al., 2021b; Nam &
Kim, 2018), and we aim to approximate the optimal style to stylize the target domain samples to
best address domain shift. We evaluate the proposed method on different image classification bench-
mark datasets. We provide experimental validations and comparisons with state-of-the-art methods
to demonstrate that our approach compares favorably in adaptation accuracy.

2 RELATED WORKS

2.1 DOMAIN ADAPTATION AND GENERALIZATION

Domain adaptation refers to the learning setting where a network is trained jointly on labelled
source dataset and unlabelled target dataset, with the goal of optimizing task performance on the
target dataset. Most DA methods work under the vanilla DA setting and utilize labelled source
data and unlabelled target data for joint training, as surveyed in Wilson & Cook (2020); Wang &
Deng (2018). The existing setting most similar to ours is source-free UDA, where a pre-trained
source model is adapted with unlabelled target dataset. Qiu et al. (2021) mines the source model to
generate source-like representations and then aligns source and target domains, some works make
use of the clustering structure in target features for classification (Yang et al., 2021; Liang et al.,
2020), and other works learn to align target samples to the source hypothesis to produce source-like
features through output-level regularization such as entropy minimization and information maxi-
mization (Liang et al., 2020; Kundu et al., 2020b;a; Li et al., 2020). However, these methods require
a large number of unlabelled target samples for adaptation.
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Domain generalization aims to learn a model robust to unseen domain shifts by training only on
labelled source datasets and is widely studied (Gulrajani & Lopez-Paz, 2021; Koh et al., 2020a;
Wang et al., 2021b; Zhou et al., 2021b; Hendrycks et al., 2020; Sagawa et al., 2019; Huang et al.,
2020). The domain generalization setting is suitable to train models for data-streaming applications,
however adaptation to specific domains of interest can be limited since no target sample is seen
at training. Our proposed method complements existing domain generalization methods to further
close the generalization gap, since our proposed method can work directly on source models learned
by domain generalization strategies.

2.2 TEST-TIME ADAPTATION AND BATCH NORMALIZATION

Test-time adaptation aims to update a pre-trained source model continuously during test time with
unlabelled target samples to improve performance on the target distribution. Sun et al. (2020) update
network parameters at test time guided by a self-supervised task loss for estimating image rotation.
However, the method requires model training with the self-supervised task on the source dataset, and
hence does not work directly with any pre-trained source model. Recent works propose adapting
BN layers of the source model for DA objective (Chang et al., 2019; Nado et al., 2020; Schneider
et al., 2020; Li et al., 2016). BN acts on input feature Z by the following operation:

ZBN = f(Z;µ,σ,γ,β) =

(
Z− µ
σ

)
γ + β (1)

where µ = E[Z] ∈ RC and σ =
√
V[Z] + ε ∈ RC are channel-wise feature statistics for C

channels, and γ,β ∈ RC are BN layer weight and bias parameters, respectively. Conventional
evaluation fixes µ = µs,σ = σs,γ = γs,β = βs, that is, all BN statistics and parameters
are estimated from source domains during training. Test-time BN methods instead re-estimate BN
statistics on each mini-batch with mini-batch evaluation, i.e. µ = µminibatch,σ = σminibatch, to
correct domain shifts explainable by shifts in first and second moments of the data distribution (Nado
et al., 2020; Schneider et al., 2020). Tent (Wang et al., 2021a) further updates γ,β with entropy
minimization to obtain more confident predictions. However, the reliability of test-time adaptation
depends on the number and class-distribution of samples in each mini-batch. Our proposed method
freezes all network parameters after adaptation, and is not subject to these concerns.

2.3 TRANSFER LEARNING WITH FEW-SHOT SAMPLES

There is a wide range of work in transfer learning literature addressing the few-shot setting by
learning a metric space specifically for k-shot tasks, and by using meta-learning to learn adaptation
strategies (Pan & Yang, 2010; Zhuang et al., 2020; Sun et al., 2019; Liu et al., 2021; Zhao et al.,
2021; Motiian et al., 2017; Phoo & Hariharan, 2021; Teshima et al., 2020). These approaches
typically need specific network architectures, loss functions, training strategies requiring multiple
source domains or joint training with source and support data together. Since they do not directly
work with a pre-trained source model, we do not focus on these approaches here.

Another popular strategy is model finetuning or weight transfer from a pre-trained source model,
and our proposed method also falls in this category. Directly finetuning all source model weights on
a limited support set with small k is known to severely overfit, so a support set of at least k = 100 is
often required (Yosinski et al., 2014; Scott et al., 2018). Recent works constrain the dimensionality
of learnable parameter space. FLUTE (Triantafillou et al., 2021) finetunes BN parameters initialized
by multiple source datasets with nearest-centroid classifier. Yoo et al. (2018) clusters network pa-
rameters and constrains all parameters in a cluster to share the same update, but this method requires
activations on the source dataset for clustering.

3 PROPOSED METHOD

In this section, we firstly revisit BN layer optimization for DA in Section B, where we point out that
optimizing all four BN variables can also be achieved by optimizing {µ,σ}. Then, we introduce
our proposed method that optimizes BN statistics on k-shot support set Lspt with supervised loss in
Section 3.2. The support set contains k labelled target domain samples (x,y) per class, with image
x and one-hot class vector y. The implementation details are described in Section 3.3.
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3.1 REVISITING BN LAYER OPTIMIZATION FOR DOMAIN ADAPTATION

As shown in Equation 1, the BN layer operation is a function acting on input features with four
variables, namely BN statistics {µ,σ} and BN parameters {γ,β}. We denote f(Z;µt,σt,γt,βt)
as the BN operation with optimal target domain BN statistics and parameters {µt,σt,γt,βt}. By
expressing this operation as:

f(Z;µt,σt,γt,βt) =

(
Z− µt
σt

)
γt
γs
γs

+ βt + βs − βs =
(

Z− µ̃
σ̃

)
γs + βs, (2)

we see that this is equivalent to setting BN statistics in the source BN layer f(Z; µ̃, σ̃,γs,βs) to
σ̃ = σtγs

γt
and µ̃ = µt − (βt−βs)σt

γt
. This observation implies that we can obtain the optimal

f(Z;µt,σt,γt,βt) by optimizing only the BN adaptation statistics {µ̃, σ̃}. Edge cases of 0 el-
ements in γs can be avoided by adding a small number to such elements. Setting elements 0 in
γt implies that corresponding features are completed muted, which we assume unlikely given a
well-trained source feature extractor. A detailed explanation is provided in Appendix Section B.

3.2 LOW DIMENSIONAL APPROXIMATION FOR BN LAYER ADAPTATION

In the setting with extremely few support samples, optimizing BN layers by estimating high di-
mensional target domain BN variables risks an ill-posed problem caused by data scarcity and hence
is unreliable. We propose approximating the optimal target domain BN statistics with a small set
of spanning vectors representing both source and target domains, and finetuning the combination
coefficients. Specifically, for a BN layer with C channels, we approximate the optimal adaptation
statistics by a linear combination of the spanning vectors as:

µLCCS =Mη = [µs Mspt][ηs η
T
spt]

T and σLCCS = Σρ = [σs Σspt][ρs ρ
T
spt]

T (3)

where M ,Σ ∈ RC×(n+1) contain n + 1 spanning vectors for first and second moments statistics,
respectively. We represent the source domain with source BN statistics {µs,σs}, which can be
obtained directly from source model without accessing source dataset. We incorporate representa-
tions from the source domain to potentially benefit from knowledge acquired on the source domain.
The target domain is represented by n spanning vectors in Mspt and Σspt and can be extracted
from the support set by aggregation functions or dimensionality reduction methods such as singular
value decomposition (SVD). Specifically with SVD, we factorize support sample features in each
BN layer as Z = USV T , where Z ∈ RC×|Lspt|. Top n vectors in USW are used as spanning
vectors, where W = diag(w) is a scaling diagonal matrix with wi as the mean of the ith row of
V T . The resulting features from BN are then ZBN =

(
Z−µLCCS

σLCCS

)
γs+βs. We finetune the Linear

Combination Coefficients for batch normalization Statistics (LCCS) η,ρ ∈ Rn+1 on all BN layers
with cross-entropy minimization on the support set.

Our proposed formulation generalizes the original BN operation where ηspt = ρspt = 0 and
ηs = ρs = 1. It also generalizes the channel-wise finetuning of BN statistics and parameters;
by setting target domain spanning vectors as basis vectors and n = C, our proposed method is
equivalent to unconstrained optimization of BN layers. With n << C, we can optimize BN layers
with significantly fewer parameters. We implement n = 1 in our main experiments. With larger
support sets, we can increase n to obtain a better approximation.

The simplest approximation case: We use only one spanning vector for the target domain i.e.
n = 1. Similar to the source domain, we represent the target domain by BN first and second
moment statistics {µspt,σspt} computed on the support samples, so:

µLCCS = ηsptµspt + ηsµs and σLCCS = ρsptσspt + ρsσs (4)

where the scalar LCCS parameters are ηs, ηspt, ρs, ρspt ∈ R. The proposed formation with n = 1 is
a linear combination of the BN statistics of the source domain data and the support samples.

After finetuning the LCCS parameters using support samples, we use the estimated BN adaptation
statistics µLCCS and σLCCS on the target domain for inference. Note that we do not adjust the
BN statistics further during test time, hence unlike test-time BN, our adapted model is not affected
by test-time mini-batch size and class distribution.
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Table 2: Number of parameters in BN layers.

Network # BN parameters # LCCS
ResNet-18 9,600 80
ResNet-50 53,120 212
ResNet-101 105,344 416
DenseNet-121 83,648 484

In Table 2, we summarize the number of total
learnable parameters in BN layers versus LCCS
parameters in network architectures used in our
experiments. Model finetuning involves up-
dating network parameters according to a new
objective. Without sufficient labelled samples,
updating a large number of network parameters
is an ill-posed problem. Adapting only the BN
parameters (or equivalently BN statistics) allows smaller adjustments to the original network, how-
ever in deep networks, this still amounts to a large number of learnable parameters as in Table 2.
Our proposed method drastically decreases the number of learnable parameters to four learnable
LCCS parameters per BN layer as shown in Equation 4. In the case of extremely limited support
set, the proposed method is less prone to overfitting and it is easier to find the global optimum for
the constrained optimization problem.

3.3 IMPLEMENTATION DETAILS

The overall objective of the proposed method is to finetune LCCS parameters to minimize cross-
entropy loss on the support samples:

L(η,ρ) = −
∑

(x,y)∈Lspt

y log f(x;η,ρ), (5)

where x and y are input and one-hot class encoding of target domain support samplesLspt, and f is
the source model with learnable LCCS parameters. The proposed method comprises an initialization
and a gradient update stage.

Initialization stage: We search for initialization values for LCCS to warm start the optimization
process. We first compute the support BN statistics µspt and σspt by exponential moving average
(EMA) for m epochs, which allows µspt and σspt to update smoothly. Then, we conduct a one-
dimensional grid search on the LCCS parameters by setting ηspt,i = ρspt,i = v for i ∈ {1, . . . , n}
where v ∈ {0, 0.1, . . . , 1.0} and ηs = ρs = 1 − v with values tied across all BN layers. The
initialization value that minimizes cross-entropy loss on the support samples is selected.

Gradient update stage: We further optimize the LCCS parameters by gradient descent update for
m epochs while concurrently updating support BN statistics by EMA. In this stage, parameter values
are not tied across BN layers and we do not impose convex constraint on the training and support
coefficient pairs to allow more diverse combinations.

We set m = 10 for both stages for all our experiments. Support samples are augmented with the
same data augmentations for source model training.

4 EXPERIMENTS AND RESULTS

We evaluate our proposed method on 6 datasets, and compare with 3 categories of methods: test-time
adaptation, few-shot transfer learning, and source-free UDA to answer the following questions:

Question 1: Effectiveness and reliability of few-shot adaptation setting? Finetuning LCCS with
few-shot samples achieves better and more reliable performance than test-time adaptation of BN
layers with a streaming unlabelled dataset.

Question 2: Effectiveness of finetuning LCCS? Our proposed low-dimensional finetuning of
LCCS parameters reduces overfitting on few-shot samples and improves cross-domain adaptation.

Question 3: Trade-off between accuracy and data efficiency? Source-free UDA can outperform
source-free few-shot adaptation in some cases at the cost of increased data usage and model update
computation.

We evaluate our proposed method on publicly available benchmark datasets commonly used for
domain shifts. We cover different types of shifts: PACS (7 classes in 4 domains) for style shift,
VisDA (12 classes in 2 domains) for synthetic-to-real shift, Camelyon17 (2 classes in 2 domains)
and iWildCam (182 classes in 2 domains) for naturally-occurring domain shifts, and Office (31
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classes in 3 domains) and OfficeHome (65 classes in 4 domains) for objects photographed at dif-
ferent environments and backgrounds. For each dataset, our source models are the base models
trained on source domain(s) using empirical risk minimization (ERM) or domain generalization
methods demonstrating state-of-the-art performance on the corresponding datasets. We follow the
same evaluation metrics used in recent publications: accuracy for PACS, Camelyon17 and Office-
Home, macro-F1 for iWildCam, average precision for VisDA, and average per-class accuracy for
Office31. We describe the datasets, their corresponding source models and implementation in detail
in Appendix Section C.1.

4.1 COMPARISON WITH TEST-TIME BN ADAPTATION

We compare our method with the baseline source models, as well as with test-time adaptation meth-
ods that also augment only batch normalization layers namely Test-time BN (Nado et al., 2020) and
the state-of-the-art Tent (Wang et al., 2021a) that adapts BN parameters by entropy minimization
with default hyperparameters i.e. Adam or SGD with momentum with mini-batch size 128 and
learning rate 0.001. We point out that test-time adaptation methods are not designed for the same
setting and are not directly comparable with our proposed method. We include them to show empir-
ically that adapting with a few labelled samples can achieve better and more reliable classification
performance than adapting with a large streaming dataset. On all datasets, we set mini-batch size as
32, and use Adam optimizer with 0.001 learning rate for finetuning LCCS. For larger support sets
at k ≥ 5, we use the nearest-centroid-classifier as in (Triantafillou et al., 2021) instead of source
classifier. We set n = k × # classes for µLCCS for Camelyon17 and VisDA, and n = 1 otherwise.

From Table 3, our proposed method improves over source models even with a single example per
class for all datasets evaluated, and overall is comparable to or better than Test-time BN and Tent
when k ≥ 5. We observe that Tent performance is dependent on optimizer choice, with Adam
outperforming SGD by approximately 2% in PACS and SGD outperforming Adam by as much
as 39.2% on VisDA. Since the better performing optimizer is dataset-dependent, this makes the
practical usage of Tent challenging. For PACS, our proposed method performs better than the best
case of Tent when support set has 5 or 10 samples per class. For Camelyon17, all BN adaptation
methods improve over source model accuracy by at least 18% in the best scenario, implying that
replacing source BN statistics with target BN statistics is effective in addressing domain shift in this
dataset. For the 182-class iWildCam dataset, the test dataset is imbalanced; 102 classes have at least
1 sample, and only 87 classes have at least 5 samples. Hence to prevent introducing more class
imbalance in the adaptation and evaluation processes, we only evaluate the setting where k = 1,
which translates to 102 support samples. Our proposed method improves slightly over source model,
while all test-adaptation methods obtained lower F1-score than the original baseline performance.
Similarly for VisDA, our proposed method obtains the best target performance. In particular, all
test-time adaptation methods result in worse performance than original source model. We provide
standard errors of results in Table 3 in Appendix Section C.2.

Effect of test batches: Although test-time adaptation methods can improve the source model with-
out supervision of labelled samples, their performance relies on streaming conditions and severely
degrades with smaller mini-batch size and class-imbalanced mini-batches as shown in Table 4, and
in detail in Appendix Section C.2. We constructed long-tailed imbalanced PACS and VisDA follow-
ing the procedure in (Cao et al., 2019), where sample sizes decay exponentially from the first to last
class and α is the ratio of the largest to smallest class. The good performance of test-time methods is

Table 3: Target domain classification performance for 7-class classification on PACS, binary classifi-
cation on Camelyon17, 182-class classification on iWildCam, and 12-class classification on VisDA.

Method PACS; ERM PACS; MixStyle Camelyon17 iWildCam VisDA
Art Cartoon Photo Sketch Art Cartoon Photo Sketch

Source model 76.4 75.8 96.0 67.0 83.9 79.1 95.8 73.8 70.3 31.0 64.7
+ Test-time BN 81.0 79.8 96.2 67.5 83.3 82.1 96.7 74.9 89.9 30.5 60.7
+ Tent (Adam) 83.5 81.8 96.8 71.3 86.0 83.6 96.8 79.2 64.1 18.3 26.5
+ Tent (SGD) 81.1 79.6 96.5 68.2 83.7 82.0 96.4 75.6 91.4 29.9 65.7

+ finetune LCCS (k = 1) 77.9 80.0 95.9 72.5 82.0 80.7 95.9 79.3 76.1 31.8 67.0
+ finetune LCCS (k = 5) 85.0 83.3 96.5 81.5 85.7 85.5 97.2 80.0 88.3 - 76.0
+ finetune LCCS (k = 10) 86.8 86.4 97.7 79.4 87.7 86.9 97.5 83.0 90.2 - 79.2
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Table 4: Average target domain classification accuracy for evaluation settings where test-time adap-
tation can degrade performance.

Method PACS VisDA
Test batch Balanced α = 10 α = 100 Balanced α = 10 α = 100

Source model (MixStyle) any 83.1 79.9 76.9 64.7 55.6 54.7
+ Test-time BN 8 78.6 74.6 63.9 55.7 52.5 51.5

32 83.3 78.1 66.8 60.7 57.1 55.2
128 84.3 78.6 66.6 61.9 58.1 55.3

+ Tent 8 81.1 77.2 67.8 22.0 38.7 46.7
32 86.1 80.6 69.4 59.0 60.8 57.5

128 86.4 80.0 67.7 65.7 59.8 56.2

+ finetune LCCS (k = 1) any 84.5 81.3 78.4 67.0 67.7 68.0
+ finetune LCCS (k = 5) any 87.1 84.9 81.9 76.0 77.2 77.8
+ finetune LCCS (k = 10) any 88.8 86.8 84.3 79.2 78.8 79.1

dependent on having large, evenly classes-distributed mini-batches. On the contrary, our proposed
method is not dependent on streaming conditions and can more reliably adapt to the target domain.

4.2 COMPARISON WITH SOURCE-FREE FEW-SHOT TRANSFER LEARNING

As far as we know, there are no existing methods designed and evaluated specifically for our source-
free few-shot DA setting. We apply existing methods in DA and few-shot transfer learning to provide
benchmark performance. We compare with AdaBN (Li et al., 2016) by replacing source BN statis-
tics with those calculated on target support set, finetuning the source model on BN layers or clas-
sifier or feature extractor, finetuning entire model with L2 or L2-SP (Li et al., 2018) or DELTA (Li
et al., 2019) regularization, Late Fusion (Hoffman et al., 2013) which averages scores from source
and target classifier, and FLUTE (Triantafillou et al., 2021) which optimizes BN parameters with
nearest-centroid classifier. FLUTE assumes the availability of multiple source datasets to train mul-
tiple sets of BN parameters for further blending to initialize the finetuning process. Since we only
have access to the pre-trained source model in our setting, we reduce FLUTE to the single source
dataset case and initialize FLUTE with single source BN parameters. It is conventional to update
the classifier when sufficient target samples are available, hence besides implementing with source
classifier (SC), we also implement our proposed method with finetuned classifier (FC) and nearest-
centroid classifier (NCC). We follow learning settings in (Li et al., 2019) for regularized finetuning
and use SGD optimizer with momentum and weight decay 0.0004, and L2 regularization is also
added to finetuning on classifier or feature extractor to prevent overfitting. For all other methods that
finetune on BN layers, we use Adam optimizer following (Wang et al., 2021a). We set learning rate
0.001, mini-batch size 32 and epochs 10 for all methods and datasets evaluated.

From Table 5, we observe that regularized finetuning tends to adapt well at k = 1, but perfor-
mance can lag behind with larger support sets. AdaBN does not consistently improve adaptation;
we show in Appendix Figure 5 that completely replacing source BN statistics degrades performance
for VisDA. Overall, finetuning LCCS with source classifier has at least comparable performance
with regularized finetuning for small support sets. For larger support sets, finetuning LCCS with
NCC has the best performance, with classification accuracy consistently higher than FLUTE which
also uses NCC. We also compare our method to L2 and FLUTE on Office and OfficeHome in Ta-
ble 16. Though the transfer learning methods produce comparable performance on the easy dataset
of Camelyon17 (two classes, two domains), LCCS outperforms on more difficult datasets, which
demonstrates the effectiveness of the proposed low-dimensional finetuning strategy.

LCCS Finetuning vs BN Finetuning: We further study our proposed constrained optimization
of BN layer versus the unconstrained alternative of optimizing directly on the high-dimensional BN
parameters γ and β in Equation 1, with fixed source classifier. We also evaluate a combination of the
two strategies by first finetuning LCCS followed by finetuning BN parameters. From Figure 1, we
see that when the support set is small at k ≤ 3, finetuning LCCS is always better than finetuning BN
parameters. The results are mixed at larger k, which is expected since the unconstrained optimization
is also less prone to overfit with more samples. In addition, we observe that finetuning LCCS first
provides good initialization for further finetuning of BN parameters, and consistently achieves better
adaptation performance than finetuning BN parameters alone. We make similar observations when
using NCC as classifier in Appendix Section C.5.
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Table 5: Target domain classification accuracy with different classifiers: fully-connected source
classifier (SC), fully-connected finetuned classifier on support set (FC), nearest-centroid classifier
on support set (NCC).

Method PACS Camelyon17 VisDA
k = 1 5 10 1 5 10 1 5 10

AdaBN 82.9 85.5 85.8 72.9 87.8 90.2 56.5 60.9 61.8
finetune BN 79.0 84.3 85.4 72.6 87.7 90.1 59.1 70.9 74.9
finetune classifier 82.5 83.7 83.8 70.5 70.4 70.5 67.6 69.7 77.4
finetune feat. extractor 83.6 86.0 86.1 79.3 86.5 88.3 67.3 68.4 74.7
L2 84.4 85.8 85.6 79.6 88.2 89.5 66.0 66.4 69.6
L2-SP 84.4 85.8 85.6 79.6 88.2 89.5 66.0 66.4 69.6
DELTA 84.4 85.8 85.6 79.6 88.2 89.5 65.9 66.5 70.1
Late Fusion 83.2 83.6 83.6 70.4 70.4 70.5 67.2 69.8 74.5
FLUTE 73.4 85.8 88.1 73.1 86.5 90.9 48.3 67.1 65.7

finetune LCCS (SC) 84.5 85.9 86.3 76.9 88.4 88.6 67.6 69.2 72.1
finetune LCCS (FC) 83.7 86.1 86.6 77.1 88.4 88.6 64.3 71.1 77.7
finetune LCCS (NCC) 75.2 87.1 88.8 72.4 88.3 90.2 52.9 76.0 79.2

(a) PACS; ERM (b) PACS; MixStyle (c) VisDA (d) Camelyon17

Figure 1: Finetuning LCCS has best performance when support set is extremely small (k ≤ 3).
With larger support set (k ≥ 5), finetuning LCCS+BN parameters attains better performance than
finetuning BN parameters alone.

4.3 COMPARISON WITH SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION

We additionally compare our proposed method with source-free UDA methods which adapts with
entire unlabelled target dataset, including AdaBN (Li et al., 2016), SHOT (Liang et al., 2020),
SFDA (Kim et al., 2020) and SDDA (Kurmi et al., 2021), as well as the few-shot method L2 and
FLUTE, in Table 6 on Office and Office-Home. We observe that self-supervision over the entire
unlabelled target can produce good adaptation performance. Despite using only 5 samples per class,
finetuning LCCS has equal and better adaptation performance than source-free UDA methods in 5
out of 6 domain pairs on Office. SHOT outperforms in the more challenging OfficeHome dataset,
which reflects the difficulty of source-free few-shot setting. However, our proposed method performs
the best out of the few-shot methods evaluated, which demonstrates its effectiveness in the few-shot
setting. We refer readers to Appendix Section C.4 for detailed results and comparisons with non-
source-free few-shot DA methods.

Table 6: Target domain classification accuracy for 31-class classification on Office and 65-class
classification on OfficeHome with ResNet-50. † denotes target samples are unlabelled.

Method k Office OfficeHome
A→W A→ D W→ A W→ D D→ A D→W Avg Avg

SHOT all† 90.1 94.0 74.3 99.9 74.7 98.4 88.5 71.8
SFDA all† 91.1 92.2 71.2 99.5 71.0 98.2 87.2 65.7
SDDA all† 82.5 85.3 67.7 99.8 71.0 98.2 84.1 -
AdaBN all† 78.2 81.3 59.0 99.9 60.3 97.9 79.4 61.5
L2 5 78.9 79.4 64.3 99.9 64.8 97.8 80.9 63.3
FLUTE 5 84.6 88.2 66.4 99.1 66.4 95.3 83.3 61.2

finetune LCCS (SC) 5 76.9 82.0 64.3 99.9 65.2 97.3 80.9 63.5
finetune LCCS (FC) 5 91.2 91.3 74.7 99.6 75.1 98.5 88.4 67.8
finetune LCCS (NCC) 5 89.7 91.2 72.3 99.8 72.6 97.7 87.2 67.4
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Table 8: Ablation study of initialization and
gradient update stages on VisDA, n = 1.

Stage Avg Prec (%)
Initialization Gradient update k = 1 k = 5 k = 10

7 7 64.7 64.7 64.7
3 7 65.9 66.6 66.5
7 3 66.0 66.6 68.6
3 3 67.0 68.1 69.3

Table 9: Target domain performance with different
number n of target domain spanning vectors.

n PACS Camelyon17 VisDA
k = 1 5 10 1 5 10 1 5 10

1 84.5 85.9 86.3 76.1 87.6 88.7 67.0 68.1 69.3
10 83.6 85.6 86.5 76.9 88.4 88.6 67.6 68.9 71.3

k× # classes 83.6 85.7 86.5 76.9 88.4 88.6 67.6 69.2 72.1
90% explained variance 83.6 85.6 86.4 76.9 88.0 88.4 67.5 68.9 71.4

Table 7: Comparing resources required for SHOT
(source-free UDA), Tent (test-time adaptation) and
our proposed method (source-free k-shot adaptation,
k = 10) on 12-class dataset VisDA.

Method Target dataset for adaptation Test-time update
# Samples Storage size (MB)

SHOT (UDA) 55,388 935 -
Tent (Test-time DA) 128 2.2 BN layers
LCSS (k-shot DA) 120 2 -

Resources: We compare the resources of
the three source-free methods from differ-
ent settings: SHOT, Tent, and our few-
shot LCCS finetuning. From Table 7, the
number and storage size of samples for
our proposed method is much smaller than
those used for SHOT. At test time, our
method requires no computation for updat-
ing the model, which is at least on par with
test-time adaptation methods since they can
need additional backward passes for online
adaptation. For instance, Tent needs at least an additional backward pass. More importantly, our
setting is one way to address test-time adaptation’s reliance on streaming conditions which may
challenge its usefulness in practice.

5 ANALYSIS AND DISCUSSIONS

We provide further analysis of our proposed method. Additional analysis on LCCS parameter ini-
tialization and cross-entropy objective can be found in Appendix Section D.

Ablation study. We conduct ablation study on the initialization and gradient update stages of the
proposed method in Table 8. Each stage independently improves the base performance on VisDA
dataset, showing that both stages help the source model adapt to the target domain.

We further experiment with different algorithm design choices in optimizing LCCS parameters on
VisDA. Initializing LCCS with values tied across all BN layers (67.0% avg prec) is better than
greedily initializing each BN layer sequentially from the shallowest layer first (66.1% avg prec). In
the gradient update stage, linear combination of statistics (67.0% avg prec) in Equations 4 performs
better than restricting to a convex combination (66.1% avg prec).

Approximation with n > 1. We investigate increasing the number n of spanning vectors used to
represent the target domain in Equation 3. From Table 9, when support set is larger, more vectors can
be used to represent the target domain and performance improves with a larger number of adaptable
LCCS parameters on Camelyon17 and VisDA. We observe in general that setting n = k× # classes
for k ≥ 5 obtains best or close-to-best performance, while the choice at k = 1 is dataset-dependent.

6 CONCLUSION

To conclude, we proposed LCCS finetuning, a method of source-free k-shot domain adaptation,
in the setting of fully test-time adaptation with only a few labelled target samples available. We
revisited domain adaptation by BN and introduced a new formulation for the BN operation. We
proposed a linear approximation for the BN parameters, which significantly reduces the number of
variables to learn on a limited support set. We show that target domain performance can be improved
by adapting only four LCCS parameters per BN layer. Our proposed method quickly adjusts source
model with extremely limited target data with no further re-training during test time, and hence is
not affected by test-time batch-size and class distribution. Our proposed method provides a strong
alternative to test-time adaptation, and compares favorably in accuracy across multiple benchmark
datasets.
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APPENDIX

A CHALLENGES WITH ADAPTATION BY TEST-TIME BN

Empirical works in literature show that test-time BN and other methods replacing training BN statis-
tics with test-time BN statistics can improve source model adaptation to domain shift. We identify
4 challenges when using test-time BN:

1. No guarantee that domain shift can be corrected;
2. Need for mini-batch evaluation with large mini-batch size;
3. Need for controlled class distribution in each mini-batch;

In Figure 2, we illustrate these points using the source model trained on the VisDA dataset synthetic
domain by the state-of-the-art method CSG (Kang et al., 2019), with mini-batch size 32. We plot t-
SNE representations of features input into the last BN layer of ResNet-101, and after standardization
by BN statistics.

Firstly, there is no guarantee that using mini-batch statistics on all BN layers can correct for domain
shift without using any label information on the target domain. Existing works (Zhou et al., 2021b)
observe that sample mean and standard deviation differ across domains in the shallow layers of the
network, but differ across classes in the deeper layers of the network, such that BN statistics may
need to be adapted differently at different layers. In Figure 2(a), we see an obvious displacement of
the features due to synthetic-to-real domain shift, but test-time BN does not completely map target
domain features onto the source domain feature space. Moreover, entropy minimization over unla-
belled data in mini-batches does not guarantee performance maximization as shown in Figure 5. We
cannot prevent trivial solutions where all unlabeled samples are assigned the same one-hot encoding
without information on the domain evaluated.

Mini-batch evaluation is required in test-time BN to estimate new BN statistics, however the quality
of statistics estimated in mini-batches depends on batch size. In Figure 2(b), we draw two sub-
datasets from the source domain, so there is no domain shift. We standardize one sub-dataset with
training BN statistics collected by the source model after training on the entire source dataset, and the
other sub-dataset with mini-batch statistics. Although the features from the two sub-datasets match
exactly before standardization, a shift is introduced from using the two different BN statistics.

During mini-batch evaluation, each mini-batch is expected to have the same class distribution as at
training. While users can enforce evenly distributed classes during training, we may not be able
to control the class composition of samples at test-time when the model is deployed in the wild.
To demonstrate how different class distributions in mini-batches affect the resulting features, in
Figure 2(c), we draw one class-balanced sub-dataset with the same number of samples per class,
and a class-imbalanced sub-dataset following the original source domain class composition. For
example, the original class composition has 11.4% ‘motorcycle’ and 4.8% ‘bicycle’. Both sub-
datasets are drawn from the source domain so there is no domain shift. After standardization, we
observe a greater shift in the features as compared to before standardization. For instance, samples
from the ‘person’ class are split into two distinct clusters depending on the BN statistics used.

B BN LAYER PARAMETERIZATION

There are two pairs of adjustable variables in the BN operation in Equation 1, namely BN statistics
{µ,σ} and BN parameters {γ,β}. Conventionally, when BN layers are finetuned, the BN param-
eters {γ,β} are optimized by gradient update on a specified task objective (Wang et al., 2021a;
Triantafillou et al., 2021). In this section, we point out that optimizing either {µ,σ} or {γ,β} is
equivalent to optimizing all 4 variables except for edge cases. With this observation, we can choose
to optimize BN statistics when it is more convenient to do so.

We consider the BN operation f of a single BN layer for a fixed input feature Z, and without the
loss of generality, we assume the the number of channels C = 1 in the BN layer. We define

f(Z;µ,σ,γ,β) =

(
Z− µ
σ

)
γ + β (6)
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Before 
standardization

After 
standardization

(a) Effect of test-time BN in correcting domain shift

Before 
standardization

After 
standardization

(b) Effect of sample size in estimating BN statistics; all samples from source

Before 
standardization

After 
standardization

(c) Effect of class distribution in estimating BN statistics; all samples from source

Figure 2: Challenges in applying time-time BN statistics, demonstrated on VisDA dataset with t-
SNE plots of features at last BN layer of ResNet-101. Best viewed in color.
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where Z ∈ Rh×w for h,w ∈ Z+, and µ,β ∈ R, and σ,γ ∈ R \ {0}.

Firstly, we show that adjusting {γ,β} is equivalent to adjusting all 4 variables. For any µ, µ̃, β̃ ∈ R
and σ, σ̃, γ̃ ∈ R \ {0}, there exists β∗ ∈ R and γ∗ ∈ R \ {0} such that f(Z;µ,σ,γ∗,β∗) =

f(Z; µ̃, σ̃, γ̃, β̃). By algebraic manipulation, we can obtain γ∗ and β∗:

γ∗ =
(σ
σ̃

)
γ̃ and β∗ =

(
µ− µ̃
σ̃

)
γ̃ + β̃ (7)

Next, we show that adjusting {µ,σ} is equivalent to adjusting all 4 variables. For any µ̃, β̃,β ∈ R
and σ̃, γ̃,γ,∈ R \ {0}, there exists µ∗ ∈ R and σ∗ ∈ R \ {0} such that f(Z;µ∗,σ∗,γ,β) =

f(Z; µ̃, σ̃, γ̃, β̃). By expanding the BN operation in Equation 6, we obtain:

f(Z;µ,σ,γ,β) =
Z− µ+ βσ/γ

σ/γ
(8)

By equating the numerator (and denominator) in Equation 8 for the two expressions and rearranging
terms, we can obtain σ∗ and µ∗:

σ∗ =

(
γ

γ̃

)
σ̃ and µ∗ =

(
β̃ − β
γ̃

)
σ̃ + µ̃ (9)

This implies that we can obtain the optimum of the function f(Z;µ,σ,γ,β) with fixed Z by opti-
mizing only over either {γ,β} or {µ,σ}.

C FURTHER EXPERIMENT RESULTS

C.1 DATASET DETAILS

PACS: PACS (Li et al., 2017) is an image classification dataset commonly used for domain gen-
eralization evaluation. It contains images from 4 styles or domains, namely Art painting, Cartoon,
Photo and Sketch. Each domain has a total of 7 classes: dog, elephant, giraffe, guitar, horse, house
and person. We follow the setup in MixStyle (Zhou et al., 2021b;a), the method with state-of-the-art
generalization performance on PACS, to produce the source ResNet-18 models for evaluation. We
conduct leave-one-domain-out evaluation by treating each of the 4 domains as the target in turn, and
treating the other 3 domains as source. Each experiment is run for 5 seeds following the original
MixStyle evaluation (Zhou et al., 2021b).

Camelyon17: Camelyon17 is a WILDS dataset (Koh et al., 2020a) used to benchmark image classi-
fication under naturally-occurring domain shifts. The dataset comprises tissue patches from different
hospitals for tumor detection i.e. binary classification. We directly use the ERM DenseNet-121 mod-
els trained over 10 seeds provided at Koh et al. (2020b) as our source models. It contains 2 classes
in 2 domains.

iWildCam: iWildCam is a WILDS dataset (Koh et al., 2020a) for animal species classification
using photos collected from camera traps at different locations. We directly use the ERM ResNet-
50 models trained over 3 seeds provided at Koh et al. (2020b) as our source models. The dataset
contains a total of 182 classes in 2 domains.

VisDA: VisDA (Peng et al., 2017) is a popular image classification dataset to evaluate model perfor-
mance under synthetic-to-real domain shift, and it contains 12 classes in 2 domains. We follow the
setup in CSG (Chen et al., 2021a), which achieved the state-of-the-art performance using synthetic
rendering of 3D models as source domain and real images from Microsoft COCO as target domain.
We directly use the CSG ResNet-101 model provided at Chen et al. (2021b) as our source model,
and run adaptation methods over 3 seeds.

Office: Office (Saenko et al., 2010) is a popular dataset for domain adaptation with 31 categories of
office objects in 3 domains: Amazon (A), Webcam (W) and DSLR (D). We evaluate on all 6 domain
pairs with ERM ResNet-50 source models trained over 5 seeds with Zhou et al. (2021a). We also
evaluate on additional settings and architectures, and we describe these at where the corresponding
results are presented.
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OfficeHome: OfficeHome (Venkateswara et al., 2017) is a challenging dataset for domain adapta-
tion with 65 categories of everyday objects in 4 domains: Art (Ar), Clipart (Cl), Product (Pr) and
Real-World (Rw). We evaluate on all 12 domain pairs with ERM ResNet-50 source models trained
over 5 seeds with Zhou et al. (2021a)

C.2 ADDITIONAL RESULTS FOR COMPARISON WITH TEST-TIME ADAPTATION

In Table 10 and 11, we provide detailed results with standard errors corresponding to values in
Table 3. The large variation in target performance in Camelyon17 is inherited from the original
source models, and due to variability of the quality of the support set at k = 1 which translates to
only two support samples.

Method Art Cartoon Photo Sketch Avg
Source model (ERM) 76.4 ± 1.0 75.8 ± 1.0 96.0 ± 0.3 67.0 ± 1.3 78.8 ± 0.7
+ Test-time BN 81.0 ± 0.4 79.8 ± 0.2 96.2 ± 0.4 67.5 ± 0.7 81.1 ± 0.2
+ Tent (Adam) 83.5 ± 0.5 81.8 ± 0.6 96.8 ± 0.4 71.3 ± 1.0 83.4 ± 0.3
+ Tent (SGD) 81.1 ± 0.4 79.6 ± 0.5 96.5 ± 0.5 68.2 ± 0.7 81.4 ± 0.2

+ finetune LCCS (k=1) 77.9 ± 3.6 80.0 ± 1.0 95.9 ± 0.7 72.5 ± 4.3 81.6 ± 1.2
+ finetune LCCS (k=5) 85.0 ± 1.0 83.3 ± 0.9 96.5 ± 0.6 81.5 ± 1.0 85.8 ± 0.4
+ finetune LCCS (k=10) 86.8 ± 1.2 86.4 ± 0.5 97.7 ± 0.3 79.4 ± 1.2 87.6 ± 0.3

Source model (MixStyle) 83.9 ± 0.1 79.1 ± 0.9 95.8 ± 0.2 73.8 ± 2.0 83.1 ± 0.5
+ Test-time BN 83.3 ± 0.3 82.1 ± 0.7 96.7 ± 0.2 74.9 ± 0.5 84.3 ± 0.2
+ Tent (Adam) 86.0 ± 0.7 83.6 ± 0.4 96.8 ± 0.4 79.2 ± 0.6 86.4 ± 0.3
+ Tent (SGD) 83.7 ± 0.6 82.0 ± 0.6 96.4 ± 0.4 75.6 ± 0.7 84.4 ± 0.3

+ finetune LCCS (k=1) 82.0 ± 1.2 80.7 ± 1.1 95.9 ± 0.4 79.3 ± 2.1 84.5 ± 0.7
+ finetune LCCS (k=5) 85.7 ± 1.2 85.5 ± 0.9 97.2 ± 0.2 80.0 ± 2.2 87.1 ± 0.5
+ finetune LCCS (k=10) 87.7 ± 1.0 86.9 ± 0.6 97.5 ± 0.3 83.0 ± 1.1 88.8 ± 0.6

Table 10: PACS: Target domain classification accuracy in multi-domain setting by leave-one-
domain-out evaluation for 7-class classification e.g. when Art is target domain, the other 3 domains
(Cartoon, Photo, Sketch) are source domains.

Method Camelyon17 iWildCam VisDA
Source model 70.3 ± 6.4 31.0 ± 1.3 64.7
+ Test-time BN 89.9 ± 1.5 30.5 ± 0.4 60.7 ± 0.1
+ Tent (Adam) 64.1 ± 12.2 18.3 ± 0.4 26.5 ± 2.2
+ Tent (SGD) 91.4 ± 0.9 29.9 ± 0.4 65.7 ± 0.0

+ finetune LCCS (k=1) 76.1 ± 13.0 31.8 ± 1.0 67.0 ± 1.0
+ finetune LCCS (k=5) 88.3 ± 4.0 - 76.0 ± 0.5
+ finetune LCCS (k=10) 90.2 ± 1.6 - 79.2 ± 0.4

Table 11: Target domain classification performance for binary classification on Camelyon17, 182-
class classification on iWildCam, and 12-class classification on VisDA.

We show two scenarios where test-time adaptation produces unreliable predictions on the multi-
domain PACS dataset in Table 12. These two scenarios correspond to the challenges discussed in
Section A, namely requirement for large mini-batch size and even class distribution in each mini-
batch. When test mini-batch size is small at 8, both Test-time BN and Tent performs worse than
the original source model. When test samples are sequentially ordered by class instead of randomly
shuffled, performance severely degrades to approximately 37% accuracy. Smaller extent of class
imbalance when α = 10 and α = 100, where α is the sample size ratio of the largest to the
smallest class, also reduces effectiveness of test-time adaptation. In contrast, all model parameters
are frozen after our few-shot adaptation setting, hence the model adapted by our proposed method
is not affected by mini-batch size and class-distribution at testing time.
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(a) Effect of mini-batch size

Method Test batch Art Cartoon Photo Sketch Avg
Random shuffling of test samples
Source model (MixStyle) any 83.9 ± 0.1 79.1 ± 0.9 95.8 ± 0.2 73.8 ± 2.0 83.1 ± 0.5
+ Test-time BN 8 78.4 ± 0.4 76.6 ± 0.5 89.5 ± 0.3 70.0 ± 0.5 78.6 ± 0.2
+ Test-time BN 32 82.5 ± 0.5 81.0 ± 0.7 95.3 ± 0.2 74.4 ± 0.7 83.3 ± 0.1
+ Test-time BN 64 83.0 ± 0.4 82.0 ± 0.6 96.5 ± 0.3 74.8 ± 0.6 84.1 ± 0.3
+ Tent (Adam) 8 81.1 ± 0.7 79.3 ± 1.1 91.4 ± 0.8 72.7 ± 1.7 81.1 ± 0.6
+ Tent (Adam) 32 85.8 ± 0.5 84.0 ± 0.5 96.5 ± 0.2 78.2 ± 0.7 86.1 ± 0.3
+ Tent (Adam) 64 85.8 ± 0.6 83.1 ± 0.8 96.6 ± 0.4 80.1 ± 0.6 86.4 ± 0.4

+ finetune LCCS (k = 1) any 82.0 ± 1.2 80.7 ± 1.1 95.9 ± 0.4 79.3 ± 2.1 84.5 ± 0.7
+ finetune LCCS (k = 5) any 85.7 ± 1.2 85.5 ± 0.9 97.2 ± 0.2 80.0 ± 2.2 87.1 ± 0.5
+ finetune LCCS (k = 10) any 87.7 ± 1.0 86.9 ± 0.6 97.5 ± 0.3 83.0 ± 1.1 88.8 ± 0.6

(b) Effect of imbalanced class distribution

Method Test batch Art Cartoon Photo Sketch Avg
Sequential ordering of test samples by class
Source model (MixStyle) any 83.9 ± 0.1 79.1 ± 0.9 95.8 ± 0.2 73.8 ± 2.0 83.1 ± 0.5
+ Test-time BN 128 38.4 ± 0.2 38.7 ± 0.6 45.8 ± 0.5 27.4 ± 0.4 37.6 ± 0.3
+ Tent (Adam) 128 37.9 ± 0.3 38.5 ± 0.6 45.8 ± 0.4 26.2 ± 0.3 37.1 ± 0.3

+ finetune LCCS (k = 1) any 82.0 ± 1.2 80.7 ± 1.1 95.9 ± 0.4 79.3 ± 2.1 84.5 ± 0.7
+ finetune LCCS (k = 5) any 84.4 ± 0.9 82.6 ± 1.1 96.3 ± 0.4 80.2 ± 2.1 85.9 ± 0.5
+ finetune LCCS (k = 10) any 84.7 ± 1.0 83.0 ± 0.9 96.4 ± 0.5 81.0 ± 1.2 86.3 ± 0.7

Long-tailed class distribution, α = 10
Source model (MixStyle) any 79.5 ± 1.2 78.2 ± 1.3 93.2 ± 1.0 68.8 ± 2.2 79.9 ± 0.6
+ Test-time BN 128 80.9 ± 0.6 76.1 ± 0.3 89.6 ± 0.8 67.8 ± 0.6 78.6 ± 0.4
+ Tent (Adam) 128 82.2 ± 0.8 76.8 ± 0.6 90.0 ± 0.8 71.1 ± 0.8 80.0 ± 0.3

+ finetune LCCS (k = 1) any 80.8 ± 2.9 77.2 ± 4.3 93.1 ± 0.9 74.1 ± 2.8 81.3 ± 1.2
+ finetune LCCS (k = 5) any 85.1 ± 2.1 83.1 ± 3.0 94.2 ± 2.1 77.2 ± 2.2 84.9 ± 0.7
+ finetune LCCS (k = 10) any 85.7 ± 1.8 85.3 ± 1.9 96.0 ± 0.8 80.3 ± 0.5 86.8 ± 0.8

Long-tailed class distribution, α = 100
Source model (MixStyle) any 77.7 ± 1.9 74.9 ± 2.0 92.7 ± 1.1 62.2 ± 2.8 76.9 ± 0.8
+ Test-time BN 128 70.3 ± 0.7 62.6 ± 0.2 79.5 ± 1.1 54.0 ± 1.1 66.6 ± 0.6
+ Tent (Adam) 128 71.8 ± 0.6 63.2 ± 0.4 80.0 ± 1.2 55.7 ± 1.4 67.7 ± 0.7

+ finetune LCCS (k = 1) any 79.7 ± 3.2 73.0 ± 7.2 93.4 ± 1.5 68.5 ± 5.0 78.4 ± 1.9
+ finetune LCCS (k = 5) any 83.4 ± 3.3 80.1 ± 4.5 92.5 ± 3.4 71.7 ± 3.3 81.9 ± 1.2
+ finetune LCCS (k = 10) any 83.8 ± 3.1 82.7 ± 2.3 95.5 ± 1.1 75.1 ± 1.4 84.3 ± 0.9

Table 12: PACS: Average target domain classification accuracy for evaluation settings where test-
time adaptation can result in worse performance than the original source model.

C.3 ADDITIONAL RESULTS FOR COMPARISON WITH SOURCE-FREE FEW-SHOT TRANSFER
LEARNING

In Table 13, we provide detailed results with standard errors corresponding to values in Table 5. The
large variation in target performance in Camelyon17 is inherited from the original source models,
and due to variability of the quality of the support set at k = 1 which translates to only two support
samples. We observe that standard errors tend to be larger at k = 1 for all datasets due to variability
of the quality of the extremely small support set, and this is especially so for FLUTE and finetuning
LCCS with NCC classifier because the centroid classifier depends directly on how representative the
support set is of the entire target domain dataset.

C.4 ADDITIONAL RESULTS FOR COMPARISON WITH OTHER DOMAIN ADAPTATION
SETTINGS

We compare with state-of-the-art non-source-free few-shot domain adaptation methods which uses
source data and few-shot target data for adaptation on Office. Daume (Daumé, 2007) trains an
SVM classifier on augmented source and target samples, and GNA (Yoo et al., 2018) groups source
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Method PACS-Art PACS-Cartoon PACS-Photo
k = 1 5 10 1 5 10 1 5 10

AdaBN 80.7 ± 2.0 84.5 ± 0.7 85.0 ± 0.6 79.9 ± 0.9 83.2 ± 0.8 83.5 ± 0.8 95.2 ± 0.6 96.0 ± 0.8 96.0 ± 0.7
finetune BN 74.2 ± 3.6 80.9 ± 0.9 83.2 ± 1.4 77.9 ± 1.8 82.0 ± 1.8 83.1 ± 1.4 92.4 ± 0.6 95.9 ± 0.7 96.2 ± 0.5
finetune classifier 81.7 ± 0.7 83.7 ± 0.6 84.2 ± 0.3 79.2 ± 0.6 80.5 ± 0.6 80.5 ± 0.6 95.6 ± 0.6 96.0 ± 0.3 96.1 ± 0.3
finetune feat. extractor 83.3 ± 0.8 86.1 ± 1.3 86.1 ± 1.0 81.8 ± 1.0 84.0 ± 1.5 85.4 ± 0.8 95.9 ± 0.6 96.4 ± 0.5 96.6 ± 0.7
L2 83.3 ± 0.9 85.8 ± 0.9 85.6 ± 0.8 81.8 ± 0.7 83.4 ± 0.4 84.1 ± 0.9 96.1 ± 0.4 96.6 ± 0.5 96.4 ± 0.6
L2-SP 83.3 ± 0.9 85.8 ± 0.9 85.6 ± 0.8 81.8 ± 0.7 83.4 ± 0.4 84.1 ± 0.9 96.1 ± 0.4 96.6 ± 0.5 96.4 ± 0.6
DELTA 83.3 ± 1.0 85.8 ± 0.8 85.6 ± 0.7 81.8 ± 0.7 83.3 ± 0.3 83.8 ± 0.9 96.1 ± 0.4 96.7 ± 0.5 96.5 ± 0.7
Late Fusion 83.0 ± 0.6 83.8 ± 0.7 83.8 ± 0.5 79.8 ± 0.2 79.9 ± 0.5 79.7 ± 0.6 95.8 ± 0.4 95.9 ± 0.3 96.0 ± 0.2
FLUTE 67.0 ± 9.7 83.6 ± 3.0 87.2 ± 0.8 73.5 ± 6.4 84.7 ± 0.7 86.1 ± 0.5 90.3 ± 4.1 96.3 ± 0.9 97.2 ± 0.2

finetune LCCS (SC) 82.0 ± 1.2 84.4 ± 0.9 84.7 ± 1.0 80.7 ± 1.1 82.6 ± 1.1 83.0 ± 0.9 95.9 ± 0.4 96.3 ± 0.4 96.4 ± 0.5
finetune LCCS (FC) 80.7 ± 0.9 84.4 ± 1.0 85.0 ± 1.0 79.7 ± 1.2 83.0 ± 0.8 83.3 ± 0.9 95.9 ± 0.5 96.3 ± 0.4 96.5 ± 0.6
finetune LCCS (NCC) 69.8 ± 6.2 85.7 ± 1.2 87.7 ± 1.0 73.9 ± 6.6 85.5 ± 0.9 86.9 ± 0.6 92.0 ± 2.2 97.2 ± 0.2 97.5 ± 0.3

Method PACS-Sketch Camelyon17 VisDA
k = 1 5 10 1 5 10 1 5 10

AdaBN 75.8 ± 2.8 78.5 ± 0.6 78.7 ± 0.6 72.9 ± 14.3 87.8 ± 5.4 90.2 ± 1.4 56.5 ± 0.7 60.9 ± 0.7 61.8 ± 0.3
finetune BN 71.7 ± 3.1 78.6 ± 2.5 79.0 ± 2.2 72.6 ± 7.2 87.7 ± 6.2 90.1 ± 3.5 59.1 ± 0.6 70.9 ± 3.0 74.9 ± 1.5
finetune classifier 73.2 ± 1.1 74.6 ± 1.0 74.6 ± 1.4 70.5 ± 6.1 70.4 ± 6.1 70.5 ± 6.0 67.6 ± 1.4 69.7 ± 0.9 77.4 ± 0.6
finetune feat. extractor 73.4 ± 5.5 77.5 ± 2.5 76.3 ± 1.6 79.3 ± 11.0 86.5 ± 5.4 88.3 ± 4.4 67.3 ± 0.7 68.4 ± 0.4 74.7 ± 0.7
L2 76.5 ± 2.2 77.5 ± 2.2 76.3 ± 1.1 79.6 ± 8.3 88.2 ± 3.8 89.5 ± 2.8 66.0 ± 0.6 66.4 ± 0.5 69.6 ± 0.5
L2-SP 76.5 ± 2.2 77.5 ± 2.2 76.3 ± 1.1 79.6 ± 8.3 88.2 ± 3.8 89.5 ± 2.8 66.0 ± 0.6 66.4 ± 0.5 69.6 ± 0.5
DELTA 76.6 ± 2.3 77.4 ± 2.1 75.4 ± 1.3 79.6 ± 8.3 88.2 ± 3.8 89.5 ± 2.8 65.9 ± 0.7 66.5 ± 0.5 70.1 ± 0.6
Late Fusion 74.3 ± 1.7 75.1 ± 1.3 74.9 ± 1.1 70.4 ± 6.1 70.4 ± 6.1 70.5 ± 6.0 67.2 ± 1.2 69.8 ± 1.1 74.5 ± 0.6
FLUTE 62.8 ± 9.3 78.7 ± 3.4 81.7 ± 1.5 73.1 ± 7.5 86.5 ± 7.0 90.9 ± 3.3 48.3 ± 1.9 67.1 ± 1.9 65.7 ± 1.9

finetune LCCS (SC) 79.3 ± 2.1 80.2 ± 2.1 81.0 ± 1.2 76.9 ± 12.2 88.4 ± 3.8 88.6 ± 3.1 67.6 ± 2.4 69.2 ± 0.1 72.1 ± 0.1
finetune LCCS (FC) 78.5 ± 2.7 80.7 ± 1.8 81.5 ± 1.0 77.1 ± 12.0 88.4 ± 3.7 88.6 ± 3.0 64.3 ± 2.5 71.1 ± 2.3 77.7 ± 0.6
finetune LCCS (NCC) 65.2 ± 11.0 80.0 ± 2.2 83.0 ± 1.1 72.4 ± 15.9 88.3 ± 4.0 90.2 ± 1.6 52.9 ± 5.4 76.0 ± 0.5 79.2 ± 0.4

Table 13: Target domain classification accuracy with different classifiers: fully-connected source
classifier (SC), fully-connected finetuned classifier on support set (FC), nearest-centroid classifier
on support set (NCC).

Method Data Required k Accuracy (%)
Late Fusion (DeCAF-7) Target 1 64.3
Late Fusion Target 1 71.1
Daume (DeCAF-7) Source + Target 1 72.1
Daume Source + Target 1 76.3
GNA Source + Target 1 80.0
GNA + margin loss + RL Source + Target 1 85.0
finetune LCCS (SC) Target 1 72.3 ± 3.5
finetune LCCS (FC) Target 1 82.3 ± 3.1
finetune LCCS (NCC) Target 1 72.6 ± 4.2

Table 14: Amazon→Webcam average classification accuracy for 16-class classification on Office.

model parameters using source samples to collectively finetune parameters in the same group with
the same gradient update. Simultaneous DT (Tzeng et al., 2015), So-HoT (Koniusz et al., 2017),
CCSA (Motiian et al., 2017) and FADA (Motiian et al., 2017) trains a deep network to align source
and target distributions on top of supervised loss. In Table 14, we follow the setup in (Yoo et al.,
2018; Hoffman et al., 2013) to evaluate 1-shot adaptation from Amazon to Webcam using base
architecture ResNet-18 on 16 classes that overlap with ImageNet classes, over 10 seeds. In Table 15,
we evaluate 3-shot adaptation between all domain pairs with base architecture VGG-16, with BN
layer added after every convolution layer for our proposed method, over 5 seeds. We further include
unsupervised domain adaptation methods (Tzeng et al., 2014; Long et al., 2015; Ghifary et al., 2016)
for comparison. While we expect adapting with both source and target data to achieve better target
domain performance than source-free adaptation, we observe from Table 14 and 15 that our proposed
method achieves the best performance on some domain pairs, and has a accuracy gap between 1.4%
and 3.5% on others. The value of the trade-off between accuracy and data and training efficiency
depends on application.

Additionally, we compare with state-of-the-art source-free UDA method SHOT (Liang et al., 2020),
which adapts on the entire unlabelled target dataset, on OfficeHome. From Table 16, SHOT performs
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Method Data Required k A→W A→ D W→ A W→ D D→ A D→W

DDC Source + Target all† 61.8 ± 0.4 64.4 ± 0.3 51.6 ± 0.9 95.6 ± 0.7 58.5 ± 0.8 80.1 ± 0.6
DAN Source + Target all† 68.5 ± 0.4 67.0 ± 0.4 53.1 ± 0.3 99.0 ± 0.2 54.0 ± 0.4 96.0 ± 0.3
DRCN Source + Target all† 68.7 ± 0.3 67.1 ± 0.3 54.1 ± 0.5 99.0 ± 0.2 56.0 ± 0.5 96.4 ± 0.3
Simultaneous DT Source + Target 3 82.7 ± 0.8 86.1 ± 1.2 65.0 ± 0.5 97.6 ± 0.2 66.2 ± 0.3 95.7 ± 0.5
So-HoT Source + Target 3 84.5 ± 1.7 86.3 ± 0.8 65.7 ± 1.7 97.5 ± 0.7 66.5 ± 1.0 95.5 ± 0.6
CCSA Source + Target 3 88.2 ± 1.0 89.0 ± 1.2 72.1 ± 1.0 97.6 ± 0.4 71.8 ± 0.5 96.4 ± 0.8
FADA Source + Target 3 88.1 ± 1.2 88.2 ± 1.0 71.1 ± 0.9 97.5 ± 0.6 68.1 ± 0.6 96.4 ± 0.8

finetune LCCS (SC) Target 3 75.9 ± 0.7 79.0 ± 1.1 61.6 ± 1.0 99.6 ± 0.3 64.8 ± 0.6 97.5 ± 0.1
finetune LCCS (FC) Target 3 86.8 ± 1.6 87.5 ± 1.6 67.8 ± 1.6 97.2 ± 0.8 68.4 ± 2.1 94.8 ± 1.7
finetune LCCS (NCC) Target 3 85.1 ± 1.8 87.3 ± 1.3 68.6 ± 1.0 97.7 ± 0.6 69.0 ± 1.2 95.3 ± 1.1

Table 15: Target domain average classification accuracy for 31-class classification on Office with
VGG-16. Pre-trained model of proposed method is trained with batch normalization layers. † de-
notes target samples are unlabelled.

better than finetuning LCCS in most domain pairs. This reflects that adapting with limited samples
is a challenging task, and we will explore strategies to further close the performance gap in future
work.

Method k A→ C A→ P A→ R C→ A C→ P C→ R P→ A P→ C P→ R R→ A R→ P C→ P

SHOT all† 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3
SFDA all† 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0
AdaBN all† 50.9 63.1 72.3 53.2 62.0 63.4 52.2 49.8 71.5 66.1 56.1 77.1
L2 5 52.5 66.1 73.4 56.1 64.9 65.2 54.7 50.0 73.4 67.8 57.0 78.9
FLUTE 5 49.0 70.1 68.2 53.8 69.3 65.1 53.2 46.8 70.8 59.4 51.7 77.3
finetune LCCS (SC) 5 52.9 66.7 73.7 56.2 65.2 66.1 54.5 50.1 73.8 68.0 56.8 78.6

finetune LCCS (FC) 5 57.6 74.5 77.0 60.0 71.5 70.9 59.2 54.7 75.9 69.2 61.2 81.5
finetune LCCS (NCC) 5 56.0 76.7 75.6 58.4 73.9 69.7 59.9 54.8 76.8 67.0 58.6 81.9

Table 16: Target domain classification accuracy for 65-class classification on OfficeHome with
ResNet-50. † denotes target samples are unlabelled.

C.5 PERFORMANCE WITH NCC CLASSIFIER

We evaluate our propose method by replacing the source model classifier with nearest-centroid clas-
sifier (NCC) as used by FLUTE (Triantafillou et al., 2021). NCC computes class centroids using
the support set and the probability of a sample being in a class is proportional to the exponential
of the cosine similarity between the sample’s features and class centroid (Triantafillou et al., 2021).
FLUTE finetunes BN parameters by cross-entropy minimization, and assumes the availability of
multiple source datasets to train multiple sets of BN parameters for further blending to initialize
the finetuning process. Since we only have access to the pre-trained source model in our setting,
we reduce FLUTE to the single source dataset case and initialize FLUTE with single source BN
parameters. From Figure 3, we observe our proposed method almost always has better adaptation
performance than FLUTE. Finetuning LCCS followed by FLUTE tends to improve performance
further except when k is small on PACS, and on VisDA. Overall, Figure 3 shows that our proposed
constrained optimization produces more reliable adaptation than unconstrained optimization of BN
layers.

D FURTHER ANALYSIS

Variable initialization. We plot LCCS parameters ηspt and ρspt after the initialization stage in
Figure 4. Initialization values are shared across all BN layers and chosen by cross-entropy mini-
mization. We observe that initialization tends to be in the middle instead of ends of the [0, 1] range,
implying that the optimal statistics is not simply source or target statistics. LCCS values after gra-
dient update stage deviate slightly from initialization. Deviations differ across BN layers and are
typically on the scale of 0.01 which is small compared to the initialization, hence we do not report
these here. iWildCam is not included in Figure 4 since only the k = 1 setting is implemented with
limited target data, its chosen initialization for ηspt and ρspt is at 0.
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(a) PACS; ERM (b) PACS; MixStyle (c) VisDA (d) Camelyon17

Figure 3: When using nearest-neighbor classifier, finetuning LCCS almost always has better per-
formance than FLUTE for all values of k tested. Finetuning LCCS followed by FLUTE tends to
improve performance further with larger k, except on VisDA.

Figure 4: LCCS values selected at ini-
tialization stage.

Figure 5: VisDA (k = 1): Cross entropy, compared to en-
tropy, on support set is more indicative of test performance.

Cross entropy objective. Zooming into VisDA with k = 1 in Figure 5, we see that on a grid of
candidate values, LCCS with lowest cross-entropy on support set also maximizes test performance.
Entropy minimization used in previous works results in lower test performance, hence we advocate
that a small amount of labelled target samples are necessary for adaptation performance maximiza-
tion.
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