Under review as a conference paper at ICLR 2026

RETOOL: REINFORCEMENT LEARNING FOR STRATEGIC
TooL USE IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

While reasoning models trained with reinforcement learning (RL) excel in reasoning, they
struggle in scenarios requiring structured problem-solving, such as geometric reasoning,
concise computation, or complex equation solving—areas where computational tools like
code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose
ReTool, which enhances long-form reasoning with tool-integrated learning, including two
key features: (1) dynamic interleaving of real-time code execution within natural language
reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with
multi-turn real-time code execution and teaches the model in learning when and how to
invoke tools based on outcome feedback. ReTool employs a systematic training frame-
work, beginning with synthetic code-augmented long-form reasoning data for cold-start
training. Subsequent RL training leverages task outcomes as rewards to iteratively refine
the model’s tool use strategy, enabling autonomous discovery of optimal tool invocation
patterns without human priors. Experiments on challenging MATH Olympiad benchmark
AIME demonstrate ReTool’s superiority: Our 32B model achieves 67% accuracy with 400
training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in perfor-
mance and efficiency. Remarkably, ReTool-32B attains 72.5% accuracy in extended set-
tings, surpassing OpenAlI’s ol-preview by 27.9%. Further analysis reveals generalization
to broader tool-use scenarios and emergent behaviors such as code self-correction, signal-
ing an “aha moment” in which the model autonomously masters adaptive tool use. These
findings highlight the promise of outcome-driven tool integration for advancing complex
mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.

AIME2024 AIME2025

7]
S

66.98 —e— Cl-powered RL (ReTool) 49.27 —o— Cl-powered RL (ReTool)
Text-based RL Text-based RL

=
=]

I
=
!

36.67

Accuracy (%)
5 2
Accuracy (%)

w
S

w
=)
!

6 Zl’)O 4(’)0 6(’]0 8(’)0 10’00 (’I Zl’)(l 4(’!0 6(’)0 860 10’00 12’00
Figure 1: AIME scores of ReTool and text-based RL baseline based on the Qwen2.5-32B-Instruct model.

1 INTRODUCTION

Reinforcement learning (RL) has recently become a popular paradigm for enhancing the reasoning capabil-
ities of large language models (LLMs), enabling them to explore and refine long chains of thought (CoT)

Under review as a conference paper at ICLR 2026

(Wei et al.,[2022;|Yao et al.| 2023} [Luong et al., 2024} Zhang et al.,[2024). Reasoning models such as OpenAl
ol (OpenAl et al.; 2024) and DeepSeek R1 (DeepSeek-Al et al., [2025) demonstrate strong performance in
pure text-based reasoning tasks by learning to self-correct and engage in more deliberate, analytical think-
ing (Claude, 2025} [Team) 2025dza). These advances suggest early signs of metacognitive control, where
models not only reason, but also monitor and revise their reasoning process.

Despite these advances, reasoning LLMs equipped with long chains of textual reasoning processes (Ouyang
et al., |2022) still show notable limitations in tasks that require precise numerical calculation or symbolic
manipulation, such as geometric reasoning, precise computation, or complex equation solving. In contrast,
computational tools, such as code interpreters (CI), can empower models with symbolic computation ca-
pabilities that go far beyond pure text-based reasoning. Unlike textual CoT (Wei et al., 2023) methods
that rely solely on internal language patterns, code interpreters provide a formal and executable interface
for enumeration, verification, and precise computation. This not only enables exact numeric validation of
intermediate steps—dramatically reducing the ambiguity and compounding error often seen in textual rea-
soning (Chen et al.,2023; ' Wang et al.,[2023b), but also allows models to expand their solution search space
via programmable exploration.

Recent works have explored prompting and supervised fine-tuning methods (Chen et al.| 2025b; Pan et al.,
2023) to equip LLMs with tool-use capabilities. However, these approaches are limited to imitating the
specifically-curated data distribution, often failing to generalize beyond seen patterns or adaptively decide
when and how to invoke external tools. As a result, models may misuse tools or fall back on brittle heuristics
that are not robust across diverse problem settings. To overcome these limitations, RL offers a principled
solution: it enables models to explore flexible reasoning trajectories and learn tool-use strategies guided
by outcome-based feedback. This paradigm not only incentivizes correct solutions, but also allows the
model to discover nuanced behavioral patterns—such as how to recover from tool execution mistakes via
self-correction, decide when to effectively invoke tool execution during the long-chain reasoning process.

In this work, we embrace the RL paradigm and introduce ReTool, a Tool-augmented Reinforcement learning
framework explicitly designed to guide LLMs towards optimal strategies for leveraging external computa-
tional tools during reasoning. ReTool consists of two key components: First, we develop a data construction
pipeline to curate a high-quality cold-start dataset that explicitly demonstrates when and how to invoke the
code interpreter. This teaches the model an initial competency in tool usage and execution result analysis.
Then, we apply tool-enhanced reinforcement learning to train the model in discovering optimal tool manip-
ulation reasoning strategy and adjusting its behavior through outcome-based rewards, going beyond what
can be captured by supervised learning alone. During long-chain reasoning, the policy model rolls out by
flexibly writing code blocks and achieving real-time execution results from a sandbox-style code interpreter
to assist subsequent thinking.

We evaluate ReTool on the challenging MATH Olympiad benchmarks AIME2024 and AIME2025. Build-
ing on Qwen2.5-32B-Instruct (Yang et al.,[2024a), our model achieves 67.0% accuracy on AIME2024 with
only 400 training steps, significantly outperforming the text-based RL baseline, which achieves 40.0% ac-
curacy with 1080 training steps. These substantial gains highlight that explicitly modeling tool-use as part
of the decision process not only pushes limits of model reasoning but also enhances training efficiency. Fur-
thermore, when trained on DeepSeek-R1-Distill-Qwen-32B (DeepSeek-Al et al.|, 2025)), our model demon-
strates further improvements, surpassing competitive baselines such as QwQ-32B-Preview (Team, 2025d),
s1-32B (Muennighoft et al., 2025), and OpenAl ol-preview (OpenAl, 2024). This suggests that the RL
training process inspires more efficient problem-solving strategies. We further conduct a comprehensive
analysis, including ablation study, extension to the web search domain, CI cognitive behavior through RL
training. This analysis highlights several key findings: our model demonstrates enhanced code utilization
capabilities, enabling it to employ more accurate and complex code snippets; It also learns to invoke tools
appropriately, select tool adaptively, structure tool calls effectively, and iteratively refine reasoning through
emergent code self-correction capabilities. Overall, our main contributions are summarized as follows:

Under review as a conference paper at ICLR 2026

* We propose ReTool, a novel reinforcement learning framework that integrates code interpreter execu-
tion into the reasoning loop of LLMs. To equip the model with foundational capabilities for invoking
the code interpreter, we curate a high-quality cold-start dataset through our developed pipeline. Further-
more, we design a reinforcement learning framework that supports interleaved code execution during
rollout, enabling the model to iteratively explore, refine, and optimize its reasoning strategies through
tool-augmented interactions guided by feedback from a sandboxed code interpreter.

e As shown in section we conduct comprehensive empirical and behavioral analyses, and observe sev-
eral key findings: (1) After RL training, the response length is reduced by approximately 40% compared
to that prior to training, showcasing the potential reasoning token efficiency of tool-integrated reasoning;
(2) Our approach can generalize to broader tool-use scenarios like web search; (3) During RL training, the
code ratio, code lines and correct code counts show increase trends, and the code invocation timing be-
coming shifts earlier, indicating the improved code use capabilities and strategic tool usage development;
(4) Emergent behaviors like code self-correction and adaptive tool selection can be observed during RL
phase, bringing more advanced tool-augmented reasoning patterns.

2 METHODOLOGY

In this section, we introduce ReTool. We begin with an overview of the framework, followed by a descrip-
tion of the cold-start training process, including the data construction pipeline and supervised fine-tuning
(section [2.2)). We then outline our reinforcement learning pipeline, enhanced by a code interpreter sandbox,
to further enhance strategic tool usage development (section [2.3).

2.1 OVERVIEW

Our approach consists of two stages: cold-start supervised fine-tuning followed by reinforcement learning
with interleaved code execution rollout. Firstly, we collect data through our designed pipeline for cold-
start supervised fine-tuning (SFT), which provides a robust initialization for the reinforcement learning (RL)
phase. To enhance our model’s tool utilization capabilities, we introduce a specialized tool-using RL pipeline
that enhances the model’s ability to appropriately select and apply tools during the reasoning process.

2.2 COLD-START FOR TOOL-INTEGRATED REASONING FOUNDATION

We designed a pipeline to collect and curate high-quality data. Specifically, we begin by gathering ex-
isting mathematical reasoning data from diverse sources, including open-source datasets such as Open-
Thoughts (Team| 2025c)). Subsequently, we implement a dual-verification approach combining human ex-
pert curation and Deepseek-R1 (DeepSeek-Al et al.| [2025) evaluation to filter invalid data. Through these
steps, we collect a high-quality text-based reasoning dataset, denoted as Djy;.

Based on Djy;, we further construct code-integrated reasoning data automatically. We first utilize a structured
prompt template (detailed in Appendix Figure [9) for transformation, which modifies the original thinking
process by replacing manual calculation steps that can benefit from code execution with the correspond-
ing code snippets and their interpreter’s execution results. Following this initial transformation, we apply a
two-stage verification protocol. The first stage focuses on format verification, which improves readability
and ensures consistent syntax that that enables the efficient detection of computational tool invocation trig-
gers during subsequent reinforcement learning phases. The second stage entails answer verification, where
we eliminate data samples whose final outputs do not align with the correct solutions to the mathematical
problems. Finally, we collect a dataset D¢y that consist of code-augmented long-form reasoning traces.

ReTool employs supervised fine-tuning to learn when and how to invoke the code interpreter from the afore-
mentioned dataset D¢y, thereby enhancing model’s capability to appropriately utilize computational tools.

Under review as a conference paper at ICLR 2026

| Text: Code: Sandbox Feedback: @B Final Result: @8 |
Question | Rollout with Interleaved Code Execution

: a q
Il30ll!ou‘l' E gb Policy LLM]<3=' Advantage|
Sl e—— *
i ! - Soaaams - —> EEE
i - L
=] T s
I—]
i Code Sandbox
R (Revard) |
(a) Text-based RL training (b) ReTool RL training

Figure 2: Demonstration of text-based RL training process and ReTool’s RL training process.

2.3 RETOOL: REINFORCEMENT LEARNING FOR STRATEGIC TOoOL USE

2.3.1 TRAINING ALGORITHM

We train ReTool based on PPO (Schulman et al., 2017), it updates policy with the following objective:

. (ot | g,0<4;CT) 4 . mo (ot | q,0<4;CT) N

0) =E(ga)~Domms (- A, cl ,1—¢,1 A
Ferol0) = Bewrogs 9"“(‘”{mln<%<ot|q,0<t;cz> # P S lor T qrocaczy e A
(D

where g is policy model, 7y, is reference model, mg(0; | ¢, 0<+; CT) represents the rollouts with interleaved
code execution and feedback from code interpreter. We modify PPO to better adopt tool integrated reasoning.
During training, the policy LLM will collaborate with a code sandbox to generate rollouts with multi-turn
real-time code execution for solving given problems. We implement a rule-based outcome reward to enable
the model with the flexibility to autonomously explore and develop strategies for code usage awareness,
code selection, timing of code invocation, and further diverse behaviors.

)

Reward Design To teach the model in learning when and how to invoke tools, we implement a rule-based
accuracy reward to optimize the model. The accuracy reward evaluates response correctness. We require the
model to present final answers in a specified format (e.g., within \boxed{}), enabling reliable rule-based
verification. The reward is formulated as:

. 1, is_equivalent(a,a)
R = 2
(a,) {—1, otherwise @

where a and a represent the ground-truth answer and the predicted answer, respectively. We simplify the
reward design aim to alleviate reward hacking and promote more diverse problem-solving behaviors based
on mere outcome feedback without considering code executability reward.

Rollout with Interleaved Code Execution To facilitate the integration of reasoning and executable code
within the model, we propose a rollout approach that dynamically supports interleaved real-time code ex-
ecution with natural language reasoning processes. As depicted in Figure [2] (b), our rollout process differs
from the conventional approach, which typically generates only text-based reasoning (as shown in Figure 2]
(a)). By contrast, our rollout approach integrates the collaboration of a policy LLM with an external code
sandbox, enabling the production of hybrid content that combines text, code snippets, and real-time in-
terpreter feedback. Concretely, we utilize a prompt template (Appendix Figure [8) to guide the model in
interacting with the code sandbox by utilizing tags <code></code> to explicitly mark the boundaries of
generated codes. During the rollout process, policy model generate text-based reasoning ¢; when a code
termination trigger (</code>) is detected, the generation pause and the generated code c; is parsed and

Under review as a conference paper at ICLR 2026

send to code sandbox environment for execution. Upon completion, the sandbox’s output f; (successful
results or error messages) is filled within <interpreter></interpreter> tags and fed back to the
model, which continues generating the rollout until either providing a final answer o or producing a new
code snippet, ultimately producing a hybrid reasoning trajectory [t; B c1 & f1 & ... B o).

Notably, our approach returns both successful code execution results and interpreter error messages to the
model. This dynamic feedback mechanism enables the model to iteratively explore, refine, and optimize its
reasoning and tool usage strategies.

2.3.2 TRAINING DETAILS

Cold-start & RL For training, we employ the VeRL framework . We adopt PPO as our RL method.
We train our model on curated cold-start data for two epochs. Regarding hyperparameters, we utilize the
AdamW optimizer with an initial learning rate of 1e-6. We define the expected maximum sequence length
as 16384 tokens. For training, the mini-batch size is set to 512, and the KL coefficient is set to 0.0. We
use Qwen2.5-32B-Instruct (Qwen et al.| [2025) as the main backbone. All experiments are conducted on
NVIDIA H20 GPUs.

Interpreter Feedback Mask. We mask out the <interpreter></interpreter> feedback output
from the loss computation. This sandbox-based output masking approach blocks external tokens from in-
terfering with loss calculations, ensuring training stability and preserving the model’s inherently generated
coherent reasoning sequences from disruption.

KV-Cache Reuse. In order to reduce the memory cost during rollout, when each time the code termination
trigger (</code>) is detected, we will cache all the KV-cache before code execution and only calculate and
append the KV-cache from the interpreter feedback (<interpreter></interpreter>). This will
largely reduce the KV-cache for each rollout.

Sandbox Construction. To accelerate the RL training process, we design a asynchornous code sandbox
environment. The sandbox pods function as workers in a pool, independently pulling tasks based on their
current capacity, creating an efficient load-balancing mechanism. This distributed asynchronous approach
accelerates RL training by enabling parallel environment interactions across multiple threads, It prevents
slower threads from creating bottlenecks and ensures optimal resource utilization, maintaining continuous
throughput during the training process.

3 EXPERIMENT

3.1 EVALUATION SETUP

To ensure a stable evaluation, we repeat the evaluation set AIME2024 and AIME2025 32 times, GPQA
(Diamond) (Rein et al., 2023) 8 times, MATH500 (Hendrycks et al 2021)) 4 times, GSM8K (Cobbe et al.|
2021) 2 times, and report the overall average accuracy to estimate pass@1. The inference hyperparam-
eters of evaluation are set to temperature 1.0 and top-p 0.7. We compare ReTool with competitive base-
lines, including Qwen2.5-Math-72B-Instruct (Yang et al., 2024b), Qwen2.5-Math-72B-Instruct-TIR (Yang
et al., 2024b), Sky-T1 (Team) 2025b), DeepSeek-R1-Zero-Qwen-32B (DeepSeek-Al et al., 2025), QwQ-
32B-Preview (Team, [2025d), s1-32B (Muennighoff et al., [2025)), OpenAl ol-preview (OpenAl, 2024). To
verify the effectiveness of our ReTool, we also compare the performance with RL without tool-using, i.e.
Text-based RL (Qwen2.5-32B-Instruct). And for the results of baselines, we report the avg@k by coping
from corresponding literature source as pass@1.

Under review as a conference paper at ICLR 2026

Table 1: Main results on benchmarks in mathematic and STEM domains.

Model | AIME2024 AIME2025 GSM8K MATH500 GPQA
Qwen2.5-Math-72B-Instruct 30.0 - 95.9 85.9 -
Qwen2.5-Math-72B-Instruct-TIR 40.0 - 95.8 88.1 -
Sky-T1 433 - - 82.4 56.8
OpenAl ol-preview 44.6 37.9 - 85.5 733
DeepSeek-R1-Zero-Qwen-32B 47.0 - - 94.3 62.1
QWQ-32B-Preview 50.0 335 - 90.6 54.5
s1-32B 56.7 - - 93.0 59.6
ReTool (Qwen2.5-32B-Instruct) 67.0 49.3 95.9 93.1 58.7
ReTool (DeepSeek-R1-Distill-Qwen-32B) 72.5 54.3 96.3 95.2 62.3

3.2 MAIN RESULTS

As shown in Table |1} ReTool enables the LLM to flexibly leverage the code interpreter during the RL stage,
leading to substantial performance improvements. Specifically, ReTool (Qwen2.5-32B-Instruct) achieves
accuracies of 67.0% on AIME2024, 49.3% on AIME2025, 95.9% on GSMS8K, 93.1% on MATH, and
58.7% on GPQA with only 400 training steps. This markedly outperforms most strong baselines with
much larger parameter sizes, such as Qwen2.5-Math-72B. These findings indicate that the tool-integrated
learning paradigm employed by ReTool enhances the model’s reasoning capabilities significantly. Further-
more, on AIME2024, ReTool (Qwen2.5-32B-Instruct) surpasses the competitive baseline s1-32B by 10.3%.
Similarly, on AIME2025, it achieves an 11.4% gain over OpenAl’s ol-preview. When combined with a
more advanced backbone, ReTool (DeepSeek-R1-Distill-Qwen-32B) further improves performance, achiev-
ing scores of 72.5% on AIME2024 and 54.3% on AIME2025. These results suggest that more effective
problem-solving strategies are discovered during the RL training process.

3.3 ABLATION STUDY

To further assess the effectiveness of ReTool, we conduct an ablation study and compare against several
variants built on Qwen2.5-32B-Instruct: (1) w/o RL: the cold-start model that still incorporates the code
interpreter; (2) w/o CI: a text-based RL method initialized with a text-only cold-start SFT to ensure fairness;
(3) w/o Training: the original base model. As illustrated in Figure 3] (a), removing either the RL stage (w/o
RL) or the CI integration (w/o CI) leads to a notable drop in performance on AIME2024&2025. Further-
more, our cold-start model achieves 40.9% accuracy on AIME2024, which is comparable to the text-based
RL baseline (40.0%) and significantly higher than the base model (26.7%). These findings demonstrate that
our curated dataset successfully captures tool-usage patterns within executable reasoning traces, and that
Cl-integrated training further enhances reasoning performance.

AIME2024 AIME2025 GAIA [)BrowseComp-ZH
80 @ ~50 40.7 3884 46.6
< 60 493 S40 , =
> 4094, 5 40 367 a0 282 26.5

. 34, . 3
£40 267 g 14.1
E o £ 20 . 13
g 20 ‘ : 310 2.4 ‘
0 <) ‘
ReTool w/o RL w/o CI w/o

search'o‘ webDa“ce‘ Remo_sﬂ ReTOO\'RL
(b) Results on Web Search Domain.

Training

(a) Ablations on Qwen2.5-32B-Instruct.

Figure 3: (a) Ablation study;(b) Results on the web search domain with same backbone on Qwen2.5-32B.

Under review as a conference paper at ICLR 2026

3.4 EXPANSION TO WEB SEARCH SCENARIO

To assess whether our strategy generalizes to broader tool-use scenarios, we further conducted experiments
in the Web Search domain. Specifically, we applied ReTool with the Bing Search tool (following the
MCP tool-use definition) on two widely used benchmarks: GAIA (Mialon et al.| [2023)) and BrowseComp-
ZH (Zhou et al.;|2025)). As illustrated in Figure Ekb), when using the same backbone (Qwen2.5-32B), ReTool
consistently outperforms competitive baselines built on the same backbone, including WebDancer (Wu et al.|
2025)) and Search-ol (Li et al.|[2025a). These findings highlight ReTool’s generalizability and effectiveness
beyond mathematical reasoning tasks, underscoring its adaptability across diverse tool-use environments.

3.5 “AHA MOMENT” OF CODE SELF-CORRECTION.

Interestingly, our model exhibits an emergent ability to self-correct non-executable code, despite the absence
of explicit training data for code self-correction. As shown in Figure [] in Appendix, the model initially
produced code that failed to execute due to the undefined function “greedy()”. Upon receiving feedback
from the interpreter, the model recognized the error and responded with the reflection: “Oops, the functions
need to be defined in the same scope. Let’s correct that”” It then proceeded to generate a revised,
executable version of the code that included all necessary function definitions. This emergent behavior
suggests that reinforcement learning can foster metacognitive capabilities, enabling the model to iteratively
refine its generated code to address more complex problems.

3.6 COGNITIVE ANALYSIS

We present a comprehensive analysis, including the dynamics of code interpreter (CI)-related behaviors
throughout the RL and the differences in code purpose before and after RL.

(a) Response Length (b) Code Ratio (c¢) Code Lines
q] 100 —— —————
10000 \ —eo— AIME2024 N s04|7" AIME2024
AIME2025 | /) AIME2025
8000 = T B /
60
6000 / 30
/./‘/.——'—“ 40 20
4000 — —e— AIME2024 e
AIME2025 10 —~
201 /
2000 —
40 80 120 160 200 240 280 320 360 400 40 80 120 160 200 240 280 320 360 400 40 80 120 160 200 240 280 320 360 400
Steps Steps Steps
. (d) Frequency of Emerging Code Self-Correction (e) Code Pass Rate (f) Code Invocation Timing
.5
] 100 R
—e— AIME2024 — T = | o2 —e— AIME2024
0.4 AIME2025 ‘~\\-”_-.___"' —k\\ 0.60 -~ AIME2025
95 (.
03 s 0.58
N
g0 ~°— AIME2024 Correct Responses | N 056
. .
02 \./‘ —e-- AIME2024 Incorrect Responses >~ Seo_, 054
. AIME2025 Correct Responses — L,
. 85 AIME2025 Incorrect Responses 0.52
s
40 80 120 160 200 240 280 320 360 400 40 80 120 160 200 240 280 320 360 400 40 80 120 160 200 240 280 320 360 400
Steps Steps Steps.

Figure 4: Cl-related behavior evolution during RL training.

CI-related Behavior Evolution. To gain deeper insights into the RL process of ReTool, we systemati-
cally evaluated Cl-related metrics. Specifically, we computed various metrics by analyzing model-generated
outputs on the AIME2024 and AIME2025 datasets based on each saved checkpoint during RL training:

* Response Length (Figure[](a)): We calculated the average response length and observed a distinct trend:
the response length initially declines sharply, later followed by a relatively gentle increase. We attribute

Under review as a conference paper at ICLR 2026

the initial decline to the replacement of complex computational processes with more concise code, while
the subsequent rise is likely due to the emergence of more diverse and complex code behaviors during RL
training. Notably, the final average response length remains 40% shorter than that before RL training (i.e.,
from 10k to 6k). This suggests that the CI-powered reasoning approach potentially enhances efficiency of
reasoning token utilization ratio by replacing intricate computational processes with code.

¢ Code Ratio (Figure[z_f] (b)): The ratio of responses that contain code are also calculated. Analysis reveals
that throughout the RL training process, the average code ratios exhibit a total upward trend and end with
covering nearly 98% percent of all questions. This suggests that the model’s proficiency in code utilization
improved progressively during the RL process, facilitating strategic tool usage development.

* Code Lines (Figure [(c)): The lines of generated code reflects its complexity to some extent. Observa-
tions show that the average code lines in responses exhibits a consistent upward trend throughout training.
By the end of RL training, the final average code lines is nearly fivefold higher than that before RL train-
ing. This trend suggests that the model has learned more complex code strategies during the RL phase.

* Frequency of Emerging Code Self-Correction (Figure [4| (d)): We approximate the frequency of code
self-correction by detecting specific turning cues (e.g., oops, wait, or correcting) that appear between a
failed code block and its immediate successor. As shown, the frequency of self-correction emerges early
and peaks during the initial stages of training, then gradually decreases and stabilizes. This trend suggests
that when the model’s code generation capability is still limited, it learns and leverages self-correct more
frequently. As RL training, improves in producing correct code directly, thereby reducing the necessity
for correction. This phenomenon reflects an emergent behavior: self-correction is prevalent at the outset
but becomes less necessary as the model gains competence.

* Code Pass Rate (Figure[d](e)): The CI-powered reasoning process involves generating intermediate code
that may initially be incorrect, followed by iterative refinement based on interpreter feedback to produce
executable code, so we report the average pass rate of last code in incorrect responses. Our analysis reveals
that the code pass rate for correct responses remains consistently high, approaching 100%, while the code
pass rate for incorrect responses exhibits a declining trend. This pattern suggests that code executability
impacts the reasoning process and final result.

* Code Invocation Timing (Figure 4| (f)): We also calculate the code invocation timing, which is deter-
mined by dividing the start position of code by the total length of the response. This metric reflects the
timing of code invocation within the response. The results show that the code invocation timing advances
during the RL training process, indicating that the model learns to determine the timing for tool usage.

Code Purpose Analysis. We also analysis the differences in code purposes before and after RL training,
which reflects the types of code. We employ Claude4-Sonnet (Anthropic, |2025) to classify the primary
purpose of code snippets based on their contextual information, then compute the frequency of code purposes
that appear more than once, and the results are depicted in Figure[5] The word clouds reveal that calculation

e Optimization ...

1
i
! s
2 I Fx t
3% i 28
2% H i 5 465%
2% ! 1
rcalculation N
leulati 1 = =
probability calculation ... “;;1.-2“" ! geometric calculation <37
verification i solution search
1 . . . %
' verification 2%
data processing i geometric analysis :
1
,
(a) Before Retool RL training. (b) After Retool RL training.

Figure 5: Code purpose analysis.

Under review as a conference paper at ICLR 2026

and verification are the dominant purposes of code in CI-powered reasoning. After RL training, the code
purposes in our model become more diverse, which demonstrates the metacognitive development of adaptive
tool selection and enhances the generalizability of ReTool to a broader range of problems.

4 BACKGROUND AND RELATED WORK

4.1 LLM REASONING

Recent advancements in large language models (LLMs) (Wei et al.| 2022} [Yao et al., |2023}; |[Luong et al.|
2024; |OpenAl et al.| 2024; [Team, 2025a; DeepSeek-Al et al.l 20255 XAl 2023} |Claude} [2025} [Team et al.|
2023} |Yang et al., [2024a) indicate significant progress toward cognitive abilities similar to human metacog-
nition through Chain-of-Thought (CoT) prompting, which enhances the reasoning capabilities of LLMs by
leveraging step-by-step natural language reasoning |Wei et al.[(2023); Wang et al.| (2023a); Wang & Zhou
(2024)); Huang et al.| (2025)); /Chen et al.|(2025a). Building upon this foundation, recent research has shifted
focus from train-time scaling to test-time scaling (Snell et al., [2024), where additional computational re-
sources are allocated during inference to enable the generation of intermediate reasoning steps. Techniques
such as stepwise preference optimization (Lai et al.| [2024), Monte Carlo Tree Search (MCTS) (Xie et al.
2024), and reinforcement learning (Luong et al.,[2024}; DeepSeek-Al et al.,[2025) have been employed to im-
prove multi-step and long-form mathematical reasoning. Complementing CoT, Program-of-Thought (PoT)
reasoning, introduced by |Chen et al.|(2023)) and |Gao et al.|(2023)), integrates external computational tools to
simplify and validate complex reasoning steps, resulting in enhanced accuracy.

4.2 TOOL INTEGRATED REASONING

Tool-integrated reasoning was first introduced to help LLMs solve computationally intensive mathematical
problems with the integration of programming strategies (Chen et al., 2023} Yue et al., 2023} Jin et al.| [2025}
Song et al., 2025; Wang et al., 2024). Building on this line of work, |[Wang et al.| (2023b) introduced an
iterative framework that integrates textual reasoning with code execution, while |Chen et al.|(2025b) further
advanced this direction by applying supervised fine-tuning on self-curated code-integrated CoT data. How-
ever, this approach is inherently limited by its reliance on the specific data distribution, and cannot learn
adaptive strategies for tool use—such as determining when and how to invoke tools—through reinforcement
learning (RL). A concurrent work (Li et al.| [2025b) applied RL to learn tool usage strategies on Qwen2.5-
Math models (Yang et al., [2024b) at 1.5B and 7B scales, but the performance remained suboptimal. We
further scale up this line of research and propose ReTool, a framework that leverages RL to strategically de-
termine when and how to invoke the code interpreter. Our method outperforms Qwen-Math-72B-TIR (Yang
et al., [2024b) and ol-preview (OpenAll 2024) significantly on AIME2024 and AIME2025. We also present
a comprehensive analysis of the learned tool-use behaviors and highlight several key findings regarding the
model’s cognitive patterns in code invocation after ReTool training.

5 CONCLUSION

In this paper, we propose ReTool, a novel reinforcement learning framework that empowers LLMs to self-
enhance their mathematical reasoning capabilities through effective Code Interpreter utilization. Our com-
prehensive experiments on various benchmarks demonstrate that ReTool not only achieves superior accuracy
compared to conventional text-based RL approaches, but also converges with significantly fewer training
steps. Further analyses also demonstrate generalization to broader tool-use scenarios and emergent behav-
iors such as code self-correction. Through careful data curation and our specialized tool-using pipeline,
ReTool enables models to develop sophisticated computational intervention strategies, paving the way for
more efficient and powerful tool-augmented reasoning in LLMs.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive information. All experiments were
conducted on publicly available datasets in mathematics and STEM domains (e.g., AIME, GSM8K, MATH,
GPQA). The datasets were used strictly for research purposes and do not contain identifiable private infor-
mation. Our methods focus on improving the reasoning capabilities of LLMS by integrating reinforcement
learning with external computational tools. We affirm compliance with the ICLR Code of Ethics and confirm
that no part of this research raises concerns regarding privacy, discrimination, or conflict of interest.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. The full methodological details of
ReTool, including cold-start data construction, supervised fine-tuning, reinforcement learning setup, reward
design, and evaluation protocols, are described in Sections [2] and [3] of the main text. Comprehensive ex-
perimental results across multiple datasets and ablation studies are reported in Tables [TH2] and Figures 3H5]
Additional training details such as optimizer, learning rate, batch size, sequence length, masking strategy,
and sandbox design are provided in Section [2.3.2] These details should enable independent researchers to
replicate our experiments. And the training data and the evaluation scripts are available in the supplementary
material.

REFERENCES

Anthropic. Claude sonnet 4. https://www.anthropic.com/claude/sonnet, 2025.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang
Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-thought for reason-
ing large language models, 2025a. URL https://arxiv.org/abs/2503.09567,

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting: Dis-
entangling computation from reasoning for numerical reasoning tasks, 2023. URL https://arxiv.
org/abs/2211.12588.

Zhipeng Chen, Yinggian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao,
Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. An empirical study on
eliciting and improving r1-like reasoning models. arXiv preprint arXiv:2503.04548, 2025b.

Claude. Claude 3.7 sonnet. 2025. URL |https://www.anthropic.com/news/
claude-3-"7-sonnet!

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,
H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui
Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu,
Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang,

10

https://www.anthropic.com/claude/sonnet
https://arxiv.org/abs/2503.09567
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R.J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu
Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang
Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng
Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang,
Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang,
Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang
Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan
Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan
Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian
Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun
Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and
Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. Pal: Program-aided language models, 2023. URL https://arxiv.org/abs/2211.
10435.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL https:
//arxiv.org/abs/2103.03874.

Shijue Huang, Wanjun Zhong, Deng Cai, Fanqi Wan, Chengyi Wang, Mingxuan Wang, Mu Qiao, and
Ruifeng Xu. Empowering self-learning of llms: Inner knowledge explicitation as a catalyst. Proceedings
of the AAAI Conference on Artificial Intelligence, 39(23):24150-24158, Apr. 2025. doi: 10.1609/aaai.
v39i23.34590. URL https://ojs.aaai.org/index.php/AAAI/article/view/34590.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen
Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang, Bo Zheng, Yibo
Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and Junyang
Lin. Qwen2.5-coder technical report, 2024. URL https://arxiv.org/abs/2409.12186.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. Search-rl: Training llms to reason and leverage search engines with reinforcement learning, 2025.
URL https://arxiv.org/abs/2503.09516.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-wise
preference optimization for long-chain reasoning of llms, 2024. URL https://arxiv.org/abs/
2406.18629.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. Search-ol: Agentic search-enhanced large reasoning models, 2025a. URL https://arxiv.
org/abs/2501.05366.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl, 2025b. URL https://
arxiv.org/abs/2503.23383.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning
with reinforced fine-tuning, 2024. URL https://arxiv.org/abs/2401.08967.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://ojs.aaai.org/index.php/AAAI/article/view/34590
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2401.08967

Under review as a conference paper at ICLR 2026

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/2311.12983|

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettle-
moyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time scaling, 2025.
URL https://arxiv.org/abs/2501.19393.

OpenAl. Learning to reason with llms, September 2024. URL https://openai.com/index/
learning-to—-reason-with—-11lms/\.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Passos,
Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Kumar, Andre
Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum,
Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz
Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McK-
inzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy,
Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fis-
cher, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi,
David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang,
Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays,
Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao,
Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam
Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian
Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pa-
chocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie
Tang, Jieqi Yu, Joaquin Quifonero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hall-
man, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie Wang, Kai
Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach,
Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo
Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held,
Lorenz Kuhn, Lukas Kondraciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas
Joglekar, Mark Chen, Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan
Shah, Mehmet Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen,
Michael Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowd-
hury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk,
Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora,
Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm Garg,
Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer,
Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker, Scott McKinney,
Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang,
Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan
Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry,
Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peter-
son, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young
Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai ol system
card, 2024. URL https://arxiv.org/abs/2412.16720.

12

https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2412.16720

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback, 2022. URL https://arxiv.org/
abs/2203.02155.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large language
models with symbolic solvers for faithful logical reasoning. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 3806—
3824, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.248. URL https://aclanthology.org/2023.findings—-emnlp.248/|

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui,
Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL |https://arxiv.org/abs/
2412 .15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqga: A graduate-level google-proof q&a benchmark, 2023.
URLhttps://arxiv.org/abs/2311.12022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can
be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.
03314.

Huatong Song, Jinhao Jiang, Yingqgian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. Rl-searcher: Incentivizing the search capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2503.05592.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Kimi Team. Kimi k1.5: Scaling reinforcement learning with 1llms, 2025a. URL https://arxiv.org/
abs/2501.12599.

NovaSky Team. Sky-tl: Train your own ol preview model within $450. 2025b. URL https:
//novasky—ai.github.io/posts/sky—-tl.

OpenThoughts Team. Open Thoughts. https://open-thoughts.ai, January 2025c.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025d. URL https:
//gqwenlm.github.io/blog/gwg—32b/l

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun. To-
wards understanding chain-of-thought prompting: An empirical study of what matters. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pp. 2717-2739, Toronto, Canada,

13

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://aclanthology.org/2023.findings-emnlp.248/
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://novasky-ai.github.io/posts/sky-t1
https://novasky-ai.github.io/posts/sky-t1
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

Under review as a conference paper at ICLR 2026

July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.153. URL
https://aclanthology.org/2023.acl-1long.153/.

Hongru Wang, Yujia Qin, Yankai Lin, Jeff Z. Pan, and Kam-Fai Wong. Empowering large language models:
Tool learning for real-world interaction. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’24, pp. 2983-2986, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3661381.
URL https://doi.org/10.1145/3626772.3661381.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for enhanced mathemat-
ical reasoning, 2023b. URL https://arxiv.org/abs/2310.03731.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024. URL |https:
//arxiv.org/abs/2402.10200.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language mod-
els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24824-24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecfd4fl5af0f7b3labcad-Paper—-Conference.pdf.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL
https://arxiv.org/abs/2201.11903|

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang, Zekun
Xi, Gang Fu, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webdancer: Towards autonomous
information seeking agency, 2025. URL https://arxiv.org/abs/2505.22648|

xAL Grok. https://x.ai/, 2023. URL https://x.ai/l Large language model.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning, 2024. URL
https://arxiv.org/abs/2405.00451l

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and
Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement,
2024b. URL https://arxiv.orqg/abs/2409.12122.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: deliberate problem solving with large language models. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA,
2023. Curran Associates Inc.

14

https://aclanthology.org/2023.acl-long.153/
https://doi.org/10.1145/3626772.3661381
https://arxiv.org/abs/2310.03731
https://arxiv.org/abs/2402.10200
https://arxiv.org/abs/2402.10200
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2505.22648
https://x.ai/
https://x.ai/
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2409.12122

Under review as a conference paper at ICLR 2026

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen. Mammoth:
Building math generalist models through hybrid instruction tuning, 2023. URL https://arxiv.
org/abs/2309.05653.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny Pan, Esther
Cheng, Jie Liu, Qunshu Lin, Raven Yuan, Tuney Zheng, Wei Pang, Xinrun Du, Yiming Liang, Yinghao
Ma, Yizhi Li, Ziyang Ma, Bill Lin, Emmanouil Benetos, Huan Yang, Junting Zhou, Kaijing Ma, Minghao
Liu, Morry Niu, Noah Wang, Quehry Que, Ruibo Liu, Sine Liu, Shawn Guo, Soren Gao, Wangchunshu
Zhou, Xinyue Zhang, Yizhi Zhou, Yubo Wang, Yuelin Bai, Yuhan Zhang, Yuxiang Zhang, Zenith Wang,
Zhenzhu Yang, Zijian Zhao, Jiajun Zhang, Wanli Ouyang, Wenhao Huang, and Wenhu Chen. Map-neo:
Highly capable and transparent bilingual large language model series, 2024. URL https://arxiv.
org/abs/2405.19327.

Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling Jin,
Chenxuan Xie, Meng Cao, Yuxin Gu, Sixin Hong, Jing Ren, Jian Chen, Chao Liu, and Yining Hua.
Browsecomp-zh: Benchmarking web browsing ability of large language models in chinese, 2025. URL
https://arxiv.org/abs/2504.19314.

15

https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2405.19327
https://arxiv.org/abs/2405.19327
https://arxiv.org/abs/2504.19314

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we employed large language models (LLMs) solely as writing assistants. Their
role was limited to polishing grammar and improving fluency. They were not used for research ideation,
methodological development, data analysis, or result interpretation. All scientific contributions, experimen-
tal designs, and findings presented in this work are entirely the result of the authors’ own efforts.

A.2 RESULTS ON OTHER BASE MODEL

To further assess the effectiveness of ReTool, we conduct experiments using a code-oriented backbone,
Qwen?2.5-Coder-7B-Instruct (Hui et al.} 2024). Following the same evaluation protocol as in the main re-
sults, we report the overall average accuracy on AIME2024, AIME2025, GSMS8K, and MATHS500. The
results are presented in Table |2l We observe that applying our ReTool framework—through both supervised
fine-tuning (SFT) and reinforcement learning (RL)—consistently yields substantial improvements across all
benchmarks when built on top of Qwen2.5-Coder-7B-Instruct. These findings highlight the generalizability
and effectiveness of ReTool across diverse base models.

Table 2: Results on different base model.

Model | AIME2024 AIME2025 GSMSK MATH500
Qwen2.5-Coder-7B-Instruct 10.0 - 86.7 66.8

+ ReTool-SFT 14.69 17.29 90.67 77.2

+ ReTool-RL 46.04 32.60 92.08 84.55

A.3 THE PRACTICAL HELPFULNESS OF THE GENERATED CODE TOWARD THE FINAL SOLUTION.

To more rigorously evaluate the practical usefulness of generated code for solving the target tasks, we con-
ducted a focused analysis of code snippets produced by our models before and after RL training. Specifically,
we extracted all code snippets along with their corresponding contexts from the AIME2024 results and asked
Claude4-Sonnet (Anthropic, |2025) to assess whether each snippet contributed meaningfully to solving the
overall problem. The analysis reveals that, prior to RL training, 406 out of 471 code snippets (86.20%)
were judged to be helpful, while 65 (13.80%) were not. After RL fine-tuning, the proportion of helpful code
increased: 4,468 out of 5,010 snippets (89.18%) were rated as helpful, compared with 542 (10.82%) deemed
unhelpful. These findings indicate not only a consistently high proportion of practically useful code but also
a further improvement in code helpfulness following RL training.

A.4 CI-POWERED REASONING VS. TEXT-BASED REASONING.

We present a case study to illustrate the distinction between CI-powered reasoning after reinforcement learn-
ing (RL) training and conventional text-based reasoning prior to RL training, as illustrated in Figure[7)in the
Appendix. When faced with the same question, text-based reasoning relies on a “laborious” text-only cal-
culation process, which is prone to numerical errors and often results in incorrect inference outcomes. In
contrast, CI-powered reasoning substitutes this complex calculation process with concise code. This ap-
proach not only ensures computational accuracy through the assistance of an external code interpreter but
also enables the model to focus more effectively on holistic reasoning strategies.

16

Under review as a conference paper at ICLR 2026

Question: From an unlimited supply of 1-cent coins, 10-cent coins, and 25-cent coins, ... Find the number of values of $N§
between 1 and 10008 inclusive for which the greedy algorithm succeeds.

Response: Alright, let's tackle this problem step by step using code to ensure accuracy. The goal is to determine for each value of
\(N) from 1 to 1000 whether the greedy algorithm produces the minimum number of coins. If it does, we count that \(N \). ..
<code>
" python
def test_specific_N(N_values):
for Nin N_values:
greedy_result = greedy(N)

test_results = test_specific_N(N_values_to_test)
print(test_results)

</code>

<interpreter>Traceback (most recent call last):

File "/tmp/tmpbr3uj7zz/tmpdmj39k60.py", line 11, in <module> test results = test_specific N(N_values to_test)
File "/tmp/tmpbr3uj7zz/tmpdmj39k60.py", line 5, in test_specific_N greedy_result = greedy(N)

NameError: name 'greedy' is not defined </interpreter>

Qops, the functions need to be defined in the same scope. Let's correct that:

<code>

" python

def greedy(N):
denominations = [25, 10, 1]

def test_specific_N(N_values):
for Nin N_values:

greedy_result = greedy(N)

test_results = test_specific_N(N_values_to_test)
print(test_results)

</code>
<interpreter>{42: (9, 6),25: (1,1),10: (1, 1), 1: (1, 1), 1000: (40, 40)} </interpreter>

<answer> \boxed {610} </answer>

Figure 6: The case of “aha moment” about code self-correction.

17

Under review as a conference paper at ICLR 2026

Question: Let N be the greatest four-digit positive integer with the property that whenever one of its digits is changed to 1, the resulting number is divisible
by 7. Let Q and R be the quotient and remainder, respectively, when N is divided by 1000. Find $Q+R$.

Text-based Reasoning Before RL: Okay, so | need to find the greatest four-
digit number N such that if any one of its digits is replaced by 1, the resulting
number is divisible by 7. Then, | have to find Q and R when N is divided by
1000, and then compute Q + R. Alright, let's break this down step by step...
Therefore, each of these equations can be rearranged to:
1.N=-(1-A)*1000 mod7

2.N=-(1-B)*100 mod7

3.N=-(1-C)*10 mod7

4.N=-(1-D)*1 mod7

Therefore, all four expressions must be equal to N mod7. Therefore, we can set
them equal to each other: -(1- A)*1000=- (1-B)*100=- (1-C)*10=-(1-
D)*1 mod...

Wait, let's check B, C, D for A=9:

B=3A -2 mod7=3*9 -2=27 -2=25 mod7=25 -7*3=25-21=4

C=2A -1 mod7=2*9 -1=18 -1=17 mod7=17 -7*2=17-14=3

D=6A -5 mod7=6*9 -5=54 -5=49 mod7=49 -7*7=49-49=0

So, B=4, C=3, D=0. Therefore, N=9430...

Let me compute each of these modulo7:

1. 1000 =6 mod7, so 6 + 100*B + 10*C + D =0 mod7

But 100*B =2*B mod7,

10*C =3*C mod7, so:

6 +2B +3C +D =0 mod7

2.1000*A =6A mod7, 100=2 mod7,

S0:

6A +2 +3C +D =0 mod7

3.1000*A +2B +3 +D =0 mod7 (since 100*B=2B, 10*1=3, 10*C=3C)
Wait, no. Let me recompute each equation properly.

Equationl: 1BCD =0 mod7

Which is 1000*1 + 100*B + 10*C + D =0 mod7 1000=6, 100=2, 10=3, ...
Let me tabulate A from1 to9:

A | B=5-4A mod7 | C=6-5A mod7 | D=2-A mod7 | Valid?

1]5-4=1 mod7=1 |6-5=1 mod7=1[2-1=1 |Yes...

Result:

-\(N=5624))

- Dividing by 1000 gives \(Q =5\) and\(R = 624 \)
-\(Q+R=5+624=629))

\[\boxed{629} \]

Cl-powered Reasoning After RL: Alright, let's tackle this problem step by
step. The goal is to find the greatest four-digit positive integer \(N \) such that
changing any one of its digits to 1 results in a number divisible by 7. Then, we
need to find \(Q + R\) where \(Q) and \(R\) are the quotient and remainder
when \(N \) is divided by 1000...

First, let's compute the values of \(1000 \mod 7 \), \(100 \mod 7 \), \(10 \mod
7\),and \(1\mod 7\):

<code>

““python

Compute modular values

mod_1000 =1000 % 7

mod_100 = 100 % 7

mod_10=10% 7

mod_1=1%7

print(f"1 mod 7 = {mod_1}")

</code>
<interpreter>1000 mod 7 = 6 100 mod 7 =210 mod 7=3 1 mod 7 =
1</interpreter>

We need to solve these equations for digits \(a, b, ¢, d\) where \(a\) is from 1
to9and \(b,c, d\)are from 0to 9. Let's use code to iterate through possible
values and find the valid \(N \).
<code>
““python
def find_valid_n():

for ainrange(9, 0, -1):

return N
N = find_valid_n()
Q=N//1000
R=N %1000

result=Q+R
print(f"N = {N}, Q = {Q}, R ={R}, Q + R = {result}")

</code>

<interpreter>N = 5694, Q = 5,R = 694, Q + R = 699 </interpreter> ...
Thus, the final answer is confirmed to be 699.

<answer> \boxed{699} </answer>

Figure 7: Case of CI-powered reasoning vs. Text-based reasoning.

18

Under review as a conference paper at ICLR 2026

Template prompt for Reinforcement Learning Rollout

Solve the following problem step by step. You now have the ability to selectively write executable
Python code to enhance your reasoning process. The Python code will be executed by an external
sandbox, and the output (wrapped in <interpreter>output</interpreter>) can be returned to aid your
reasoning and help you arrive at the final answer. The Python code should be complete scripts,
including necessary imports.

Code Format:

Each code snippet is wrapped with
<code>

“python

code snippet

</code>
Answer Format:
The last part of your response should be:

<answer>\boxed{'T he final answer goes here.}</answer>

User Question:
{question}

Assistant:

Figure 8: Template prompt for ReTool rollout.

19

Under review as a conference paper at ICLR 2026

Template Prompt for Data Curation

You are a helpful Al assistant. Initially, when solving a question, you would need to think step by step, without the ability to use
code for calculation. Now, you have the capability to write code to use the code interpreter for calculation. The code will be
executed by a sandbox, and the result can be returned to enhance your reasoning process. You can now leverage code to enhance
your calculation while still maintaining the reasoning process.

The thinking process can have multiple code snippets. Each code snippet is wrapped with:
<code>

“python

code snippet

</code>, and should be executable. The returned result is wrapped with <interpreter> execution results \texttt{</interpreter>}.

Goal:

Modify the original thinking process to make it more accurate by replacing manual calculation steps that can benefit from code
execution with the corresponding code snippets and their interpreter's execution results. The core reasoning logic from the original
thinking process, including any unsuccessful attempts, should remain unchanged. You should only replace the necessary manual
calculation steps with code and interpreter's execution results, without altering the rest tokens of the thinking process. Wrap the
revised thinking process within <revised_thinking_process> and </revised_thinking_process>}.

User Question:
{question}

Original Thinking Process (without code interpreter’s support):
<original_thinking_process> {original_response} </original_thinking_process>

Details:

1. Identify sections where code execution could speed up the reasoning process or make the calculation more accurate.

2. Replace the manual calculation steps with code snippets and the corresponding interpreter's execution results.

3. Keep the logical flow of the reasoning process intact, including any failed exploration attempts that were part of the initial
process.

4. The code snippets should be complete scripts, including necessary imports, and should not contain markdown symbols like
<code>

" python

code snippet

</code>.

5. Outputs in the code snippets must explicitly call the print function.

6. Execution results should match the model's output exactly, with no extra or missing tokens.

7. 1f the Original Thinking Process does not include an <answer> section at the end, please add it in the Revised Thinking Process:
<answer>\boxed {*The final answer goes here.’} </answer>

Revised Thinking Process (With code interpreter’s support):

Figure 9: Template prompt for data curation.

20

	Introduction
	Methodology
	Overview
	Cold-start for Tool-Integrated Reasoning Foundation
	ReTool: Reinforcement Learning for Strategic Tool Use
	Training Algorithm
	Training Details

	Experiment
	Evaluation Setup
	Main Results
	Ablation Study
	Expansion to Web Search Scenario
	``Aha Moment'' of Code Self-correction.
	Cognitive Analysis

	Background and Related Work
	LLM Reasoning
	Tool Integrated Reasoning

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Results on other base model
	The practical helpfulness of the generated code toward the final solution.
	CI-powered Reasoning vs. Text-based Reasoning.

