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Abstract

Modeling hidden factors driving user preferences
is crucial for recommendation yet challenging due
to sparse rating data. While aligning preference
factors from ratings and texts, as a solution, shows
improvements, existing methods impose restrictive
one-to-one factor correspondences and underuti-
lize cross-modal interest signals. We propose an
optimal transport (OT) approach to address these
gaps. By modeling rating- and text-based prefer-
ence factors as distributions, we compute an OT
plan that captures their probabilistic relationships.
This plan serves dual roles: 1) to regularize cross-
modal preference factors without rigid correspon-
dence assumptions, and 2) to blend preference sig-
nals across modalities through barycentric map-
ping. Experiments on real-world datasets validate
our method’s effectiveness over competitive base-
lines, highlighting its novel use of OT for adaptive
preference factor alignment, an underexplored di-
rection in recommender system research.

1 INTRODUCTION

User-item interactions are driven by many hidden factors.
Variational Autoencoder (VAE) offers an elegant frame-
work to discover multiple preference factors. Current studies
range from disentangling user interests merely from rating
data, Ma et al. [2019b], Tran and Lauw [2023, 2024] to
mining interest factors from both rating data and side in-
formation such as textual content Guo et al. [2022], visual
content Wang et al. [2023a], social relationships Wang et al.
[2023b], multi-modal data Avas et al. [2024].

Preference signals extracted from side information, such
as textual content, could complement those derived from
user ratings. Since rating data merely contains user and item
IDs, which lack semantic depth, incorporating semantic

textual content results in more expressive user and item
representations. This method is especially beneficial for
users with limited interactions, as textual content offers
additional insights into their preferences. Moreover, text-
based interest factors naturally offers interpretability of user
preferences as humans can understand their meaning.

Tran and Lauw [2022] pioneered aligning cross-modal inter-
est factors for text-aware recommendation, later extended
to multi-modal settings by Zhou and Miao [2024]. How-
ever, these works impose a fixed one-to-one correspondence
between rating- and text-based preference factors, leading
to two key limitations. First, the rigid alignment of interest
factors, i.e., one-to-one correspondence, is shared across
all users, which ignores user-specific variations, e.g., some
users may exhibit many-to-one or one-to-many interest cor-
relations. Second, the uniform treatment of modalities treats
rating- and text-based factors equally (e.g., simple averag-
ing), assuming a universal importance of both modalities.
However, users vary in how much they rely on textual versus
rating signals when interacting with items. These shortcom-
ings hinder their ability to capture nuanced, adaptive interest
transference across modalities.

We propose BANDVAE, short for Barycentric AligNment
of Mutually Disentangled Interest Factors with Variational
AutoEncoder, a novel VAE framework that leverages opti-
mal transport (OT) to address these gaps. BANDVAE learns
soft, user-dependent alignments via an OT-enabled method,
allowing more flexible and personalized cross-modal inter-
actions; and adapts the fusion weights per user, capturing
this personalized modality preference. First, BANDVAE un-
covers user preference factors from ratings and texts via
unsupervised prototype learning. Second, BANDVAE re-
frames cross-modal preference factor alignment as an OT
problem: interest factors from each modality are treated
as distributions, and the Sinkhorn algorithm computes a
probabilistic transport plan, i.e., the alignment matrix. This
matrix serves dual roles: 1) to compute a regularization term
that aligns cross-modal preference factors, avoiding rigid
correspondence assumptions, and 2) to adaptively transfer
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interest signals across modalities via barycentric mapping.
By integrating OT, BANDVAE effectively transfers prefer-
ence signals, addressing personalization variability.

Contributions. Our contributions are threefold. First, we
bridge the gap in text-aware recommendation by the novel
use of optimal transport (OT) for preference alignment.
Second, we propose BANDVAE: 1) leverages OT to adap-
tively aligning rating and text interest factors, and 2) utilizes
barycentric mapping and OT-guided regularization for cross-
modal interest transference. Third, we validate BANDVAE’s
effectiveness through extensive experiments on real-world
datasets, demonstrating its superiority over existing models.
In addition, we provide qualitative analysis to offer insight
into the inner workings of our proposed optimal transport-
based alignment of preference factors.

2 RELATED WORK

VAE-based disentangled representation learning aims
at uncovering latent explanatory factors, enabling robust
modeling of complex data patterns Bengio et al. [2013].
Early works Higgins et al. [2017], Burgess et al. [2018],
Kim and Mnih [2018], Chen et al. [2018], Locatello et al.
[2019] focused on disentangling each dimension of represen-
tation vector to encodes a distinct feature. Recent advances
extend this to disentangle user preference factors at both
dimension and intention levels Ma et al. [2019b], Tran and
Lauw [2023, 2024], Guo et al. [2024]. To enhance disentan-
glement, researchers have incorporated auxiliary data, e.g.,
textual content Guo et al. [2022], visual information Wang
et al. [2023a], multi-modal features Avas et al. [2024], and
social relationships Wang et al. [2023b]. While these works
share our goal of disentangling user preferences, our key
distinction lies in leveraging optimal transport (OT) to align
rating and text interest factors probabilistically.

Text-aware recommendation improves performance by
integrating item textual content via neural networks Wang
and Blei [2011], Wang et al. [2015], Kim et al. [2016],
Ma et al. [2019a]. VAEs have since been widely adopted,
both in non-disentangled Zhu and Chen [2023], Li and She
[2017], Zhu and Chen [2022] and disentangled forms Zhang
et al. [2020], Tran and Lauw [2022], Guo et al. [2022]. Our
work differs by introducing optimal transport to probabilisti-
cally align rating and text interest factors. Hou et al. [2022],
Rajput et al. [2023] adopted pre-trained language models
(PLMs) for text-based recommendation. However, PLMs
compress textual data into a single vector, overlooking its
multi-faceted structure. Instead, we focus on disentangling
multiple interest factors from texts. Zhou and Miao [2024],
Avas et al. [2024] leverage multi-modal data (e.g., text and
images), which differs from our focus on aligning ratings
and texts. While related to hybrid recommendation Rendle
[2010], Frolov and Oseledets [2019], Jeunen et al. [2020],
Xu et al. [2023], we follow warm-start setting rather than ad-

Figure 1: Illustration of our model BANDVAE. Numbers are
IDs of items and words. Note that dashed items and words
are not considered. BANDVAE employs optimal transport
to align and fuse user interest factors from ratings and texts.

dressing the cold-start problem, which is beyond our scope.

Optimal Transport (OT) offers a principled framework
for measuring distances between distributions and map-
ping them efficiently Peyré and Cuturi [2019]. Sinkhorn
algorithm Cuturi [2013], Genevay et al. [2018] have en-
abled OT applications in domain adaptation Courty et al.
[2014, 2017], model fusion Singh and Jaggi [2020], atten-
tion Zhang et al. [2021], Sander et al. [2022], multi-modal
knowledge fusion Cao et al. [2022], topic modeling Wu et al.
[2023], and object-centric learning Zhang et al. [2023]. In
recommender systems, OT has been applied to graph-based
aggregation Chen et al. [2022] and cross-domain user cor-
respondence Liu et al. [2024]. Our work diverges by using
OT to probabilistically align cross-modal interest factors.
This approach not only improves recommendation accu-
racy but also provides interpretable insights into user-text
interactions, a novel application of OT in this domain.

3 METHODOLOGY

Preliminaries and notations. Our setting includes M
users indexed by u, and N items indexed by i. For user u,
let yu ∈ {0, 1}N be their historical interactions with items.
yui = 1 indicates an observed interaction between u and
i, otherwise yui = 0. For item i, let wi ∈ RW be the tf-idf
representation of its textual content. W is the number of
words in the vocabulary. Let tu ∈ RW be textual vector of
user u, obtained from their adopted items as tu =

∑
i yui wi∑
i yui

.



Let H ∈ RN×d be the embedding matrix of N items, which
is the weight of decoder of rating channel in Figure 1.
The encoder of rating channel is a two-layered Multilayer
Perceptron (MLP). Inside the text channel in Figure 1, the
weight of decoder is denoted by EW×d, which stores W
d-dimensional vectors of W words in the vocabulary. The
encoder of text channel includes another two-layered Mul-
tilayer Perceptron (MLP) module. Our initial exploration
leveraged a BERT-style pre-trained language model (PLM)
to generate initial H and E from textual content but did not
produce favorable recommendation accuracy. Thus, we do
not include PLM for fair comparison with baselines and
leave the integration of pre-trained models like CLIP or
Large Language Models for a future study.

3.1 OVERVIEW OF BANDVAE

Figure 1 illustrates our model BANDVAE, which discov-
ers user preferences from ratings yu and texts tu for a user
u. Concretely, zuy = {zuyk }Kk=1 assuming K rating interest
factors underlying yu. Similarly, zut = {zutj }Jj=1 consists of
J text interest factors behind tu. Then, we align these rat-
ing and text factors via optimal transport, leveraging cross-
modal interest signals to improve performance. Like previ-
ous VAE-based multi-interest modeling studies, BANDVAE
includes three main components: a) Encoder E derives K
rating interest factors and J text interest factors for each
user; b) Alignment module A aligns and fuses user interest
factors from ratings and texts; c) Decoder D reconstructs
observed user-item ratings and user associated texts. The
key difference in BANDVAE lies in its novel adaptation
of optimal transport for aligning and fusing cross-modal
interest factors, which will be elaborated in the next section.

3.2 USER INTEREST LEARNING

Rating encoder Ey. To model multiple user interests, we
aim at uncovering the structure of their interacted items.
Inspired by Tran and Lauw [2023], we employ prototype-
based clustering to group user’s interacted items into clus-
ters, each capturing one user interests. To implement, Ey
employs a set of K prototypes my ∈ RK×d, which are
equivalent to cluster centroids. The clustering process runs
iteratively for Ly iterations (indexed by l). Each iteration
l = 1, 2, ..., Ly computes item-cluster assignment matrix
Auy

l ∈ RN×K then updates K prototypes (indexed by k) as

Auy
l = η(

H·(muy
l )T

τ ·||H||2·||muy
l ||2 ) =⇒ muy

lk =
∑

i yu
i (A

uy
l )ikHi (1)

muy
l ={muy

lk }Kk=1 and muy
1 =my. We implement η as the

widely adopted Gumbel-Softmax Jang et al. [2017], Mad-
dison et al. [2017] to ensure fair comparison with base-
lines. For an item i, its assignment score towards K clus-
ters satisfies:

∑K
k=1(A

uy
l )ik = 1 and (Auy

l )ik ≥ 0. Auy
l is

based on cosine similarity between H and muy
l . τ is a small

number to concentrate weights on the most probable pro-
totype. While iteratively updating muy

l in Equation 1 leads
to more informative prototypes than randomly initialized
my , it creates a recurrent network, which is difficult to train.
Thus, we apply Implicit Differentiation by stopping gradi-
ent (sg) update to prototypes after Ly − 1 iterations, i.e.,
muy

Ly−1 = sg(muy
Ly−1), then obtain assignment matrix Auy

Ly

as in Equation 1. For simplicity, we omit index Ly hereafter.

Next, we estimate the parameters of Gaussian distribution
for each interest factor k via rating encoder’s MLP

(ruyk , ouyk ) = W2tanh(W1norm(Auy
:,k⊙yu)+b1)+b2 (2)

where ⊙ is element-wise multiplication. norm(x) =
x/||x||2 normalizes input to unit-length vector. W1 ∈
RN×D,b1 ∈ RD,W2 ∈ RD×2d,b2 ∈ R2d are weight
matrices and bias vectors. Finally, the k-th rating inter-
est factor is sampled as zuyk ∼ N (µuy

k , [diag(σuy
k )]2).

µuy
k = ruy

k

||ruy
k ||2 ; σuy

k =σy · exp(− 1
2ouy

k ) and σy is around
0.1 Ma et al. [2019b]. Assuming the independence be-
tween rating factors of user u, we have q(zuy|yu,Auy) =∏K

k=1N (µuy
k , [diag(σuy

k )]2), as variation distribution,
which is aligned with prior distribution p(zuy) =
N (0, (σy)2I) via Kullback-Leibler divergence Dy

KL. Fol-
lowing the common practice in prior studies Ma et al.
[2019b], Guo et al. [2022], we omit the VAE prior during
evaluation for stability and comparability.

In summary, rating encoder Ey produces K rating interest
factors zuy={zuyk }Kk=1, assignment matrix Auy and regular-
ization term Dy

KL(q(z
uy|yu,Auy)||p(zuy)).

Text encoder Et clusters words into J groups, each repre-
senting one user interest from texts. Et functions similarly
to rating encoder Ey, but accepts different inputs: user u’s
textual content tu, prototypes mt ∈ RJ×d, word embedding
E ∈ RW×d, the number of clustering iterations Lt. To save
space, we present the details in the appendix.

In summary, Et produces J text interest factors
zut={zutj }Jj=1, assignment matrix Aut, regularization term
Dt

KL(q(zut|tu,Aut)||p(zut)) with p(zut) = N (0, (σt)2I).

3.3 INTEREST FACTOR ALIGNMENT

Our goal is to align and fuse user interest factors derived
from ratings and texts to enhance recommendation accuracy.
For instance, the encoder extracts the headphone interest
from ratings and the alignment module aligns this head-
phone interest to its counterpart from texts. Similarly, a
user’s interest in phone cases inferred from ratings should
be aligned with the corresponding interest mined from texts.
However, such alignments are unavailable in advance, re-
quiring a data-driven approach. To address this, we frame
the alignment as an optimal transport (OT) problem, treating
rating and text interest factors as discrete distributions. This



formulation enables to adaptively learn probabilistic corre-
spondences between rating and text interest factors, avoiding
rigid one-to-one mappings that risk suboptimal performance.
The OT-derived alignment also enables mutual transference
of interest signals between modalities, refining user interest
representations. Beyond improving accuracy, this approach
provides interpretable insights into the relationship between
user ratings and textual content.

3.3.1 Optimal Transport-derived Alignment Matrix

Following OT setting, we regard rating factors {zuyk }Kk=1

and text factors {zutj }Jj=1 as two discrete distributions. Each
factor has probability weight pyk and ptj . These weights form
two probability simplexes, i.e.,

∑K
k=1 p

y
k = 1 and

∑J
j=1 p

t
j

= 1. As the true distribution of zuy (and zut) is not available,
we assume uniform distribution by setting weights equally
pyk = 1/K ∀k and ptj = 1/J ∀j. Let πu be alignment
matrix between rating and text factors, defined by Pu =
{πu ∈ RK×J

+ |πu1J = py, (πu)T 1K = pt}, 1K , 1J are
K- and J-dimensional one vectors. We solve the tractable
regularized optimal transport problem Cuturi [2013] for πu

πu = argmin
πu∈Pu

⟨πu,Su⟩F − ϵ · Entropy(πu) (3)

The goal of Equation 3 is to minimize the total transporting
cost from rating factors to text factors of user u, resulting in
optimal alignment matrix πu. The first term is the Frobenius
dot product between πu and the cost matrix Su ∈ RK×J ,
Su
kj = ||zuyk − zutj ||22 and ⟨πu,Su⟩F =

∑
k,j π

u
kjSu

kj . The
second term Entropy(πu) =

∑
k,j −πu

kj log(π
u
kj) is the en-

tropy of πu, which is added to make the problem tractable. ϵ
is a hyper-parameter. Small ϵ results in skewed distribution
while large ϵ leads to relatively uniform distribution in πu.

To efficiently solve Equation 3 for πu, we employ Sinkhorn
algorithm Cuturi [2013] that alternatively calculates two
scaling vectors u and v until convergence as presented in
Algorithm 1. This approach is efficient as it is differentiable
and is highly supported on GPU for matrix multiplication.
Since Sinkhorn algorithm is theoretically proven to converge
to the optimal transport plan Peyré and Cuturi [2019], we
therefore stop gradient update to πu after obtained from Al-
gorithm 1 to improve efficiency. Empirically, we found that
this practice speeds up training while preserving accuracy.

3.3.2 Transference between interest factors

To enable cross-modal interest transfer and enhance user
representations, we propose two approaches. First, we intro-
duce an alignment probability-guided regularization term,
where the OT-derived alignment matrix πu guides the learn-
ing of connections between rating and text interest factors.
Second, we employ a barycentric mapping strategy, project-
ing rating factors into the text space (and vice versa). This

Algorithm 1 Alignment matrix between interest factors
Input: {zuyk }Kk=1, {z

uy
j }Jj=1, ϵ

Output: πu

1: Su
kj = ||z

uy
k − zutj ||22,Su ∈ RK×J

2: Bu = exp(−Su/ϵ)
3: initialize v← 1J
4: while not converged do
5: u← 1

K
1K
Buv ; v← 1

J
1J

(Bu)T u
6: end while
7: return πu = diag(u)Budiag(v)

facilitates bidirectional interest transfer, refining interest
representations and improving recommendation accuracy.

Alignment probability-guided regularization optimizes a
regularization term guided by πu as following

LOT
u =

K∑
k=1

J∑
j=1

πu
kj · ||zuyk − zutj ||22 (4)

Thanks to πu, the optimization will focus on transferring
interest between most probably aligned factors. Note that
while regularization-based interest transfer has been ex-
plored in Wang et al. [2015], Li and She [2017], Tran and
Lauw [2022], both in non-disentangled and disentangled
fashions, none of these is guided by alignment probabilities.

Mapping and fusing. To capture interest signals across
modalities, we fuse rating and text factors via barycentric
mapping Perrot et al. [2016], Courty et al. [2017].

Barycentric Mapping. Note each entry in the alignment
matrix πu

kj indicates how much of the probability mass
from a rating factor, zuyk , should be transferred to the
corresponding text factor, zutj . Thus, using πu, we can
map rating factors onto text space via solving ẑuyk =
argminst∈Rd

∑
j π

u
kjc(st, zutj ), where ẑuyk is the transfor-

mation of zuyk in text space and c(·, ·) is the cost function.
Following Courty et al. [2017], the solution for ẑuyk is

ẑuyk = diag(πu
k1J)−1πu

k zut (5)

where zut = {zutj }Jj=1 ∈ RJ×d. We repeat Equation 5
∀k = 1, 2, ...,K to obtain {ẑuyk }Kk=1. Similarly, we compute
ẑutj , the transformation of text factor zutj onto rating space

ẑutj = diag((πu)Tj 1K)−1(πu)Tj zuy (6)

where zuy = {zuyk }Kk=1 ∈ RK×d. We obtain {ẑutj }Jj=1 by
applying Equation 6 for ∀j = 1, 2, ..., J .

Adaptively Fusing. We fuse {zuyk }Kk=1 with their trans-
formed versions {ẑuyk }Kk=1 to create input for rating decoder,
enabling transferring rating signals explicitly to text space
via {ẑuyk }Kk=1. As each user’s decision bases individually on
ratings and texts, we design an adaptive fusion layer as

z̃uyk = zuyk + ρuyk · ẑ
uy
k , ∀k = 1, 2, ...,K (7)



ρuyk = log(1 + exp(ζ([zuyk ; ẑuyk ]))) is the fusion weight
and ; is concatenation. ζ : R2d → R1 is a neural network.
Similarly, a fusion layer is applied for text factors

z̃utj = zutj + ρutj · ẑ
ut
j , ∀j = 1, 2, ..., J (8)

ρutj = log(1+exp(ζ([zutj ; ẑutj ]))). ζ here is the same as one
in rating fusion. By this design, ρuy and ρut are dynamically
learned for each individual user. Then, z̃uy = {z̃uyk }Kk=1 and
z̃ut = {z̃utj }Jj=1 go to rating and text decoders, respectively.

3.4 DECODER

Rating decoder Dy of rating channel accepts user u’s fused
rating factors z̃uy = {z̃uyk }Kk=1 as input. Dy predicts the
probability of an interaction between a user u and an item i
as the weighted sum of rating factors’ predictions

p(yui ) =
∑K

k=1 Auy
ik · exp(s(z̃

uy
k ,Hi)/τ)∑N

i′=1

∑K
k=1 Auy

ik · exp(s(z̃
uy
k ,Hi′)/τ)

(9)

s(·, ·) is cosine similarity. The learning objective includes
cross-entropy loss to match the predicted interaction proba-
bilities p(yu) with observed interactions yu and KL diver-
gence term (controlled by βy) from rating encoder Ey .

Ly
u =

∑N
i=1−yu

i ln p(yu
i ) + βy ·Dy

KL(q(z
uy|yu,Auy)||p(zuy))

(10)
Text decoder Dt of text channel has user u’s fused text
factors z̃ut = {z̃utj }Jj=1 as input. Dt predicts the probability
of a word w appearing in textual content associated with
user u as the weighted sum of text factors’ predictions

p(tuw) =

∑J
j=1 Aut

wj · exp(s(z̃utj ,Ew)/τ)∑W
w′=1

∑J
j=1 Aut

wj · exp(s(z̃utj ,Ew′)/τ)
(11)

s(·, ·) is cosine similarity. Similarly, the learning objective
includes cross-entropy term to match predicted probability
p(tu) with observed textual information tu and KL diver-
gence term derived from text encoder Et, controlled by βt.

Lt
u =

∑W
w=1−tuwln p(tuw) + βt ·Dt

KL(q(zut|tu,Aut)||p(zut))
(12)

Final learning objective. Given a batch of user B, BAND-
VAE minimizes L = 1

||B||
∑

u∈B Ly
u + λt · Lt

u + λr · LOT
u .

λt and λr are hyper-parameters. Algorithm 2 presents the
training procedure of BANDVAE.

3.5 EXTENSION

Our method, while focuses on two modalities, can be easily
extended to multiple modalities. Suppose there is a set of
user-associated modalities T (e.g., text, image, audio) in ad-
dition to rating modality y. For each modality m ∈ T ∪{y},
an encoder Em (Section 3.2) is employed to discover Km in-
terest factors {zumk }K

m

k=1 for each user u. Then, the OT-based

Algorithm 2 Training procedure of BANDVAE
Input:
• Rating and text vectors of M users {yu}Mu=1 and {tu}Mu=1.

• Rating channel’s parameters Θy: item matrix in decoder H ∈
RN×d; prototype representations my ∈ RK×d; MLP’s parame-
ters: W1 ∈ RN×D, b1 ∈ RD,W2 ∈ RD×2d, b2 ∈ R2d

• Text channel’s parameters Θt: decoder weight matrix E ∈
RW×d; prototype representations mt ∈ RJ×d; MLP’s parame-
ters: W′

1 ∈ RW×D, b′
1 ∈ RD,W′

2 ∈ RD×2d, b′
2 ∈ R2d

• Parameters of fusion layer ζ : R2d → R1

• Hyper-parameters τ, ϵ, σy, σt, Ly, Lt

Output: Updated Θy and Θt

1 for each batch of user B do
2 for user u ∈ B do
3 {zuyk }

K
k=1 ← Ey(yu,my,H, τ, σy, Ly) // Rating

encoder

4 {zutj }Jj=1 ← Et(tu,mt,E, τ, σt, Lt) // Text
encoder

5 πu ← Sinkhorn algorithm({zuyk }
K
k=1, {zutj }Jj=1, ϵ)

// Alignment matrix in Algorithm 1

6 {ẑuyk }
K
k=1 ← Barycentric mapping(πu, {zutj }Jj=1)

// Equation 5

7 {ẑutj }Jj=1 ← Barycentric mapping(πu, {zuyk }
K
k=1)

// Equation 6

8 z̃uy ← Fuse({zuyk }
K
k=1, {ẑuyk }

K
k=1) // Equation

7

9 z̃ut ← Fuse({zutj }Jj=1, {ẑutj }Jj=1) // Equation 8
10 Ly

u ← Rating channel loss // Equation 10
11 Lt

u ← Text channel loss // Equation 12

12 LOT
u ← Regularization term // Equation 4

13 Calculate loss L = 1
||B||

∑
u∈B L

y
u + λt · Lt

u + λr · LOT
u

14 Update Θy,Θt to minimize L

alignment moduleA (Section 3.3) fuses interest factors from
m with those from y to obtain z̃um. Each modality m has
a decoder Dm to reconstruct the respective input, where
Dm accepts z̃um as input. The learning objective becomes
L = Lrecon

y +
∑T

m(λm ·Lrecon
m +λrmLOT

ym ), where Lrecon

is the reconstruction loss as Equation 10 and 12 while LOT
ym

regularizes interest factors of two modalities m and y as
Equation 4. These losses are controlled by λm and λrm.

4 EXPERIMENTS

Datasets. We use four publicly available datasets as shown
in Table 1: CiteULike-a1 contains interactions between
users and scientific articles; MovieLens2 includes users’
ratings on movies; Cell Phones and Video Games contain
user’ reviews on Cell Phones & Accessories and Video
Games categories of Amazon dataset3.

1http://wanghao.in/CDL.htm
2https://grouplens.org/datasets/movielens/
3https://nijianmo.github.io/amazon/index.html



Table 1: Statistics of datasets used in our paper.

Dataset # users # items # interactions # words

CiteULike-a 5,551 16,980 204,986 8,000
MovieLens 15,000 7,892 1,005,820 8,000
Cell Phones 25,500 17,989 285,047 8,000

Video Games 52,387 16,598 473,148 8,000

For CiteULike-a, Cell Phones and Video Games datasets,
we use the accompanying textual content, i.e., title &
abstract for CiteULike-a and item descriptions for Amazon
categories. For Cell Phones, we retain users with at least
8 interactions and items with at least 5 interactions and for
Video Games, these numbers are 5 and 5, respectively. For
MovieLens, we follow Zhu and Chen [2022] to extract a
subset of users from ML-10M version. We keep user ratings
larger than 3 as interactions Ma et al. [2019b] and collect
item textual content from IMDB 4. For all datasets, we
remove stop words and only keep words with frequency
higher than 3 and appearing in less than 60% of item texts
and retain top 8k words with highest frequency as in Zhu
and Chen [2022]. These strategies help ensure that even
short or noisy item descriptions contribute meaningful
information. Moreover, these steps are employed across
baselines, ensuring fair comparison. We keep these
pre-processing steps at minimal complexity so that the
performance gain is attributed to our proposed aligning
mechanism. Employing advanced methods to generate clean
text would potentially enhance our proposed framework.

We adopt strong generalization setting as in Ma et al.
[2019b] to construct training, validation and test sets by
randomly choosing 80% of users for training and 10% of
users for each validation and test sets. For validation and test
sets, 20% of a user interactions is kept as the ground truth.
To keep the quality of datasets, we only retain items with
at least 5 words in their textual content so that the textual
content brings semantic information. All cold-start items,
i.e., those do no appear in training set, are discarded since
there is no parameters associating with them, following the
common practice in the field.

Baselines. We compare BANDVAE against state-of-the-art
models, including models only utilizing ratings Macrid-
VAE Ma et al. [2019b], RecVAE Shenbin et al. [2020],
ELSA Vančura et al. [2022], VALID Tran and Lauw [2023],
FacetVAE Tran and Lauw [2024] and models using both
ratings and texts MDCVAE Zhu and Chen [2022], Topic-
VAEGuo et al. [2022], ADDVAE Tran and Lauw [2022]
and SEM-MacridVAE Wang et al. [2023a]. Among these,
RecVAE, ELSA and MDCVAE are single-interest mod-
eling models while MacridVAE, TopicVAE, ADDVAE,
SEM-MacridVAE, VALID, FacetVAE are multi-interest
modeling models.

4https://datasets.imdbws.com/

• MacridVAE Ma et al. [2019b] introduces macro- and
micro-disentanglement of user preferences via multi-
prototype representation and independence regularization.

• RecVAE Shenbin et al. [2020] proposes composite prior,
rescaling regularization term and an alternative training
into a novel VAE-based recommendation model.

• MDCVAE Zhu and Chen [2022] regularizes decoder
weights of the user-oriented autoencoder by latent
embeddings inferred from textual content.

• TopicVAE Guo et al. [2022] improves disentangling user
preferences by designing attention-based topic extraction
from textual content, topic-guided contrastive loss and
heuristic method to set value of regularization term.

• ADDVAE Tran and Lauw [2022] leverages two dis-
entangled networks to model user’s ratings and user
associated texts then aligns disentangled factors from
these two modalities using compositional de-attention
and regularization.

• ELSA Vančura et al. [2022] improves SOTA linear
autoencoder by factorizing hidden space into a low-rank
plus sparse structure.

• SEM-MacridVAE Wang et al. [2023a] exploits semantic
knowledge from side information to improve VAE-based
disentangled recommendation models. We use tf-idf
item-word matrix, i.e., W = {wi}Ni=1, as side information
for fair comparison.

• VALID Tran and Lauw [2023] improves VAE-based
disentangling user interests by iterative latent attention
and implicit differentiation.

• FacetVAE Tran and Lauw [2024] disentangles multi-
faceted item space and derive compositional user interests
via bi-directional binding.

We follow the strong generalization setting in Ma et al.
[2019b], i.e., validation and test sets include unseen users.
Thus, we only involve baselines capable of predicting in-
teractions for unseen users. While models SLIM, EASE,
SimpleX are capable, they have been already outperformed
by other baselines RecVAE, ELSA and VALID. Thus, we
only retain state-of-the-art models as our baselines.

Implementation. For all models, we choose the hyper-
parameters based on performance on validation set. Then,
we retrain and report performance on test set, which is aver-
aged over ten runs on NVIDIA RTX 2080 Ti GPU machine.
Pertaining to baselines, we follow their original papers to
choose hyper-parameters by performing grid search in the
same range described in those papers. Regarding BAND-
VAE, the default settings are D = 300 for MovieLens
and Cell Phones and D = 600 for CiteULike-a and Video
Games after tuning from {100, 200, 300, 500, 600}; em-
bedding size d = 100 for all datasets; dropout rate applied
for Auy and Aut is 0.5; number of rating and text factors
are K = 4 and J = 4, respectively (more values of K and



J are analyzed in subsequenct sections; βy and βt follow
annealing process min(β0,

update
T ) where β0 = 1 for rat-

ing channel and β0 = 0.2 for text channel, T is chosen
from {1k, 5k, 10k, 20k}, and update is the number param-
eter updates; σy and σt are chosen from {0.05, 0.075, 0.1};
the search space of λt and λr is {0.1, 0.2, 0.5, 1, 2, 5};
ϵ ∈ {0.2, 0.5, 1} in Sinkhorn algorithm. Archiecture of
fusion network ζ : 2d → d/2 → 1. The number of pro-
totype update steps Ly in rating encoder are chosen from
{2, 3, 4} while Lt = 1. We train BANDVAE using Adam
optimizer with learning rate 0.001 on NVIDIA RTX 2080
Ti GPU machine. Training stops after 30 epochs without
improving performance on validation set. We report Recall
and NDCG at top 10 and 50 with full-ranking strategy Zhao
et al. [2020], i.e., test item is ranked against all items to
avoid sampling bias.

4.1 RECOMMENDATION PERFORMANCE

Table 2 reports the recommendation performance. First,
BANDVAE achieves significantly higher accuracy than base-
lines using textual content for multi-interest modeling Topic-
VAE, SemMacridVAE, and ADDVAE on CiteULike-a, Cell
Phones, and Video Games, demonstrating the advantage
of its optimal transport-based alignment and fusion. Second,
BANDVAE also outperforms multi-interest models that do
not use textual content MacridVAE, VALID, and FacetVAE,
underscoring the value of aligning rating and text factors.
Additionally, BANDVAE surpasses single-interest models
MD-CVAE, RecVAE, and ELSA, highlighting the impor-
tance of capturing multiple interests. Third, on MovieLens,
while BANDVAE performs consistently across metrics,
some baselines excel only at specific metrics. For example,
RecVAE’s composite prior aids Recall@10, but BANDVAE
achieves notably higher Recall@50 and NDCG@50. SEM-
MacridVAE and TopicVAE learns item representations from
texts, attaining comparable accuracy with BANDVAE w.r.t.
only top 10 metrics. In contrast, BANDVAE is evidently
better than these two w.r.t. top 50 metrics.

4.2 MODEL ANALYSIS

We conduct experiments to gain insights into BANDVAE’s
inner working. We present more ablative studies in the ap-
pendix to further understand BANDVAE.

Alignment method. In Figure 2, we analyze three
alternatives to understand the derivation of πu.

• Sinkhorn (Sink) is Sinkhorn algorithm in Algorithm 1.

• Normalization (Norm) generates πu by normalizing neg-
ative distance between disentangled factors from two

modalities, i.e., πu
kj =

exp(−||zuy
k −zut

j ||22/ϵ)∑K
k=1

∑J
j=1 exp(−||zuy

k −zut
j ||22/ϵ)

.

• Diagonal (Diag) assumes kth rating factor aligned with
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Figure 2: In each row, the left figure compares methods to
derive πu, i.e., Diag, Norm, Sink. The right figure contrasts
methods, Reg, Map, Def, for transferring user interests.

kth text factor, i.e., πu
kj = 1/K if k = j, otherwise

πu
kj = 0. This approach is only applicable when K = J .

First, Sinkhorn outperforms normalization across all
datasets, as it converges to the optimal transport solution
Peyré and Cuturi [2019], avoiding skewed alignment ma-
trices that over-concentrate probabilities on highly similar
pairs. Second, normalization generally matches or exceeds
diagonal’s accuracy, except for NDCG@10 on Cell Phones
and Video Games, highlighting the importance of capturing
pairwise alignments. In contrast, the diagonal approach’s
rigid one-to-one assumption leads to suboptimal perfor-
mance, underscoring the value of probabilistic alignment.

Interest transfer method. Figure 2 reports recommenda-
tion accuracy w.r.t. three interest transfer methods.

• Combination (Com) includes both regularization and map-
ping & fusing inside BANDVAE.

• Mapping & Fusing (Map) only includes mapping and
fusing for interest transfer (no regularization).

• Regularization (Reg) only involves regularization for in-
terest transfer (no mapping and fusing).

First, regularization and mapping & fusing complement
each other, with their combination achieving higher accu-
racy than either alone. Second, mapping & fusing has a
stronger impact than regularization, highlighting the impor-
tance of bidirectional interest transfer between ratings and



Table 2: Recommendation performance comparison. The highest results are boldfaced while the runners-up are underlined.
Units of reported numbers, which are averaged over ten runs, are percentage. ⋆ denotes statistical significance between the
boldfaced and the underlined on a paired t-test with p-value < 5× 10−2.

Model CiteULike-a Cell Phones Video Games MovieLens

R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

MDCVAE 22.43+7.8% 20.97+17.8% 4.34+53.5% 3.38+58.3% 5.90+51.2% 3.84+50.0% 14.03+2.4% 11.98+9.7%

TopicVAE 17.00+42.2% 17.54+40.8% 5.31+25.4% 4.23+26.5% 6.87+29.8% 4.37+31.8% 14.27+0.6% 13.01+1.0%

RecVAE 21.46+12.6% 22.43+10.1% 3.77+76.7% 2.92+83.2% 6.93+28.7% 4.33+33.0% 14.45−0.6% 13.02+0.9%

MacridVAE 21.92+10.3% 22.95+7.6% 5.82+14.4% 4.84+10.5% 7.95+12.2% 5.14+12.1% 14.25+0.8% 12.74+3.1%

SEM-MacridVAE 22.91+5.5% 23.85+3.6% 5.39+23.6% 4.32+23.8% 7.61+17.2% 4.87+18.3% 14.17+1.3% 13.36−1.6%

ADDVAE 23.44+3.1% 24.12+2.4% 5.76+15.6% 4.90+9.2% 8.09+10.3% 5.21+10.6% 14.01+2.5% 12.62+4.1%

ELSA 21.23+13.8% 22.25+11.0% 6.21+7.2% 4.75+12.6% 7.39+20.7% 4.63+24.4% 13.35+7.6% 12.26+7.2%

VALID 22.50+7.4% 23.24+6.3% 6.18+7.8% 5.21+2.7% 8.48+5.2% 5.39+6.9% 14.22+1.0% 12.99+1.2%

FacetVAE 23.53+2.7% 24.68+0.1% 5.52+20.7% 4.53+18.1% 7.64+16.8% 4.92+17.1% 13.97+2.8% 12.68+3.6%

BANDVAE 24.17⋆ 24.70 6.66⋆ 5.35⋆ 8.92⋆ 5.76⋆ 14.36 13.14
p-value 2.2× 10−4 7.7× 10−1 6.6× 10−5 3.2× 10−2 6.6× 10−4 1.1× 10−4 4.4× 10−1 5.9× 10−2

Model CiteULike-a Cell Phones Video Games MovieLens

R@50 N@50 R@50 N@50 R@50 N@50 R@50 N@50

MDCVAE 38.72+17.1% 26.45+17.0% 9.60+42.4% 4.87+50.9% 14.21+51.9% 5.98+50.5% 29.75+11.5% 18.13+10.8%

TopicVAE 37.78+20.1% 23.84+29.8% 11.59+17.9% 6.00+22.5% 17.94+20.3% 7.22+24.7% 31.90+4.0% 19.54+2.8%

RecVAE 38.39+18.2% 27.27+13.5% 8.79+55.5% 4.34+69.4% 18.02+19.8% 7.15+25.9% 32.78+1.2% 19.80+1.5%

MacridVAE 43.00+5.5% 29.21+5.9% 11.96+14.3% 6.58+11.7% 20.02+7.8% 8.22+9.5% 32.28+2.8% 19.49+3.1%

SEM-MacridVAE 43.14+5.1% 29.87+3.6% 11.75+16.3% 6.12+20.1% 19.01+13.5% 7.80+15.4% 31.59+5.0% 19.77+1.6%

ADDVAE 43.89+3.3% 30.23+2.3% 11.96+14.3% 6.65+10.5% 20.11+7.3% 8.30+8.4% 32.95+0.7% 19.63+2.3%

ELSA 41.20+10.1% 28.32+9.3% 13.05+4.8% 6.72+9.4% 19.91+8.4% 7.81+15.2% 31.95+3.8% 19.13+5.0%

VALID 43.44+4.4% 29.43+5.1% 12.61+8.4% 7.01+4.9% 20.61+4.7% 8.56+5.10% 31.91+4.0% 19.60+2.5%

FacetVAE 43.85+3.4% 30.43+1.7% 11.60+17.8% 6.25+17.6% 19.50+10.7% 7.96+13.1% 31.89+4.0% 19.33+3.9%

BANDVAE 45.36⋆ 30.94⋆ 13.67⋆ 7.35⋆ 21.58⋆ 9.00⋆ 33.18⋆ 20.09⋆

p-value 2.5× 10−3 7.8× 10−3 2.8× 10−3 2.3× 10−4 2.8× 10−6 1.1× 10−8 3.8× 10−2 3.2× 10−2

texts. Third, excluding regularization reduces BANDVAE’s
accuracy, confirming its role in enhancing performance.
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Figure 3: Fusion method comparison Mean-T vs. Adaptive.

Fusion method. Figure 3 compares our adaptive fusion
method against Mean-T employed in Tran and Lauw [2022].

• Adaptive learns the adaptive fusion weight ρuy (and ρut)
for each user u as in Equations 7 and Equation 8.

• Mean-T (only applicable when K = J) computes the
average5 of two transformed versions of interest factors

5In Tran and Lauw [2022], sum is used. We empirically found

and sharing the final factors for both channels, i.e., z̃uyk =
1
2 (ẑ

uy
k + ẑutk ) = z̃utk (k in place of j for text factors).

Our adaptive fusion outperforms Mean-T, demonstrating
two key advantages. First, personalized fusion weights
better capture user-specific preferences, as equal weights
(Mean-T) fail to account for variability in how users weigh
ratings versus texts. Second, Mean-T’s shared represen-
tations are overly restrictive, while BANDVAE’s flexible
fusion effectively models preferences across modalities.

Table 3: BANDVAE’s performance w.r.t. ϵ in Equation 3.

ϵ
CiteULike-a Cell Phones Video Games MovieLens

R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

0.01 23.78 24.36 6.57 5.31 8.93 5.77 13.90 12.62
0.02 23.79 24.47 6.52 5.26 8.89 5.75 13.92 12.58

0.1 24.17 24.70 6.60 5.28 8.88 5.68 14.10 12.74
0.2 24.09 24.66 6.50 5.23 8.81 5.64 14.13 12.83
1 24.12 24.70 6.61 5.28 8.79 5.65 14.35 13.14
2 24.11 24.65 6.66 5.35 8.79 5.66 14.37 13.14

Effect of ϵ in Algorithm 1. Table 3 shows the results. The
effect of ϵ is data-dependent. On CiteULike-a, Cell Phones
and MovieLens, ϵ ≥ 0.1 leads to higher recommendation

that sum and mean lead to similar results.



(a) ϵ = 0.01 (b) ϵ = 0.1

(c) ϵ = 1 (d) ϵ = 2

Figure 4: Example of alignment matrix πu on Cell Phones.

accuracy than smaller ones ϵ < 0.1. Pertaining to Video
Games, ϵ < 0.1 generally results in higher accuracy. These
observations imply that ϵ should be chosen carefully to pro-
duce favorable recommendation accuracy on each dataset.

Effect of ϵ on alignment matrix πu. Theoretically, small ϵ
results in sparse πu while large ϵ leads to roughly uniform
πu. Figure 4 shows an illustrative example produced by
BANDVAE, evidently confirming the theoretical influence
of ϵ. To further verify, we report the entropy of πu ∈ RK×J

Table 4: Entropy of πu w.r.t. ϵ in Equation 3.

Dataset ϵ

0.01 0.02 0.1 0.2 1 2 5

CiteULike-a 1.9156 1.9743 1.9775 1.9812 1.9993 1.9998 2.0000
Cellphones 1.6391 1.7578 1.6251 1.7769 1.9854 1.9965 1.9995

Video Games 1.5987 1.8430 1.9931 1.9974 1.9999 2.0000 2.0000
MovieLens 1.2336 1.8749 1.8447 1.9059 1.9964 1.9991 1.9999

in Table 4. The reported numbers are averaged of row-wise
and column-wise entropy of πu. Evidently, small ϵ results in
lower entropy values, indicating sparser alignment matrices.

Case study. To better understand the alignment process
in BANDVAE, Figure 5 visualizes an example of decoder
outputs corresponding to alignment matrix in Figure 4(a).
The alignment matrix in Figure 4(a) reveals a staggered cor-
respondence between interest factors from two modalities.
For instance, rating interest factor 3 aligns with text interest
factor 1. This observation is consistent with Figure 5, where
top three items predicted by rating interest factor 3 include
VR products, while text interest factor 1 includes relevant
terms like virtual, reality, vr, glasses. Similar interpretations
can be made for other factors. This showcases BANDVAE’s
ability to semantically align and interpret rating factors.

Figure 5: Illustration of aligning interest factors. For rating
factors, we show top 3 items with highest predicted scores,
described by images and short descriptions. For text factors,
we visualize top 10 words with highest predicted scores.

Table 5: Similarities between text factors w.r.t. λt.

Dataset λt

0 0.1 0.2 0.5 1 2 5

CiteULike-a 0.7993 0.8878 0.9371 0.7089 0.5340 0.3559 0.4586
Cellphones 0.8690 0.4746 0.4799 0.4703 0.3466 0.0533 0.0094

Video Games 0.7873 0.8334 0.8402 0.8546 0.8266 0.2928 0.1210
MovieLens 0.4487 0.4431 0.4442 0.4535 0.4140 0.1126 0.4093

Effect of λt on interpretability. The text decoder’s output,
particularly the distinctiveness of top words for each text
interest factor, enhances interpretability of the relationship
between ratings and texts. Distinct words make it easier to
infer the meaning behind each factor, providing insights into
user preferences. To quantify this, we measure similarity be-
tween text interest factors as the fraction of shared words in
their top 10 terms. For each user, we compute pairwise simi-
larities and report the average over all users in Table 5. Table
5 shows that large λt results in low similarities between text
interest factors, which facilitates the understanding of user
interests with more distinctive top predicted words.

5 CONCLUSION

We propose a novel model BANDVAE to align disentangled
user interests from ratings and texts. By treating interest fac-
tors as distributions, we frame their alignment as an optimal
transport problem, enabling data-driven discovery of proba-
bilistic correspondences. BANDVAE’s novelty features two
key mechanisms: (1) an alignment probability-guided regu-
larization term and (2) a barycentric mapping strategy. These
enable BANDVAE to integrate cross-modal interest signals,
improving textual content-aware recommendation accuracy
and offering interpretable alignment of user preferences.
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Vojtěch Vančura, Rodrigo Alves, Petr Kasalický, and Pavel
Kordík. Scalable linear shallow autoencoder for collabo-
rative filtering. In RecSys, page 604–609, 2022.

Chong Wang and David M. Blei. Collaborative topic model-
ing for recommending scientific articles. In KDD, pages
448–456, 2011.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative
deep learning for recommender systems. In KDD, pages
1235–1244, 2015.

Xin Wang, Hong Chen, Yuwei Zhou, Jianxin Ma, and
Wenwu Zhu. Disentangled representation learning for rec-
ommendation. IEEE Trans. Pattern Anal. Mach. Intell.,
45(1):408–424, 2023a.

Xin Wang, Zirui Pan, Yuwei Zhou, Hong Chen, Chendi Ge,
and Wenwu Zhu. Curriculum co-disentangled represen-
tation learning across multiple environments for social
recommendation. In ICML, pages 36174–36192, 2023b.

Xiaobao Wu, Xinshuai Dong, Thong Nguyen, and Anh Tuan
Luu. Effective neural topic modeling with embedding
clustering regularization. In International Conference on
Machine Learning, pages 37335–37357, 2023.

Yang Xu, Lei Zhu, Zhiyong Cheng, Jingjing Li, Zheng
Zhang, and Huaxiang Zhang. Multi-modal discrete col-
laborative filtering for efficient cold-start recommenda-
tion. IEEE Trans. Knowl. Data Eng., 35(1):741–755,
2023.

Shujian Zhang, Xinjie Fan, Huangjie Zheng, Korawat Tan-
wisuth, and Mingyuan Zhou. Alignment attention by
matching key and query distributions. In Advances in
Neural Information Processing Systems, pages 13444–
13457, 2021.

Yan Zhang, David W Zhang, Simon Lacoste-Julien, Gert-
jan J Burghouts, and Cees GM Snoek. Unlocking slot
attention by changing optimal transport costs. In ICML,
volume 202, pages 41931–41951, 2023.

Yin Zhang, Ziwei Zhu, Yun He, and James Caverlee.
Content-collaborative disentanglement representation
learning for enhanced recommendation. In RecSys, page
43–52, 2020.

Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and
Ji-Rong Wen. Revisiting alternative experimental settings
for evaluating top-n item recommendation algorithms. In
CIKM, page 2329–2332, 2020.

Xin Zhou and Chunyan Miao. Disentangled graph varia-
tional auto-encoder for multimodal recommendation with
interpretability. IEEE Trans. Multim., 26:7543–7554,
2024.

Xin Zhou, Hongyu Zhou, Yong Liu, Zhiwei Zeng, Chun-
yan Miao, Pengwei Wang, Yuan You, and Feijun Jiang.
Bootstrap latent representations for multi-modal recom-
mendation. In The Web Conference, page 845–854, 2023.

Yaochen Zhu and Zhenzhong Chen. Mutually-regularized
dual collaborative variational auto-encoder for recom-
mendation systems. In TheWebConf., page 2379–2387,
2022.

Yaochen Zhu and Zhenzhong Chen. Variational bandwidth
auto-encoder for hybrid recommender systems. IEEE
Trans. Knowl. Data Eng., 35(5):5371–5385, 2023.



Optimal Transport Alignment of User Preferences from Ratings and Texts

Nhu-Thuat Tran1 Hady W. Lauw1

1School of Computing and Information Systems, Singapore Management University

A EXTENDED RELATED WORK

VAE-based disentangled representation learning. Uncovering hidden explanatory factors behind data results in robust
representations and enables modeling complex patterns underlying data Bengio et al. [2013]. Variational AutoEncoder or
VAE is a popular method offering representation disentanglement. Early works in this direction Higgins et al. [2017], Burgess
et al. [2018], Kim and Mnih [2018], Chen et al. [2018], Locatello et al. [2019] focus on dimension-level disentanglement,
where each element in the representation vector captures a distinctive latent feature. Later, Ma et al. [2019b], Tran and Lauw
[2023, 2024], Guo et al. [2024] extend this line by disentangling user preferences not only at dimension level but also at
intention level. Follow-up works incorporate various sources of information to improve disentangling user preferences. Tran
and Lauw [2022], Guo et al. [2022] employs textual content while Wang et al. [2023a] hires visual information. Zhou and
Miao [2024], Avas et al. [2024] seek the rich knowledge behind multi-modal data, i.e., textual and visual features. Wang
et al. [2023b] integrates social relationships between users to better disentangle user preferences. Our work follows this line
of research yet is distinctive in innovatively incorporating optimal transport for aligning disentangled rating and text factors.
While we mainly focus on rating and text data in this work, the proposed method is applicable when multi-modalities involve
as elaborated in Section 3.5.

Textual content-aware recommendation. Early methods Wang and Blei [2011], Wang et al. [2015], Kim et al. [2016], Ma
et al. [2019a] leverage deep neural networks to model item textual content, thereby enhancing recommendation performance.
Later, VAE has been widely adopted for this task, both in non-disentangled Zhu and Chen [2023], Li and She [2017], Zhu and
Chen [2022] and disentangled fashions Zhang et al. [2020], Tran and Lauw [2022], Guo et al. [2022]. What distinguishes our
work from these is the introduction of an optimal transport (OT)-based approach to align and fuse interest factors from ratings
and textual content, which provides a more flexible and nuanced alignment between interest factors. Recently, pre-trained
language models (PLMs), e.g., Devlin et al. [2019], have been explored to generate text-based item representations for
recommendation Hou et al. [2022], Zhou et al. [2023], Rajput et al. [2023]. While PLMs offer powerful text encodings,
they tend to compress the entire content into a single vector, which ignores the intricate structure and multi-faceted nature of
textual data. In contrast, our work focuses on disentangling multiple interest factors from textual content to capture a richer
representation of user preferences. Thus, we leave the integration of PLMs into our framework as a direction for future
work. Zhou and Miao [2024], Avas et al. [2024] leverage textual and visual data for recommendation tasks, which differs
significantly from ours, particularly in their use of multi-modal features. As a result, this work is not not directly comparable
with our model, which focuses solely on aligning ratings and textual content. Additionally, our work is related to hybrid
recommender systems Rendle [2010], Frolov and Oseledets [2019], Jeunen et al. [2020], Xu et al. [2023], which aim to
tackle challenges like the cold-start problem by combining multiple data sources. However, our primary objective in this
paper is to discover and align multiple interest factors across modalities in a warm-start setting, where sufficient interaction
data is available. Addressing the cold-start problem, though relevant, falls outside the scope of this work.

Optimal transport and its applications. Optimal Transport (OT) offers an elegant framework to measure the distance
between two probability distributions and facilitates the transformation of points from one distribution to another Peyré and
Cuturi [2019]. The popular method for computing optimal transport plan is Sinkhorn algorithm Cuturi [2013], Genevay et al.
[2018], which offers efficient and GPU-friendly framework and thus, has enabled numerous applications across various
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domains. For example, OT has been utilized in domain adaptation Courty et al. [2014, 2017], model fusion Singh and
Jaggi [2020] and attention-based models Zhang et al. [2021], Sander et al. [2022]. Additionally, OT has demonstrated its
effectiveness in fusing multi-modal knowledge graph data Cao et al. [2022], enhancing the coherence of topic modeling via
regularization Wu et al. [2023], and improving object-centric learning Zhang et al. [2023]. In recommender systems, OT has
also been widely explored, e.g., aggregating non-local information in graph-based recommendation Chen et al. [2022], or
finding user correspondence in cross-domain recommendation setting Liu et al. [2024]. Our work builds on OT but adopts
an orthogonal approach. Specifically, we apply OT to align and fuse mutually disentangled user interest factors derived from
ratings and textual content. By leveraging OT to perform this alignment in a data-driven manner, our approach allows for
a more flexible and personalized representation of user preferences across modalities, leading to higher recommendation
accuracy and offering a feasible method to gain insights into the relationship between user interactions and textual content.

B TEXT ENCODER E t

Text encoder Et functions similarly to the rating encoder Ey, but its input is the textual content tu associated with user u.
Et also leverages prototypes, mt ∈ RJ×d, to cluster words into J groups, each representing one user interest from texts. In
general, this process can also run iteratively for Lt iterations. However, we empirically found that employing iteratively
clustering process inside Et, i.e., Lt > 1, does not show clear improvement. Thus, to maintain efficiency, we set Lt = 1. As
such, there is no prototype updating inside Et and the set of text prototypes mt is shared among users. Then, we calculate
the word-cluster assignment matrix Aut ∈ RW×J

Aut = η(
E · (mut)T

τ · ||E||2 · ||mut||2
) (13)

Similar to rating encoder Ey, η is Gumbel-Softmax. Next, we estimate two parameters of Gaussian distribution for text

interest factor j as µut
j =

rut
j

||rut
j ||2 , σut

j = σt · exp(− 1
2outj ) where

(rutj , outj ) = W′
2tanh(W

′
1norm(Aut

:j ⊙ tu) + b′
1) + b′

2 (14)

⊙ and norm(·) are the same as in rating encoder. W′
1 ∈ RW×D,b′

1 ∈ RD,W′
2 ∈ RD×2d,b′

2 ∈ R2d are weight
matrices and bias vectors of text encoder. σt’s value is around 0.1. Then jth text factor is sampled as zutj ∼
N (µut

j , [diag(σut
j )]2), which is repeated ∀j = 1, 2, ..., J . Assuming the independence between text factors of user u,

we have q(zut|tu,Aut) =
∏J

j=1N (µut
j , [diag(σut

j )]2) as the variational distribution, which is then aligned with prior
distribution p(zut) = N (0, (σt)2I) via Kullback-Leibler divergence (Dt

KL) to impose micro-disentanglement.

In summary, text encoder Et produces J text interest factors zut = {zutj }Jj=1, assignment matrix Aut, and regularization
term Dt

KL(q(zut|tu,Aut)||p(zut)).

C ADDITIONAL RESULTS

Analysis on the Number of Interest Factors. We report recommendation accuracy w.r.t. the numbers of rating factors K
and the numbers of text factors J in Table 6 and Table 7, respectively. For rating factors, setting K = 3 or K = 4 gives the
best accuracy on CiteULike-a while K ≥ 5 is ideal for Cell Phones. These evidences show that users have varied interests.
BANDVAE generally performs best on Video Games with K ≥ 4 while reaches its peak performance on MovieLens with
K = 4. Pertaining to text factors, setting J = 4 results in the higher accuracy on CiteULike-a and MovieLens. In contrast,
BANDVAE’s performance on Cell Phones is not highly sensitive to J . For Video Games, setting J ≤ 4 produces better
accuracy than larger values.

It is worth to note that thanks to the pair-wise alignment between interest factors, BANDVAE can accommodate users’
distinctive behaviors across modalities, i.e., when K and J differ, while baseline such as Tran and Lauw [2022] cannot. As a
result, BANDVAE offers greater flexibility and is more applicable.

Effect of λr. Figure 6 presents BANDVAE’s accuracy w.r.t. λr, which controls the effect of regularization term for interest
transfer between rating and text factors. First, we observe that setting λr to 1 or 0.5 results in higher accuracy on chosen
datasets. Second, the effect of λr is data-dependent, e.g., while CiteULike-a favors large λr, the remaining datasets requires
smaller value, i.e., around 0.5 and 1. An excessive value of λr might cause detrimental effect.



Table 6: BANDVAE’s performance w.r.t. the number of rating factors K.

K
CiteULike-a Cell Phones Video Games MovieLens

R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

2 23.84 24.54 5.93 4.61 8.37 5.33 14.13 12.74
3 24.18 24.77 6.35 4.97 8.74 5.58 14.08 12.82
4 24.17 24.70 6.66 5.35 8.92 5.76 14.35 13.14
5 23.77 24.37 6.69 5.51 9.02 5.80 13.97 12.62
6 23.87 24.39 6.92 5.74 9.03 5.83 14.11 12.83
7 23.84 24.32 6.94 5.86 8.96 5.85 13.95 12.70
8 23.86 24.29 6.85 5.87 8.95 5.82 14.07 12.79

Table 7: BANDVAE’s performance w.r.t. the number of text factors J .

J
CiteULike-a Cell Phones Video Games MovieLens

R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

2 23.95 24.58 6.53 5.20 8.87 5.70 14.17 12.92
3 24.15 24.57 6.56 5.26 8.98 5.77 14.04 12.81
4 24.17 24.70 6.66 5.35 8.92 5.76 14.35 13.14
5 24.04 24.52 6.60 5.28 8.94 5.73 14.05 12.67
6 23.88 24.34 6.59 5.33 8.85 5.68 13.78 12.50
7 23.86 24.31 6.48 5.23 8.86 5.68 14.00 12.67
8 24.05 24.49 6.50 5.21 8.77 5.60 13.95 12.65
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Figure 6: BANDVAE’s performance w.r.t. various of λr.

Effect of λt. Figure 7 presents the influence of λt, which controls the effect of text reconstruction objective, on BANDVAE’s
accuracy. First, setting λt > 0 leads to higher accuracy than setting λt = 0, underscoring the benefit of textual signals.
Second, setting λt to a moderate value, i.e., around 0.5 or 1, results in favorable accuracy across datasets.

Efficiency Analysis. Table 8 analyzes the efficiency of BANDVAE and two strongest baselines ADDVAE and VALID. For
each model, we record the training time per epoch (in second) (averaged over ten runs) and the memory required for training
(in GB). There are three key takeaways. First, BANDVAE maintains a comparable efficiency level yet achieves higher
recommendation accuracy than ADDVAE and VALID. Second, the training time and memory gaps between VALID and
BANDVAE come from textual content modeling component, i.e., text channel, in BANDVAE yet do not appear in VALID.
Third, despite both including a textual content modeling module, BANDVAE employs multiple prototype updates in rating
encoder while ADDVAE does not, which results in difference in efficiency level of these two models. Though BANDVAE
introduces added complexity, this is the cost of modeling richer, user-aware cross-modal relationships. As shown in Tables 2,
this complexity leads to clear performance gains.

Effect of Ly. Table 9 shows BANDVAE’s recommendation accuracy w.r.t. Ly, the number iterations to update rating
prototypes in rating encoder Ey. Evidently, using more than one prototype update steps leads to higher recommendation
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Figure 7: BANDVAE’s performance w.r.t. various of λt.

Table 8: Efficiency comparison between BANDVAE, ADDVAE and VALID w.r.t. running time (seconds per training epoch)
and memory required for training (measured in GB).

Model
CiteULike-a MovieLens Cell Phones Video Games

Time
(s)

Mem
(GB)

Time
(s)

Mem
(GB)

Time
(s)

Mem
(GB)

Time
(s)

Mem
(GB)

ADDVAE 1.82 2.48 3.26 1.92 6.08 2.38 10.82 2.44
VALID 1.51 2.96 2.09 1.99 6.20 4.58 9.33 2.89

BANDVAE 1.95 3.39 3.68 2.52 8.38 4.89 14.68 3.38

Table 9: BANDVAE’s performance w.r.t. the number iterations Ly to update rating prototypes.

Ly
CiteULike-a Cell Phones Video Games MovieLens

R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

1 23.62 24.33 6.19 5.03 8.41 5.42 14.12 12.84
2 24.17 24.70 6.39 5.12 8.92 5.76 14.09 12.75
3 24.20 24.57 6.51 5.22 8.95 5.78 14.35 13.14
4 23.78 24.28 6.66 5.35 8.79 5.68 14.08 12.90

accuracy in all chosen datasets, which confirms the effectiveness of updating prototypes in rating encoder. This finding
is consistent with Tran and Lauw [2023]. Moreover, each data requires a specific value of Ly to achieve favorable accuracy,
e.g., 2 on CiteULike-a, 4 on Cell Phones and 3 on Video Games and MovieLens.

Table 10: BANDVAE’s performance w.r.t. the number iterations Lt to update text prototypes.

Lt
CiteULike-a Cell Phones Video Games MovieLens

R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

1 24.17 24.70 6.66 5.35 8.92 5.76 14.35 13.14
2 24.14 24.63 6.56 5.31 8.86 5.67 13.92 12.72
3 23.84 24.50 6.63 5.34 8.85 5.62 13.90 12.66
4 23.59 24.27 6.59 5.31 8.68 5.58 13.78 12.52

Effect of Lt. Table 10 presents the influence of the number iterations Lt to update text prototypes in text encoder Et.
The effect of Lt is contrary to that of Ly, i.e., using more prototype update steps results in a reduction in BANDVAE’s
performance. We conjecture that as users’ comprehensions of textual content, i.e., words and phrases, are roughly the same,
and thus, imposing personalization into word clustering in text encoder via setting Lt > 1 causes a detrimental effect. As
such, we fix Lt = 1 for all datasets through out the paper to maintain both effectiveness and efficiency.
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