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Abstract

Solving partial differential equations on domains with complex geometries is a
significant challenge. Physics-Informed Neural Networks (PINNs) would offer a
promising mesh-free approach, but their application to manifolds is limited. This
paper introduces Manifold Physics-Informed Neural Networks (M-PINNs) that
leverage domain decomposition for partitioning complex shapes into simpler charts,
for which we learn local embeddings. The core of our method is a novel universal
autoencoder architecture designed to generate these embeddings zero-shot for any
given chart. By training this system on a diverse set of charts, the decoders for new,
unseen charts can be obtained without retraining or adaptation. These decoders
then serve as the local embeddings within which separate PINNs are trained to
solve the PDE, effectively integrating the domain’s geometry into the process.
This approach results in a scalable and adaptable framework for solving PDEs on
complex manifolds.

1 Introduction

Physics-Informed Learning [Karniadakis et al., 2021, Hao et al., 2022, Raissi et al., 2017] recently
emerged as a new paradigm for leveraging the universal approximation capabilities of deep neural
networks combined with automatic differentiation to incorporate knowledge of physical laws, such as
partial differential equations (PDEs) with initial and boundary conditions, into the learning process.
It offers an interesting alternative to numerical discretization algorithms that are often prohibitively
expensive when it comes to incorporating noisy data from measurements to solve inverse problems.
Physics-Informed Neural Networks (PINNs) [Raissi et al., 2019] are one instance of physics-informed
learning consisting of various neural network architectures trained to approximate the solution of a
PDE or, in general, an inverse problem, penalizing deviations from physical laws, such as the PDE
itself or a conservation law. This approach provides several advantages over traditional numerical
methods, such as the inherent ability to handle inverse problems where parameters or governing
equations themselves are partially unknown.

Due to their high adaptability, PINNs have been applied extensively in various domains such as solid
mechanics, fluid mechanics [Raissi et al., 2020], heat transfer [Cai et al., 2021], and biomedical
engineering [Kissas et al., 2020, Ruiz Herrera et al., 2022].

Despite substantial progress in training techniques and architectures, a large body of PINN research
focuses on relatively simple flat domains, while many practical problems involve domains with
curved geometries and complex boundaries or topologies. Little work has been done to adapt PINNs
to complex domains, particularly curved surfaces in 3D, maintaining their mesh-free nature, data
integration capabilities and unified framework for forward and inverse problems. On top of that, the
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practical application of standard PINN formulations has faced significant computational hurdles:
training these networks, especially for the large and complex systems often encountered in real-world
science and engineering, proved to be computationally expensive and faced fundamental limitations
in scalability. Domain Decomposition Methods (DDM) [Jagtap and Karniadakis, 2020, Hu et al.,
2021, Jagtap et al., 2020, Li et al., 2019] offers a valid strategy to address these challenges of applying
PINNs to large-scale problems or those with complex geometries and multi-scale features. Rooted
in classical numerical analysis, DDM provides a "divide and conquer" approach: decomposing the
domain into subdomain and training separate PINNs independently in each, ensuring agreement at
the boundaries. Domain decomposition techniques such as extended PINNs (XPINNs) [Jagtap and
Karniadakis, 2020] not only have provable theoretical advantages over vanilla PINNs, but can also
better exploit GPU parallelism [Meng et al., 2020].

Figure 1: Manifold is par-
titioned into charts. Then,
charts are encoded into local
charts.

In this work, we propose a geometry-aware formulation of PINNs
to explicitly incorporate the domain’s geometry into the PINN ob-
jective and solve forward and inverse problems on the manifold.
We leverage domain decomposition and autoencoders to partition
manifolds into charts, and learn local coordinates together with the
Riemannian metric tensor field on the manifold. To do that, we pro-
pose a novel architecture that we refer to as universal autoencoder to
obtain the local embeddings in a zero-shot manner. This results in a
scalable and adaptable method that performs better than state-of-the-
art PINN techniques, especially in the scarce data regime. Moreover,
allowing PINNs to be trained on time-varying domains.

In this work, our contributions are the following:

• We introduce a domain decomposition strategy for training
PINNs on arbitrary manifolds.

• We propose using neural network decoders as local embed-
dings of manifold partitions. To the best of our knowledge,
this is the first mesh-free, fully differentiable approach for
training PINNs on manifolds.

• We develop a universal autoencoder architecture that pro-
duces local embeddings zero-shot, allowing scalable and
efficient training across arbitrary charts without retraining.
Importantly, this allows PINNs to be trained on domains
that can change over time.

2 Preliminaries

We begin by briefly describing the problem setting of physics-informed neural networks and domain
decomposition to solve forward and inverse problems defined on smooth manifolds.

2.1 Physics-Informed Neural Networks

We consider a parametrized PDE system given by:

N [u;λ](x, t) = 0, x ∈ M, t ∈ [0, T ],

u(x, t0) = u0(x), x ∈ M,

u(x, t) = ubc(t), x ∈ ∂M, t ∈ [0, T ],

(1)

where x is the spatial coordinate and t is the time; u(x, t) is the solution of the PDE with initial
condition g0(x) and boundary condition gΓ(t) (which can be Dirichlet, Neumann or mixed boundary
condition); ∂M represent the boundary of the domain. Additionally, we might know the value of the
solutions at some, possibly very sparse, locations:

u(xi, ti) = ui, (xi, ti) ∈ Ddata.

Physics-informed neural networks work by approximating the solution of the PDE with a neural
network architecture uθ, parameterized by θ, trained with gradient descent by minimizing the
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following composite loss function that penalizes deviations from the solution

L(θ) = wicLic(θ) + wbcLbc(θ) + wrLr(θ), (2)

where

Lic(θ) =
1
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i
ic)

∣∣2 , (3)

Lbc(θ) =
1
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i=1
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{
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}Nr

i=1
are points sampled from M, ∂M, and [0, T ].

2.2 Domain decomposition

The fundamental idea behind domain decomposition is to break down a large, computationally
challenging problem defined on a global domain M into a collection of smaller, more manageable
subproblems, each defined on a smaller subdomain Mi. This partitioning is such that adjacent
subdomains share a region of overlap. In DD techniques such as XPINNs Jagtap and Karniadakis
[2020] or cPINNs Jagtap et al. [2020], a separate neural network uθi is assigned to each partition and
trained imposing appropriate boundary conditions at the newly created artificial interfaces between
subdomains to enforce consistency of the solutions. The objective for the i-th neural network becomes

LDD(θi) = Lic(θi) + wI
∑

ij:∈Mi∩Mj ̸=∅

LI(θi, θj), (6)

where

LI(θi, θj) =
1

nI,ij

nI,ij∑
k=1

|uθi(xkI,ij , tkI )− {{uθ avg}}(xkI,ij , tkI )|2, (7)

where {{uθ avg}}(xkI,ij) = (uθi(x
k
I,ij)+uθj (x

k
I,ij))/2, nI,ij is the number of interface points between

the i-th and j-th subdomains, while xkI,ij is the k-th interface points between them.

3 Method

Our proposed method for solving PDEs on general manifolds consists of using autoencoders as
local embeddings of appropriately partitioned manifolds. First, we outline the theory of PDEs on
Riemannian madifold [Do Carmo, 2016] and then introduce the universal autoencoder for learning
local embeddings zero-shot.

3.1 PDEs on Riemannian manifolds

We consider the problem of learning a partially observed function u : M −→ R defined on a
d-dimensional smooth manifold M. Without loss of generality M is a subset of Rn for some n ≥ d.
Practically, the input domain of u is a point-cloud D = {xi}Ni=1 ⊂ Rn of points lying on M. We
assume we know that u is the solution of some PDE of the form N [u;λ] = 0, where N [·;λ] is
a, generally nonlinear differential operator parameterized by λ. We will now endow M with a
Riemannian metric and generalize differential operators to account for the intrinsic geometry of the
manifold.

A Riemannian metric is a positive definite, symmetric 2-tensor field g that determines an inner product
on each tangent space TxM, that is, for all x ∈ M, and for all X,Y ∈ TxM, g(X,Y ) = g(Y,X)
and g(X,X) = 0 if and only if X = 0. A Riemannian metric accounts for the intrinsic geometry,
or shape of the manifold, when computing norms of tangent vectors or angles between them. In
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local coordinates, g can be represented as a positive definite, symmetric, d-by-d matrix g such that
g(X,Y ) = XTgY .

Let u be a smooth scalar function on M, and X be a vector field on M. We denote X (M) the space
of vector fields on M. The gradient of u is the metrically equivalent vector ∇u defined by

g(∇u, X) = du(X), ∀X ∈ X (M). (8)

One can show that Eq. (8) yields the following expression for the gradient vector field in local
coordinates

∇u = gij
∂u

∂xi
∂

∂xj
, (9)

where ∂
∂xi is the chart-induced basis of the tangent space. Similarly, one can derive the expression in

local coordinates of the divergence of a vector field

div(X) =
1√
|g|
∂i(

√
|g|Xi), (10)

and the Laplacian:

∆u =
1√
|g|
∂j

(√
|g|gij ∂u

∂xi

)
, (11)

where gij is the inverse metric (gij = [g−1]ij), and
√

|g| is the square root determinant of the g. It
is immediate to see that all the above equations result in the well-known forms of the corresponding
differential operators in Euclidean space, where g is everywhere equal to the identity matrix.

Let ϕ : M ↪→ Rn be a (local) embedding of the manifold M into Eucledian space Rn, and ϕ∗ the
push-forward of ϕ. Given a metric ge on the embedding manifold (the Euclidean space Rn in this
case), we can define the pull-back of ge through ϕ as the metric ϕ∗g such that

ϕ∗g(X,Y ) = g(ϕ∗X,ϕ∗Y ) ∀X,Y ∈ X (M). (12)

The metric ϕ∗g(X,Y ) is a Riemannian metric on M. Locally, its expression is

[ϕ∗g(X,Y )]ij = gαβ
∂ϕ̂α

∂xi
∂ϕ̂β

∂xj
, (13)

where ϕ̂ : Rd −→ Rn is the local representation of the embedding ϕ. We will induce a Riemannian
metric on M from the Eucledian metric in Rn [ge]ij = δij (the identity matrix). In matrix form, eq.
(13) is simply

ϕ∗g = JTϕJϕ, (14)
where Jϕ is the Jacobian of ϕ.

3.2 Decoders as local embeddings

An autoencoder [Hinton and Salakhutdinov, 2006] is the composition of two neural networks
eψ : Rn −→ Rd and dϕ : Rd −→ Rn with d < n. The autoencoder is trained to approximate the
identity map on the input domain, i.e., it is trained with the objective

Lae(ψ, ϕ) =
1

N

∑
i

||dϕ(eψ(xi))− xi||2 (15)

Suppose we are given a point cloud P = {xi}Ni=1 ⊂ R3 corresponding to points on a 2-dimensional
manifold embedded in R3. If we train an autoencoder d ◦ e on P we can use the encoder e as a chart
map, namely a diffeomorphism from the manifold to R2, and the decoder d as a local embedding,
namely an injective map that is a homeomorphism onto its image. Note that we can also think of
d as the inverse of the chart map e. We use a set of autoencoders, each one trained on subsets of
the manifold. Once the decoder is trained we can obtain the Riemannian metric by pulling back the
Eucledian metric as in eq. (14) using the Jacobian:

g = d∗ge = JTd Jd. (16)

This metric will be employed in the differential operators to compute the PINN residual objective in
(5).
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3.3 The universal autoencoder

Training a separate autoencoder for each chart in the manifold partition would be computationally
demanding and difficult to scale. To address this limitation, we introduce the universal autoencoder,
a single architecture capable of generating local embeddings for any chart in a zero-shot fashion.
This model amortizes the cost of learning embeddings by training on a diverse collection of manifold
charts, thereby generalizing to unseen charts without retraining. To understand the design of the
universal autoencoder we outline its two fundamental requirements: (1) the model needs to produce
local embeddings of manifold charts made of any number of points. (2) the local embedding needs
to vary smoothly as the manifold charts changes shape. The universal autoencoder consists of three
components:

• A chart encoder inspired by the Universal Physics Transformer (UPT) [Alkin et al., 2024a],
which processes point clouds of arbitrary size and ordering, producing a compact latent
representation of the chart;

• A conditional decoder, implemented as a SIREN-based conditional neural field [Dupont
et al., 2022], from Sitzmann et al. [2020], with FiLM conditioning [Perez et al., 2018]. This
decoder maps coordinates in the Euclidean space back to the ambient space;

• A Perceiver encoder [Jaegle et al., 2021] which maps point of the chart to their local
representation in Eucledian space.

The first encoder produces two latent vectors: one for the encoder and one for the decoder. These
vectors steer the Perceiver and the SIREN to produce a meaningful embedding-decoding pair tailored
to the chart. In particular the Perceiver encoder is conditioned with cross-attention, and the SIREN is
modulated with FiLM, which consists of multiplying its activations with the latent vector.

Figure 2: Architecture diagram of the universal autoencoder. The point-cloud goes through a
Perceiver Encoder, that produces local coordinates, and the chart encoder that produces two latent
representations. The latent representations are used to condition a SIREN decoder and the Perceiver
encoder. The conditioned SIREN is the local embedding of the chart.

During training, the universal autoencoder is optimized end-to-end using a reconstruction loss across
multiple charts:

Luae =
1

M

M∑
i=1

∑
x∈Pi

∥∥dϕ (eψ(x; ce(Pi); cd(Pi))− x
∥∥2 , (17)

where dϕ is the conditional SIREN decoder, eϕ is the Perceiver encoder, and ce(Pi), cd(Pi) are the
two chart representations from the chart encoder.
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From a functional perspective, the universal autoencoder can be viewed as a neural operator [Li
et al., 2020, Alkin et al., 2024b, Wang et al., 2024, Li, 2021]: it learns a map between function spaces,
taking as input point cloud representing a surface patch and returning its local coordinate embedding.
If X denotes the space of discrete point clouds P ⊂ Rn that approximate d-dimensional charts of
a manifolds (e.g., elements of a shape space with mild regularity assumptions), and let Y be the
space of smooth functions d : Rd → Rn representing local chart embeddings. Then, the universal
autoencoder implements a map

C : X → Y, C(P)(z) = dϕ(z; c
d(P)). (18)

By amortizing this operator over a family of training patches Pi ∈ D ⊂ X , the network generalizes
to new unseen patches at inference time, producing their local embedding without retraining. This
interpretation aligns our model with recent work on neural operators for scientific computing, while
remaining grounded in geometric representation learning.

While our experiments focus on a limited family of patches obtained through continuous deformations,
the universal autoencoder architecture is inherently scalable. In principle, it can be trained on
a broad and diverse set of manifold charts, enabling generalization to a wide variety of unseen
geometries. This scalability stems from the model’s ability to amortize the embedding process across
heterogeneous inputs through shared parameters and conditional adaptation. Furthermore the model
is composed of transformer layers making it a potentially scalable architecture. Extending the model
to operate over an extensive and heterogeneous patch distribution is a promising direction for future
work and beyond the scope of the present study.

3.4 Partitioning manifolds

It is crucial to partition the manifold M into multiple subdomains Mi in such a way that autoencoders
don’t have a hard training. Furthermore, the subdomains must cover the manifold, namely

⋃
iMi =

M, and have some overlapping region to allow information exchange between subdomains. We
experimented multiple solutions based on existing algorithms borrowed from other disciplines, and
found that a combination of greedy Poisson sampling and a region-growing algorithm based on the
graph of nearest neighbours provides very good partitions very fast. We refer to the Appendix for
further details on the partitioning algorithm.

3.5 M-PINNs: Putting it All Together

Our full method, Manifold Physics-Informed Neural Networks (M-PINNs), combines manifold-
aware domain decomposition with a universal autoencoder to solve PDEs on complex geometries in
a fully differentiable and mesh-free manner. The overall pipeline consists of three key stages:

1. Partitioning the manifold: The input point cloud P ⊂ Rn is partitioned into overlapping
charts, each representing a local patch of the manifold. The partitions are constructed to
cover the domain and allow information flow via overlaps.

2. Zero-shot local embedding via the universal autoencoder: For each chart Pi, the universal
autoencoder generates a decoder di that serves as a local embedding Rd → Rn. These
decoders define the chart-specific Riemannian metrics gi = J⊤

di
Jdi via pullback of the

Euclidean metric. The chart domain d−1
i (Pi) then becomes the coordinate space on which a

PINN can be trained.

3. Training local PINNs: Separate PINNs uθi are trained over the local chart domains
d−1
i (Pi) using the Riemannian metric gi to define intrinsic differential operators. Domain

decomposition loss terms enforce agreement between neighboring charts across their overlap
regions.

This framework enables scalable and parallel training on complex geometries without requiring mesh
generation or retraining of embeddings. Crucially, the universal autoencoder amortizes the cost of
learning chart embeddings by generalizing to unseen patches, making M-PINNs adaptable to novel
domains at inference time.
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4 Related work

Given the rapid expansion and breadth of the literature on PINNs, this section does not provide an
exhaustive survey. Instead, we focus our review on prior work most pertinent to the contributions
herein, specifically examining PINN-based approaches developed for or applied to problems featuring
complex geometric domains. Readers seeking a more general overview of PINN theory, method-
ologies, and applications are directed to several existing comprehensive survey Hao et al. [2022].
Regarding domain decomposition see Meng et al. [2020]for a detailed explanation of the techniques
and parallel algorithm for cPINNs and XPINNs.

The challenge of applying PINNs to problems defined on domains with complex shapes and topologies
led to the development of various techniques most of which focus on representing the domain
boundary or transforming the coordinate system in simple 2D domains, rather than embedding the
intrinsic geometry of the domain into the network’s learning process. One approach involves a
Signed Distance Function (SDF) to implicitly represent the domain’s boundary [Kraus and Tatsis,
2024]. The SDF measures the shortest distance from any point to the boundary, with the sign
indicating whether the point is inside or outside the domain. Incorporating SDFs allowed for the
exact enforcement of Dirichlet boundary conditions by constructing the solution ansatz such that
it inherently satisfied the boundary values, avoiding the need for potentially less accurate penalty
terms in the loss function. While useful for boundary treatment, this application of SDFs was mainly
demonstrated in 2D contexts and did not fundamentally alter the network’s input to make it aware of
the overall domain geometry, especially for complex 3D surfaces. Another strategy involved defining
a mapping between the complex physical domain and a simpler, regular computational domain (e.g.,
a unit square or cube). This could be achieved through various techniques, including analytical
transformations [Burbulla, 2023], elliptic coordinate mapping, or leveraging the inverse isoparametric
maps [Sunil and Sills, 2024] from finite element methods. Once the problem was transformed to
the computational domain, standard numerical techniques (like finite differences or convolutional
neural networks operating on the regular grid) could be applied more easily. For problems involving
vector fields defined on surfaces embedded in 3D space (e.g., fluid flow on a surface), researchers
introduced additional penalty terms into the PINN loss function [Fang et al., 2021]. These terms
explicitly enforced the constraint that the learned vector field must remain tangent to the surface at
all points. This approach directly addresses a physical requirement on the solution. However, its
effectiveness was noted to be higher for relatively simple and smooth surfaces where the Euclidean
distance between points in the embedding space closely approximates the intrinsic geodesic distance
along the manifold. For surfaces with high curvature or complex topology, where these distances
differ significantly, this method could struggle.

∆-PINNs Costabal et al. [2024] represent a distinct approach to handling complex geometries by
fundamentally changing how the domain’s structure is presented to the neural network. The central
innovation of ∆-PINNs is a novel positional encoding scheme based on the eigenfunctions of the
Laplace-Beltrami Operator (LBO) associated with the domain manifold (or the standard Laplacian
operator for bounded domains in Euclidean space). Instead of feeding the standard Cartesian
coordinates directly into the neural network, the input layer receives the values of the first k LBO
eigenfunctions evaluated at the input point. The LBO is intrinsically linked to the geometry and
topology of the manifold. Its eigenfunctions form a basis that naturally reflects these properties.
Points that are close to each other in terms of geodesic distance on the manifold will tend to have
similar values for the lower-frequency eigenfunctions. To the best of our knowledge ∆-PINNs are
the best existing adaptation of PINNs to complex geometries, outperforming by far all the others.
Therefore, we will compare our proposed method against it in the following section.

5 Experiments

To the best of our knowledge the ∆-PINN is the only method for adapting PINNs to complex
geometries. In their paper Costabal et al. [2024], showed that ∆-PINNs outperform any other method
that they compared with, such as GCNs Gao et al. [2022] and vanilla PINNs. Therefore, we compare
M-PINNs against ∆-PINNs only.

Scarce-data regime. We first investigate how M-PINNs perform in the scarce-data regime, namely,
when the problem is ill-posed and necessitates data points. We test with the Eikonal equation on a
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Figure 3: Ablation study in the scarce data regime. A ∆-PINN and a M-PINN are trained with a
varying number of data points. The two figures report MSE and correlation with the ground truth
solution obtained with an exact geodesic algorithm.

(a) Correlation between
groundtruth and predicted
solution.

(b) Solution on the de-
formed manifold

(c) Ground truth solution on
the deformed manifold.

Figure 4: Eikonal equation on a deformed Stanford Bunny. The local embeddings used to solve
the PDE are obtained zero-shot from a new, unseen deformation.

coil. The Eikonal euation reads {√
∇u · ∇u = 1,

u(xb) = 0,
(19)

and the solution can be interpreted as the geodesic distance from the base point xb to any point
on the manifold. Since we do not impose the initial condition in the loss function, the problem is
ill-posed and necessitates of data points. We use 40 charts and a single-layer MLP with 16 hidden
units and tanh activation for the PINN in each chart. We compare with a ∆-PINN with the same
hyperparameters described in Costabal et al. [2024] for the coil experiment. Figure 3 shows the
correlation of the PINN solution with the ground-truth solution obtained with an exact geodesic
algorithm from libigl. Jacobson et al. [2013]. From these experiments, it appears that ∆-PINNs
struggle to generalize over such a large domain with few data-points.

Zero-shot generalization to unseen shapes and geometries. As a second experiment we test the
ability of the universal autoencoder to generalize to unseen shapes zero-shot. To this end we train a
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universal autoencoder on a dataset of charts from a complex shape. Before feeding the charts to the
model we act on it with a random transformation from the family

T = {f : R3 −→ R3, p 7→ exp(tM)p} (20)

where M is a random 3-by-3 matrix obtained by sampling each entry from a normal distribution and
then subtracting 1

3Tr(M) so that the final transformation is invertible and preserves volume. This is
done to prevent the surface from self intersecting. At test time a new transformation is sampled and
use to deform the shape. Figure 4 shows how we can obtain solutions in accordance with the ground
truth by using the local embeddings obtained zero-shot with the universal autoencoder. See Appendix
for further details.

Solving PDEs on time-varying surfaces. Last, we test the ability to solve a PDE on a domain that
change in time. To do that we train a universal autoencoder on random deformations of a 2D plane
embedded in 3D space, obtained by adding and subtracting sine waves of random frequencies and
amplitude. The frequencies are such that the boundaries are kept fixed. We then solve the diffusion
equation, ut −D∆u, where ∆ is the Laplacian from equation (3.1), while the shape is continuously
deformed by one such deformation. See Appendix for further details. To the best of our knowledge
this is the first algorithm that allows PDEs, or inverse problem solving with PINNs, on shapes that
change in time.

Table 1: Solution of the diffusion equation with a domain that changes in time. A Universal
Autoencoder is trained on random deformations and then used to obtain local embeddings.

6 Conclusion

This paper introduced Manifold Physics-Informed Neural Networks (M-PINNs), a novel framework
designed to address the problem of solving PDEs on domains with complex, curved, and time-varying,
geometries. Traditional physics-informed neural networks are limited in their direct applicability to
such manifolds. Our approach overcomes these limitations by integrating domain decomposition
with a unique universal autoencoder architecture. Our experiments demonstrated the effectiveness
of M-PINNs, showing superior performance compared to state-of-the-art methods like ∆-PINNs
in scenarios with scarce data. While we focused on relatively small function spaces for the chart
embeddings, a promising direction for future work involves extending the universal autoencoder to
generalize across more extensive, diverse, and heterogeneous collections of manifold charts. M-
PINNs offer a scalable, adaptable solution for tackling PDEs on complex manifolds. For the inherent
differentiability of the universal autoencoder, in future work we will also explore shape optimization
problems involving PDEs.
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A The Partitioning Algorithm

In order to partition the manifold into subdomains to facilitate the universal autoencoder, and such
that the manifold is covered by their union, we use a combination of Poisson sampling and region
growing. Given a point cloud, Poisson sampling is a greedy algorithm that iteratively chooses a point
and removes from the set of points that can be chosen all the points that are less than a prespecified
distance from it. The algorithm stops when there are no more points that can be sampled. We then
use a simple region growing algorithm using the sampled point as seed points. Region growing
is a family of classical and widely used algorithms in computer vision and image processing for
segmentation and clustering. From a set of seed points, region growing progressively assigns to a
chart all the points in the neighborhood of points that are already in that chart, unless they already
belong to some other chart. The algorithm iterates until all points belong to a chart. This way, charts
grow from seed points. To ensure charts overlap, we do one additional iteration at the end.

B Universal Autoencoder: Architecture Details

The Universal Autoencoder architecture combines transformer-based point cloud encoding with
a conditional neural field. The encoder component processes input point clouds by first selecting
representative points and applying a graph neural network for local feature aggregation. This is
inspired by the supernode pooling architecture proposed by Alkin et al. [2024a]. These features
are projected to a higher dimension and refined through a series of prenorm transformer blocks.
Last, we employ a perceiver-based pooling mechanism to extract latent tokens from the point cloud
representation. Coordinates are encoded with a perceiver-based model [Jaegle et al., 2021]. A
dedicated latent token is concatenated with the perceiver output and processed through additional
transformer layers to extract a global latent code. The decoder component utilizes a modulated
SIREN network [Sitzmann et al., 2020], which implements sinusoidal activation functions modulated
by the extracted latent code, enabling high-fidelity reconstruction of complex signals across the
coordinate space. This hybrid architecture effectively combines the strengths of transformer-based
feature extraction with the continuous representation capabilities of implicit neural representations.
Because the embedding of a manifold does not change if the manifold is translated, every chart is
centered at the origin before feeding it to the universal autoencoder.

C Ablation Study

The ablation study involved the coil point cloud made of 117k points. 16 points were sampled
randomly and ordered with respect to distance from the base point. We used increasingly more points
in the training dataset following this order. For reference, the farthest point is 400 units from the base
point. For more than 16 points, the performance of ∆-PINNS quickly converges to that of M-PINNs,
but in the scarce data regime, we observe that ∆-PINNs find solutions that achieve low PDE residual
loss, but don’t agree with the ground truth. For every number of data points we average the result
over three different random seeds. We think that this difference in performance is mostly due to
domain decomposition and the use of independent PINNs in every chart.

D Deformed Manifold Experiment

For the deformed manifold experiment, we trained a 2-million-parameter universal autoencoder on
random charts, taken from partitioning the Stanford Bunny with region growing, and deforming them
with random transformations from the family of transformations described in Eq. (20). At test time,
a new deformation was sampled, and the Eikonal equation was trained using the predicted local
embeddings for the new set of charts. Figure 2 shows the same experiment performed on the same
coil shape used in [Costabal et al., 2024]. Note that our solution is sampled much more densely than
the ground truth. This is because the continuous local embedding allows for sampling off the mesh.
This is a clear advantage of the method we propose: the solution does not rely on any mesh structure,
which can be costly to obtain, and can be computed using only the point cloud. For reference, both
the coil and the Stanford Bunny were partitioned into 90 charts, and a single-layer neural MLP with
tanh activation was used as the PINN on each chart. Domain decomposition allows for using small
PINNs on each partition which compensates for the computational overhead given by the additional
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Figure 5: Examples of charts. First column: charts. Second column: charts reconstructed by the
universal autoencoder with the predicted embedding. Third column: the 2D charts predicted by the
encoder with the norm of the inverse Riemannian metric computed by pulling back the Euclidean
metric through the SIREN decoder. Fourth column: the same coordinates with the norm of the
Riemannian metric.

boundary term in the loss. Overall, we found that our implementation was comparable to ∆-PINN in
terms of speed.

E Changing Domain Experiment

The changing domain experiments were performed on a 64-by-64 grid embedded in 3D space and
deformed by a random transformation from the family

T = {f : R3 −→ R3, (x, y, z) 7→ (x, y,

N∑
i=1

ti sin (niπx) sin (miπy))}, (21)

where ti is uniformly sampled between 0 and 1 and ni,mi are random integers sampled between 0 and
4. We trained a universal autoencoder to produce embeddings of this manifolds and use them to solve
the diffusion equation ut = D∆u and the wave equation utt = c2∆u. A roll-out of the diffusion
equation is reported in Fig. 1 while in Fig. 3 and 4 we show roll-outs of the wave equation. For the
wave equation, we use a Gaussian-like initial condition at the center of the grid with derivative zero
everywhere. The PDE is solved while the domain is being continuously deformed by a transformation
from the same family: a ni and mi are kept fixed and t is continuously varied from 0 to 1. Crucially,
∆-PINN would require re-computing the eigenfunctions of the Laplace-Beltrami operator every
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Table 2: Solution of the Eikonal equation on random deformations of a coil. First column:
the solution obtained using the PINNs trained with local embedding obtained with the universal
autoencoder. The solution is sampled much more densely than the original point cloud. Second
column: the ground truth obtained with an exact geodesic algorithm using the original mesh structure.
Third column: the correlation between the ground truth solution and the PINN solution obtained by
using the local embeddings from the universal autoencoder.

14



iteration, which is very costly. The universal autoencoder requires a single, differentiable forward
pass to obtain the local embeddings.

All experiments were performed on a single H100 GPU, using Adam optimizer with linear learning
rate warm-up followed by cosine decay. Training took 2 hours for the square domain and 10 hours
for the experiments with the Stanford Bunny and the coil. The code for reproducing the experiments
can be found at https://anonymous.4open.science/r/manifold-pinns-universal-autoencoders-7057.

Table 3: Solution of the wave equation on a domain that changes in time.

Table 4: Projection of the solution of the wave equation on a domain that changes in time.
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