
Under review as a conference paper at ICLR 2024

FUSION TOKEN: ENHANCING COMPRESSION AND EF-
FICIENCY IN LANGUAGE MODEL TOKENIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In the realm of language models, data encoding is pivotal, influencing efficiency
and effectiveness of model training. Byte Pair Encoding (BPE) is a well-established
subword tokenization technique that balances computational efficiency and lin-
guistic expressiveness by merging frequent byte or character pairs. As language
model training requires substantial computational resources, we propose Fusion
Token, a method that substantially enhances the conventional Byte Pair Encoding
(BPE) approach in data encoding for language models. Fusion Token employs a
more aggressive computational strategy compared to BPE, expanding the token
groups from bi-grams to 10-grams. Remarkably, with the addition of 1024 tokens
to the vocabulary, the compression rate significantly surpasses that of a regular
BPE tokenizer with a vocabulary of one million. Overall, the Fusion Token method
leads to noticeable performance improvements due to an increased data scope per
compute unit. Additionally, higher compression results in faster inference times
due to fewer tokens per given string. By devoting more compute resources to the
tokenizer building process, Fusion Token maximizes the potential of language
models as efficient data compression engines, enabling more effective language
modeling systems.

1 INTRODUCTION

Language models play a transformative role in numerous areas of artificial intelligence, including
natural language understanding, information retrieval, text summarization, sentiment analysis, ma-
chine translation, and dialogue systems. Their inherent versatility has placed large language models
(LLMs) at the forefront of current technological advancements, driving state-of-the-art results in a
broad range of tasks (Brown et al., 2020; OpenAI, 2023a; Chowdhery et al., 2022; Touvron et al.,
2023; Chen et al., 2021; Hoffmann et al., 2022; Li et al., 2022; Microsoft; Amazon; Nijkamp et al.,
2023).

Data encoding into tokens is a critical component in shaping the efficiency and effectiveness of
language models, serving to transform data into a digestible format for model training. Byte Pair
Encoding (BPE), a renowned subword tokenization method, has been a cornerstone in this task. BPE
operates on a principle of computational balance, methodically constructing a vocabulary of tokens
by identifying and merging the most frequent pair of bytes or characters in the data. This strategy
aims to strike a balance between computational efficiency and linguistic expressiveness.

However, the recent shift in the landscape of language model training, which involves dedicating
increasingly larger computational resources (OpenAI, 2023a; Chowdhery et al., 2022), opens up
the possibility of investing more resources into tokenization to enhance its effectiveness. This need
becomes more pronounced considering the substantial computational resources dedicated to language
model training to reduce cross entropy.

The study introduces Fusion Token, a novel method enhancing the traditional Byte Pair Encoding
(BPE) process used for data tokenization. Fusion Token allows for merging general n-grams, as
opposed to just bi-grams, leading to a notable improvement in compression rates by prioritizing
tokens with higher bytes during merging. This enhancement to the BPE method significantly refines
the vocabulary construction, achieving a compression rate that outperforms that of a BPE vocabulary
of one million with just an additional 1K tokens to a 51K vocabulary.

1



Under review as a conference paper at ICLR 2024

Fusion Token also advances language model performance across various benchmarks including code
generation. We hypothesize that these improvements are attributed to its superior compression rate,
allowing for the processing of more information during model training given the same token budget.
Moreover, Fusion Token delivers lower generation latency, enabling faster inference times. This
efficiency in tokenization, reducing the number of tokens required for any given text or code, is
beneficial for real-time applications demanding rapid and more efficient language modeling.

2 TOKENIZATION AND LANGUAGE MODELING

2.1 BYTE-PAIR-ENCODING AND BYTE-LEVEL BPE

Byte Pair Encoding (BPE), initially developed as a data compression technique, has found widespread
use in natural language processing for tokenization, especially in training language models (Sennrich
et al., 2016; Radford et al., 2018). BPE efficiently encodes data, not limited to text, by replacing
frequently occurring byte pairs with a single unused byte, leading to an optimal balance between
computational efficiency and linguistic expressiveness.

For universal language model applicability, tokenizers must be capable of encoding all text. Therefore,
many modern BPE implementations operate at the byte level, resulting in a byte-level BPE, using
the 256 unique bytes as the fundamental units as a base vocabulary which can represent arbitrary
Unicode characters (OpenAI, 2023b). This byte-level approach guarantees lossless encoding of any
Unicode string, enhancing the model’s robustness and versatility. An example is the character "é",
represented by two bytes (C3 and A9) in UTF-8. Initially, a byte-level tokenizer treats "é" as two
separate tokens. However, if "é" is common in the text, the iterative BPE process might merge these
tokens into one, representing "é". This is in contrast with the character-level BPE where the space of
all possible unicode characters is too large (≈ 150000 and growing).

Pre-tokenization, an initial processing step, often complements the main tokenization process before
the BPE process. This step partitions the input text into manageable "pre-tokens" using basic
delineators like whitespace or punctuation based on a pre-designed regular expression. These pre-
tokens are then further tokenized by the main process, such as BPE, into subword tokens. The primary
advantage of pre-tokenization is the initial breakdown of text into linguistically meaningful units to
facilitate the main tokenizer building process, including the usage of schema such as space-prefix.1
During the tokenizer building stage, the BPE algorithm performs the bi-gram merging entirely on the
pre-token space, which helps control the combinatorial complexity and computation.

2.2 LANGUAGE MODEL AND BITS PER BYTE

Language model efficiency is closely tied to concepts like cross entropy and bits per word (BPW) or
byte (BPB). Cross entropy measures the average bits necessary to encode the true word distribution
(P) using the model’s predicted distribution (Q), essentially representing BPW for the language
model’s encoding.

Bits per word (BPW) = H(P,Q) = −
∑
i

P (i) logQ(i) = LM cross entropy

The bits per bytes (BPB) is H(P,Q)/E[ℓ] where E[ℓ] is the average token length in bytes. In essence,
the average number of bits required to represent a word is equal to the average number of bits required
to represent a byte multiplied by the average length of a token in bytes E[ℓ].

The relevance of tokenization comes into play with the concept of bits per byte (BPB), a metric that
ties the tokenization strategy with the information efficiency of the language model. BPB effectively
measures the average bits required per byte, indicating the efficiency of the language model and
tokenization strategy in representing the information. A more effective method will result in a lower
BPB, indicating a more compact and efficient representation of the text data.

1Space-prefix refers to the common notation of grouping a single white space before a non-whitespace
text during the pre-tokenization. BPE training itself would not yield such consistent notation without such
pre-defined schema.

2



Under review as a conference paper at ICLR 2024

2.3 BITS PER BYTES UPPER BOUND

The relationship between bits per word (BPW) and bits per bytes (BPB) may underline the significance
of optimizing tokenization to achieve efficient text encoding in language models. Reducing the
average token length through optimization can potentially lead to a more compact representation of
the text corpus, which in turn enhances language model performance.

We can explore a few cases to better understand the upper bound of entropy and the effects of
tokenization on compression. First, let us consider a case where the vocabulary size V is equal to the
number of unique bytes, i.e., V = 256. In this scenario, each byte corresponds to one token in the
vocabulary, and the token length is always one byte. The upper bound of the entropy is when the
distribution Q(i) assigns equal probability to each token, i.e., Q(i) = 1/V . That is,

BPB =
H(P,Q)

E(ℓ)
≤ logV (1)

In this case, the expected token length, E[ℓ], is also equal to 1. The bits per bytes is BPB ≤
− log2(1/V )/E(ℓ) = log 256.

The second case involves an inefficient encoding where the vocabulary includes all possible byte
combinations of length ℓ, i.e., V = 256ℓ. In this setting, the expected token length is E[ℓ] = ℓ. This
results in the same upper bound of BPB as the previous case. In other words, no compression is
achieved despite the increase in vocabulary size.

These two cases illustrate that (1) merely increasing the vocabulary size does not guarantee efficient
compression. The upper bound of cross entropy remains the same in both cases, highlighting the
importance of building the vocabulary via optimizing tokenization in order to achieve effective
compression. (2) that the scale of bits per byte metric is less susceptible to the vocabulary size,
as opposed to the bits per word metric which depends strongly on V and hence cannot be used to
indicated the compression.

In general, we can express the vocabulary V = rE(ℓ) where r = V
1

E(ℓ) can be viewed as a tokenizer
compression rate or the number of possible bytes at each position. In this case,

BPB ≤ log V

E[ℓ]
= log r (2)

That is, the bits per bytes’s upper bound is log the number of bits to represent at each token in the
vocabulary.

2.4 BPB AND LEARNING EFFICIENCY

We aim to primarily increase compression rate E(ℓ) without much increase in vocabulary size,
which would serve the reduce such lower bound log r, hence improving the compression by a tighter
compression bound. We hypothesize and demonstrate empirically that a tokenizer that leads to lower
compression will result in lower bits per byte, given sufficient model capacity to learn more complex
patterns due to increased compression. If that is the case, then the lower BPB can also result in a
more capable language model based on downstream performance due to the artifact of being able to
train models with more passes over the data given the same total token budget during training.

3 FUSION TOKEN

We outline the Fusion Token in Algorithm 1. The Fusion process starts from taking an existing BPE
vocabulary and iteratively group up to n-grams of tokens, where we use nmax = 10 in practice.
To optimize the compression rate, at each step we select the token that has highest probability of
occurrences. While theoretically we can directly prioritize the expected bytes (probability of each
n-gram times the number of bytes), by sorting the product of probability and the number of bytes
instead of using the probability alone, we find that it does not matter much since the scale of the
variability of observed probability is orders of magnitude higher than that of the number of bytes.

3



Under review as a conference paper at ICLR 2024

Algorithm 1 Token Fusion

Input: Existing vocabulary V , additional vocabulary size ∆V , dataset of pretokens D
Output: New vocabulary V ′ after token merging
V ′ ← V
for i = 1 to ∆V do
max_value← 0
for each unique n-gram dn ∈ D do

Compute the length adjusted frequency
value← (n− 1)P(dn|D)
if value > max_value then
tnew ← grouped tokens from dn
max_value← value

end if
end for
Add tnew to V ′

end for

Table 1: Bytes per token for text and programming languages for the SentencePiece BPE tokenizer
with 51K vocabulary, the 51K BPE + 1K Fusion Token, and the 1M BPE. The additional 1K tokens
(≈ 2% over 51K original vocabulary) results in much improvement on the compression rate on all
data domains. % ↑ column represents compression rate improvement over the its baseline tokenizer.
Code row represents the weighted average of all non-text columns based on code availability in public
sources.

51K 51K+1K Fusion (% ↑) 1M

Text 3.25 3.33 2.57 3.70
C 2.24 2.44 9.02 2.34
C++ 2.37 2.58 8.54 2.49
C# 3.02 3.31 9.62 3.15
Go 2.33 2.50 7.32 2.42
Java 2.84 3.08 8.47 3.00
JS 2.62 2.92 11.3 2.71
Kotlin 2.97 3.22 8.14 3.15
PHP 2.60 2.89 11.4 2.67
Py 2.68 2.87 7.27 2.81
Ruby 2.56 2.78 8.76 2.65
Rust 2.57 2.79 8.74 2.64
Scala 2.69 2.94 9.27 2.84
Shell 2.29 2.53 10.6 2.45
SQL 2.52 2.72 8.11 2.68
Code 2.66 2.91 9.43 2.78

After selecting the highest probability n-gram, we add it to the vocabulary and perform the same
process iteratively until we reach the desired number of additional fused tokens. Note that the
traditional BPE can be seen as a special bigram case of Fusion Token.

During inference or tokenization stage, fusion tokens are then added to the vocabulary as special
tokens that takes precedent over regular tokens. That is, whenever the fusion tokens are present in
each string, they are prioritized to be used for the first stage of tokenization. Then the rest of the
process follows normal bigram BPE.

4 EXPERIMENTS

Throughout the experiments, we use text and code data for tokenizer training (additional details in
Section 4.2). We primarily use a modified SentencePiece Byte Pair Encoding (BPE) setting where
we operate on the byte-level representation and also ensure a lossless tokenizer by including all
base bytes to the vocabulary. To ensure applicability, we also test fusion token on another BPE

4



Under review as a conference paper at ICLR 2024

Table 2: Code data and the corresponding sizes

Data C C++ C# Golang Java JS Kotlin PHP Python Ruby Rust Scala Shell SQL TS

Size 8.1G 15G 22G 5G 58G 45G 1.1G 26G 37G 3.1G 1.9G 0.93G 1.3G 2.2G 11G

Table 3: SentencePiece Settings

model type bpe

character coverage 0.9999
input sentence size 10,000

max sentence length 1,000,000,000
max sentencepiece length 8,384

add dummy prefix True
remove extra whitespaces True

allow whitespace only pieces True
split by whitespace True

implementation based on HuggingFace BPE trainer (Wolf et al., 2019). Details of the data split can
be found in Table 3.

4.1 SENTENCEPIECE TOKENIZER TRAINING

In order to train the baseline tokenizer used in our experiments we used Sentencepiece-BPE with the
settings described in 3. This model covers 14 languages for generality and is trained up to 51200 vocab
length for the standard tokenizer and 1,024,000 tokens in the large vocab case. Both of these models
were trained using standard sentencepiece libraries found at https://github.com/google/sentencepiece.

4.2 TOKENIZER TRAINING DATA

We use permissively licensed data consisting of code in multiple programming languages with details
outlined in Table 2. Our code data was collected from a number of online repositories including open
source libraries as well as permissive code taken from https://github.com. The data was categorized
according to its extension for the purpose of attributing language. Finally our text data is a subset of
the Pile Gao et al. (2021).

4.3 COMPRESSION RATE AND FUSION TOKEN

Table 1 outlines the results where we perform Fusion Token as outlined in Algorithm 1 with 1024
additional vocabulary size on top of a 51200 vocabulary BPE tokenizer. The row 51K setting denotes
the SentencePiece BPE tokenizer with 51K vocabulary. The +1K setting denotes the 51K the fusion
token with additional 1024 tokens. Note here that we observe improved compression rate on text
and code data in all categories (positive % indicates the increased bytes per token with fusion token).
Throughout this section, we perform an analysis on the behavior of Fusion Token as well as the
effects on language model performance. Below are our observations.

4.3.1 FUSION TOKEN OFFERS HIGH COMPRESSION FOR MODEST VOCABULARY SIZE

In Figure 1a illustrates the compression achieved from Fusion Token versus that from increasing
vocabulary. In this experiment, we use a vocabulary size up to 1 million tokens. We can see that the
bytes per token grows sharply up to 50K or so, after which it observes much slower growth. With the
1K fusion token on top of the 51K vocabulary, the bytes per token increases sharply and exceeds that
of the 1M vocabulary tokenizer.

We also show the compression rate (bytes per token) with respect to the number of additional fused
tokens on top of the 51K BPE vocabulary in Figure 1b. We can see that the bytes of token increases
rapidly on top of the base compression rate (of the 51K vocabulary). With only 1K added tokens, we
capture a lot of the gain in compression, resulting in a highly compact vocabulary size.

5



Under review as a conference paper at ICLR 2024

51
K

20
0K

40
0K

60
0K

80
0K 1M

Vocabulary Size

2.5

2.6

2.7

2.8

2.9
B

yt
es

 p
er

 to
ke

n

51K plus 1K Fusion Tokens

(a)

0
20

0
40

0
60

0
80

0
10

00

Added Tokens

2.70

2.75

2.80

2.85

2.90

B
yt

es
 p

er
 to

ke
n

(b)

Figure 1: This plot compares the bytes-per-token efficiency of BPE tokenizers across different
vocabulary sizes, extending up to 1 million. Fusion Token’s methodology, when contrasted with
regular BPE, demonstrates a substantial improvement in compression rate, effectively outperforming
regular BPE approach even at 1 million vocabulary size. (b) Compression rate versus the number of
additional fused tokens on top of the 51K BPE tokenizer.

(a) 51K + 1K (b) 1M BPE (c) 51K + 1K (d) 1M BPE

Figure 2: The plot illustrates the occurrence probability p(t) of token t appearing in the data
distribution, where the orange dots indicate fusion tokens. In (a), the fusion tokens correspond to
index 51k to 51k + 1k which demonstrate relatively high occurrence probabilities. In (b), the fusion
tokens that align with the tokens in 1M vocabulary also have high probabilities, but not discovered
during the first 51K BPE vocabulary. In (c) and (d), we show similar plots where we use show the
token probability times the byte length (expected byte length), which is a metric that can directly
affect compression (bytes per token). We observe that the expected byte length follow roughly the
same trend as the probability, where the probability itself is the dominating factor influencing the
compression of Fusion Token to be higher, since the Fusion Token probability differs from normal
tokens probabilities by orders of magnitude higher. This suggests that the fusion tokens are extremely
likely during regular BPE vocabulary building, but do not get incorporated due to the algorithm
constraint on bi-grams.

4.3.2 FUSION TOKENS OCCUR FREQUENTLY BUT ARE NEGLECTED IN BPE

We find that fusion tokens can have much higher occurrence probabilities. Figure 2c illustrates
the probability versus the token indices where we see that the probability varies within a few
orders of magnitude in the vicinity of adjacent IDs where the overall macro tends has decreasing
probabilities according to power law (Zipf’s law). However, at 51K, we observe a sharp increase in
such probabilities, corresponding to the fusion tokens (orange dots) which occupy the token indices

6



Under review as a conference paper at ICLR 2024

Table 4: Bits per word (cross entropy validation loss) and bits per byte of language models.

Model Tokenizer BPW Bytes/Token BPB ↓
125M BPE 51K 0.8233 2.625 0.314
125M +1K Fusion 0.9255 2.915 0.317

650M BPE 51K 0.6850 2.625 0.261
650M +1K Fusion 0.7584 2.915 0.260

Table 5: Pass@k results on code generation benchmarks MBXP and Multi-lingual HumanEval
(JavaScript subset) for language models trained with the 51K BPE and 51K BPE + 1K Fusion Token
tokenizer. The scores suggest a positive impact on downstream evaluation, potentially attributable to
the more compact data representation facilitated by Fusion Token.

Model Size Tokenizer MBXP-JS HumanEval-JS
pass@1 pass@5 pass@1 pass@5

125M BPE 51K 3.40% 9.21% 3.11% 4.35%
125M +1K Fusion 4.37% 10.97% 2.86% 4.97%
650M BPE 51K 7.10% 15.73% 5.96% 9.94%
650M +1K Fusion 8.05% 17.18% 5.96% 10.56%

51K to 51K + 1024. Fusion Token method is able to incorporate such high-probability tokens which
leads to overall compression improvement.

We also find that all of the 1K fusion tokens appear in the 1M vocabulary BPE tokenizer, demonstrated
in Figure 2d where we plot the probability of token occurrences in the data. We emphasize that even
though the 1M vocabulary subsumes all of the 50K BPE + 1K fusion tokens, Fusion Token enables
much more efficient data encoding due to more compact representation of 51K + 1K, roughly 20
times lower.

4.4 EVALUATION

We test the performance of language models trained on primarily JavaScript data, tokenized using two
different approaches: (1) using a BPE tokenizer with a vocabulary size of 51K, and (2) leveraging a
combination of 51K BPE and 1K Fusion Token. These evaluations are conducted across two model
sizes, 125M and 650M (refer to Section 4.2 for further details on the data).

In Table 4, we show the validation loss (bits per word) as well as the bits per byte (BPB) (Section 2.2).
Interestingly, we observe that while the both the validation loss and the BPB of the 125M with Fusion
Token is worse than with BPE, as we scale the model size to 650M , the BPB becomes roughly equal.
If this trend continues, it is likely that the BPB for large models with Fusion Token will be better
than with BPE. We leave experiments on larger model sizes for future work due to resource and time
constraint.

As observed in Table 5, models trained with our Fusion Token tokenizer obtain consistently higher
evaluation scores (pass@k) (Kulal et al., 2019) on code generation benchmarks such as Multi-
HumanEval and MBXP (Chen et al., 2021; Austin et al., 2021; Athiwaratkun et al., 2022). This
aligns with our initial hypothesis: a more compact data compression facilitates models to process
higher volumes of information during training (given the same compute resources), thus potentially
enhancing the overall performance of the language models.

Table 6 also indicates a significant improvement in latency (10.19%) for language models trained with
51K+1K Fusion Token during the MBXP JavaScript function completion. This latency reduction
is due to the fewer number of tokens required to represent the same amount of text based on the
higher compression rate. We observe that the improvement is even more pronounced that the
average compression rate on JavaScript (11%), likely due to the nature of the evaluation data being
more generic than arbitrary code in the wild. These enhancements underscore the effectiveness

7



Under review as a conference paper at ICLR 2024

of FusionToken, demonstrating potential for substantial performance improvements in real-world
applications.

Table 6: Comparison of number of tokens and inference time for different languages for the baseline
BPE and BPE + Fusion Token.

Tokenizer Python Java Javascript C# Typescript Avg
BPE # Tokens 20.43 34.31 19.39 26.97 19.86 24.19

Inf. Time (ms) 341.23 529.98 334.59 521.18 363.42 418.08

Fusion # Tokens 18.46 30.93 17.19 23.50 17.43 21.50
Inf. Time (ms) 313.11 480.15 302.92 454.93 326.11 375.44

Diff. ↓ # Tokens 9.64% 9.85% 11.34% 12.86% 12.23% 11.12%
↓ Inf. Time (ms) 8.24% 9.4% 9.46% 12.71% 10.26% 10.19%

5 RELATED WORK

Public implementations of byte-level BPE includes Huggingface’s Tokenizers library which also
provides a framework for training custom tokenizer with BPE (Inc., 2022). Other trained byte-
level BPE tokenizers include GPT’s tokenizer (Radford et al., 2018), BLOOM (Scao et al., 2022).
SentencePiece (Kudo & Richardson, 2018) is another framework and provides ways to do tokenization
with either BPE or UnigramLM.

Despite the widespread adoption of BPE across numerous language models (Radford et al., 2018;
Chowdhery et al., 2022), some recent studies have started to question its efficacy. A noteworthy
critique is presented by Bostrom & Durrett (2020), who conducted a comprehensive comparison
between BPE and UnigramLM. The study concluded that while there were only minor differences in
performance between the two methods, BPE could be considered suboptimal. Another line of work,
such as TokenMonster (Alasdair, 2023), aims to achieve more optimal tokenizer compression by
utilizing additional computational resources. TokenMonster employs a more complex and computa-
tionally expensive procedure to create a more compressed and efficient tokenization, contributing to
enhanced performance in language models.

There are also many earlier works that focused on using ngrams as representations for subwords
(Bojanowski et al., 2016) as ngrams maximizing the joint probability over the token occurrences.
This work, while in a different field, notably also shows an improvement in the performance of its
downstream task (perplexity in RNN based language modeling). Furthermore, qualitative analysis by
the authors suggest that the clustered neighborhoods of ngrams found also adhere to their semantic
meanings, suggesting that these ngrams are both compressive and semanticially representative.

6 DISCUSSION

The ongoing advancement in tokenization techniques represents a stride towards enhancing language
model performance. By enabling a more condensed representation of data, Fusion Token contributes
to valuable progression towards more efficient language models. In this paper, we use primarily use
the code domain to investigate the effects of compressed tokenizer; a future direction includes a study
towards more optimal tokenizer for multi-lingual natural language.

8



Under review as a conference paper at ICLR 2024

REFERENCES

Alasdair. Tokenmonster. https://github.com/alasdairforsythe/tokenmonster,
2023. Accessed on 27 May 2023.

Amazon. Amazon code whisperer. https://aws.amazon.com/codewhisperer/.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta
Sengupta, Dan Roth, and Bing Xiang. Multi-lingual evaluation of code generation models.
CoRR, abs/2210.14868, 2022. doi: 10.48550/arXiv.2210.14868. URL https://doi.org/10.
48550/arXiv.2210.14868.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. Enriching word vectors with
subword information. CoRR, abs/1607.04606, 2016. URL http://arxiv.org/abs/1607.
04606.

Kaj Bostrom and Greg Durrett. Byte pair encoding is suboptimal for language model pretrain-
ing. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pp. 4617–4624. Association for Computational Linguistics, 2020. doi:
10.18653/v1/2020.findings-emnlp.414. URL https://doi.org/10.18653/v1/2020.
findings-emnlp.414.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Er-
ica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,

9

https://github.com/alasdairforsythe/tokenmonster
https://aws.amazon.com/codewhisperer/
https://doi.org/10.48550/arXiv.2210.14868
https://doi.org/10.48550/arXiv.2210.14868
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374


Under review as a conference paper at ICLR 2024

Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language model-
ing with pathways. CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.02311. URL
https://doi.org/10.48550/arXiv.2204.02311.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. CoRR, abs/2101.00027, 2021. URL
https://arxiv.org/abs/2101.00027.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Hugging Face Inc. Tokenizers: Fast and customizable tokenization. https://github.com/
huggingface/tokenizers, 2022.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pp.
66–71. Association for Computational Linguistics, 2018. doi: 10.18653/v1/d18-2012. URL
https://doi.org/10.18653/v1/d18-2012.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy
Liang. Spoc: Search-based pseudocode to code. CoRR, abs/1906.04908, 2019. URL http:
//arxiv.org/abs/1906.04908.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Microsoft. Github copilot. https://github.com/features/copilot.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:
Lessons for training llms on programming and natural languages. arXiv preprint arXiv:2305.02309,
2023.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023a. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

OpenAI. Tiktoken. https://github.com/openai/tiktoken, 2023b. Accessed on 27 May
2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M.
Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît
Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan,
Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret
Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy,
Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher
Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, and et al. BLOOM: A 176b-
parameter open-access multilingual language model. CoRR, abs/2211.05100, 2022. doi: 10.48550/
arXiv.2211.05100. URL https://doi.org/10.48550/arXiv.2211.05100.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Pa-
pers. The Association for Computer Linguistics, 2016. doi: 10.18653/v1/p16-1162. URL
https://doi.org/10.18653/v1/p16-1162.

10

https://doi.org/10.48550/arXiv.2204.02311
https://arxiv.org/abs/2101.00027
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://doi.org/10.18653/v1/d18-2012
http://arxiv.org/abs/1906.04908
http://arxiv.org/abs/1906.04908
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2303.08774
https://github.com/openai/tiktoken
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.18653/v1/p16-1162


Under review as a conference paper at ICLR 2024

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023. doi: 10.48550/arXiv.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019. URL
http://arxiv.org/abs/1910.03771.

11

https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
http://arxiv.org/abs/1910.03771


Under review as a conference paper at ICLR 2024

A APPENDIX

1K 2K 5K 10
K

20
K

50
K

10
0K

20
0K

50
0K 1M

3.75

4.00

4.25

4.50

4.75

5.00

Figure 3: This chart shows log V
E[ℓ] of the sentencepiece tokenizer as it grows to a vocabulary of 1M

tokens. The orange line however represents the addition of 1K fusion tokens.

The above chart represents the upper bound on the bits per byte (BPB) as the tokenizer’s vocabulary
size increases. As we have discussed throughout the paper, BPB, a measure of compression, can
have effects on the performance of language models in downstream tasks. We observe that the upper
bound pictured in Figure 3 continues to rise with the addition of new tokens up to 1M. This is due to
the growing the log(V ) while the expected number of tokens per byte (E[ℓ]) does not increase as
rapidly. However with the sharp increase in compression provided by fusion tokens does improve on
the bound. Notably, this bound is very loose, overstating the BPB by 10x relative to our empirical
observations. Establishing tighter bounds is left to future work.

12


	Introduction
	Tokenization and Language Modeling
	Byte-Pair-Encoding and Byte-Level BPE
	Language Model and Bits Per Byte
	Bits per Bytes Upper Bound
	BPB and Learning Efficiency

	Fusion Token
	Experiments
	Sentencepiece Tokenizer Training
	Tokenizer Training Data
	Compression Rate and Fusion Token
	Fusion Token Offers High Compression for Modest Vocabulary Size
	Fusion Tokens Occur Frequently But Are Neglected in BPE

	Evaluation

	Related Work
	Discussion
	Appendix

