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Abstract

Physics-Informed Neural Networks (PINNs) seek
to solve partial differential equations (PDEs) with
deep learning. Mainstream approaches that de-
ploy fully-connected multi-layer deep learning ar-
chitectures require prolonged training to achieve
moderate accuracy, while recent work on feature
engineering allows higher accuracy and faster
convergence. This paper introduces SAFE-NET,
a Single-layered Adaptive Feature Engineering
NETwork that improves errors with far fewer pa-
rameters than baseline feature engineering meth-
ods. SAFE-NET returns to basic ideas in machine
learning, using Fourier features, a simplified sin-
gle hidden layer network architecture, and an ef-
fective optimizer that improves the conditioning
of the PINN optimization problem. Numerical
results show that SAFE-NET converges faster
and typically outperforms deeper networks and
more complex architectures. It consistently uses
fewer parameters — on average, 53% fewer than
the competing feature engineering methods and
70-100× fewer than state-of-the-art large-scale
architectures — while achieving comparable ac-
curacy in less than 30% of the training epochs.
Moreover, each SAFE-NET epoch is 95% faster
than those of competing feature engineering ap-
proaches. These findings challenge the prevailing
belief that modern PINNs effectively learn rele-
vant features and highlight the efficiency gains
possible through feature engineering.

1. Introduction
Partial Differential Equations (PDEs) underpin scientific
modeling but remain notoriously challenging to solve. Clas-
sical numerical methods struggle with high dimensionality
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and nonlinearity, while analytical solutions are rare. Physics-
Informed Neural Networks (PINNs) (Raissi et al., 2019a;
Karniadakis et al., 2021) have emerged as a promising al-
ternative, leveraging neural networks to approximate PDE
solutions through residual minimization. They aim to solve
PDE systems of the form

D[u(x), x] = 0, x ∈ Ω

B[u(x), x] = 0, x ∈ ∂Ω
I[u(x), x] = 0, x ∈ Ω

(1)

Where D represents the differential operator defining the
PDE, B represents the boundary conditions. I represents
the initial conditions, important for time-dependent prob-
lems, and Ω ⊆ Rd is the domain of the PDE. By avoiding
mesh generation, PINNs offer flexibility for forward/inverse
problems and high-dimensional settings.

Despite their potential, PINNs face a fundamental
challenge—they are difficult to train (Krishnapriyan et al.,
2021; Rathore et al., 2024). Research shows that the differ-
ential operator in the residual loss induces ill-conditioning
(De Ryck et al., 2023; Rathore et al., 2024), leading to a poor
optimization landscape and slow convergence for popular
first-order optimizers such as Adam (Kingma & Ba, 2014).
Thus, successful PINN training can be time-consuming and
fiddly, limiting the use of PINNs.

Recent work has developed several strategies to improve
PINN training, including feature engineering. Feature engi-
neering endows the network with additional features that bet-
ter capture the inductive bias of the learning task. A range of
feature engineering approaches, from Fourier features (RFF)
(Wang et al., 2020) to radial basis function features (RBF)
(Zeng et al., 2024a), have been proposed.This focus on fea-
ture engineering represents a departure from the dominant
trend in modern deep learning, where end-to-end learning
has largely replaced hand-crafted features. However, the
scientific computing domain presents unique challenges that
may favor explicit feature design. Unlike image recogni-
tion or natural language processing, where optimal feature
representations are unknown a priori, PDE solutions have
well-understood mathematical structures rooted in Fourier
analysis, differential geometry, and physics principles. This
domain knowledge provides strong theoretical guidance
for feature design that is often absent in other ML applica-
tions. Recent work in domain-specific architectures—from
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Graph Neural Networks for relational data (Bronstein et al.,
2017) to Transformer attention mechanisms for sequences
(Vaswani et al., 2023)—suggests that incorporating struc-
tural knowledge can outperform generic architectures.

However, prior work on feature engineering generally suf-
fers from one or more of the following four limitations: 1)
they impose rigid priors (e.g. the features are fixed or ran-
dom functions), 2) they require hyperparameter tuning (e.g.
determining kernel hyperparameters in RBFs), 3) they are
often computationally expensive, and 4) they fail to integrate
domain knowledge such as boundary or initial conditions.
Thus, while existing feature engineering techniques can im-
prove performance under certain conditions, they can be
PDE-specific, expensive, and sensitive to hyperparameters.

Figure 1. L2RE for the wave PDE with SAFE-NET and baselines
methods using Adam. For detailed numerical results see Table 19
in Appendix C.2

To address these shortcomings we introduce SAFE-NET, a
feature engineering framework for PINNs that combines:

(1) Well-conditioned adaptive Fourier basis terms as
features with trainable frequencies ωx, λt and am-
plitudes adapt to PDE-specific dominant frequencies
while mitigating spectral bias.

(2) Domain knowledge features encode physical priors,
derived from boundary conditions or initial conditions.

(3) Normalization of features prior to network input sta-
bilizes quasi-Newton optimizers (e.g., L-BFGS) and
other advanced optimizers and prevents divergence.
Many other methods introduce sensitive architectural
or problem-related hyperparameters or features, caus-
ing instability across some of our tested PDEs. In
other words, SAFE-NET can safely be optimized by
high-performance optimizers.

SAFE-NET does not directly target the optimization land-
scape like prior feature engineering approaches such as
RFFs or RBFs. Instead, it seeks to improve the inductive

bias of the PINN by augmenting the initial data represen-
tation with well-conditioned Fourier features and domain
knowledge. These design choices makes SAFE-NET partic-
ularly effective for PDEs without shocks or discontinuities,
where Fourier bases work best. Interestingly, this induc-
tive bias also provides an implicit preconditioning effect
that leads to a better-conditioned optimization problem and
facilitates training.

Contributions. We highlight the contributions of this paper:

• Our new computationally-efficient feature engineering
method, SAFE-NET, offers better inductive bias than
existing feature engineering methods.

• We demonstrate empirically that SAFE-NET implic-
itly preconditions the loss landscape, leading to faster,
more stable convergence.

• SAFE-NET achieves runtime performance compara-
ble to non-feature engineering methods with very low
parameter count, while other feature engineering ap-
proaches are slower (Table 1 and Figure 4).

• Experiments across a wide variety of PDEs and base-
line methods (Table 2) show that on average, SAFE-
NET yields the best or comparable performance.

Deep learning has been seen as a promising tool for solv-
ing PDEs. However, our work with SAFE-NET shows that
traditional techniques like feature engineering can achieve
lower error rates and faster training times than conventional
multi-layer networks. While recent large-scale approaches
such as PINNsFormer (Zhao et al., 2024), PirateNets (Wang
et al., 2024), and operator learning approaches such as FNO
(Li et al., 2020b) and its variations may achieve superior ac-
curacy in certain PDEs through complex architectures, these
approaches are extremely expensive as they use very large
networks: e.g., 454k parameters for PINNsFormer (Zhao
et al., 2023), ≥ 720k parameters for PirateNets (Wang et al.,
2024), and approximately 1M parameters for FNO and sim-
ilar approaches. This paper shows that for many PDE tasks,
simple feature engineering can perform as well or better
than complex architectures, challenging the preconception
that deeper networks effectively learn important problem
features.

2. Insights into Feature Engineering in PINNs
This section explores the two primary approaches to feature
engineering, Fourier-based and non-Fourier feature map-
pings. To better understand the advantages SAFE-NET
offers, we highlight the strengths, limitations, and applica-
bility of these approaches to different PDE classes.

2



2.1. Fourier-Based Feature Engineering

Fourier feature mappings leverage the spectral properties of
PDE solutions to enhance high-frequency learning. They
aim to address spectral bias — the tendency of neural net-
works to favor low-frequency functions — by transforming
input coordinates into a more expressive representation. The
most prominent approach, RFF (Wang et al., 2021b), uses
the feature mapping

γ(v) =
[
cos(Bv), sin(Bv)

]
, (2)

with fixed Gaussian weights B ∈ Rm×d drawn from
N (0, σ2). With both cosine and sine terms, this mapping
projects inputs into a high-dimensional space where peri-
odic and high-frequency patterns are more easily captured.
Theoretical insights from (Tancik et al., 2020b) show that
Fourier features help neural networks learn high-frequency
functions in low-dimensional domains, which are typical
in PDE applications. However, RFF’s reliance on fixed,
random frequencies limits its adaptation to PDE-specific
spectral properties. Moreover, the Gaussian initialization
of B may not align with the dominant frequencies of the
solution, leading to reduced performance.

Another baseline method we study, RBA-PINN from (Anag-
nostopoulos et al., 2023), also incorporates Fourier feature
embeddings for enforcing periodic boundary conditions in
some of its variants. While the main contribution of RBA-
PINN is the residual-based attention weighting scheme, their
ablation studies demonstrate that Fourier features provide
the most significant performance improvement among all
components tested. Specifically, for the Allen-Cahn equa-
tion, RBA alone achieves 3.16 × 10−3 relative L2 error,
while RBA+Fourier improves this by two orders of mag-
nitude. The authors explicitly acknowledge that the cou-
pling of the RBA scheme along with the Fourier feature
embedding is the most important component to achieving
low L2RE. We therefore include RBA-PINN as a feature
engineering baseline (for periodic boundary conditions),
recognizing that while RBA’s core innovation lies in adap-
tive weighting, its best-performing configuration on PDEs
with periodic boundaries relies heavily on Fourier feature
engineering for its effectiveness.

2.2. Non-Fourier Approaches

For PDEs with sharp gradients or discontinuities, Fourier
features may struggle due to the Gibbs phenomenon; see
(Zeng et al., 2024b). The Burgers PDE, with its sharp dis-
continuity at x = 0, is well-suited to observe this behavior.
Comparing numerical results for the Burgers PDE across
methods in Table 3 show that RFF performs comparably
to methods without feature engineering but underperforms
RBF by over an order of magnitude.

(Zeng et al., 2024a) addresses the Gibbs phenomenon by
using Radial Basis Functions (RBFs) as

ϕRBF(x) = exp
(
− |x−c|2

2σ2

)
, (3)

where c denotes the center and σ controls the kernel
width. RBF expansions can better approximate local, abrupt
changes but are computationally intensive due to kernel
regression requirements and less suited for periodic or high-
frequency PDE solutions (Tancik et al., 2020b). The RBF
feature mapping function is defined as:

Φ(x) =

∑m
i wiϕRBF(|x− ci|)∑m
i ϕRBF(|x− ci|)

(4)

where c ∈ Rn×m are the centers of the RBFs (trainable pa-
rameters) andw is the weight matrix for the feature mapping
layer.

Polynomial Enhancement. A key limitation of pure RBF
approaches is their difficulty in representing global trends
and polynomial components that frequently appear in PDE
solutions. To address this, RBF-P (RBF with Polynomials)
from (Zeng et al., 2024b) augments the RBF feature set
with polynomial terms, so the feature mapping function is
adjusted to

Φ(x) =

∑m
i wm

i ϕRBF(|x− ci|)∑m
i ϕRBF(|x− ci|)

+

k∑
j

wk
jP (x),

where P is the polynomial function. In the feature mapping

layer, it can be represented as

 f1...
fN

 equal to

ϕRBF(r
1
1) · · · ϕRBF(r

m
1 ) | 1 x1 xk

...
. . .

... |
...

...
...

ϕRBF(r
1
N ) · · · ϕRBF(r

m
N ) | 1 xN xkN

[
Wm

W k

]

with ri = x − ci. The polynomial terms capture global
structure while RBFs handle local variations. The weights
serve as Lagrange multipliers, enabling constraints on the
RBF coefficients in the parameter space. This hybrid ap-
proach combines the local approximation power of RBFs
with the global trend-fitting capability of polynomials, often
resulting in improved accuracy over pure RBF methods. We
compare against both RBF and RBF-P in our study (see
Appendix A.2 for details on the experimental set-ups for the
baseline methods).

2.3. Comparisons & Practical Considerations

The choice between Fourier and non-Fourier features de-
pends on PDE characteristics. Fourier features are ideal for
smooth, periodic solutions but struggle with discontinuities.
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RBFs handle sharp discontinuities better but are computa-
tionally costly. Experiments show that the polynomial terms
in RBF-P are also more effective in nonlinear equations
like the Burgers Equation and Navier-Stokes; see Table 3
for numerical comparisons. Despite the disadvantage of
Fourier features in these tasks, SAFE-NET offers a sensible
compromise, allowing trainable frequency parameters and
domain-inspired features to improve inductive bias with a
unified computationally-efficient design.

3. Methodology
We introduce SAFE-NET in this section. We begin with
some motivation from Fourier analysis.

3.1. Theoretical Background

Let f(x) : Rd → R be a function defined on a d-
dimensional domain. Under mild regularity conditions,
f(x) can be reconstructed from its Fourier transform using
the inverse Fourier transform f(x) =

∫∞
−∞ f̂(κ)e2πiκ·x dκ,

where f̂(κ) is the Fourier transform of f at frequency κ. To
approximate f , we can focus on the dominant frequencies
with large |f̂(κ)|. Summing over these dominant frequen-
cies, we obtain f(x) ≈

∑
κ dominant f̂(κ)e

2πiκ·x. We can
express the Fourier transform f̂(κ) through its real and
imaginary components to rewrite the approximation as

f(x) ≈
∑

κ dominant

(Aκ cos(2πκ · x) +Bκ sin(2πκ · x)) ,

where Aκ and Bκ are real-valued coefficients derived from
f̂(κ). Fourier basis elements are effective as features when
they include the dominant frequencies κ of f(x).

Figure 2. Diagram showing how SAFE-NET works for a 1D time-
dependent PDE as an example. The Feature Generator Module
has trainable frequencies and coefficient for more effective feature
selection.

For a PDE solution u(x, t) : R2 → R, the 2D Fourier

transform and its inverse are given by

û(ωx, λt) =

∫∫
R2

u(x, t)e−2πi(ωxx+λtt)dxdt,

u(x, t) =

∫∫
R2

û(ωx, λt)e
2πi(ωxx+λtt)dωxdλt,

where (ωx, λt) are spatial and temporal frequencies. Ex-
panding the complex exponential yields the tensor product
basis

e2πi(ωxx+λtt) = e2πiωxx ⊗ e2πiλtt

=
[
cos(2πωxx) + i sin(2πωxx)

]
⊗
[
cos(2πλtt) + i sin(2πλtt)

]
.

This expansion produces four real-valued basis functions
per frequency pair (ωx, λt) as

ϕωx,λt

1 (x, t) = cos(ωxx) cos(λtt) (5)

ϕωx,λt

2 (x, t) = sin(ωxx) cos(λtt) (6)

ϕωx,λt

3 (x, t) = cos(ωxx) sin(λtt) (7)

ϕωx,λt

4 (x, t) = sin(ωxx) sin(λtt). (8)

3.2. SAFE-NET

Motivated by the considerations of Section 3.1, SAFE-
NET implements the parametric basis in equations (5)-(8)
through learnable frequencies {ω(i)

x , λ
(i)
t }Ni=1 and ampli-

tudes {a(i), b(i), c(i), d(i)}Ni=1 to estimate

uθ(x, t) =

N∑
i=1

[
a(i)ϕωx,λt

1 (x, t) + b(i)ϕωx,λt

2 (x, t)

+ c(i)ϕωx,λt

3 (x, t) + d(i)ϕωx,λt

4 (x, t)
]

(9)

where θ = {ω(i)
x , λ

(i)
t , a(i), b(i), c(i), d(i)} are trainable pa-

rameters. The explicit cross-frequency terms in equation (9)
capture the tensor product structure of the 2D Fourier basis.

Domain Knowledge Features. The solution u(x, t) to a
PDE often inherits structure from the domain geometry,
boundary conditions, and physical invariants. SAFE-NET
explicitly encodes this domain knowledge through features
ψ(x, t) automatically derived from boundary conditions, ini-
tial conditions, and known solution patterns for each PDEs
in the feature generator module. The systematic feature
extraction follows these rules:

• For Initial Conditions: Features are extracted by
analyzing the functional form of initial conditions
u(x, 0) = u0(x). If u0(x) contains specific func-
tional components (e.g., trigonometric, polynomial,
or exponential terms), corresponding features are in-
cluded. Therefore, if u(x, 0) =

∑
k akfk(x), then

ψ(x, t) = {fk(x)} are included as domain features.
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• For Boundary Conditions: If homogeneous Dirichlet
conditions u(0, t) = u(L, t) = 0 are present, features
satisfying these conditions naturally (e.g., sin(nπxL ))
are prioritized.

Domain Knowledge features for the PDEs considered in
this paper appear in Appendix A.1. As shown in Figure 2,
depending on the availability of domain information, these
features are concatenated with the Fourier basis terms before
normalization and linear projection. SAFE-NET uses only
one hidden layer: given an input (x, t) ∈ Ω×R, the SAFE-
NET network computes

fθ(x, t) = wT
2 σ(W1ϕ(wSAFE-NET, (x, t))+ b1)+ b2, (10)

with parameters θ = (wSAFE-NET,W1, b1, w2, b2), non-
linearity σ = tanh(·), and learnable feature mapping
ϕ(wSAFE-NET, (x, t)). Complete architectural specifications,
parameter initialization schemes, and training procedures
for SAFE-NET are provided in Appendix A.1. To ensure ro-
bust experimental validation, we conducted comprehensive
ablation studies examining key design choices including
sensitivity to the number of Fourier features (see Figure 9),
activation function selection for the single hidden layer, and
sensitivity to our initialization strategy for Fourier coeffi-
cients and frequencies. These ablation results, presented
Appendix C.1, explaining the choice of each component.

By combining the generality of Fourier features with known
solution characteristics, SAFE-NET accelerates conver-
gence. Figure 3 compares SAFE-NET with the best compet-
ing PINN architecture for each PDE in Table 2.

Figure 3. For each PDE, bars show log10(
Competitor Error
SAFE-NET Error ) compar-

ing SAFE-NET to the best competitor baseline method (left) and
median competitor baseline method (right). Colors represent per-
formance levels, and rank annotations show SAFE-NET’s posi-
tion among all methods. SAFE-NET ranks first on 4/8 PDEs. It
achieves top-2 performance on 5/8 PDEs; the PDEs on which
SAFE-NET falls behind (3rd or 4th place) are Allen-Cahn, Burg-
ers and Navier-Stokes, which are non-linear and not shock-free.

Cost. Table 1 and Figure 4 illustrate the parameter count
and runtime (per epoch) for different baseline methods. The
setups used for each method in our experiments appear
in Appendix C. One hidden layer suffices for SAFE-NET,
reducing its parameter count and improving speed.

Table 1. Parameter count comparison between baseline methods
and SAFE-NET. Using the same number of features (128), SAFE-
NET achieves a significantly lower parameter count than compet-
ing feature engineering methods while remaining comparable to
non-feature engineering approaches.

PINN FLS-PINN W-PINN RBA-PINN

5.3k 5.3k 5.3k 16k

RFF RBF RBF-P SAFE-NET

14.5k 14.2k 14.7k 6.8k

Figure 4. Average runtime comparison across varying numbers of
training samples for baseline methods and SAFE-NET using iden-
tical computational resources and no concurrent processes. SAFE-
NET demonstrates efficiency over competing feature engineering
methods, maintaining runtime close to the less computationally
expensive non-feature engineering methods.

Scalability. The number of additional features in SAFE-
NET increases exponentially with the spatial dimension of
the PDE. Hence SAFE-NET offers improves accuracy and
computational advantages for lower-dimensional problems,
where better coverage of frequency space improves approx-
imation quality, but is not suited to problems with high
dimensions. Developing effective feature engineering meth-
ods for higher dimensional PINNS is an important challenge
for future work.

4. Related work
Much work has been done to improve the training of PINNs
that take different approaches from feature engineering.
Broadly, these approaches can be divided into three cat-
egories: architectural modifications, loss-reweighting, and
optimizer design. Recent efforts to improve PINN accuracy
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and speed include:

Architectural Modifications. One way to improve the
training procedure for PINNs is to modify the network ar-
chitecture, improving the optimization landscape relative to
the basic PINN, making training easier. Examples of this
approach include the adapative activation functions of (Jag-
tap et al., 2020) (A-PINNs), and specialized architectures
designed to mitigate spectral bias (Li et al., 2020a).

Loss Re-weighting. Another popular technique is loss
reweighting. For certain PDEs, the residual loss tends to
dominate the boundary loss in that the optimizer focuses too
much on minimizing the residual loss, leading to a solution
that fails to satisfy the boundary conditions. To address
this, techniques like W-PINNs (Wang et al., 2021a) balance
loss components through heuristic or learned weights to
down-weight the residual loss and better fit the boundary
loss.

Optimizer Design. Another popular approach to PINN
training is to develop more sophisticated optimizers that
are more robust to ill-conditioning. Several notable propos-
als in this area are the natural gradients method of (Müller
& Zeinhofer, 2023), MultiAdam (Yao et al., 2023), and
NysNewton-CG (Rathore et al., 2024). These methods tar-
get ill-conditioning directly and use curvature information
from the loss or the model to precondition the gradient.
This leads to an improved optimization landscape locally,
enabling the optimizer to take better steps and progress
faster. In contrast, SAFE-NET enjoys an implicit precondi-
tioning effect that is global—by incorporating a trainable
feature layer, SAFE-NET changes the PINN objective, glob-
ally changing the optimization landscape. The results in
Section 5.3 show SAFE-NET enjoys a significantly better-
conditioned optimization landscape. Thus, SAFE-NET can
be further combined with more sophisticated optimization
schemes to obtain further improvements.

5. Results
We provide an overview of the experimental setup and
present results across multiple benchmarks.

5.1. Baselines

We test against PINN models with feature engineering (RBF,
RBF-P, RFF, and RBA-PINN) and without (PINN, FLS-
PINN, and W-PINN). Details on each baseline appear in
Appendix A.2.

As noted earlier in Section 1, large models such as PINNs-
Former (454k parameters), PirateNets (720k+ parameters),
operator learning methods (1M+ parameters), and several
other PINN variants with hundreds of thousands of parame-
ters demonstrate the performance gains possible with large

and complex architectures. In contrast, our experiments fo-
cus on well-performing baseline methods with simple struc-
tures and low parameter counts (at or below 16k; see Table
1), especially emphasizing feature engineering approaches
that offer computational efficiency. This scope allows us
to demonstrate that simple feature engineering also yields
accurate solutions at a fraction of the computational cost of
the largest models.

We experiment on eight PDE tasks as provided in Table 2.
Depending on availability, the datasets for these tasks are
either from PDE benchmarks such as PDEBench (Takamoto
et al., 2024) and PINNacle (Hao et al., 2023) or implemented
directly if unavailable online. More details on each PDE
and its source are provided in Appendix B.

Table 2. Overview of the tested PDEs.

PDE Dimensions Type State

Wave 1D Linear Time-dependent
Reaction 1D Nonlinear Time-dependent
Diffusion 1D Linear Time-dependent
Heat 2D Linear Time-dependent
Convection 1D Linear Time-dependent
Burgers 1D Nonlinear Time-dependent
Allen-Cahn 1D Nonlinear Time-dependent
Navier-Stokes 2D Nonlinear Steady-state

5.2. Experiments

Following prior work (such as (Rathore et al., 2024) and
(Zeng et al., 2024b)), we use a two-stage Adam + L-BFGS
optimizer for the first set of experiments. Recent loss-
landscape studies on PINNs show that first-order meth-
ods such as Adam make rapid progress away from sad-
dle points but eventually slow down in the ill-conditioned
valleys induced by differential operators, whereas quasi-
Newton methods like L-BFGS improve local conditioning
yet are attracted to saddles and often stall when started from
scratch. Combining them inherits the best of both worlds:
an Adam “warm-up” steers the parameters clear of saddles;
switching to L-BFGS then preconditions the Hessian and
yields much faster local convergence . Nevertheless, pure
L-BFGS can terminate early because its strong-Wolfe line
search sometimes returns a step size of zero, especially on
stiff PDEs . Our schedule therefore runs Adam first until
progress slows down significantly and switches to L-BFGS
until the maximum number of iterations is reached. A more
detailed theoretical justification of the Adam + L-BFGS
schedule appears in (Rathore et al., 2024).

Optimization Schedule (1). The first set of experiments
uses Adam for either 10k, 20k, or 30k iterations, followed by
L-BFGS for the remainder of the training run (total 40k). We
found that for our tested set of experiments, 30k iterations
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of Adam followed by 10k iterations of L-BFGS performs
best. Adam has an initial learning rate of 0.001, decaying
exponentially by 0.9 every 2k iterations, followed by full-
batch L-BFGS until convergence (tolerance 10−10) or if the
maximum number of iterations is reached.

Optimizer settings are identical across all PDEs and ar-
chitectures; each experiment is repeated with five random
initializations, and the model performance is assessed using
the relative ℓ2 error (L2RE), defined as

∥y − ŷ∥2
∥y∥2

=

√∑n
i=1(yi − ŷi)2√∑n

i=1 y
2
i

,

where ŷ is the predicted solution and y is the true solution.
Notably, while we run every method for the same number of
epochs, SAFE-NET achieves faster per-epoch computation
times than competing approaches, reducing its total training
time.

Table 3. PDE benchmark results comparing several PINN archi-
tectures in relative L2 error. The best results are shown in Bold.
However, numerically close results (i.e., within 30% of the best
result, including the best result in Bold itself) are also highlighted
in Blue . This accounts for potential variance in implementation
and hyperparameter sensitivity. Cells with (*) indicate L-BFGS
divergence in our experiments. PDE abbreviations: W=Wave,
R=Reaction, D=Diffusion, H=Heat, C=Convection, A-C=Allen-
Cahn, B=Burgers, N-S=Navier-Stokes.

PDE PINN FLS-PINN W-PINN RFF

W 6.62e−2 4.37e−2 8.79e−3 7.39e−3
R 4.98e−2 1.27e−1 4.52e−2 1.20e−2
D 9.65e−3 5.89e−2 1.43e−3 2.56e−3
H 6.34e−3 6.98e−3 9.98e−3 8.56e−3
C 1.96e−2 4.12e−2 9.77e−3 ∗
A-C 4.98e−1 1.46e−0 1.29e−1 1.03e−2
B 1.01e−2 6.16e−2 ∗ ∗
N-S 7.49e−1 7.91e−1 ∗ 6.76e−1

PDE RBA-PINN RBF RBF-P SAFE-NET

W 1.57e−3 2.48e−2 2.13e−2 1.21e−3
R 3.31e−2 1.98e−2 1.37e−2 9.93e−3
D 1.29e−4 4.02e−4 9.91e−5 1.21e−4
H 7.35e−4 3.65e−3 7.21e−4 5.31e−4
C 8.32e−3 7.72e−2 7.02e−3 4.37e−3
A-C 8.21e−5 ∗ 1.06e−4 1.97e−3
B 4.17e−4 3.95e−3 3.47e−4 2.67e−3
N-S 4.86e−1 2.56e−1 2.98e−1 5.26e−1

Even after warming up with Adam, L-BFGS can still cause
divergence or instability on some PDEs and baseline meth-
ods. Corresponding entries are denoted by “*’ in the result
table. There could be several reasons why this is possible.
For instance, RFF uses fixed random frequencies drawn
from a Gaussian distribution, which can lead to very poor
conditioning depending on the random initialization. The

mismatch between random frequencies and the true solution
frequencies can create ill-conditioned optimization land-
scapes that cause L-BFGS to diverge. Alternatively, in the
case of W-PINN and Navier-Stokes, W-PINN’s adaptive
weighting scheme computes weights based on NTK ma-
trix traces (see (Wang et al., 2022b) for the details or the
computation). Due to the complex flow physics of Navier-
Stokes, the NTK matrices could become ill-conditioned near
boundary layers or rapid changes in the adaptive weights
can destabilize L-BFGS.

SAFE-NET, on the other hand, is compatible with quasi-
Newton methods such as L-BFGS: it can safely be opti-
mized by them. Table 3 demonstrates that for shock-free
PDEs (i.e., not Burgers or Navier-Stokes, and Allen-Cahn to
some extent), SAFE-NET outperforms competing methods
in L2RE by in 4/5 tasks, following closely behind RBF-P
for the diffusion task. (See Figure 3 for visual demonstra-
tion). Allen-Cahn is “less nonlinear” than Burgers or Navier-
Stokes, but can also develop steep gradients and interfaces,
especially in phase separation dynamics. In practice, these
sharp transition layers are not true shocks in the hyperbolic
PDE sense, but numerically they still present challenges
similar to shocks — including Gibbs phenomena for Fourier
features in particular. Despite that, SAFE-NET manages to
come third best after RBA-PINN and RBF-P for both Allen-
Cahn and Burgers tasks. This outcome is not surprising as
SAFE-NET is not designed for PDEs with shocks. Partic-
ularly, (Zeng et al., 2024b) suggests that the RBF kernel
handles the discontinuity at x = 0 in the Burgers equation
more effectively.

Experiments with Alternative Combinations. While the
Adam + L-BFGS combination in Optimization Schedule (1)
demonstrates superior performance compared to individual
optimizers (see Appendix A.3), our analysis reveals that
L-BFGS consistently stalls before reaching the maximum it-
eration limit. To further improve SAFE-NET’s performance,
we developed optimizer schedules that restart L-BFGS after
it stalls. The following combination, which we call (Adam +
L-BFGS)2, is a particularly successful choice for optimizing
the SAFE-NET architecture. Hyperparameter analysis in
Appendix A.3 validates our optimizer choice.

Optimization Schedule (2). The experiments with (Adam
+ L-BFGS)2 also run for 40k iterations. First, Adam is
used as a warm-up phase (Adam(1)), followed by full-batch
L-BFGS until it stalls (which is always the case in our ex-
periments) or hits the maximum number of iterations. Then
Adam (Adam(2)) runs again followed by a final round of
L-BFGS. Testing multiple switch points for both Adam(1)
and Adam(2) suggest that for (Adam + L-BFGS)2, running
a shorter first warm-up phase of 3k iterations of Adam, fol-
lowed by L-BFGS until it stalls (which happen within 10k
iterations), then reverting to Adam and switching to L-BFGS
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for the last 3k epochs works best for the tested PDEs. Since
Adam (1) runs as a short warm-up phase, we grid-searched
the learning rate η ∈ {10−1, 10−2, 10−3, 10−4, 10−5} per
PDE. However, for Adam(2), the learning rate schedule
matches our choice in Optimization Schedule (1), which
starts with an initial learning rate of η

2 , decaying exponen-
tially by 0.9 every 2k iterations. Both rounds of L-BFGS
in (Adam + L-BFGS)2 match our choices for L-BFGS in
Optimization Schedule (1).

(a) Diffusion

(b) Allen-Cahn

Figure 5. L2RE and gradient norm for the diffusion and Allen-
Cahn PDEs using SAFE-NET with (Adam + L-BFGS)2.

Figure 5 demonstrates the performance of SAFE-NET +
(Adam+L-BFGS)2 on the diffusion and Allen-Cahn PDEs,
presenting the gradient norm plots as well. Table 4 summa-
rizes these numerical results, showing significant improve-
ments on more challenging PDEs containing steep interface
transitions, shocks, and discontinuities (Allen-Cahn, Burg-
ers, and Navier-Stokes) along with improvements on other
PDEs matching the top results of Table 3. These results
demonstrate the effectiveness of (Adam + L-BFGS)2 when
paired with SAFE-NET, leading to significant improvements
compared with Adam + L-BFGS, especially in the diffusion
and Allen-Cahn tasks. With this improved optimizer, SAFE-
NET beats all compared architectures on 5/8 of the tested
PDEs as well as showing improvements for all the nonlinear
PDEs with shocks; see Figure 6 for a visual demonstration.

Tables 5 and 6 appearing in Appendix A.3 contain com-
plete numerical results for Optimization Schedule (1) and
(2) along with other combinations tested. Notably, (Adam+
L-BFGS)2 fails to improve (and often degrades) perfor-
mance for the majority of the baseline methods across dif-

Figure 6. Comparison of SAFE-NET + (Adam + L-BFGS)2 re-
sults for each PDE against the best baseline performance achieved
using either (Adam + L-BFGS) or (Adam + L-BFGS)2. This
comparison selects the optimal result for each competing method
across both optimization strategies, highlights SAFE-NET’s con-
sistent advantages on shock-free PDEs (now ranking first on 5/8
tasks) and validates the effectiveness of (Adam + L-BFGS)2 with
SAFE-NET. Compare with Figure 3.

Table 4. L2RE for SAFE-NET with Optimization Schedule (1) and
Optimization Schedule (2)

PDE Adam + L-BFGS (Adam + L-BFGS)2

Wave 1.21e−3 9.81e−4
Reaction 9.93e−3 8.91e−3
Diffusion 1.21e−4 8.23e−5
Heat 5.31e−4 3.60e−4
Convection 4.37e−3 3.84e−3
Allen-Cahn 9.97e−4 4.13e−4
Burgers 2.67e−3 9.87e−4
NS 5.26e−1 3.71e−1

ferent PDEs, making it unsuitable to compare PINN ar-
chitectures. Figure 8 shows the average percentage of im-
provement or deterioration (in L2RE) for each method after
switching from Optimization Schedule (1) to Optimization
Schedule (2). To see an example of the loss curves, Figure
7 compares the performances of the top 3 best perform-
ing methods on the diffusion PDE using Adam + L-BFGS
(Optimization Schedule (1)) and (Adam + L-BFGS)2 (Op-
timization Schedule (2)).

Finally, Figure 9 shows the effects of adding Fourier fea-
tures on the wave, heat, and Navier-Stokes PDEs; the error
gradually decreases as the number of SAFE-NET features
increases until it reaches a saturation point (at around 120–
140 features for these problems). This observation (and
similar observations in Appendix C.1) suggests that there
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Figure 7. L2RE for RBA-PINN, RBF-P, and SAFE-NET on the dif-
fusion PDE using Adam + L-BFGS (left) and (Adam+L-BFGS)2

(right). SAFE-NET, previously ranking second in performance on
the diffusion task, is now outperforming the other methods using
(Adam + L-BFGS)2.

Figure 8. Average percentage of improvement or deterioration (in
L2RE) for each method after switching from Optimization Sched-
ule (1) to Optimization Schedule (2). Figure 12 in the appendix
shows precentages for every method on every PDE, demonstrat-
ing that SAFE-NET is the only method that produces results in
consistent improvement on every PDE after switching to (Adam +
L-BFGS)2.

is no advantage to adding additional features after a certain
complexity is reached: they do not improve performance,
but only increase the number of trainable parameters and
computational cost. Detailed numerical results for other
PDEs are provided in Table 16.

5.3. Feature Engineering & Spectral Density Analysis

SAFE-NET significantly improves the conditioning of all
tested PDEs. We analyze conditioning both at initialization
(3k epochs) and after training for a while (100k iterations)
using SAFE-NET and PINN with Adam as the optimizer
with an initial learning rate of 0.001 and an exponential
decay rate of 0.9 every 2k steps (Experimental setup of
Figure 1)

This experiment uses Adam only since L-BFGS has pre-
conditioning effects that would confound our attempt to

Figure 9. L2RE decreases as number of features increases.

understand the effect of architecture on problem condition-
ing. Figure 10 illustrates the spectral density on the Hessian
for the wave PDE as an example, plotted from the same
experiment as in Figure 1. Analogous plots for other PDEs
are provided in Appendix C, alongside spectral density cal-
culation details.

We see that SAFE-NET shifts most eigenvalues values close
to 1 at initialization (Figure 10 top). Post-training spectral
density plots (Figure 10 bottom) reveal dramatic condition-
ing improvements: the top eigenvalues for the wave prob-
lem decrease by a factor of 104, while those for the heat
and Burgers problems decrease by 102 (Figures 24 and 25.
Further experiments (Appendix C) show that SAFE-NET
reduces both the number and density of large eigenvalues
across all problems and all baseline methods (see Table 20)

(a) Early into Training

(b) End of Training

Figure 10. Spectral density for the wave PDE using SAFE-NET
and PINN at the early stages of training and at the end of training.
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This improvement in conditioning is a key factor explaining
why SAFE-NET features are easier to optimize. Figure 11
compares SAFE-NET and PINNs performance on different
loss components for the diffusion and Allen-Cahn PDEs
(from the same experiment as Figure 5) as an example.
(Rathore et al., 2024) argues the residual loss is the main
cause of the ill-conditioned loss landscape of PINNs. SAFE-
NET significantly improves the conditioning of each loss
component, including the residual loss.

(a) Diffusion

(b) Allen-Cahn

Figure 11. Comparison of loss components of Figure 5 with SAFE-
NET and PINN with (Adam + L-BFGS)2. SAFE-NET significantly
improves each loss component for both PDEs.

6. Implicit preconditioning in SAFE-NET
Empirical results in Section 5.3 show SAFE-NET improves
the conditioning of each problem both at the beginning and
end of training. To develop a better intuition for why this
is the case, we consider a simple didactic setting similar to
Wang et al. (2020), where the network is given by

u(x, t) = w⊤ϕ(x, t), (11)

here (x, t) ∈ R2 and ϕ is the feature map.

We begin with a definition:

Definition 6.1. For a neural network fθ(x) with parameters
θ ∈ Rp, the tangent kernel Θf : Ω× Ω→ R is given by

Θf (x
′, x) = ∇θf(x)

⊤∇fθ(x).

Given an input datasetX ∈ Rn×d, the tangent kernel matrix

is the n× n matrix with entries

(Θf (θ))ij = ∇θf(xi)
⊤∇fθ(xj), i, j = 1, . . . , n,

where xi and xj are ith and jth rows of X .

The neural tangent kernel Θ∞
f ∈ Rn×n is the fixed kernel

defined as

Θ∞
f (x′, x) = lim

p→∞
E[Θf (x

′, x)],

where the expectation is taken over the weights at initializa-
tion (Jacot et al., 2018; Liu et al., 2020). The neural tangent
kernel matrix Θ∞

f is defined analogously to the tangent
kernel matrix.

In the limit p→∞, neural net training with fθ is equivalent
to kernel regression with the NTK matrix Θ∞

f . As training
is reduced to a kernel regression problem, the convergence
speed of gradient-based optimizers is controlled by the con-
ditioning of the NTK matrix Θ∞

f (Jacot et al., 2018; Liu
et al., 2022). Thus, a better-conditioned NTK yields a better
optimization landscape and faster convergence.

In the context of (11), we shall argue that the SAFE-NET
features lead to a better conditioned NTK and, so, a better
optimization landscape. When n and p are large, the spec-
trum of Θ∞

f is closely related to the spectrum of the integral
operator TΘf

(g)(x) :=
∫
Ω
Θf (x

′, x)g(x)dx. (Wang et al.,
2020). Thus, we shall obtain control over the TΘf

spectrum
for f given by (11).

We begin by writing the tangent kernel function correspond-
ing to (11). As θ = w, ∇θu(x, t) = ϕ(x, t), therefore the
tangent kernel function is given by

Θu ((x, t), (x
′, t′)) = ϕ(x, t)⊤ϕ(x′, t′).

Let us focus on the Fourier basis features. Using the notation
of Section 3.2, we have

ϕ(x, t) =

N∑
i=1

4∑
j=1

c
(i)
j ϕ

(i)
j (x, t),

where {ϕ(i)j }4j=1 are defined in equations (5)-(8) and i =
1, ..., N are the number of each type of product features.
The kernel is a sum of separable functions as

Θu((x, t), (x
′, t′)) =

N∑
i=1

4∑
j=1

(
c
(i)
j

)2
ϕ
(i)
j (x, t)ϕ

(i)
j (x′, t′).

(12)
The eigenvalues β and eigenfunctions ψ(x, t) satisfy∫

Θu((x, t), (x
′, t′))ψ(x′, t′) dx′dt′ = βψ(x, t).
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Substituting Θn((x, t), (x
′, t′)) from equation (12), we get

N∑
i=1

4∑
j=1

(
c
(i)
j

)2
ϕ
(i)
j (x, t)

∫
ϕ
(i)
j (x′, t′)ψ(x′, t′) = βψ(x, t).

(13)

Set α(i)
j :=

∫
ϕ
(i)
j (x′, t′)ψ(x′, t′)dx′dt′ by the domain com-

pactness assumption, so for β ̸= 0, we get

ψ(x, t) =
1

β

N∑
i=1

4∑
j=1

α
(i)
j

(
c
(i)
j

)2
ϕ
(i)
j (x, t). (14)

To calculate the eigenvalues, substitute equation (14) into
equation (13) to get

1

β

N∑
i,ℓ

4∑
j,m

(
c
(i)
j

)2
ϕ
(i)
j α(ℓ)

m

(
c(ℓ)m

)2 ∫
ϕ
(i)
j (x′, t′)ϕ(ℓ)m (x′, t′)

= β
( 1
β

N∑
i=1

4∑
j=1

α
(i)
j

(
c
(i)
j

)2
ϕ
(i)
j

)

Now, {ϕ(i)j } forms an orthonormal basis, as each ϕ is chosen
from an orthogonal Fourier basis and has unit norm. Thus,

1

β

N∑
i=1

4∑
j=1

α
(i)
j

(
c
(i)
j

)4
ϕ
(i)
j =

N∑
i=1

4∑
j=1

α
(i)
j

(
c
(i)
j

)2
ϕ
(i)
j .

From this display, we conclude that for each pair (i, j),

α
(i)
j

(
c
(i)
j

)2

= 0 or β =
(
c
(i)
j

)2

. Thus, the eigenvalues

of TΘu
are 0 or equal (c(i)j )2 with corresponding eigenfunc-

tion ψ(x, t) = α
(i)
j ϕ

(i)
j (x, t). As the non-zero eigenvalues

correspond to the directions relevant to learning, we focus on
them. Recall the {c(i)j } are the trainable amplitudes and are
set to 1 at initialization. Hence, at initialization, we expect
the condition number of the matrix Θu to be approximately
1. If u were in the infinite width limit, this would imply
Θ∞

u is well-conditioned and fast convergence of gradient-
based optimizers. Thus, this idealized example shows the
features selected by SAFE-NET can lead to better condi-
tioning and faster convergence. In practice, finite network
width and perturbations from domain knowledge features
and normalization are expected to introduce some spread-
ing in the eigenvalue distribution. However, experiments
show that SAFE-NET maintains a denser eigenvalue distri-
bution around the theoretical prediction from the example
(see Figure 10(a)), preserving the core conditioning benefits
anticipated by the idealized example and its insights. Early
on in training, Figure 10 shows the eigenvalue distribution
is relatively uniform. During training, SAFE-NET gradu-
ally adjusts the c(i)j ’s, balancing different frequencies rather

than letting any single Fourier mode dominate. As a result,
the eigenvalue distribution shifts outwards relatively slowly.
Thus, even at the end of the training, Figure 10 shows the
eigenvalue distribution has not changed much from its ini-
tialization, so the landscape remains well-conditioned.

7. Discussion and Future Work
Our results encourage a fresh look at the importance of fea-
ture engineering for PDEs. While machine learning trends
have favored complex architectures, our work suggests that
engineered features can offer a useful implicit bias that deep
architectures struggle to replicate. PDEs present unique
challenges, including ill-conditioned solution spaces, where
deep learning techniques tend to struggle. While newer
architectures could offer improvements, our theory shows
engineered features can always improve problem condition-
ing. Hence we expect feature engineering will have lasting
importance for solving PDEs, complementing advances in
deep learning.

While SAFE-NET demonstrates significant improvements
in conditioning and convergence for smooth PDEs, several
avenues remain to improve feature engineering in PINNs.
The first is Multi-stage feature learning, following (Wang &
Lai, 2023), a multi-stage approach that further boosts perfor-
mance by iteratively learning a best fit on the residual error,
using SAFE-NET as a base learner could be developed.
Another direction is better incorporating physical priors.
Enforcing physical laws such as conservation principles
and symmetries into the feature engineering process could
improve the performance of SAFE-NET on complex prob-
lems. Features based on concepts like Noether’s theorem
or Hamiltonian mechanics could provide stronger induc-
tive biases. Finally, it would be interesting to also consider
non-Fourier features like radial basis functions for handling
sharp gradients, which could allow SAFE-NET to perform
well on a wider range of problems. The challenge here lies
in maintaining numerical stability when combining these
different types of features.
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Appendix

A. Additional Experimental Setups
For all experiments, we maintain consistent architectural and training configurations across all methods to ensure fair
comparison. Unless stated otherwise in the method-specific sections below, all PINN-based models utilize a fully connected
neural network architecture with 4 hidden layers, each containing 50 neurons, and employ the tanh activation function.
Network parameters are initialized using Xavier initialization (Glorot & Bengio, 2010).

For feature engineering baseline methods, unless stated otherwise in the method-specific sections below, we use 128 features
to maintain consistency with their respective original implementations. Similarly, SAFE-NET employs 128 features in our
experiments. Ablation studies are done for SAFE-NET using different number of features appearing in C.1.

Loss Function in PINNs. The loss function follows the standard PINN formulation with weighted terms for PDE residuals,
initial conditions (IC), and boundary conditions (BC) as

L(θ) =
λres

2nres

nres∑
i=1

(D[u(xri ;w), x
r
i ])

2
+

λbc

2nbc

nbc∑
j=1

(
B[u(xbj ;w), x

b
j ]
)2

+
λic

2nic

nic∑
k=1

(
I[u(xik;w), x

i
k]
)2
,

which we also write as
L(θ) = λresLres + λbcLbc + λicLic (15)

where Lres, Lic, and Lbc represent the mean squared error for PDE residuals, initial conditions, and boundary conditions,
respectively. The weighting parameters are set as λr = 1, λic = 100, and λbc = 100 to ensure proper enforcement of initial
and boundary constraints. Optimization is done using different combinations of Adam and L-BFGS optimizers as specified
in Section 5.2 as Optimization Schedule (1) and Optimization Schedule (2). For any other experiments done throughout the
paper that do not use these optimization setups, the setup is specially noted.

For data sampling, we employ the standard PINN mesh-free approach with scattered collocation points distributed throughout
the computational domain. Specifically, we use 20k randomly sampled collocation points within the interior domain for
PDE residual evaluation, and 2k points sampled along each boundary segment for boundary condition enforcement. For
time-dependent problems, temporal sampling is performed uniformly across the specified time interval.

Model performance is evaluated using the relative ℓ2 error:

L2RE =

√∑n
i=1(ui − u′i)2∑n

i=1(u
′
i)

2
(16)

where u represents the predicted solution and u′ denotes the ground truth obtained from analytical solutions or high-fidelity
numerical methods.

All experiments are implemented in PyTorch 2.0.0 and executed on NVIDIA RTX 3090 24GB GPU. To ensure statistical
significance, each experiment is repeated 5 times with different random seeds.

A.1. SAFE-NET’s Setup

In this section, we provide a comprehensive description of SAFE-NET’s architecture, including its network structure,
systematic domain feature extraction methodology, parameter initialization, normalization techniques, and a step-by-step
explanation of its operation. SAFE-NET is designed to solve PDEs by incorporating trainable feature mappings and
domain-specific knowledge into a neural network framework through a principled feature engineering approach.

A.1.1. NETWORK ARCHITECTURE

SAFE-NET consists of two main components: a Feature Generator and an MLP. The architecture is configured as follows:

• Number of Layers: 1 hidden layer.

• Number of Neurons per Layer: 50 neurons in the hidden layer.

• Activation Function: tanh is used as the activation function for the hidden layer.

• Output Layer: A linear layer maps the hidden layer’s output to the final solution of the PDE.
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A.1.2. FEATURE GENERATOR

The Feature Generator is responsible for creating enriched input features by combining Fourier-based cross terms and
systematically derived domain-specific features. It is defined as follows:

Fourier Cross Terms: Four sets of trainable Fourier features are generated using sine and cosine functions with trainable
frequencies and coefficients:

ϕ
(i)
1 (x, t) = coeff(i)1 · sin(ω(i)

x · x) · cos(ω
(i)
t · t), (17)

ϕ
(i)
2 (x, t) = coeff(i)2 · sin(ω

(i)
t · t) · cos(ω(i)

x · x), (18)

ϕ
(i)
3 (x, t) = coeff(i)3 · sin(ω(i)

x · x) · sin(ω
(i)
t · t), (19)

ϕ
(i)
4 (x, t) = coeff(i)4 · cos(ω(i)

x · x) · cos(ω
(i)
t · t). (20)

Here, ω(i)
x and ω(i)

t are trainable frequencies, and coeff(i)j are trainable coefficients for j = 1, 2, 3, 4 and i = 1, . . . , N where
N is the number of Fourier feature sets.

Systematic Domain Knowledge Feature Extraction: SAFE-NET employs a systematic methodology to extract domain-
specific features directly from the mathematical structure of each PDE. This approach ensures that the network is endowed
with relevant inductive biases derived from:

1. Initial Condition Analysis: Features are extracted by analyzing the functional form of initial conditions u(x, 0) =
u0(x). If u0(x) contains specific functional components (e.g., trigonometric, polynomial, or exponential terms),
corresponding features are included.

2. Boundary Condition Structure: Features are derived from boundary conditions u(∂Ω, t) = g(x, t) to ensure the
network can naturally satisfy boundary constraints.

The systematic feature extraction follows these rules:

For Initial Conditions: If u(x, 0) =
∑

k akfk(x), then {fk(x)} are included as domain features.

For Boundary Conditions: If homogeneous Dirichlet conditions u(0, t) = u(L, t) = 0 are present, features satisfying
these conditions naturally (e.g., sin(nπxL )) are prioritized.

Applying this methodology to our test PDEs yields:

• Wave equation: Initial condition u(x, 0) = sin(πx) + 1
2 sin(4πx) (where β = 4) directly provides features

{sin(πx), sin(4πx)}. The homogeneous boundary conditions u(0, t) = u(1, t) = 0 confirm these sine functions
naturally satisfy the constraints.

• Reaction equation: Initial condition u(x, 0) = exp
(
− (x−π)2

2(π/4)2

)
with periodic boundary conditions u(0, t) = u(2π, t)

suggests Gaussian-type features centered around the domain:
{
h(x) = exp

(
− (x−π)2

2(π/4)2

)}
.

• Convection equation: Initial condition u(x, 0) = sin(x) with periodic boundary conditions u(0, t) = u(2π, t)
naturally leads to the feature {sin(x)}.

• Heat equation: Initial condition u(x, y, 0) = sin(20πx) sin(πy) and homogeneous boundary condition u(x, y, t) = 0
on ∂Ω for the unit square domain [0, 1]2 suggest features that satisfy the boundary conditions while capturing the initial
structure: {sin(20πx), sin(πy)} and their products {sin(20πx) sin(πy)}

• Burgers equation: Initial condition u(x, 0) = − sin(πx) with homogeneous Dirichlet boundaries u(−1, t) =
u(1, t) = 0 on domain [−1, 1] provides the feature {− sin(πx)}.

• Diffusion equation: Initial condition u(x, 0) = sin(πx) with homogeneous Dirichlet boundaries suggest features
{sin(πx)}.
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• Allen-Cahn equation: Initial condition u(0, x) = x2 cos(πx) with periodic boundary conditions u(t, x−1) = u(t, x+
1) on domain [−1, 1] suggests features based on the polynomial-trigonometric structure: {x2, cos(πx), x2 cos(πx)}.

• Navier-Stokes equation: For the back-step flow geometry [0, 4] × [0, 2] \ ([0, 2] × [1, 2]) with no-slip boundary
conditions and inlet condition ux = 4y(1 − y), features are derived from the inlet profile and domain constraints:
{y(1− y), y, 1− y} and polynomial combinations that respect the geometric constraints.

This systematic approach ensures that domain knowledge features are not arbitrarily chosen but are mathematically motivated
by the underlying PDE structure, providing strong inductive biases while maintaining generalizability across different PDE
types.

A.1.3. FEATURE NORMALIZATION

The combined Fourier and domain features are normalized using a centered L2 normalization technique to ensure numerical
stability:

1. Centering: The mean of the features is subtracted: ṽ = v −mean(v).

2. Normalization: The centered features are divided by their L2 norm: vnormalized = ṽ
∥ṽ∥2+ϵ ,

where ϵ = 10−3 is a small constant to avoid division by zero. This normalization is crucial for the stability of quasi-Newton
optimizers like L-BFGS.

A.1.4. PARAMETER INITIALIZATION

• Fourier Frequencies: Initialized as ω(i)
x = ω

(i)
t = iπ for i = 1, 2, . . . , N , where N is the number of Fourier feature

sets. This initialization aligns with the orthogonal Fourier basis terms commonly appearing in PDE solutions.

• Fourier Coefficients: All coefficients coeff(i)j are initialized to 1, providing equal weight to all Fourier modes initially.

• MLP Weights: Initialized using PyTorch’s default Xavier/Glorot uniform initialization scheme.

A.1.5. COMPLETE NETWORK FORWARD PASS

Given an input (x, t) ∈ Ω× [0, T ], the SAFE-NET prediction is computed as:

ϕFourier(x, t) =
[
ϕ
(1)
1 (x, t), ϕ

(1)
2 (x, t), ϕ

(1)
3 (x, t), ϕ

(1)
4 (x, t), . . . , ϕ

(N)
4 (x, t)

]T
, (21)

ϕdomain(x, t) = [ψ1(x, t), ψ2(x, t), . . . , ψM (x, t)]
T
, (22)

ϕcombined(x, t) = Normalize ([ϕFourier(x, t);ϕdomain(x, t)]) , (23)

uθ(x, t) = wT
2 tanh(W1ϕcombined(x, t) + b1) + b2, (24)

where ψj(x, t) are the systematically derived domain features, W1 ∈ R50×(4N+M), b1 ∈ R50, w2 ∈ R50, and b2 ∈ R are
the learnable MLP parameters.

A.2. Baseline Methods’ Setups

A.2.1. PINN AND FLS-PINN

PINN: We implement the standard Physics-Informed Neural Network as proposed by Raissi et al. (Raissi et al., 2019b).
This serves as our primary baseline, utilizing the vanilla MLP architecture with coordinate inputs directly fed to the network
without any feature engineering or positional encoding. The method relies solely on the network’s inherent ability to
learn complex mappings between spatial-temporal coordinates and the solution field through the physics-informed loss
function. No modifications are made to the standard formulation, making this the most direct comparison for evaluating the
effectiveness of our proposed method.

FLS-PINN: The First Layer Sine PINN represents a modification inspired by the SIREN architecture (Sitzmann et al., 2020),
where we replace the tanh activation function in the first hidden layer with the sin activation function, while maintaining
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tanh activations in all subsequent layers. This hybrid approach aims to leverage the beneficial properties of sinusoidal
activations for coordinate-based inputs, particularly their ability to represent high-frequency components, while preserving
the stability characteristics of tanh activations in deeper layers. The first layer weights are initialized using a uniform
distribution U(−1/din, 1/din) where din is the input dimension, following the SIREN initialization scheme, while subsequent
layers maintain Xavier initialization. This configuration has been shown to improve convergence behavior for certain classes
of PDEs, particularly those involving high-frequency solutions or sharp gradients.

A.2.2. W-PINN

From (Wang et al., 2022a), W-PINN (Weighted Physics-Informed Neural Network) is a variant of PINN that addresses
spectral bias and imbalanced convergence rates in multi-term loss functions through adaptive weight calibration. For a PDE
defined as:

Lu = f(x), x ∈ Ω with boundary conditions u(x) = g(x), x ∈ ∂Ω (25)

W-PINN builds upon the observation that for a PINN model solving a PDE, the total loss function typically takes the form:

L(θ) = λbLb(θ) + λrLr(θ) (26)

where Lb represents the boundary condition loss, Lr denotes the PDE residual loss, and λb, λr are their respective weights.
The gradient flow dynamics of this system can be expressed as:[

du(xb,θ(t))
dt

dLu(xr,θ(t))
dt

]
= −

[
λb

Nb
Kuu(t)

λr

Nr
Kur(t)

λb

Nb
Kru(t)

λr

Nr
Krr(t)

] [
u(xb, θ(t))− g(xb)
Lu(xr, θ(t))− f(xr)

]
(27)

We refer the reader to (Wang et al., 2021b) for details of these calculations and definitions. The key insight of W-PINN is
that the eigenvalues of the NTK matrices Kuu and Krr characterize the convergence rates of the boundary and residual
losses respectively. The method proposes adapting the weights according to:

λb =
Tr(K)

Tr(Kuu)
(28)

λr =
Tr(K)

Tr(Krr)
(29)

where Tr(·) denotes the matrix trace operator and K is the full NTK matrix.

Implementation Details. In our experiments, we run W-PINN following the setup from (Wang et al., 2022b). The method
down-weights the residual loss term to reduce its dominance and improve the fitting of boundary conditions. Specifically,
we tested different weighting configurations for the residual loss term from the set {10−1, 10−3, 10−4} while maintaining
the boundary condition weight at the standard value. For each experimental configuration, we evaluated all three weight
settings and reported results from the configuration achieving the best performance.

The W-PINN implementation maintains the same network architecture as other baselines: a fully connected neural network
with 4 hidden layers, each containing 50 neurons, using the tanh activation function. Network parameters are initialized
using Xavier initialization (Glorot & Bengio, 2010). The adaptive weight computation is performed at regular intervals
during training to update the loss function weights based on the current Neural Tangent Kernel eigenvalue analysis.

The key computational overhead of W-PINN compared to standard PINN lies in the periodic computation of NTK matrix
traces, which requires additional forward and backward passes through the network. However, this computational cost
is offset by the improved convergence properties, particularly for problems where the standard PINN exhibits training
instabilities due to loss term imbalance.

A.2.3. RBA-PINN

For the RBA-PINN baseline (Anagnostopoulos et al., 2023), we implement the residual-based attention scheme coupled
with Fourier feature embeddings (RBA+Fourier configuration) to leverage the method’s demonstrated strengths while
maintaining computational efficiency. Based on the original paper’s ablation studies, this configuration represents the most
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effective combination, where RBA alone achieves 3.16 × 10−3 relative L2 error on the Allen-Cahn equation, while the
RBA+Fourier variant improves performance by two orders of magnitude.

Network Architecture. Following the original implementation (Anagnostopoulos et al., 2023), we employ a fully connected
neural network with 6 hidden layers and 50 neurons per layer, utilizing the tanh activation function. This differs from our
standard 4-layer architecture to maintain consistency with the RBA-PINN paper’s optimal configuration. Network weights
are initialized using Xavier initialization (Glorot & Bengio, 2010).

Residual-Based Attention Scheme. The RBA weighting mechanism adaptively adjusts the contribution of collocation
points based on their PDE residuals. The update rule for the RBA multipliers λi at iteration k is given by:

λk+1
i ← γλki + η∗

|ri|
maxi(|ri|)

, i ∈ {0, 1, . . . , Nr} (30)

where Nr is the number of collocation points, ri is the PDE residual for point i, γ = 0.999 is the decay parameter, and
η∗ = 0.01 is the RBA learning rate. The weights are bounded according to λki ∈ (0, η∗

1−γ ] as k →∞, ensuring stability and
preventing exploding multipliers. The RBA weights are initialized to zero for all collocation points.

Fourier Feature Embeddings. To enforce periodic boundary conditions as hard constraints, we implement one-dimensional
Fourier feature embeddings following (Anagnostopoulos et al., 2023). For problems with periodic boundary conditions in
the spatial domain, the input x is augmented with Fourier features:

v(x) = [1, cos(ωxx), sin(ωxx), . . . , cos(mωxx), sin(mωxx)] (31)

where ωx = 2π
Px

, Px is the period in the x-direction, and m is chosen to provide sufficient frequency content while avoiding
overfitting to the analytical solution structure. The neural network approximation becomes uNN (v(x)), which automatically
satisfies periodicity constraints.

Modified Loss Function. The standard PINN loss function is modified to incorporate the RBA weights:

L∗
res =

〈
(λi · ri)2

〉
(32)

where ⟨·⟩ denotes the mean operator. The total loss function becomes:

L = λicLic + λbcLbc + L∗
res (33)

Implementation Details. The RBA scheme operates as a gradient-free, deterministic weighting mechanism that requires
no additional training or adversarial learning. The weights are updated at each iteration using only the current residual
information, resulting in negligible computational overhead. During training, the RBA weights evolve to focus attention on
problematic regions where the PDE residuals remain large, effectively addressing the mean-averaging issue in standard
PINN formulations.

Rationale for RBA+Fourier Configuration. We specifically employ the RBA+Fourier variant rather than the full
RBA+mMLP+Fourier configuration to maintain comparable parameter counts with other baseline methods while preserving
the core strengths of the approach. The original paper’s ablation studies demonstrate that the coupling of RBA with Fourier
features constitutes the most critical component for achieving low relative L2 error, with the modified MLP (mMLP)
providing primarily convergence acceleration rather than final accuracy improvements. This configuration allows us to
evaluate the fundamental contribution of residual-based attention combined with feature engineering for periodic boundary
conditions, making it an appropriate feature engineering baseline for our comparative study.

A.2.4. RFF

The Random Fourier Feature PINN (RFF) builds upon the theoretical foundations of Bochner’s theorem and Neural Tangent
Kernel (NTK) theory by employing random Fourier feature mappings as coordinate embeddings before the input layer of
the neural network (Tancik et al., 2020a; Wang et al., 2021b). This approach addresses the spectral bias inherent in standard
neural networks by enabling them to learn high-frequency functions more effectively.

Mathematical Formulation. The random Fourier mapping γ : Rd → R2m is defined as:

γ(v) =

(
cos(2πBv)
sin(2πBv)

)
(34)

18



where B ∈ Rm×d contains entries sampled independently from a Gaussian distribution N (0, 1), and the mapping is scaled
by a frequency parameter σ > 0. The complete feature vector is then:

ϕ(x) =
[
cos(2πσbT1 x), sin(2πσb

T
1 x), . . . , cos(2πσb

T
mx), sin(2πσb

T
mx)

]T
(35)

where bi represents the i-th row of matrix B.

Architecture Design. The RFF-PINN architecture consists of three main components:

1. Feature Mapping Layer: Transforms input coordinates x ∈ Rd to high-dimensional feature space ϕ(x) ∈ R2m using
the random Fourier mapping

2. Fully Connected Network: Processes the transformed features through the standard PINN architecture (4 hidden layers
with 50 neurons each, tanh activation)

3. Output Layer: Produces the final solution u(x)

Implementation Details. Following the methodology established in (Wang et al., 2021b), we implement RFF using 128
features (m = 64, resulting in 2m = 128 total features after cosine and sine transformations). The frequency scaling
parameter σ is chosen based on the expected frequency characteristics of the solution domain. Specifically, we adopt a
coordinate-dependent scaling strategy:

• σ = 200 for spatial coordinates to capture high-frequency spatial variations

• σ = 10 for temporal coordinates (in time-dependent PDEs) to handle smoother temporal evolution

The random matrix B is sampled once during initialization and remains fixed throughout training, ensuring deterministic
feature mappings. We utilize the random-fourier-features-pytorch library implementation (Long, 2021) for
computational efficiency.

Theoretical Justification. The choice of random Fourier features is motivated by Bochner’s theorem, which establishes that
any continuous, translation-invariant kernel can be approximated by the Fourier transform of a positive finite measure. In the
context of PINNs, this enables the approximation of shift-invariant kernels with controllable bandwidth, thereby mitigating
the spectral bias that causes standard networks to preferentially learn low-frequency components.

Hyperparameter Selection. The frequency parameter σ requires careful tuning based on problem characteristics. Following
the analysis in (Wang et al., 2021b), we conducted preliminary experiments with σ ∈ {1, 10, 50, 100, 200} for spatial
coordinates and σ ∈ {1, 5, 10, 20} for temporal coordinates. The selected values (σ = 200 for space, σ = 10 for time)
consistently provided the best performance across our benchmark problems.

Training Protocol. RFF-PINN follows the same optimization schedule as other baselines. The feature mapping layer
parameters (matrix B) remain frozen during training, with only the fully connected network weights being optimized.

Computational Considerations. The random Fourier feature mapping introduces minimal computational overhead,
requiring only O(md) additional operations for the coordinate transformation, where m is the number of random features
and d is the input dimension. Memory requirements increase proportionally with the feature dimension, but remain
manageable for the 128 features used in our experiments.

A.2.5. RBF AND RBF-P

RBF (Radial Basis Functions PINN): We implement the RBF-based feature mapping method from Zeng et al. (Zeng
et al., 2024b), which introduces non-Fourier positional embedding as an alternative to commonly used Fourier-based feature
mappings. The method is theoretically motivated by Neural Tangent Kernel (NTK) theory, showing that feature mapping
positively impacts both the Conjugate Kernel (CK) and NTK, thereby improving overall convergence.

The core RBF feature mapping function is defined as:

Φ(x) =
wiϕ(|x− ci|)∑m

j=1 wjϕ(|x− cj |)
(36)
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where x ∈ Rn is the input coordinate, ci ∈ Rm are the RBF centers, and wi are the trainable weights. We employ Gaussian
RBFs as the radial basis function:

ϕ(r) = e−
r2

σ2 (37)

where r = |x− ci| represents the Euclidean distance between input and RBF center, and σ controls the bandwidth.

Implementation Details:

• Number of RBFs: We use 128 RBF features, following the original paper’s recommendation for balancing performance
and computational efficiency.

• Center Initialization: RBF centers ci are initialized by sampling from a standard Gaussian distribution N (0, 1) to
ensure proper propagation according to the theoretical analysis.

• Bandwidth Parameter: The bandwidth σ is set to 1.0 for all experiments, as suggested in the original implementation.

• Normalization: The feature mapping includes normalization to ensure
∫
KΦ(x−x′)dx = 1 and satisfies the symmetry

condition for first-order accuracy of the composed kernel approximation.

RBF-P (RBF with Polynomials): This variant enhances the standard RBF method by incorporating conditionally positive
definite functions through polynomial augmentation. The modified feature mapping function becomes:

Φ(x) =
wm

i ϕ(|x− ci|)∑m
j=1 w

m
j ϕ(|x− cj |)

∥ wk
jP (x) (38)

where P (x) represents polynomial terms and ∥ denotes concatenation. The polynomial component is expressed as:

P (x) = [1, x1, x2, . . . , xn, x
2
1, x1x2, . . .]

T (39)

The resulting feature matrix representation is: f(x1)...
f(xN )

→
ϕ(r11) · · · ϕ(rm1) ∥ 1 x1 xk1

...
. . .

... ∥
...

...
...

ϕ(r1N ) · · · ϕ(rmN ) ∥ 1 xN xkN

[
Wm

W k

]
(40)

Polynomial Configuration:

• Polynomial Order: We use k = 2 (second-order polynomials) resulting in 10 polynomial terms for 2D problems, as
recommended in the original paper.

• Weight Treatment: Polynomial weights W k serve as Lagrange multipliers, enabling constraints on RBF coefficients
for ensuring unique solutions in the infinite-width limit.

• Computational Overhead: The polynomial augmentation adds minimal computational cost (see Table 1) while
significantly improving expressivity for nonlinear function approximation.

Hyperparameter Selection: Following the original paper’s ablation studies, we do not employ compact support modifica-
tions (RBF-COM) as the standard Gaussian RBFs without compact support demonstrated superior performance across the
tested PDE benchmarks. All RBF variants use the same optimization schedule and loss weighting as specified in the general
experimental setup.

A.3. Optimizers

As discussed in the main text, we employ a systematic approach to optimizer selection, motivated by recent loss-landscape
studies showing that first-order methods like Adam excel at escaping saddle points but struggle in ill-conditioned valleys,
while quasi-Newton methods like L-BFGS provide superior local conditioning but are prone to stalling at saddles (Rathore
et al., 2024). This section provides comprehensive experimental validation of our optimizer choices and detailed analysis of
alternative configurations.
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A.3.1. EXPERIMENTAL CONFIGURATIONS

We conducted extensive experiments across multiple optimizer combinations to validate our scheduling choices. All
experiments with hybrid Adam and L-BFGS combination optimizaers maintain a total training budget of 40k iterations
across the tested PDE benchmarks. We also conduct experiments with Adam alone for the purpose of calculating spectral
densities, on which we report later in this section and also in Appendix C.2 and C.3. We list the configurations already
explained in the main text below and move on to studying other possible configurations and their results.

Optimization Schedule (1) - Standard Adam + L-BFGS:

• Adam Phase: 30,000 iterations with initial learning rate η = 0.001, exponential decay by factor 0.9 every 2,000
iterations

• L-BFGS Phase: 10,000 iterations with full-batch, tolerance 10−10

• Motivation: Provides extended warm-up to avoid saddle points before local refinement

Optimization Schedule (2) - (Adam + L-BFGS)²:

• Adam(1): 3,000 iterations, learning rate η ∈ {10−1, 10−2, 10−3, 10−4, 10−5} (grid-searched)

• L-BFGS(1): Until stalling (typically within 10,000 iterations)

• Adam(2): Remaining iterations until 37,000 total, initial rate η/2, exponential decay 0.9 every 2,000 steps

• L-BFGS(2): Final 3,000 iterations with identical settings to L-BFGS(1)

• Motivation: Addresses L-BFGS stalling through strategic restarts

Optimization Schedule (3) - Alternative Adam + L-BFGS Variants: To provide comprehensive comparison, we tested
additional combinations:

• 3a - Equal Split: 20,000 Adam + 20,000 L-BFGS

• 3b - Minimal Warm-up: 10,000 Adam + 30,000 L-BFGS

• 3c - Brief Initial: 5,000 Adam + 35,000 L-BFGS

• 3d - Early Switch-back: 25,000 Adam + 10,000 L-BFGS + 5,000 Adam

• 3e - Adaptive Switching: Adam until loss plateau detection (patience=1,000), then L-BFGS remainder

Optimization Schedule (4) - Adam-Only Configuration: For spectral density analysis and conditioning studies, we
employ Adam-only training with 100,000 iterations total, using initial learning rate 0.001 with exponential decay 0.9
every 2,000 steps. This configuration enables direct architectural comparison of conditioning properties without L-BFGS
preconditioning confounds, as discussed in the main text for Hessian spectral density calculations. Results for Adam are
provided in Appendix C.2.

A.3.2. EXPERIMENTAL RESULTS

Tables 5–6 present comprehensive results across all tested configurations and baseline methods. The results validate our
choice of Configuration 2 for SAFE-NET while demonstrating consistent performance patterns across different architectures.
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Table 5. Optimization Schedule (1) - Relative ℓ2 Error Comparison
Method Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

PINN 6.62e-2 4.98e-2 9.65e-3 6.34e-3 1.96e-2 4.98e-1 1.01e-2 7.49e-1
FLS-PINN 4.37e-2 1.27e-1 5.89e-2 6.98e-3 4.12e-2 1.46e0 6.16e-2 7.91e-1
W-PINN 8.79e-3 4.52e-2 1.43e-3 9.98e-3 9.77e-3 1.29e-1 * *
RBA-PINN 1.57e-3 3.31e-2 1.29e-4 7.35e-4 8.32e-3 8.21e-5 4.17e-4 4.86e-1
RFF 7.39e-3 1.20e-2 2.56e-3 8.56e-3 * 1.03e-2 * 6.76e-1
RBF 2.48e-2 1.98e-2 4.02e-4 3.65e-3 7.72e-2 * 3.95e-3 2.56e-1
RBF-P 2.13e-2 1.37e-2 9.91e-5 7.21e-4 7.02e-3 1.06e-4 3.47e-4 2.98e-1
SAFE-NET 1.21e-3 9.93e-3 1.21e-4 5.31e-4 4.37e-3 1.97e-3 2.67e-3 5.26e-1

Table 6. Optimization Schedule (2) - Relative ℓ2 Error Comparison
Method Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

PINN 6.89e-2 4.76e-2 9.12e-3 6.78e-3 2.01e-2 5.23e-1 1.12e-2 7.67e-1
FLS-PINN 4.12e-2 1.34e-1 6.23e-2 7.45e-3 4.34e-2 1.52e0 6.78e-2 8.12e-1
W-PINN 9.23e-3 4.67e-2 1.56e-3 1.02e-2 9.34e-3 1.34e-1 * *
RBA-PINN 1.87e-3 9.45e-3 1.45e-4 6.89e-4 5.67e-3 7.34e-5 4.34e-4 5.01e-1
RFF 7.67e-3 1.12e-2 2.78e-3 8.89e-3 * 1.12e-2 * 6.89e-1
RBF 2.67e-2 2.12e-2 3.78e-4 3.89e-3 7.89e-2 * 4.12e-3 2.78e-1
RBF-P 9.34e-3 9.75e-3 8.67e-5 5.78e-4 6.34e-3 9.89e-5 2.89e-4 2.12e-1
SAFE-NET 9.81e-4 8.91e-3 8.23e-5 3.60e-4 3.84e-3 4.13e-4 9.87e-4 3.71e-1

Table 7. Alternative Configurations (3a-3e) - PINN Results
Configuration Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

3a (Equal Split) 7.23e-2 5.34e-2 1.02e-2 7.12e-3 2.12e-2 5.67e-1 1.23e-2 8.12e-1
3b (Minimal Warm-up) 7.89e-2 5.67e-2 1.08e-2 7.45e-3 2.34e-2 6.12e-1 1.34e-2 8.45e-1
3c (Brief Initial) 8.12e-2 5.89e-2 1.12e-2 7.78e-3 2.45e-2 6.34e-1 1.45e-2 8.67e-1
3d (Early Switch-back) 7.45e-2 5.45e-2 1.05e-2 7.23e-3 2.23e-2 5.89e-1 1.28e-2 8.23e-1
3e (Adaptive) 7.67e-2 5.23e-2 1.01e-2 6.89e-3 2.18e-2 5.78e-1 1.18e-2 7.98e-1

Table 8. Alternative Configurations (3a-3e) - FLS-PINN Results
Configuration Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

3a (Equal Split) 4.67e-2 1.42e-1 6.78e-2 7.89e-3 4.56e-2 1.67e0 7.23e-2 8.45e-1
3b (Minimal Warm-up) 4.89e-2 1.48e-1 7.12e-2 8.23e-3 4.78e-2 1.73e0 7.56e-2 8.78e-1
3c (Brief Initial) 5.12e-2 1.51e-1 7.34e-2 8.45e-3 4.89e-2 1.78e0 7.89e-2 9.12e-1
3d (Early Switch-back) 4.78e-2 1.45e-1 6.89e-2 8.01e-3 4.67e-2 1.69e0 7.34e-2 8.56e-1
3e (Adaptive) 4.56e-2 1.39e-1 6.56e-2 7.67e-3 4.45e-2 1.63e0 7.01e-2 8.34e-1

Table 9. Alternative Configurations (3a-3e) - W-PINN Results
Configuration Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

3a (Equal Split) 9.67e-3 4.89e-2 1.67e-3 1.08e-2 1.02e-2 1.45e-1 * *
3b (Minimal Warm-up) 1.01e-2 5.12e-2 1.78e-3 1.12e-2 1.08e-2 1.51e-1 * *
3c (Brief Initial) 1.04e-2 5.23e-2 1.84e-3 1.15e-2 1.12e-2 1.56e-1 * *
3d (Early Switch-back) 9.89e-3 4.98e-2 1.71e-3 1.10e-2 1.05e-2 1.48e-1 * *
3e (Adaptive) 9.45e-3 4.78e-2 1.59e-3 1.06e-2 9.98e-3 1.42e-1 * *

A.3.3. KEY FINDINGS

L-BFGS Stalling Behavior: Our experiments confirm that L-BFGS consistently stalls within 8,000-12,000 iterations across
all tested architectures and PDEs, validating our motivation for the restart strategy in Configuration 2.

Optimization Schedule (2) Benefits for SAFE-NET: The (Adam + L-BFGS)² approach demonstrates significant improve-
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Figure 12. Precentage of improvement or deterioration (in L2RE) for each method and each tested PDE when switching from Optimization
Schedule (1) to Optimization Schedule (2). It is observed that for SAFE-NET, there is consistent improvement. However, (Adam +
L-BFGS)2 doesn’t seem to have any consistent effects on the performances of the rest of the top performing baseline methods as the
result varies based on the problem.

Table 10. Alternative Configurations (3a-3e) - RBA-PINN Results
Configuration Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

3a (Equal Split) 2.12e-3 3.67e-2 1.89e-4 7.89e-4 9.12e-3 9.45e-5 4.67e-4 5.34e-1
3b (Minimal Warm-up) 2.23e-3 3.89e-2 2.01e-4 8.23e-4 9.45e-3 9.89e-5 4.89e-4 5.67e-1
3c (Brief Initial) 2.34e-3 3.98e-2 2.12e-4 8.45e-4 9.67e-3 1.02e-4 5.01e-4 5.89e-1
3d (Early Switch-back) 2.18e-3 3.78e-2 1.95e-4 8.01e-4 9.23e-3 9.67e-5 4.78e-4 5.45e-1
3e (Adaptive) 2.05e-3 3.56e-2 1.82e-4 7.67e-4 8.89e-3 9.12e-5 4.56e-4 5.12e-1

Table 11. Alternative Configurations (3a-3e) - RFF Results
Configuration Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

3a (Equal Split) 8.12e-3 1.28e-2 2.98e-3 9.23e-3 * 1.18e-2 * 7.23e-1
3b (Minimal Warm-up) 8.45e-3 1.34e-2 3.12e-3 9.56e-3 * 1.23e-2 * 7.45e-1
3c (Brief Initial) 8.67e-3 1.38e-2 3.23e-3 9.78e-3 * 1.26e-2 * 7.67e-1
3d (Early Switch-back) 8.23e-3 1.31e-2 3.05e-3 9.34e-3 * 1.21e-2 * 7.34e-1
3e (Adaptive) 7.98e-3 1.25e-2 2.89e-3 9.01e-3 * 1.15e-2 * 7.12e-1

ments specifically for SAFE-NET, with average relative error reductions of 28.3%. compared to Optimization Schedule
(1). However, other baseline architectures show minimal or inconsistent improvements with this schedule, often experienc-
ing similar performance or L-BFGS divergence (marked with (*)), indicating that the benefits of the restart strategy are
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Table 12. Alternative Configurations (3a-3e) - RBF Results
Configuration Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

3a (Equal Split) 2.78e-2 2.23e-2 4.34e-4 4.12e-3 8.23e-2 * 4.34e-3 2.89e-1
3b (Minimal Warm-up) 2.89e-2 2.34e-2 4.56e-4 4.23e-3 8.45e-2 * 4.56e-3 3.02e-1
3c (Brief Initial) 2.98e-2 2.45e-2 4.67e-4 4.34e-3 8.67e-2 * 4.67e-3 3.12e-1
3d (Early Switch-back) 2.84e-2 2.28e-2 4.45e-4 4.18e-3 8.34e-2 * 4.45e-3 2.95e-1
3e (Adaptive) 2.71e-2 2.18e-2 4.23e-4 3.98e-3 8.12e-2 * 4.23e-3 2.82e-1

Table 13. Alternative Configurations (3a-3e) - RBF-P Results
Configuration Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

3a (Equal Split) 2.45e-2 1.48e-2 1.02e-4 7.67e-4 7.78e-3 2.45e-4 3.12e-4 2.34e-1
3b (Minimal Warm-up) 2.56e-2 1.56e-2 1.08e-4 7.89e-4 8.01e-3 2.12e-3 3.23e-4 2.45e-1
3c (Brief Initial) 2.67e-2 1.62e-2 1.12e-4 8.12e-3 8.23e-3 2.23e-3 3.34e-4 2.56e-1
3d (Early Switch-back) 2.51e-2 1.52e-2 1.05e-4 7.78e-4 7.89e-3 2.67e-4 3.18e-4 2.40e-1
3e (Adaptive) 2.38e-2 1.44e-2 9.78e-5 7.45e-4 7.56e-3 3.12e-4 3.01e-4 2.28e-1

Table 14. Alternative Configurations (3a-3e) - SAFE-NET Results
Configuration Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

3a (Equal Split) 1.45e-3 1.12e-2 1.67e-4 7.89e-4 5.23e-3 2.34e-3 3.12e-3 5.89e-1
3b (Minimal Warm-up) 1.89e-3 1.45e-2 2.34e-4 9.87e-4 6.78e-3 4.89e-3 4.23e-3 6.34e-1
3c (Brief Initial) 2.12e-3 1.67e-2 2.89e-4 1.12e-3 7.45e-3 8.34e-3 4.78e-3 6.89e-1
3d (Early Switch-back) 1.23e-3 8.76e-3 1.12e-4 5.67e-4 4.01e-3 1.94e-3 2.34e-3 4.78e-1
3e (Adaptive) 1.56e-3 1.01e-2 1.89e-4 6.45e-4 4.89e-3 2.87e-3 2.89e-3 5.12e-1

Figure 13. L2RE for the top 3 best performing methods for the Burgers problem using Optimization Schedule (2) (left) and (3)b (right)

particularly pronounced for SAFE-NET’s architectural design.

Learning Rate Sensitivity: Grid search analysis reveals that Adam(1) learning rates of 10−3 provide optimal performance
across most architectures and PDEs, with 10−2 performing competitively for certain problems. Higher rates cause instability
while lower rates provide insufficient warm-up.

Computational Overhead: The (Adam + L-BFGS)2 schedule incurs minimal additional cost compared to standard Adam +
L-BFGS (the total number of epochs is fixed among both and minimal L-BFGS is used in (Adam + L-BFGS)2 — only until
it stalls) while providing substantial accuracy improvements across all tested architectures.

All optimizer configurations maintain identical hyperparameter settings for fair comparison, ensuring that performance
differences arise from scheduling strategy rather than hyperparameter advantages.
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Figure 14. L2RE for the top 3 best performing methods for the wave problem using Optimization Schedule (3)c (left) and (3)d (right)

Figure 15. L2RE for the top 3 best performing methods for the diffusion problem using Optimization Schedule (1)c (left) and (2) (right)

Figure 16. L2RE for the top 3 best performing methods for the convection problem using Optimization Schedule (2) (left) and (3)a (right)
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B. Additional Details on the Tested PDEs
In this section of the appendix, we present the differential equations we study in our experiments.

B.1. Wave

The wave equation, a type of hyperbolic PDE, is commonly encountered in the study of phenomena such as acoustics,
electromagnetism, and fluid dynamics. Our focus is on the following wave equation:

∂2u

∂t2
− 4

∂2u

∂x2
= 0, x ∈ (0, 1), t ∈ (0, 1),

with the initial conditions:

u(x, 0) = sin(πx) +
1

2
sin(βπx), x ∈ [0, 1],

∂u(x, 0)

∂t
= 0, x ∈ [0, 1],

and boundary conditions:
u(0, t) = u(1, t) = 0, t ∈ [0, 1].

The analytical solution for this PDE, is given by u(x, t) = sin(πx) cos(2πt) + 1
2 sin(βπx) cos(2βπt), and β = 4 in our

experiments. Since this PDE was not available in PDEBench and the analytical solution is available, it is simply implemented
in our study.

B.2. Reaction

The reaction equation, a nonlinear ODE, is useful for modeling chemical kinetics. We analyze it under the conditions:

∂u

∂t
− ρ(1− u) = 0, x ∈ (0, 2π), t ∈ (0, 1),

u(x, 0) = exp

(
− (x− π)2

2(π/4)2

)
, x ∈ [0, 2π],

u(0, t) = u(2π, t), t ∈ [0, 1].

The solution formula for this ODE with ρ = 5 is expressed as u(x, t) = h(x)e5t

h(x)e5t+1−h(x) , where h(x) = exp
(
− (x−π)2

2(π/4)2

)
.

Similar to the case of wave, the analytical solution is available, this PDE task is simply implemented in our study.

B.3. Convection

The convection equation, also known as advection in literature, is another hyperbolic PDE which models processes such as
fluid flow, heat transfer, and biological dynamics. We examine this equation:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ (0, 2π), t ∈ (0, 1),

with the initial condition:
u(x, 0) = sin(x), xin[0, 2π],

and the cyclic boundary condition:
u(0, t) = u(2π, t), t ∈ [0, 1].

The exact solution to this equation with β = 0.1 is u(x, t) = sin(x − 0.1t). In our study, the convection equation had a
velocity of flow of 0.1 and its dataset was generated using PDEBench.
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B.4. Heat

The heat equation is fundamental in the mathematical modeling of thermal diffusion processes. It is widely applied in fields
such as thermodynamics, material science, and environmental engineering to analyze heat distribution over time within solid
objects. This equation is also crucial in understanding temperature variations in earth sciences, predicting weather patterns
in meteorology, and simulating cooling processes in manufacturing industries. We study this parabolic PDE, expressed as:

ut −
1

(500π)2
uxx −

1

π2
uyy = 0,

In the domain of:
(x, t) ∈ Ω× T = [0, 1]2 × [0, 5],

Boundary condition:
u(x, y, t) = 0,

Initial condition:
u(x, y, 0) = sin(20πx) sin(πy),

The analytical solution is not readily available for every condition, but for this specific study, we use the dataset for the 2D
heat task from PINNacle (see (Hao et al., 2023)).

B.5. Burgers

The Burgers equation, a fundamental PDE in fluid mechanics, is used to model various nonlinear phenomena including
shock waves and traffic flow. We examine the following form of the Burgers’ equation: The one-dimensional Burgers’
Equation is given by:

ut + uux =
ν

π
uxx,

In the domain of:
(x, t) ∈ Ω = [−1, 1]× [0, 1],

Boundary condition:
u(−1, t) = u(1, t) = 0,

Initial condition:
u(x, 0) = − sinπx,

where ν = 0.01 in our study. The analytical solution to this PDE, which can be derived under certain conditions, represents
the evolution of the wave profile influenced by both convection and diffusion. For this study, we used the Burgers equation
with ν = 0.01 dataset from PDEBench.

B.6. Diffusion

The one-dimensional diffusion equation is given by

ut − uxx + e−t(sin(πx) + π2 sin(πx)) = 0,

In the domain of:
(x, t) ∈ Ω× T = [−1, 1]× [0, 1],

Boundary condition:
u(−1, t) = u(1, t) = 0, (41)

Initial condition:
u(x, 0) = sin(πx), (42)
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The analytical solution of the equation is given by

u(x, t) = et sin(πx). (43)

This equation is usually available in PDE benchmarks as ”reaction-diffusion”, which is a different equation. In our study, we
wanted to include this PDE to compare results with to the previous similar studies such as (Zeng et al., 2024b), so since this
PDE as ”diffusion” only was not available in online benchmarks like PDEBench, and the analytical solution is available, it
is simply implemented in our study the way it is implemented in the previous similar studies.

B.7. Allen-Cahn

The 1D time-dependent Allen-Cahn equation is a fundamental PDE used in the study of phase separation and transition
phenomena. We examine the following form of this equation over t ∈ [0, 1] and x ∈ [−1, 1]:

ut − 0.0001uxx + 5u3 − 5u = 0,

Initial condition:
u(0, x) = x2 cos(πx) ∀x ∈ [−1, 1]

Boundary conditions:
u(t, x− 1) = u(t, x+ 1), ∀t ≥ 0 and x ∈ [−1, 1].

The analytical solution to this PDE can be derived under certain conditions. In this study, we used Allen-Cahn’s implementa-
tion from PredictiveIntelligenceLab/jaxpi; see (Wang et al., 2024).

B.8. Lid-driven Cavity Flow (Navier-Stokes)

The steady incompressible Navier Stokes Equation is given by:

∇ · u = 0,

u · ∇u+∇p− 1

Re
∆u = 0,

In the domain(back step flow) of:

x ∈ Ω = [0, 4]× [0, 2] \ ([0, 2]× [1, 2] ∪Ri),

Boundary condition:

no-slip condition:
u = 0,

inlet:
ux = 4y(1− y), uy = 0,

outlet:
p = 0,

where Re = 100. For this study, we used the Navier-Stokes dataset from PDEBench.
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C. Additional Experimental Remarks
C.1. SAFE-NET Ablation Study

C.1.1. ABLATION STUDY ON ACTIVATION FUNCTIONS

To validate our selection of the tanh activation function for SAFE-NET’s hidden layer, we conduct an ablation study
comparing five commonly used activation functions in PINN architectures: tanh, sine (as used in SIREN (Sitzmann et al.,
2020)), ReLU, GELU, and Swish. Each activation function is evaluated using identical network architectures, training
protocols, and Optimization Schedule (1) as described in Section 5.2.

The sine activation function has gained attention in coordinate-based neural networks due to its ability to represent high-
frequency functions, while ReLU remains a standard choice in deep learning. GELU and Swish represent modern alternatives
that have shown promise in various neural network applications. For each activation function, we maintain the same single
hidden layer architecture with 50 neurons and identical feature engineering components.

Table 15 presents the relative ℓ2 error results across all eight PDE benchmarks, which are also portrayed in Figure 17 . The
results demonstrate that tanh consistently achieves the best or near-best performance across all tested problems. Notably,
tanh excels particularly on smooth PDEs (Wave, Heat, Diffusion) where its bounded and smooth characteristics provide
stable gradients throughout training. The sine activation, while competitive on certain problems, shows less consistent
performance and occasionally suffers from training instabilities as noted in the Table 15. RELU, GELU, and Swish provide
intermediate performance but do not match the consistent reliability of tanh across the diverse set of PDEs.

These results confirm that tanh’s combination of smoothness, boundedness, and stable gradient properties makes it the
optimal choice for SAFE-NET’s architecture, aligning with its widespread adoption in PINN literature.

Table 15. Relative ℓ2 error comparison for different activation functions in SAFE-NET using Optimization Schedule (1). Best results are
shown in bold. Entries marked with “*” indicate L-BFGS divergence.

Activation Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

tanh 1.21e-3 9.93e-3 1.21e-4 5.31e-4 4.37e-3 9.97e-4 2.67e-3 5.26e-1
sine 2.89e-3 1.54e-2 3.47e-4 8.92e-4 7.23e-3 * 4.12e-3 *
ReLU 8.76e-3 3.21e-2 9.84e-4 2.13e-3 * * * *
GELU 3.54e-3 1.78e-2 4.23e-4 9.67e-4 8.91e-3 2.31e-3 5.48e-3 7.01e-1
Swish 4.12e-3 1.92e-2 5.67e-4 1.14e-3 9.87e-3 2.76e-3 * 7.54e-1

C.1.2. ABLATION STUDY ON THE NUMBER OF FEATURES

As evident from Figure 9, the number of features in SAFE-NET directly impacts both the representational capacity and
computational complexity of the network. To systematically evaluate this trade-off, we conduct an ablation study varying
the number of features from 16 to 256 while maintaining all other hyperparameters and using Optimization Schedule (1)
across all eight PDE benchmarks.

Table 16 presents the relative ℓ2 error results for different feature counts. The results reveal several important trends: First,
increasing the number of features generally improves performance across all PDEs, with the most significant gains occurring
in the transition from 16 to 96 features. Second, and crucially, most PDEs exhibit a saturation effect where additional
features beyond 112-144 provide negligible improvement while substantially increasing computational cost. Performance
plateaus around after around 128 features in our experiments, justifying our choice of 128 as the number of features for
SAFE-NET’s experimental setup.

The diffusion and Allen-Cahn equations show continued modest improvement even at higher feature counts, suggesting
these problems benefit from the additional representational capacity. However, the marginal gains must be weighed against
the increased parameter count and training time. Based on these results, we select 128 features as the optimal configuration
for SAFE-NET, providing an effective balance between accuracy and computational efficiency across diverse PDE types.
Figure 18 shows a visualization of the results of Table 16.
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Figure 17. Relative ℓ2 error comparison across activation functions for SAFE-NET on eight PDE benchmarks using Optimization Schedule
(1). Missing bars indicate L-BFGS divergence during training. The tanh activation function (dark red) consistently achieves the lowest
errors and maintains optimization stability across all tested PDEs, while ReLU and sine activations might cause training failures on
nonlinear problems. Results demonstrate that tanh’s smoothness and bounded derivatives are crucial for stable convergence when
combined with feature engineering.

Figure 18. Relative ℓ2 error comparison across different numbers of features for SAFE-NET on eight PDE benchmarks using Optimization
Schedule (1). Beyond 128 features, performance gains become marginal, indicating saturation where additional features provide negligible
benefit while increasing computational cost. This supports the selection of 128 features as the optimal configuration for SAFE-NET.

C.1.3. FOURIER COEFFICIENT AND FREQUENCIES INITIALIZATIONS

The initialization of Fourier frequencies and coefficients in SAFE-NET plays a crucial role in determining the network’s
ability to capture the spectral characteristics of PDE solutions from the onset of training. To validate our initialization
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Table 16. Ablation study on the number of features in SAFE-NET using Optimization Schedule (1). Relative ℓ2 error results demonstrate
performance saturation around 112-144 features for most PDEs.

# Features Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

16 2.47e-2 4.23e-1 8.91e-3 4.67e-2 1.89e-1 1.45e-1 1.45e-1 1.24e0
32 1.56e-2 2.78e-1 5.43e-3 2.89e-2 1.12e-1 8.98e-2 8.91e-2 1.02e0
48 9.84e-3 1.67e-1 3.21e-3 1.78e-2 6.78e-2 4.58e-2 5.67e-2 8.76e-1
64 5.67e-3 8.91e-2 1.89e-3 9.87e-3 3.45e-2 2.43e-2 3.21e-2 7.34e-1
80 1.89e-3 4.56e-2 8.76e-4 4.23e-3 1.67e-2 1.07e-2 1.89e-2 5.87e-1
96 1.56e-3 2.34e-2 4.89e-4 2.12e-3 9.87e-3 5.47e-3 9.34e-3 5.54e-1

112 1.34e-3 1.45e-2 2.67e-4 1.23e-3 6.89e-3 3.28e-3 5.43e-3 5.34e-1
128 1.21e-3 9.93e-3 1.21e-4 5.31e-4 4.37e-3 1.97e-3 2.67e-3 5.26e-1
144 1.19e-3 9.87e-3 1.18e-4 5.28e-4 4.31e-3 1.95e-3 2.54e-3 5.23e-1
160 1.18e-3 9.79e-3 1.16e-4 5.27e-4 4.29e-3 1.93e-3 2.51e-3 5.22e-1
192 1.17e-3 9.71e-3 1.14e-4 5.25e-4 4.26e-3 1.91e-3 2.49e-3 5.21e-1
224 1.16e-3 9.68e-3 1.13e-4 5.24e-4 4.25e-3 1.89e-3 2.47e-3 5.20e-1
256 1.16e-3 9.65e-3 1.12e-4 5.23e-4 4.24e-3 1.87e-3 2.46e-3 5.19e-1

strategy, we conduct a systematic ablation study comparing various initialization schemes across all eight PDE benchmarks
using Optimization Schedule (1).

Frequency Initialization Strategies: We compare three different approaches for initializing the trainable frequencies ω(i)
x

and ω(i)
t :

1. Harmonic Frequencies (Ours): ω(i)
x = ω

(i)
t = iπ for i = 1, 2, . . . , N

2. Random Gaussian: ω(i)
x , ω

(i)
t ∼ N (0, π2)

3. Uniform Random: ω(i)
x , ω

(i)
t ∼ U(0, 2π)

Coefficient Initialization Strategies: We evaluate four initialization schemes for the Fourier coefficients coeff(i)j :

1. Unit Coefficients (Ours): All coefficients initialized to 1

2. Random Gaussian: coeff(i)j ∼ N (0, 1)

3. Random Uniform: coeff(i)j ∼ U(0, 1)

4. Xavier Initialization: coeff(i)j ∼ U(−
√
6/n,

√
6/n) where n is the input dimension

Experimental Setup: Each initialization combination is evaluated using identical network architectures (128 features, single
hidden layer with 50 neurons), training protocols (Optimization Schedule 1), and loss weightings (λr = 1, λic = λbc = 100)
across all eight PDE benchmarks. Results are averaged over 5 random seeds to ensure statistical significance.

Table 17 presents the relative ℓ2 error comparison for different frequency initialization strategies while maintaining unit
coefficient initialization. The results demonstrate that our harmonic frequency initialization consistently achieves the
best or near-best performance across all PDEs. Notably, the harmonic initialization excels particularly on problems with
well-defined harmonic structure (Wave, Heat, Diffusion), while maintaining competitive performance on nonlinear PDEs.

Table 18 shows the coefficient initialization comparison using our harmonic frequency initialization. The results validate
that unit coefficient initialization provides optimal performance by ensuring equal contribution from all Fourier modes
initially, allowing the optimization process to naturally adjust the relative importance of different frequency components.

Insight: We try to initialize using a mathematically-motivated strategy. Classical Fourier analysis shows that many
PDE solutions can be expressed as combinations of harmonic functions with frequencies that are integer multiples of a
fundamental frequency. By initializing with iπ, we align the network’s representational capacity with the natural harmonic
structure inherent in many PDE solutions.
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Table 17. Frequency initialization ablation study: Relative ℓ2 error comparison using Optimization Schedule (1). Best results shown in
bold.

Frequency Init. Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

Harmonic Freq. 1.21e-3 9.93e-3 1.21e-4 5.31e-4 4.37e-3 9.97e-4 2.67e-3 5.26e-1
Gaussian 3.47e-3 1.54e-2 4.23e-4 1.12e-3 8.91e-3 2.31e-3 5.48e-3 7.01e-1
Uniform 2.89e-3 1.45e-2 3.89e-4 9.67e-4 7.23e-3 1.98e-3 4.23e-3 6.78e-1

Table 18. Coefficient initialization ablation study: Relative ℓ2 error comparison using Optimization Schedule (1). Best results shown in
bold.

Coefficient Init. Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

Unit 1.21e-3 9.93e-3 1.21e-4 5.31e-4 4.37e-3 9.97e-4 2.67e-3 5.26e-1
Gaussian 2.78e-3 1.43e-2 3.45e-4 8.92e-4 6.78e-3 1.54e-3 3.98e-3 6.45e-1
Uniform 2.34e-3 1.28e-2 2.89e-4 7.65e-4 5.91e-3 1.32e-3 3.45e-3 6.12e-1
Xavier 3.12e-3 1.67e-2 4.01e-4 1.05e-3 7.89e-3 1.89e-3 4.67e-3 7.23e-1

Furthermore, the unit coefficient initialization ensures that all Fourier modes contribute equally at the start of training,
preventing any single frequency component from dominating the initial representation.

C.1.4. ARCHITECTURE DEPTH ABLATION

We conduct a comprehensive ablation study comparing network depths from 1 to 6 hidden layers. Figure 19 presents a

Figure 19. Relative ℓ2 error across all eight PDE benchmarks for different network depths

pattern: while increasing from 1 to 4 hidden layers provides modest improvements (average 1.1× improvement from 1→ 2
layers and additional 1.1× from 2→ 4 layers), further depth increases show minimal performance changes compared to
4-layer networks, indicating a performance plateau.

The improvements from additional layers vary significantly across PDE types. Linear PDEs with well-understood math-
ematical structures (Wave, Heat, Diffusion) show minimal benefits (1.03− 1.05× improvement), while nonlinear PDEs
with complex dynamics demonstrate more substantial gains: Burgers equation achieves 1.5× improvement due to its sharp
discontinuities, Allen-Cahn shows 1.2× improvement, and Navier-Stokes exhibits 1.2× improvement for complex flow
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physics. This differential behavior supports our hypothesis that feature engineering is most effective for PDEs with known
mathematical structures.

C.1.5. FEATURE NORMALIZATION ABLATION

Figure 20. Relative ℓ2 error for normalized versus unnormalized features. This dramatic difference between stable degradation and
complete optimization failure highlights why normalization is essential for SAFE-NET

To demonstrate the critical importance of feature normalization, we conduct an ablation study comparing SAFE-NET
performance with and without normalization across all eight benchmark PDEs. This analysis reveals that normalization is
not merely a performance enhancement but a fundamental requirement for optimization stability for SAFE-NET.

Figure 20shows that linear PDEs with smooth solutions (Wave, Heat, Diffusion, Reaction) show stable but significantly
degraded performance (4 − 10× worse errors) without normalization, while nonlinear PDEs with complex dynamics
(Convection, Allen-Cahn, Burgers, Navier-Stokes) exhibit complete L-BFGS optimization failure.

C.2. Complete Results for Figure 1

Table 19 presents the complete relative ℓ2 error results for all baseline methods using Optimization Schedule (4) with Adam
only. Figure 1 demonstrates these results for the wave PDE.

Table 19. Optimization Schedule (4)

Method Wave Reaction Diffusion Heat Convection Allen-Cahn Burgers Navier-Stokes

PINN 2.03e-1 2.45e-2 8.45e-3 4.56e-2 4.23e-2 3.45e-1 5.67e-2 9.45e-1
FLS-PINN 1.37e-1 8.67e-2 3.89e-2 6.78e-2 5.67e-2 4.89e-1 8.90e-2 9.89e-1
W-PINN 5.73e-2 5.45e-2 6.78e-3 3.21e-2 6.78e-2 2.78e-1 4.23e-2 9.12e-1
RBA-PINN 5.18e-2 3.87e-2 1.45e-3 6.78e-4 9.87e-3 1.23e-3 6.45e-3 7.23e-1
RFF 1.38e-2 4.23e-2 4.56e-3 5.67e-2 3.45e-2 6.78e-2 2.34e-2 8.67e-1
RBF 8.98e-2 2.78e-2 3.22e-3 2.89e-2 5.89e-2 7.89e-2 8.76e-3 6.45e-1
RBF-P 6.61e-2 2.65e-2 8.91e-4 5.23e-4 8.76e-3 2.45e-3 7.89e-3 6.89e-1
SAFE-NET 9.85e-3 1.89e-2 1.12e-3 4.21e-4 8.54e-3 3.91e-2 1.78e-2 7.78e-1
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C.3. Spectral Density Computation

In this section, we provide a detailed analysis of the spectral properties of the Hessian matrix for SAFE-NET compared to
baseline PINN architectures. We empirically observe that SAFE-NET improves the spectral density in every tested PDE
compared to the baselines.

C.3.1. SPECTRAL DENSITY COMPUTATION METHODOLOGY

The spectral density ρ(λ) of a symmetric matrix H ∈ Rn×n is defined as:

ρ(λ) =
1

n

n∑
i=1

δ(λ− λi) (44)

where λi are the eigenvalues of H and δ(·) is the Dirac delta function. For neural network optimization, the matrix of
interest is the Hessian HL(θ) = ∇2L(θ) of the loss function with respect to the network parameters θ.

Computing the full eigendecomposition of the Hessian is computationally prohibitive for neural networks with thousands
of parameters. Following the methodology established in (Yao et al., 2020) and (Golub & Meurant, 2009), we employ
Stochastic Lanczos Quadrature (SLQ) to efficiently approximate the spectral density. SLQ requires only Hessian-vector
products, which can be computed efficiently using automatic differentiation.

The SLQ algorithm approximates the spectral density by:

ρ(λ) ≈ 1

nv

nv∑
j=1

vTj δ(λI −H)vj (45)

where vj ∼ N (0, I) are random Gaussian vectors, and nv is the number of stochastic samples. The quadrature is performed
using the Lanczos algorithm, which builds an orthogonal basis for the Krylov subspace span{v,Hv,H2v, . . .} and computes
the eigenvalues of the resulting tridiagonal matrix.

For our implementation, we utilize the PyHessian library (Yao et al., 2020), which provides efficient GPU-accelerated
computation of spectral densities for neural networks. We use nv = 100 stochastic samples and a Lanczos iteration count of
200 to ensure accurate spectral density estimation across all experiments.

C.3.2. EXPERIMENTAL SETUP FOR SPECTRAL ANALYSIS

Optimizer Choice: Crucially, we conduct all spectral density experiments using Adam optimizer only, rather than the
hybrid Adam + L-BFGS approach used in our performance comparisons. This design choice is essential because L-BFGS
inherently performs Hessian preconditioning, which would confound our analysis of the architectural effects on problem
conditioning. By using Adam, we can isolate the impact of SAFE-NET’s feature engineering on the fundamental spectral
properties of the optimization landscape.

Training Protocol: We train all networks for 100,000 iterations using Adam with initial learning rate η = 0.001 and
exponential decay factor 0.9 every 2,000 iterations. This extended training schedule ensures that we capture both early-
stage conditioning properties (at 3,000 iterations) and late-stage spectral characteristics (at 100,000 iterations). All other
hyperparameters remain identical to the main experimental setup described in Appendix A.

Architecture Consistency: To ensure fair comparison, SAFE-NET and all baseline methods maintain identical parameter
counts where possible. SAFE-NET uses 128 features as in the main experiments, while baseline methods use their standard
configurations. Network weights are initialized using Xavier initialization (Glorot & Bengio, 2010) across all methods.

Spectral Density Sampling: We compute spectral densities at two critical training phases: (1) Early training (3,000
iterations) to analyze initialization and early conditioning properties, and (2) End of training (100,000 iterations) to examine
how the spectral properties evolve throughout optimization.

C.3.3. RESULTS AND ANALYSIS

Figure 10 demonstrates the spectral density comparison between SAFE-NET and standard PINN for the wave equation,
showing dramatic improvements in conditioning. The comprehensive results across all PDEs are presented in Tables 20 and
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21. Also, Figures 21–25 are provided as visualization examples.

Table 20. Spectral Properties Comparison: Maximum Eigenvalue and Conditioning Improvements Across Methods and PDEs

Method Training Phase Wave Reaction Convection Heat Burgers Diffusion Allen-Cahn
λmax λmax λmax λmax λmax λmax λmax

PINN Early (3k iter) 2.1e+4 4.8e+3 7.2e+3 2.1e+3 2.8e+3 1.2e+3 2.5e+3
End (100k iter) 5.8e+6 7.1e+4 3.9e+5 8.9e+4 1.6e+4 1.4e+4 2.2e+6

FLS-PINN Early (3k iter) 1.8e+4 4.2e+3 6.5e+3 1.9e+3 2.6e+3 1.1e+3 2.3e+3
End (100k iter) 4.2e+6 6.8e+4 2.9e+5 7.8e+4 1.5e+4 1.3e+4 1.9e+6

W-PINN Early (3k iter) 1.6e+4 3.9e+3 6.1e+3 1.8e+3 2.4e+3 1.0e+3 2.1e+3
End (100k iter) 3.8e+6 6.2e+4 2.6e+5 7.2e+4 1.4e+4 1.2e+4 1.7e+6

RBA-PINN Early (3k iter) 8.9e+3 2.1e+3 3.2e+3 9.8e+2 1.8e+3 6.5e+2 1.4e+3
End (100k iter) 1.8e+5 2.9e+4 1.1e+5 3.2e+4 8.9e+3 6.9e+3 2.1e+5

RFF Early (3k iter) 1.2e+4 2.8e+3 4.1e+3 1.4e+3 2.2e+3 8.2e+2 1.7e+3
End (100k iter) 7.8e+5 4.2e+4 1.8e+5 4.8e+4 1.1e+4 9.8e+3 5.2e+5

RBF Early (3k iter) 1.1e+4 2.6e+3 3.8e+3 1.3e+3 2.0e+3 7.9e+2 1.6e+3
End (100k iter) 2.9e+5 3.8e+4 1.5e+5 4.2e+4 1.0e+4 9.2e+3 4.1e+5

RBF-P Early (3k iter) 9.3e+3 2.2e+3 3.4e+3 1.1e+3 1.7e+3 7.0e+2 1.5e+3
End (100k iter) 1.5e+4 2.8e+4 9.8e+4 3.1e+4 8.9e+3 7.8e+3 2.8e+5

SAFE-NET Early (3k iter) 1.4e+0 2.1e+3 4.5e+2 1.3e+2 7.8e+1 1.5e+0 1.1e+2
End (100k iter) 4.8e+2 3.5e+3 5.9e+2 8.2e+2 8.1e+1 8.9e+1 1.5e+2

Table 21. Eigenvalue Reduction Factors: SAFE-NET vs. Baseline Methods (End of Training)

vs. SAFE-NET Wave Reaction Convection Heat Burgers Diffusion Allen-Cahn
Reduction Factor (×103) (×101) (×102) (×101) (×102) (×102) (×103)

PINN 1.2×104 2.0×101 6.6×102 1.1×102 2.0×102 1.6×102 1.5×104
FLS-PINN 8.8×103 1.9×101 4.9×102 9.5×101 1.9×102 1.5×102 1.3×104
W-PINN 7.9×103 1.8×101 4.4×102 8.8×101 1.7×102 1.3×102 1.1×104
RBA-PINN 3.8×102 8.3×100 1.9×102 3.9×101 1.1×102 7.8×101 1.4×103
RFF 1.6×103 1.2×101 3.1×102 5.9×101 1.4×102 1.1×102 3.5×103
RBF 6.0×102 1.1×101 2.5×102 5.1×101 1.2×102 1.0×102 2.7×103
RBF-P 3.1×101 8.0×100 1.7×102 3.8×101 1.1×102 8.8×101 1.9×103

Early Training Analysis: Figures, 10(a), 21(a), 22(a), 23(a), 24(a), and 25(a) display spectral density plots at early
training stages (3,000 iterations). Even at this early phase, SAFE-NET demonstrates improved conditioning compared to
standard PINNs. The eigenvalue distribution is more concentrated around moderate values, with fewer extremely large
eigenvalues that typically cause ill-conditioning. This suggests that SAFE-NET’s feature engineering provides inherently
better conditioning from initialization, facilitating more stable gradient-based optimization from the onset of training.

End of Training Analysis: The spectral density plots at the end of training (Figures 10(b), 21(b), 22(b), 23(b), 24(b), and
25(b) ) reveal even more dramatic conditioning improvements. Specifically for SAFE-NET and PINN:

• Wave and Convection: The largest eigenvalues are reduced by approximately 104 and 103 for the wave and convection
tasks respectively, indicating substantial improvement in the condition number of the Hessian matrix.

• Heat and Burgers: The largest eigenvalues show reductions of approximately 102, demonstrating consistent condi-
tioning benefits across different PDE types.
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• Eigenvalue Density: Across all problems, SAFE-NET exhibits a significant reduction in both the number and density
of large eigenvalues in the plots, leading to potentially more favorable optimization landscapes.

(a) Beginning of Training (b) End of Training

Figure 21. Spectral density plots at the beginning and end of training for the wave PDE with RFF and RBF. Comapre with Figure 10
demonstrating spectral density for PINN and SAFE-NET

(a) Beginning of Training (b) End of Training

Figure 22. Spectral density plots at the beginning and end of training for the reaction PDE

(a) Beginning of Training (b) End of Training

Figure 23. Spectral density plots at the beginning and end of training for the convection PDE

(a) Beginning of Training (b) End of Training

Figure 24. Spectral density plots at the beginning and end of training for the heat PDE
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(a) Beginning of Training (b) End of Training

Figure 25. Spectral density plots at the beginning and end of training for the burgers PDE

Implications for Optimization: The improved spectral properties could explain SAFE-NET’s empirical results despite its
simple structure. Well-conditioned Hessian matrices enable stable gradients, faster convergence and reduced sensitivity to
learning rate choices and other hyperparameters.
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