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Abstract

We present WallpaperNet, a p6mm-group-equivariant graph neural network (GNN)
for modeling adsorption of small molecules on graphene. Unlike conventional
approaches that freeze surface atoms and operate on large system sizes, our method
focuses exclusively on the adsorbate atoms, which allows fast AI-guided design of
molecule-graphene composite systems. We encode the symmetry of the underlying
hexagonal lattice through Wyckoff-Anchor vector encoding and D6-equivariant
attention mechanism.

1 Introduction

Adsorption of small molecules on graphene, graphite or layered graphene plays a big role in sens-
ing, catalysis, electronics, and energy storage.[1–3] In a common simulation scenario [4–8] the
graphene/graphite atoms are frozen, while the small molecule is being relaxed. The ratio between
atoms that are actively moving and atoms of the surface, that are frozen, and build a hexagonal grid is
usually around 25/300. The purpose of this work is to develop an efficient p6mm-Equivariant GNN,
that would operate only on the atoms of the small molecule, but take into account the underlying
hexagonal grid. This would allow for efficient AI-guided design of molecule-graphene composite
systems. Figure 1 (right) illustrates the problem of p6mm-equivariance.

Figure 1: Left: a molecule at two different co-variant positions, yielding the same adsorption energy
and a molecule at a non-equivariant position, yielding a different adsorption energy. Right: illustration
of the Wyckoff-Anchor vector for the yellow atom (paired with the blue atom) and co-variantly
rotated and reflected versions of the same atom atom-pair.

To address these challenges, we propose a p6mm-group-equivariant GNN architecture. To handle
translational equivariance we introduce a Wyckoff-Anchor vector encoding, that is covariant under
the action of the finite group p6mm, but can be extended to any Wallpaper Group. The main idea of
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the architecture is based on two cornerstones: the E(n)-GNN [9] and its extension for a transformer
[10]; and E(n)-Equivariant Steerable CNNs with arbitrary G ≤ O(2) steerable kernels [11]. The
architecture is designed to operate on the small molecule atoms only, while taking into account the
underlying hexagonal grid.

Geometric deep learning enables the principled incorporation of symmetry constraints into machine-
learning models [12, 13]. To the best of our knowledge, the only work, that extends a finite-group
equivariance to the notion of graphs is done by Zhdanov and Cesa [14] and this is the first work on
the finite group equivariant attention on graphs. A convolution on a 2d hexagonal image grid was
proposed in [15]. Also originally envisioned for the p6mm group equivariance, this approach can be
extended to other finite group of interest, given the fact that restraining to a certain space group is a
common approach in computational chemistry. [16, 17]. A short background theory section on group
theory and equivariant GNNs provided in the Appendix A.

2 Finite group equivariance learning

To enforce a p6mm-equivariance of the hexagonal grid, we need to solve two problems: translational
and rotational equivariance. We consider a freestanding, infinite graphene monolayer modeled by the
wallpaper group G = p6mm.

2.1 Wyckoff-Anchor Vector Encoding

Let Λ ⊂ R2 be the 2D Bravais lattice[18] and let H denote the in-plane point group. In crystal-
lographic notation H = 6mm and in group-theoretic notation H ∼= C6v

∼= D6.[18] 1 We write
ρ : H → O(2) for the standard 2 × 2 orthogonal representation acting on in-plane vectors. For
any lattice translation t ∈ Λ we set ρ(t) = I2. Let A = {a(1), . . . , a(m)} ⊂ R2 be a finite set of
highest-symmetry Wyckoff positions (anchors) of the crystal; for graphene we may take the hexagon
centers. By construction A is G-invariant: for every g ∈ G, gA = A up to permutation. For an
adsorbate atom with in-plane position xi ∈ R2,we define its unique nearest anchor (with periodic
boundary conditions)

a(xi) := argmin
a∈A

min
t∈Λ

∥xi − (a+ t)∥, (1)

which is unique inside the Wigner–Seitz cell. We then define the Wyckoff–Anchor vector embedding
as the 2D pointer

vwa(xi) := a(xi)− xi ∈ R2. (2)

Equivariance. For any g ∈ G and position x, vwa satisfies

vwa(gx) = ρ(g) vwa(x). (3)

Proof. Since g is an isometry, ∥gx − g(a + t)∥ = ∥x − (a + t)∥. Because gA = A and gΛ = Λ,
the set of candidates is unchanged, hence a(gx) = ga(x). Therefore, vwa(gx) = a(gx) − gx =
ga(x)− gx = ρ(g) [a(x)− x] = ρ(g) vwa(x). For pure translations t ∈ Λ, a(x+ t) = a(x) + t so
vwa(x+ t) = vwa(x).

Pairwise positional coupling. Given interatomic displacements rij = xj − xi, we use the rotation-
aware scalar couplings

sij = ⟨vwa(xi), rij⟩, ∥vwa(xi)∥, (4)

which are H-invariant and translation-invariant, and enter the message function as additional scalar
channels. Figure 1 (right) illustrates the Wyckoff-Anchor vector.

2.2 Finite-rotation invariant block

Let z = x+ iy ∈ C be the complexified in-plane vector and a fix n ∈ N. Define

ϕn : R2 → R2, ϕn(x, y) =
(
ℜ(zn), ℑ(zn)

)
. (5)

1The 2D, in-plane point group is 6mm ≡ C6v ≃ D6. If one includes the mirror with respect to the plane
(out-of-plane symmetry), the 3D Schoenflies notation D6h is sometimes used. Here we work in 2D and use D6

for the dihedral group of order 12.
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Invariance under Cn. For any rotation Rα, ϕn(Rαz) = Rnα ϕn(z). Hence, for α = 2πk
n (i.e.,

Rα ∈ Cn), Rnα = I and ϕn is Cn-invariant. (proof in the Appendix A)

Behavior under reflections. For any reflection σ through a line through the origin, z 7→ z̄ up
to a phase; thus zn 7→ zn. Consequently, ℜ(zn) is reflection-even and ℑ(zn) is reflection-odd, so
(ℜ(zn)) stays the same and (ℑ(zn)) flips the sign under a reflection of Dn.

Injectivity on the orbit space. Writing z = reiθ, we have zn = rneinθ. Thus, ϕn induces an
injective map on the quotient (R2\{0})/Cn: two vectors have the same image iff their radii coincide
and their angles differ by a multiple of 2π/n (i.e., they are in the same Cn orbit). In practice, passing
ϕn through an MLP together with fully SO(2) invariant features (e.g., atom types) lets the network
learn features that are either injective on Cn-orbits or deliberately periodic when injectivity is not
needed (e.g., when atoms are far from the sheet along z).

2.3 Finite-rotation equivariant block

Let r1, . . . , rm ∈ R2 be non-colinear input vectors (e.g., edge displacements, anchor pointers), and
let αi be Dn/Cn-invariant scalars (learned from node / edge features). Then

v =

m∑
i=1

αi ri (6)

is Cn–equivariant: for any g ∈ Cn, v 7→
∑

i αi ρ(g)ri = ρ(g)
∑

i αiri. This construction is used to
form Q,K, V vectors for attention while keeping finite-rotation symmetry.

2.4 Regular-representation equivariant block

To increase expressivity while preserving equivariance, we lift features into the regular representation
R[G] with G ∈ {Cn, Dn}. Each channel corresponds to a group element and transforms by channel
permutation under G. Hence pointwise nonlinearities are automatically G-equivariant. Stacking
linear maps

V
L1−−−→ R[G] σ−−→ R[G] L2−−−→ V

with pointwise σ yields a regular-rep MLP that is guaranteed to be G-equivariant and universal for
G-equivariant maps. The derivation for the learnable linear map between different representations of
different finite groups is very well documented and provided in [11].

2.5 WallpaperNet - architecture overview

We represent the molecular adsorbate + sheet as a graph G = (V,E) with node features hi, positions
xi = (x

(x)
i , x

(y)
i , x

(z)
i ), and edges (i, j) of the molecule. The core layer implements three ingredients:

(i) Invariant scalar message channels. For each edge (i, j), form rij = xj − xi, its squared
norm ∥rij∥2, the C6 embedding ϕ6(r

xy
ij ) = (ℜ[(x + iy)6],ℑ[(x + iy)6]), the anchor couplings

sij = ⟨vwa(xi), r
xy
ij ⟩ and ∥vwa(xi)∥. These feed an MLP to produce messages mij , which are

pooled to node updates mi =
∑

j mij and combined with a residual to update hi.

(ii) Equivariant vector aggregation. A learned scalar weight wij = ψ(mij) multiplies the dis-
placement rij to produce edge vectors fij = wij rij . Summing over neighbors yields an equivariant
node vector

∑
j fij . We treat the z component with a separate scalar MLP.

(iii) Multi-head radial attention (equivariant). Using only invariant scalars mij , we form per-
head weights wq, wk, wv. Queries/keys/values are made equivariant by scaling rij radially, e.g.,
q
(h)
ij = w

(h)
q (mij) rij , etc. Attention logits are invariant ⟨Q̂(h)

i , K̂
(h)
ij ⟩ (unit-normalized), softmaxed

over j, and values are aggregated equivariantly. A scalar head-mixing reweights heads at the end.
We pass the in-plane (x, y) part through a small regular-rep network to increase expressivity while
preserving D6–equivariance, that lifts to the regular representation, applies pointwise nonlinearities
(equivariant in R[D6] because the group action is a channel permutation), and projects back.
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Table 1: Force prediction performance

Component MAE Test / Train [eV / Å] R2 Test / Train

X-axis 0.053±0.001 / 0.040±0.001 0.90±0.01 / 0.96±0.1
Y-axis 0.051±0.001 / 0.040±0.001 0.90±0.01 / 0.96±0.1
Z-axis 0.036±0.002 / 0.025±0.002 0.81±0.2 / 0.94±0.1

3 Experimental Setup

We evaluate the performance of the proposed architecture on a dataset of small molecules adsorbed on
graphene, with a focus on predicting binding energies (invariant property) and atomic forces (equiv-
ariant property). The dataset is generated using GFN2-xTb, accuracy was verified by benchmarking
against DFT. Overall, we have 15087 systems, each with on average 300 atoms of graphene and 25
atoms of the adsorbed molecule. The average length of the relaxation process is 201 steps, with a
maximum of 714 steps. More details about the experimental setup and data generation and regression
plots can be found in the Appendix B.

Force vector prediction. The model is trained on both the initial position of the geometry opti-
mization, the train/validation/test split is 80/10/10. For the force evaluation setup, we took the first
relaxation step of every system. The force vector in the sets set has an average magnitude of 0.37 eV
/ Å and a maximum of 4.52 eV / Å and minimum of 0.0005 eV / Å. The train set has an average of
0.31 eV / Å, minimum of 0.003 eV / Å and the maximum of 4.1 eV / Å.

Table 1 summarizes the force prediction performance of our model. Overall, we can learn the force
field with a MAE of 0.047 eV / Å. The x/y prediction should rotate equivariantly to the p6mm, while
z component should stay invariant. The values reported as averages across three runs. Interestingly,
the z-component has the smallest MAE but the lowest R2. This is likely due to the fact that the
z-component has a smaller variance, as the molecules are adsorbed on the surface, and thus the forces
in the z-direction are generally smaller. A further investigation of the difference between prediction
of equivariant and invariant parts of the vector is needed.

Binding energy prediction. The binding energy of the dataset spans between 0.01 eV to 1.51 eV.
We evaluate performance of the model in two different scenarios, from the fully relaxed configuration
and from initial position. In both cases train/test/validation split remains the same. The results are
presented in the Table 2.

Table 2: Binding energy prediction performance

Property MAE Train / Test [eV] R2 Train / Test

Binding energy (fully relaxed) 0.020±0.001 / 0.009±0.003 0.987±0.002 / 0.989±0.001
Binding energy (initial position) 0.064±0.005 / 0.052±0.003 0.78±0.01 / 0.902±0.03

As we can see from the results, prediction from the initial positions allows for a fast pre-screening
of potential binding sites, and knowing the relaxed position allows us to predict near-perfectly the
binding energy. We showcase the ablation study of different components of the architecture as well
as a performance comparison with E(n)-GNN in the Appendix C.

4 Conclusion

In this work, we have presented a novel approach for predicting the binding energy of small molecules
on graphene surfaces using graph neural networks. Our method leverages the unique symmetry prop-
erties of the graphene lattice, allowing for efficient and accurate predictions. We have demonstrated
the effectiveness of our approach for a real computational chemistry problem. Extension of this
method to other finite groups is a promising direction for future research.
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A Technical appendices and Supplementary Material

Wallpaper groups and graphene. Graphene is a two-dimensional hexagonal lattice with wallpaper
group p6mm. The in-plane point group is 6mm (Schoenflies C6v

∼= D6), acting by planar rotations
and reflections [18, 19]. Wallpaper groups combine a planar Bravais lattice with a finite point group
acting on that lattice. Throughout, we assume an ideal, infinite monolayer and focus on in-plane
symmetry.

Wyckoff positions and anchors. Wyckoff positions are sets of points in a crystal that share the
same site symmetry (stabilizer subgroup) [19]. For p6mm, high-symmetry choices include hexagon
centers, vertices, and edge midpoints. We refer to a chosen finite set of such positions within a unit
cell as anchors. Under any symmetry operation of p6mm, the set of anchors maps to itself (up to
permutation).

Equivariance and invariant/equivariant features. Equivariant message passing is now standard
for 3D molecules [9, 20]. A function f from geometric data to predictions is equivariant to a group
G if f(g · x) = ρ(g)f(x) for all g ∈ G and an output representation ρ. Invariant predictions have
f(g · x) = f(x). Group-equivariant neural networks exploit this structure for sample efficiency and
inductive bias [11, 13, 21, 22].

Invariance to the cyclic subgroup Cn and reflections. Let Rθ denote rotation by angle θ, acting
as Rθ · z = eiθz. Then for any θ = kγ = 2πk

n with k ∈ Z we have einθ = ei2πk = 1, so

ϕn(Rkγ · (xij , yij)) =
(
Re(ei

2πk
n ∗nzn), Im(ei

2πk
n ∗nzn)

)
= ϕn(xij , yij). (7)

For a reflection, z 7→ z̄ (up to a phase), so zn 7→ zn, yielding ℜ(zn) even and ℑ(zn) odd.

B Data generation details

All molecular preprocessing and adsorption model setup were performed using the ASE [23] and
the RDKit [24]. The initial molecular geometries were taken from [25]. All structures comprise
one organic adsorbate anchored on a three-layer graphene surface. The graphene sheets of pristine
monolayer graphene were stacked in AAA order. The molecular placement and PBC cell construction
were performed using our molecule-placing algorithm. The graphene atoms remained frozen, while
atoms of the absorbed molecule were relaxed using extended tight-binding model GFN2-xTB [26]
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using Γ-point only sampling with the DFTB+ software [27] until the maximum force acting on each
atom was below 0.01 eV Å. The xTB protocol was chosen, based on the result of a benchmarking
study with DFT of 300 systems. The linearly fitted binding energies from GFN2-xTB to DFT
(PBE-D3/PAW) yielded a mean absolute error of 0.19 eV and R2 of 0.86. The exact simulation
protocol goes beyond the scope of this paper and will be published elsewhere.

C Experimental Details and Regression Plots

Model and experimental details. The model is implemented using PyTorch [28] and PyTorch
Geometric [29]. The regular-representation equivariant block was implemented using escnn library
[11, 30]. Figure 2 shows the architectural overview of the message passing block. We used T = 4
rounds of message passing. After T steps, node embeddings consisting of the scalar and vector

Figure 2: Architectural overview of the message passing block.

outputs were used as:

• Graph-level (binding energy, invariant): a permutation-invariant readout on the scalar
features of the node followed by an MLP to predict a scalar.

• Node-level (force vector, equivariant): vectorial feature of the node.

The Wyckoff-Anchor vector encoding was computed using the ASE library, by getting the atomic
coordinates modulo the unit cell vectors and finding the nearest Wyckoff position. A small numerical
jitter of 10−6 Å was added to the atomic positions in case of a perfect overlap with the Wyckoff
position or in case of two anchors being equidistant from the atom.

We used AdamW (batch size 64) with a learning-rate scheduler stepped once per epoch using the
average training loss. The best model was checkpointed on the lowest validation loss. We used MAE
as a per-node loss function for vector prediction and MSE for the adsorption energies.

The figures 3 and 4 show the regression plots for the binding energy and force prediction, respectively
on the test set of the best run (lowest MAE).
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Table 3: Ablation study on force vector prediction: MAE increased by 5-7% vs. baseline

Variant Component MAE Test / Train [eV / Å] R2 Test / Train

w/o Finite-rotation C6 block
X-axis 0.057±0.001 / 0.043±0.001 0.86±0.01 / 0.95±0.10
Y-axis 0.055±0.001 / 0.043±0.001 0.86±0.01 / 0.95±0.10
Z-axis 0.039±0.002 / 0.027±0.002 0.76±0.20 / 0.93±0.10

w/o WA Vector Encoding
X-axis 0.059±0.001 / 0.042±0.001 0.84±0.01 / 0.92±0.10
Y-axis 0.058±0.001 / 0.042±0.001 0.84±0.01 / 0.92±0.10
Z-axis 0.042±0.002 / 0.026±0.002 0.73±0.20 / 0.90±0.10

Figure 3: Binding energy regression plot on the test set. Left: from the relaxed position, Right: from
the initial position.

Figure 4: Force regression plot on the test set. (x, y and z parts)

Ablation study on force vector prediction. To showcase the importance of different components
of the architecture, we performed an ablation study, where we removed different components
(Finite-rotation C6 block, Wyckoff-Anchor Vector Encoding) of the architecture and evaluated the
performance on the force vector prediction from the initial position. The results are summarized in
the Table 3. In both cases, we see a measurable drop in performance, by 5-7% in MAE. Interestingly,
the WA-vector encoding seems to have a smaller effect on the performance, which is the only
translational equivariant component of the architecture. This aspect requires further investigation.
The C6 block provides an additional benefit in the prediction accuracy, but the final geometrical
rotational constrains comes from the D6 regular-representation network, therefore excluding the C6

block does not completely remove the rotational equivariance of the architecture.

Full comparison with E(n)-GNN. We compare the performance of our model with the E(n)-GNN
architecture on the binding energy and force vector prediction tasks. The results are summarized in
Table 4. Our model shows similar results to E(n)-GNN in both tasks, demonstrating the effectiveness
of the proposed architecture. We note that E(n)-GNN is being applied to the full simulation cell
of 300 atoms, while our model only sees the adsorbate atoms (on average 25 atoms). We kept
the hyperparameters, the training protocol and the model size similar for both models to ensure
a fair comparison, by removing the symmetry-constraining layers and increasing the width of the
E-(n)GNN layers (keeping both networks at 300 K learnable parameters). The adsorption energy
prediction performance is summarized in Table 5.
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Table 4: E(n)-GNN force prediction performance

Component MAE Test / Train [eV / Å] R2 Test / Train

X-axis 0.055±0.001 / 0.039±0.001 0.90±0.01 / 0.96±0.1
Y-axis 0.049±0.001 / 0.042±0.001 0.90±0.01 / 0.96±0.1
Z-axis 0.036±0.002 / 0.026±0.002 0.80±0.2 / 0.94±0.1

Table 5: E(n)-GNN binding energy prediction performance

Property MAE Train / Test [eV] R2 Train / Test

Binding energy (fully relaxed) 0.019±0.001 / 0.008±0.003 0.988±0.002 / 0.988±0.001
Binding energy (initial position) 0.065±0.003 / 0.051±0.003 0.78±0.01 / 0.904±0.03
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduced a novel model for the Wallpaper group p6mm and demonstrated
its effectiveness in predicting material properties.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: Given it’s a short workshop paper, and work in progress, we didn’t have space
to discuss limitations in detail.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provides a proof for its theoretical results or refers to all relevant
literature.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [No]

Justification: Since it’s a work in progress, we do not share the dataset and code yet.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Since its a work in progress, we do not share the dataset and code yet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: Since it’s a work in progress, we do not share the dataset and code yet.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our very small experimental session, we provide standard deviation for all
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Since it’s a work in progress, and we don’t share the code or the dataset, we
don’t see the reason for providing the information about the computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper does not discuss any potential societal impacts, since it’s a short
paper workshop submission.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We don’t release any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We don’t use any existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: Since its a work in progress, we do not share the dataset and code yet.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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