
Unsupervised Analysis of Alzheimer’s Disease
Signatures using 3D Deformable Autoencoders

Anonymous

Anonymous Organization
***@*.*

Abstract. With the increasing incidence of neurodegenerative diseases
such as Alzheimer’s Disease (AD), there is a need for further research
that enhances detection and monitoring of the diseases. We present
MORPHADE (Morphological Autoencoders for Alzheimer’s Disease De-
tection), a novel unsupervised learning approach which uses deformations
to allow the analysis of 3D T1-weighted brain images. To the best of our
knowledge, this is the first use of deformations with deep unsupervised
learning to not only detect, but also localize and assess the severity of
structural changes in the brain due to AD. We obtain markedly higher
anomaly scores in clinically important areas of the brain in subjects
with AD compared to healthy controls, showcasing that our method is
able to effectively locate AD-related atrophy. We additionally observe
a visual correlation between the severity of atrophy highlighted in our
anomaly maps and medial temporal lobe atrophy scores evaluated by a
clinical expert. Finally, our method achieves an AUROC of 0.80 in detect-
ing AD, out-performing several supervised and unsupervised baselines.
We believe our framework shows promise as a tool towards improved
understanding, monitoring and detection of AD. To support further re-
search and application, we have made our code publicly available at
https://anonymous.4open.science/r/MORPHADE-1925/.
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1 Introduction

Due to the increased prevalence of neurodegenerative diseases and their effects on
cognitive function, the study of such diseases is a highly active research field. As
the leading cause of dementia [1], Alzheimer’s disease (AD) is a particular focus
of research advancements. However, the complex pathogenesis and progression
mechanisms of AD remain only partially understood.

Magnetic resonance imaging (MRI) has shown use in the non-invasive track-
ing of AD-associated brain changes, such as hippocampal and amygdala atrophy
and ventricular dilation [16,11]. Notably, several supervised machine learning
methods utilizing MRI have been proposed which yield improvements in AD
identification [24,15,23]. However, such methods are restricted by the need for
large, annotated data sets. In contrast, unsupervised anomaly detection tech-
niques [7,2,21,25] offer a promising solution by modeling the distribution of
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healthy brain images to identify and localize anomalies without relying on la-
beled data.

Nevertheless, unsupervised approaches face challenges in accurately analyz-
ing structural abnormalities, particularly regions of atrophy, which are critical
in AD research [5]. Classical techniques using multi atlas-based deformable reg-
istration [13] and morphometry methods [8,3] have been proposed to analyze
these structural changes. However, such methods allow analysis to be conducted
only on a population-level, for instance as deviations from an atlas.

In this work, we propose Morphological Autoencoders for Alzheimer’s Dis-
ease Detection (MORPHADE ), a novel unsupervised anomaly detection frame-
work based on deformable autoencoders (AEs) [4] which leverages deformation
networks to generate patient-specific anomaly maps from 3D T1-weighted MRI
brain scans. These anomaly maps allow not only AD detection, but also crucially
reveal the location and degree of atrophy. Our main contributions are as follows:

– We use deformation fields in an unsupervised framework to analyze AD-
related changes in the brain. To the best of our knowledge, this is the first
use of such an approach using deep learning in the context of AD.

– We extend deformable autoencoders to 3D, utilize adversarial training and
propose a dual-deformation strategy to improve reconstruction fidelity and
the localization of atrophy.

– We accurately identify AD-affected brain regions, aligning our findings with
clinical expectations.

– We assess AD severity by correlating our findings with clinical medial tem-
poral lobe atrophy scores, evaluated by a board-certified clinical expert.

– Through comprehensive validation, we demonstrate superior performance in
AD detection compared to unsupervised and even supervised baselines.

2 Background

In unsupervised anomaly detection, reconstruction-based frameworks such as
autoencoders (AEs) can be used to learn the distribution of healthy samples
and subsequently identify samples that deviate from this norm as anomalous.
The encoder Eθ maps an input x to a lower-dimensional latent space and then
the decoder Dϕ learns to reconstruct from this encoded representation. The
parameters θ, ϕ of the AE are optimized given healthy input data χ = {xi, ..., xn}
by minimizing the mean squared error (MSE) between the inputs and their
reconstructions:

MSE = minθ,ϕ

N∑
i=1

||xi −Dϕ(Eθ(xi))||2 . (1)

It is then assumed that during inference, the AE will generate a so-called
pseudo-healthy reconstruction, in which only in-distribution healthy tissue can
be successfully reconstructed and thus any reconstruction errors can be thought
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of as anomalies. A subject-specific map of anomalies can then be obtained by tak-
ing the residual between an input x and its reconstruction xrecon = Dϕ(Eθ(x))
as follows:

mresidual = |x− xrecon| . (2)

Deformable Autoencoders (AEs) [4] were proposed as a method to alleviate
false positives in the anomaly maps due to the limited reconstruction capabilities
of traditional AEs. Since the top layers of the AE contain spatial information,
deformable AEs use these layers to estimate a dense deformation field Φ that
allows local adaptions of the pseudo-healthy reconstruction to the individual
anatomy of the subject. The estimation of the deformation field is optimized
using local normalized cross correlation (LNCC):

Lmorph = LNCC(x, xmorph) + β||Φ||2 , (3)

where β is a weight that is kept relatively high to constrain the deformations
to be smooth and local, allowing only small changes to the reconstructions. We
therefore refer to this part of the network as the constrained deformer. The im-
proved reconstruction, which we refer to as the morphed reconstruction, xmorph,
can then be obtained by xmorph = xrecon ◦Φ.

The authors also propose to use perceptual loss (PL) [12] weighted by the
hyperparameter α, in addition to the MSE when optimizing the AE parameters,
to promote reconstructions that closely resemble the training distribution:

Lrecon = MSE(x, xrecon) + αPL(x, xrecon) . (4)

3 Methods and Materials

We propose MORPHADE, shown in Fig. 1, which builds upon deformable AEs.
Firstly, we employ a 3D convolutional AE to enable the use of 3D images with
the framework. Secondly, since PL uses 2D networks pre-trained on ImageNet,
we employ an adversarial loss [9] to increase the realness of the reconstructions.
We train a discriminator by minimizing this adversarial loss; therefore, the re-
construction loss becomes:

Lrecon = MSE(x, xrecon) + γAdversarial(x, xrecon) , (5)

where γ balances the production of realistic reconstructions while maintaining
pixel-wise accuracy.

Our major extension to the deformable AEs is the use of a dual-deformation
strategy, in which we employ an unconstrained deformer in addition to the con-
strained deformer, with the aim of improving the localization of atrophic regions.
As previously stated, the constrained deformer is trained with a high value of β to
improve the generation of the pseudo-healthy reconstructions and thus reduce
false positives in the anomaly maps. In contrast, the unconstrained deformer
has the goal of reverting the pseudo-healthy reconstruction back to its original
anomalous state. The deformer is trained with the same loss as in Eq. 3, but with
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Fig. 1: Our approach, MORPHADE, integrates a dual-deformation strategy with
a 3D autoencoder and adversarial training. The constrained deformer refines the
reconstruction to generate a residual map with reduced false positives, while
the unconstrained deformer is used to produce a folding map that highlights
anomalies. The residual and folding maps together produce an anomaly map
that allows the localization and assessment of the severity of atrophy.

a low value of β, which allows the creation of unconstrained deformation fields.
In such deformation fields, low values of deformation should occur in areas of
healthy tissue. Conversely, in regions of atrophy, the deformation field exhibits
foldings, or areas in which the mapping of the deformation from the pseudo-
healthy reconstruction to the original image is not one-to-one due to the loss of
tissue volume. The determinant of the Jacobian of the deformation map, JΦ, can
be used to determine local volume changes, with negative values indicating such
foldings. Therefore, we highlight the anomalies by using the negative Jacobian
values to generate a map of the foldings, mfoldings = max(0,−det(JΦ)).

We finally multiply these foldings pixel-wise with the residual map from the
constrained deformer to generate an anomaly map with reduced false positives
and improved atrophy localization:

Anomaly Map = mresidual ×mfoldings . (6)

Implementation. All networks were trained with Adam optimizer. The dis-
criminator was trained with a learning rate of 1.0e−4, otherwise 5.0e−4 was
used. The framework was first trained with a high value of β = 10. We mo-
tivate this choice in Fig. 2a, where we show that using decreasing values of β
during training results in blurrier reconstructions. Conversely, a high β value
ensures that the AE does not overly rely on the deformations to achieve faithful
reconstructions, but is instead forced to learn an accurate representation of the
in-distribution data. After 200 epochs, the weights of these models were kept
frozen while the deformation parameters were optimized for 100 epochs.

At inference, we use a high value of β = 10 to obtain the residual maps
and a low value of β = 0.01 to generate the folding maps. We demonstrate the
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Fig. 2: a) During training, a high value of β = 10 constrains the deformer, pro-
moting the AE to learn to produce less blurry reconstructions. b) At inference,
a lower value of β = 0.01 is used to generate folding maps (here shown overlayed
on the input brain) that enhance the identification of anomalies.

need for lower β values to produce improved folding maps in Fig. 2b, where it
can be seen that using low values accentuates the anomalous regions in the brain.

Dataset and Preprocessing. Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu) [19].We used skull-stripped T1-weighted MPRAGE images
of both male and female patients that are registered to the MNI brain tem-
plate [17]. Our training set comprised 760 healthy control (HC) samples, with
an additional 95 HC samples utilized for validation purposes. For the supervised
baseline training, an additional 430 AD samples were used. The test set included
215 HC samples and 200 samples with AD.

4 Experiments and Results

Atrophy Localization. We first validate the effectiveness of our method in
identifying atrophy in sub-cortical brain regions affected by AD. To achieve this,
we used the FSL FIRST tool [18] to segment these regions and compute mean
anomaly scores for each, shown in Fig. 3. Our results indicate that AD patients
exhibit notably higher anomaly scores in the hippocampus (left: 0.282 ± 0.495,
right: 0.185 ± 0.382) and amygdala (left: 0.132 ± 0.207, right: 0.108 ± 0.208)
compared to the hippocampus (left: 0.108 ± 0.193, right: 0.069 ± 0.125) and
amygdala (left: 0.066 ± 0.115, right: 0.072 ± 0.111) for the healthy controls.
These results are in line with the clinical expectation of these regions being sig-

adni.loni.usc.edu
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Fig. 3: Anomaly scores for subcortical brain regions for Alzheimer’s Disease (AD)
and Healthy Control (HC) samples, showcasing markedly higher scores for AD
samples in the hippocampus and amygdala, consistent with clinical literature. [6]

Fig. 4: Anomaly maps for AD patients alongside their corresponding medial tem-
poral lobe atrophy (MTA) scores, demonstrating consistent alignment with AD-
related structural changes and clinical MTA assessments.

nificantly affected by AD pathology [6], indicating that MORPHADE is able to
identify atrophy in clinically relevant brain regions.

Atrophy Severity. We next evaluate the ability of our method to determine the
severity of the localized anomalies by comparing our anomaly maps to medial
temporal lobe atrophy (MTA) scores [20] that were assessed by a senior board-
certified neuroradiologist. These scores range from 0 to 4 and are assigned based
on the degree of structural changes observed in the choroid fissure, the temporal
horn of the lateral ventricle, and the hippocampus. Fig. 4 shows a visual corre-
lation between the degree of atrophy highlighted in the anomaly map in these
key regions and the MTA scores, demonstrating the utility of our method in
determining the severity of detected anomalies.
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Table 1: AUROC scores for the classification of AD and Healthy Controls (HC)
patients. Best results are shown in bold.

Method AD vs. HC ↑

ResNet (Supervised)[14] 0.77
DenseNet (Supervised)[10] 0.74

Brainomaly [22] (Mixed Supervision) 0.78

f-AnoGAN [21] (Unsupervised) 0.70
Ganomaly [2] (Unsupervised) 0.72
Adversarial AE (Unsupervised) 0.74

MORPHADE (ours) (Unsupervised) 0.80
- Only with residual maps (β=10) 0.77
- Only with folding maps (β=0.01) 0.79

Pathology Detection. In this section, we assess the capability of MORPHADE
in detecting AD at the patient level. Table 1 shows the Area Under the Re-
ceiver Operating Characteristic curve (AUROC) scores obtained when compar-
ing our method to various baselines for identifying subjects with AD compared
to healthy control (HC) subjects. Our model achieves an AUROC of 0.80, sur-
passing even the 3D supervised baselines ResNet [14] and DenseNet [10], with
AUROCs of 0.77 and 0.74, respectively.

Furthermore, we obtain improved performance compared to methods pro-
posed for unsupervised anomaly detection. These methods are only available in
2D, so were assessed slice-wise with the final anomaly scores obtained by aver-
aging over the slices for each patient. f-AnoGAN [21], Ganomaly [2] obtained
AUROCs of 0.70 and 0.72, respectively. We also outperform Brainomaly [22]
(AUROC 0.78), a method that is not strictly unsupervised since it requires
pathological samples during training for improved performance.

We also compare our results to a 3D adversarial AE to illustrate the benefit
of utilizing the deformation fields with our method. Fig. 5 shows the reconstruc-
tions and residual maps obtained for both methods in representative AD and
healthy controls (HC) subjects. Our method produces more refined reconstruc-
tions compared to the adversarial AE, shown by the improved MAE and SSIM
scores. Moreover, the residual maps show fewer false positives for the healthy
subject, while accentuating pathological areas for the AD subject. Using these
improved residual maps alone for AD detection achieves a superior performance
of AUROC 0.77 compared to 0.74 obtained by the adversarial AE.

Finally, we demonstrate the utility of our dual-deformation approach, where
AD identification was superior using our method compared to using only the
residual maps from the constrained deformer (AUROC 0.77) or the folding maps
from the unconstrained deformer (AUROC 0.79). Notably, the high performance
of the folding maps underscores their effectiveness in detecting anomalies without
relying on image differences between the input and reconstructions.
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Fig. 5: A comparison of the performance of MORPHADE (β = 10) with adver-
sarial AEs for a subject with AD (left) and a healthy control subject (right).
The morphological adjustments facilitated by MORPHADE enhance reconstruc-
tion fidelity, yielding higher Structure Similarity Index (SSIM) values for our
method’s morphed reconstructions compared to those of the adversarial AE.
The residual maps also demonstrate fewer reconstruction errors for the healthy
subject, while highlighting atrophy for the subject with AD.

5 Discussion and Conclusion

In this work, we introduced MORPHADE, a novel framework leveraging 3D
deformable AEs for unsupervised analysis of Alzheimer’s Disease using T1-
weighted brain MRI. Our approach is unique in employing deformation fields
within an unsupervised learning context to analyze, localize, and assess the sever-
ity of AD-related atrophy.

Our results demonstrate that MORPHADE can effectively identify and lo-
calize atrophy in clinically relevant brain regions, such as the hippocampus and
amygdala, which aligns with clinical expectations of AD pathology. Furthermore,
the anomaly maps generated by our method show strong visual correspondence
with MTA scores, underscoring the potential of our method in clinical assess-
ments. Lastly, MORPHADE achieved an AUROC of 0.80 in detecting AD, out-
performing several supervised and unsupervised baselines. This highlights the
robustness of our method without requiring extensive labeled datasets, address-
ing a significant limitation in current diagnostic approaches.

Future work could explore integrating MORPHADE’s deformation metrics
with established AD biomarkers, such as tau protein accumulation and amyloid-
beta levels, to enhance understanding of disease progression. Additionally, ex-
panding our framework to other neurodegenerative diseases could further vali-
date its versatility and clinical utility.

In conclusion, MORPHADE offers a promising tool for localization, and
severity assessment of AD-related atrophy, contributing valuable insights into
the progression and diagnosis of neurodegenerative diseases. Our findings sug-
gest that this approach could significantly enhance the non-invasive monitoring
and understanding of AD, paving the way for improved patient outcomes.
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